
ESI The Erwin Schrödinger International Boltzmanngasse 9
Institute for Mathematical Physics A-1090 Wien, Austria

50 Joint Explorations, 1985-2007

Wm. G. Hoover

Carol G. Hoover

Harald A. Posch

Vienna, Preprint ESI 1898 (2007) March 12, 2007

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available via http://www.esi.ac.at



50 Joint Explorations, 1985-2007

Wm. G. Hoover and Carol G. Hoover

Highway Contract 60, Box 565

Ruby Valley, Nevada 89833

and Harald A. Posch

Institute for Experimental Physics

Universität Wien

Boltzmanngasse 5

Wien A-1090 Austria

(Dated: March 12, 2007)

Abstract

Our joint explorations of microscopic and macroscopic physics are reviewed, for the occasion of a

special meeting, “Nonlinear Dynamics Meets Stochastic Dynamics”, at the Schrödinger Institute,

18-20 April 2007.

PACS numbers: 05.20.-y, 05.45.-a, 07.05.Tp, 46, 05.70.Ln

Keywords: Thermostats, Fractals, Irreversibility, Lyapunov Instability, Smooth Particles

1



I. INTRODUCTION

A quick count reveals that our 50 joint papers exceeds substantially (in both senses) the

extent of our work with other authors. On this special occasion a brief review is very much in

order. We summarize our work in three main areas. We begin with applications and exten-

sions of Shuichi Nosé’s pioneering approach, which included temperature and thermostats

in mechanics. Next, comes our work on characterizing Lyapunov instability, and its applica-

tions to fractal geometry and the macroscopic irreversibility described by the Second Law.

Last, comes our joint efforts in macroscopic simulation, to a large extent using particle-based

smooth-particle methods influenced by our microscopic studies. The overall theme of this

work is the linking together of microscopic mechanical concepts with macroscopic thermo-

dynamics and hydrodynamics. This linkage is based on applying and extending Gibbs’ and

Boltzmann’s ideas, which originated in the United States and here in Austria more than 100

years ago.

II. MECHANICS WITH TEMPERATURE AND THERMOSTATS, 1985-2007

The late Shuichi Nosé’s 1984 discovery of thermostated mechanics opened up a wide area

for exploration. We assimilated and extended his work by applying it to a host of equilibrium

and nonequilibrium systems. The simplest of them, a canonical-ensemble harmonic oscillator

at equilibrium1, provided not only a variety of regular periodic solutions, but also Lyapunov-

unstable chaotic solutions of the three simple motion equations:

q̇ = p ; ṗ = −q − ζp ; ζ̇ = (p2 − 1)/τ 2 .

The friction coefficient ζ and the thermal relaxation time τ are the two new features intro-

duced by Nosé. We generated projections and sections of the intricate phase-space structures

( in three dimensions, { q, p, ζ }, not just two ). These developed overnight on a computer

screen in Harald’s Boltzmanngasse office. The next morning, a dignified gentlemen in a

white coat, bearing a large camera, was summoned. He photographed the computer screen

for us. See Figure 1, for a sample ( p, ζ )-plane “Poincaré section” cut at q = 0.

The prominent “holes” in the cross section of Figure 1 are occupied by regular nonchaotic

regions surrounding periodic orbits. One such periodic orbit is shown in Figure 2. For a
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FIG. 1: Chaotic Poincaré section (q = 0) for the Nosé-Hoover oscillator, from Reference 1.

fixed value of the thermostat timescale relaxation time τ the sum total of all the regular

orbits plus the chaotic one is the simple equilibrium Gaussian distribution,

f(q, p, ζ) ∝ e−[q2+p2+(τζ)2]/2 .

Over 50 computer-generated pictures illustrating such models appear in our 1985

manuscript on the canonical dynamics of the Nosé oscillator1. WGH was then in Wien

to work with Karl Kratky on hard-disk and hard-sphere transport problems, but ended up

doing even more work with HAP, along with writing a book, “Molecular Dynamics”, de-

scribing a series of lectures presented during that visit2. A mature extended version of the

subject matter, “Computational Statistical Mechanics”, appeared six years later3.

In the two decades since this pioneering work, applications of Nosé’s thermostat idea have

been extended to [1] control of stress, as well as temperature; [2] control of configurational

temperature, as well as kinetic temperature; [3] simultaneous control of higher moments

than 〈p2〉 or 〈F 2〉, such as 〈p4〉 by using multiple controls, which promote ergodicity; [4]

temperature control for a wide variety of diffusive, shear, and heat flows in one, two, and

three dimensions; [5] a geometric understanding of phase-space irreversibility; and [6] a solid

theoretical embedding of the macroscopic notions of temperature and stress into traditional

time-reversible Lagrangian and Hamiltonian microscopic mechanics.
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FIG. 2: A regular periodic orbit in (q, p, ζ) space, for the Nosé-Hoover oscillator, with τ = 0.1,

taken from Reference 1.

This last application, the explicit introduction of temperature into microscopic mechanics

provided a link, unknown to Boltzmann and Gibbs, which was instrumental in connecting

the microscopic and macroscopic points of view. Very recently Dettmann and Morriss4

discovered a direct link between Nosé’s mechanics and Hamiltonian mechanics:

H =
K(p)

s
+ s

[

Φ(q) +
1

2
(ζτ )2 + #kT ln s

]

≡ 0 .

Note the unusual, but crucial, trick of choosing a fixed value for the Hamiltonian. Without

this choice, this approach would fail.

Even more recently Travis and Braga5–7 used Liouville’s Theorem for the flow of phase-

space probability density f(q, p, ζ, t),

ḟ

f
≡ −

(

∂ζ̇

∂ζ

)

−
#
∑

[(

∂q̇

∂q

)

+

(

∂ṗ

∂p

)]

;

[(

∂f

∂t

)

= 0

]

−→ f({q, p}, ζ) ∝ e−(H/kT )−(#ζ2τ2/2) ,

to develop a configurational analog of the kinetic Nosé-Hoover thermostat. Here # is the

number of (q, p) degrees of freedom describing the system. This approach makes use of

Landau and Lifshitz’ classic identity8,9 (from the canonical ensemble):

kT ≡
〈F 2〉

〈∇2H〉
.
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Applied to a simple harmonic oscillator (with force constant, mass, and temperature all equal

to unity) the Travis-Braga configurational equations of motion (with the Landau-Lifshitz

definition of temperature) are:

ṗ = −q ; q̇ = +p − ζq ; ζ̇ = (q2 − 1)/τ 2 ; kT = 1 = 〈q2〉 .

Recall now that the usual Nosé-Hoover equations of motion (with the kinetic definition of

temperature) are:

q̇ = +p ; ṗ = −q − ζp ; ζ̇ = (p2 − 1)/τ 2 ; kT = 1 = 〈p2〉 .

Evidently the solutions of these two sets of equations, Travis-Braga and Nosé-Hoover, are

identical once the substitutions +q ↔ −p are made.

III. MECHANICAL INSTABILITY, FRACTALS, AND THE SECOND LAW,

1987-2002

Characterizing the chaotic solutions for the Nosé oscillator and its generalizations led

us to seek, and find, an analytic representation for an algorithm generating the “Lyapunov

spectrum”10. This spectrum of exponents, one for each phase-space dimension, gives the set

of growth and decay rates, ∝ eλt, of an infinitesimal comoving, corotating phase-space hyper-

sphere centered on a trajectory satisfying the motion equations. Figure 3 shows the growth

in the squared separation of two nearby phase-space trajectories over 3500 computational

timesteps, starting at about (e−11)2 and reaching (e−3)2. The underlying cell-model system

is a single particle, moving in two-dimensional space and confined by four fixed neighboring

particles. The slope of this semilogarithmic plot, when time-averaged and divided by 2dt, is

the largest Lyapunov exponent λ1.

The idea underlying our work on the Lyapunov analysis was to use an array of Lagrange

multipliers {λij}, to stabilize the orthonormal arrangement of a comoving corotating set of

basis vectors {δi} in the phase space:

{ δ̇j(H0, {λ}) = δ̇j(H0) −
∑

i≤j

λij(t)δi } .

The time-averaged diagonal elements of the Lagrange-multiplier array turn out to correspond

to the conventional Lyapunov spectrum:

{ 〈 λii(t) 〉 } ≡ { λi } .
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FIG. 3: Time dependence, for 3500 timesteps, of ln(δ2
x + δ2

y + δp2
x + δp2

y) for a two-dimensional

nonlinear oscillator problem. The growth of the offset between two nearby phase-space trajectories

gives the largest Lyapunov exponent for the problem.

FIG. 4: Typical manybody Lyapunov spectra for two- and three-dimensional fluids and solids at

equilibrium. There are two exponents, one positive and one negative, for each degree of freedom.

The Lagrange Multiplier approach makes it unnecessary to rescale the lengths of the {δ}:

{ λij(t) } −→ { δ̇ · δ ≡ 0 } .

Otherwise, the main advantage of this point of view is pedagogical, as Benettin’s original

method11, using rescaling of the comoving and corotating { δj }, is actually more efficient

than using Lagrange multipliers for systems with more than a few phase-space dimensions.
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FIG. 5: Symmetry breaking for a stationary nonequilibrium state, thermostated and driven by an

external field of strength 3. There are 32 three-dimensional particles (96 pairs of exponents). The

corresponding exponent shift (from the solid line to the broken line) is roughly −0.8 for each pair

of exponents, and corresponds to a total dimensionality loss of −32, so that the dimensionality of

the nonequilibrium strange attractor is about 164.

Computational advances did make it possible to characterize complete manybody spec-

tra for both equilibrium and nonequilibrium systems. Figure 4 shows four such typical

equilibrium Lyapunov spectra. These early equilibrium manybody spectra resemble simple

power laws. A significant result, which took years to understand, was the nonequilibrium

symmetry-breaking, corresponding to a negative shift of the spectrum. See Figure 5. This

nonequilibrium work was presented in 1987 at a very pleasant meeting in southern Italy12,

where the water, wine, and electricity flowed only intermittently, despite the high cost of

the rooms.

Nosé’s mechanics made it possible to show, analytically, that the exponents’ shift was

directly related to the entropy production of the external reservoirs represented by the the

thermostating forces:
∑

λ = −
ḟ

f
=

⊗̇

⊗
= −

Ṡres

k
< 0 .

The Second Law of Thermodynamics, 〈Ṡres〉 > 0, gave the paradoxical result that the phase

volume ⊗ representing a nonequilibrium steady state vanished! This shrinking13, to zero

phase volume, was initially quite surprising given the time-reversible nature of the motion
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FIG. 6: Six projections of the 2.56-dimensional strange attractor for a nonequilibrium oscillator.

The nonequilibrium temperature, T = 1+tanh(q), leads to an overall transfer of heat from positive

to negative values of the coordinate q. Analysis of this model provided definite evidence for the

failure of the Kaplan-Yorke conjecture. See Reference 15.

equations, even away from equilibrium. The amazing coexistence of time-reversible equa-

tions with irreversible macroscopic behavior led to the book “Time Reversibility, Computer

Simulation, and Chaos”14.

The analysis of Lyapunov spectra helps to explain the extreme rarity of nonequilibrium

steady states in terms of phase-space dimensionality loss. In understanding this connection

simple models have proved useful. The doubly-thermostated oscillator,

q̇ = p ; ṗ = −q − ζp − ξp3 ; ζ̇ = p2 − T ; ξ̇ = p4 − 3p2T ; T = 1 + ǫ tanh(q) ,

where ζ regulates p2 while ξ regulates p4, is a specially instructive model. For ǫ = 0 this

oscillator generates the four-dimensional Gaussian distribution,

f(q, p, ζ, ξ) ∝ e−[q2+p2+ζ2+ξ2]/2 .

For ǫ = 1 this oscillator generates a 2.56-dimensional nonequilibrium phase-space attractor.

This directly-measured dimensionality, based on averaging f ln f over up to 1284 = 228
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FIG. 7: Particle contributions to the largest Lyapunov exponent are indicated by shades of grey.

Most of the contribution to the exponent is provided by only a few of the 25,600 particles in the

lower left corner of the Figure. This mode is localized in physical (x, y) space. See Reference 16.

phase space bins, is in marked disagreement with the estimated information dimension of 2.80

based on Kaplan and Yorke’s conjectured [and incorrect] relationship between the Lyapunov

exponents and attractor dimensionality15. Two-dimensional projections of the attractor

appear in Figure 6.

In considering the details of Lyapunov instability for manybody systems we noticed the

very localized nature of the eigenvectors associated with the first few Lyapunov modes16.

In some of his most important and seminal work Harald and his many coworkers found

that modes near the middle of the Lyapunov spectrum, with small exponents, correspond

to sinusoidal collective eigenvectors reminiscent of the sound and heat modes of ordinary

hydrodynamics17. Figure 7 shows the localized nature of the first few (and last few) Lya-

punov modes. This localized structure is qualitatively different to that of the modes corre-

sponding to exponents near zero.
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IV. CONTINUUM MECHANICS, 1995-2007

In 1977 two separate groups at Cambridge used particle methods to solve problems in

continuum mechanics18. These “smooth particle” methods proved too intriguing for us to

resist. They are a bridge between microscopic mechanics, governed by atomistic forces,

and macroscopic mechanics, governed by thermodynamic and hydrodynamic constitutive

relations. Because the approach is particularly simple and transparent, these methods are

also ideal for students interested in solving continuum problems.

The smooth-particle equations of motion,

{ v̇i = −m
∑

j





(

P

ρ2

)

i

+

(

P

ρ2

)

j



 · ∇iwij(|rij|) } ,

include a “weight” or “influence” function wij(|rij |), a positive function with two continuous

derivatives and a range of two or three particle spacings. The mass density ρ(r) at any

point in space is computed by adding the contributions of all particles within the range of

the weight function w(|rrj |):

ρ(r) ≡
∑

j

mjw(|rrj|) .

Spatial derivatives,

{ ∇ρ,∇v,∇T,∇ · P,∇ · Q } ,

of the continuum variables needed for the righthandsides of the { ρ̇, v̇, ė } equations,

ρ̇ = −ρ∇ · v ; ρv̇ = −∇ · P ; ρė = −∇v : P −∇ · Q ,

all become simple sums over pairs of particles with the gradient operations replaced by dif-

ferentiations of w. Because the components of ∇w and ∇∇w are simple (continuous) poly-

nomials, this straightforward differentiation/interpolation procedure is simpler and faster

than traditional finite-element approaches.

The smooth-particle approach can be applied to gases, liquids, or solids. The constitutive

relations, which give the pressure tensor P and the heat flux vector Q in terms of the values,

gradients, and time histories of { ρ, v, e } distinguish one material from another. Notice

that the special case of a two-dimensional ideal-gas constitutive relation, P ∝ ρ2, gives a

continuum dynamics which corresponds to ordinary molecular dynamics with a pair potential

w(r). This similarity (isomorphic particle trajectories) made it possible19 to shed light on the
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FIG. 8: The Figure shows (top) actual particle positions during five stages of a free expansion

[ { τ
8 , τ

4 , τ
2 , τ, 2τ}, where τ is the sound traversal time ] together with the contour of mean density

(middle) and mean kinetic energy (bottom). The fluctuations in these latter quantities “explain”

the irreversibly-generated entropy increase associated with “Gibbs’ Paradox”. See Reference 19.

entropy increase associated with free expansions, tracing the entropy increase to fluctuations

in the local velocity and density,

〈v2〉 6= 〈v〉2 ; 〈ρ2〉 6= 〈ρ〉2 .

The smooth-particle version of the free expansion problem corresponds to the solution

of the Euler equations, augmented by an artificial viscosity and artificial heat conductivity.

Steady uniform Newtonian shear flows, and Fourier heat flows, can be used to study the

convergence of the smooth-particle solutions to the analytic solutions which apply in the

many-particle continuum limit20,21.

The Rayleigh-Bénard problem combines shear flow and heat flow. In this problem a

fluid is heated from below. Solutions can provide a variety of flows depending upon the

relative strength of the temperature gradient driving the motion (through the mechanism

of thermal expansion). Although this problem involves both conductive and convective

heat flows, numerical solutions are relatively easy to obtain because the boundaries and the

boundary temperatures are fixed.
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FIG. 9: A 5000-particle Rayleigh-Bénard simulation. The initial velocities and a typical particle

snapshot appear at the top. The density and temperature contours calculated as instantaneous

smooth-particle averages (right, center and bottom) are compared to accurate finite difference

contours (left, center and bottom).

Figure 9 shows a relatively small-scale solution, using 5000 particles. Contours of density

and temperature can be computed from a regular grid of points upon which the grid values

are calculated as particle sums:

ρ(r) ≡
∑

j

mjw(|rrj|) ; T (r) ≡

∑

j Tjw(|rrj|)
∑

j w(|rrj |)
.

Evidently the errors in the smooth-particle solution are on the order of one percent.

Similar grid-based sums can be used to compute Fourier transforms of all the hydrody-

namic variables. This computational technique has tremendous advantages, both pedagogi-

cal and practical, when it comes to solving problems in continuum mechanics. Applications

to flows and to fracture are many. Our work in this area led to a recently published book22.

We studied more complex two-dimensional “Kolmogorov flows” using smooth particles.

These flows are driven by the usual smooth-particle version of the equations of motion,

{ v̇i = −m
∑

j





(

P

ρ2

)

i

+

(

P

ρ2

)

j



 · ∇iwij(|rij|) } ,

with an additional sinusoidal acceleration added on, g(0, sin(kx)) or g(sin(ky), 0) . Here g is

the amplitude of the sinusoidal acceleration. Simulations with various aspect ratios, periodic
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FIG. 10: Three views of “Kolmogorov flows”, field-driven periodic flows, which can be either

regular or turbulent depending upon the strength of the driving force. The sinusoidal driving force

is either vertical or horizontal in the views shown here. See Reference 23 for details.

in both the x and y directions, show clearly the transition from laminar to turbulent flow

that occurs for sufficiently large g. Figure 10 illustrates three such flows.

Although by now many hydrodynamic simulations have been carried out using smooth-

particle methods, there remains much to be done, particularly in developing constitutive

relations for the application of these models to solid-phase flow and failure problems.

V. CONCLUSIONS AND ACKNOWLEDGMENTS

Our joint work has not only been enjoyable and intellectually valuable in itself. It has also

been particularly seminal in advancing the interconnections linking statistical mechanics,

nonlinear dynamics, and macroscopic hydrodynamics. As a result we can implement control

variables in microscopic simulations and can understand the connection of the microscopic

control variables with macroscopic irreversible thermodynamics, We can also use particle

methods to solve and understand relatively complex continuum problems in a simple way.

These highspots of our joint work were presented in Vienna at the 18-20 April 2007

meeting, “Nonlinear Dynamics Meets Stochastic Dynamics”. We very much appreciate the

organizers’ invitation to participate in that meeting.
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Stability, Order, and Chaos”, Physical Review A 33, 4253-4265 (1986)

2 Wm. G. Hoover, Molecular Dynamics, Lecture Notes in Physics 258 (Springer-Verlag, Berlin,

1986).

3 Wm. G. Hoover, Computational Statistical Mechanics (Elsevier, New York, 1991).

4 C. P. Dettmann and G. P. Morriss, “Hamiltonian Formulation of the Gaussian Isokinetic Ther-

mostat”, Physical Review E 54, 2495-2500 (1996).

5 C. Braga and K. P. Travis, “A Configurational Temperature Nosé-Hoover Thermostat”, Journal
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