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1. Introduction

In the present paper the following eigenvalue problem

−y′′(x) + q(x)y(x) = k2y(x) , (1)

y′(a) − iky(a) = 0, y′(b) + iky(b) = 0 (2)

is considered, where k ∈ C stands for a spectral parameter while the complex-
valued function q(x) vanishes at points a and b so that

q(x) = (x−a)αq0(x)(b−x)
β, q0(a) · q0(b) 6= 0, α, β > 0.

If one assumes q(x) to be zero for x 6 a and x > b then the boundary con-
ditions (2) imply that an eigenfunction y(x) corresponding to an eigenvalue
k admits a continuation

y(x) =

{
c1e

ikx, x 6 a,

c2e
−ikx, x > b,

remaining a solution to equation (1) for all x ∈ R. Thus, if k is an eigenvalue
of the problem (1)-(2) and Im k < 0 then y ∈ L2(R) and hence E = k2

is an eigenvalue of the corresponding Schrödinger operator with compactly
supported potential q(x). Provided that Im k > 0 the value E = k2 turns out
to be a resonance or scattering pole (i.e. a pole of the analytic continuation
of the resolvent integral kernel) of the operator in question. In the case when
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Im k = 0 point E = k2 is embedded into continuous spectrum and is called
a spectral singularity of the Schrödinger operator mentioned above.

A number of papers by physicists and mathematicians deal with localiza-
tion and asymptotic distribution of resonances in scattering theoretic context
(see the monographs [1]-[4] and reviews [5],[6]). Below it is shown that at
most finitely many points of the spectrum of the problem (1)-(2) are lo-
cated in the lower half-plane C− := {Imk 6 0}, while the upper half-plane
C+ := {Imk > 0} contains countably many eigenvalues for which an asymp-
totic distribution formula is established.

Theorem. Suppose that q0 ∈ CN [a, b] and N > max{α, β} + 1. Then the
spectrum of the problem (1)-(2) in the half-plane C+ consists of two series of
eigenvalues

k±n = ±
πn

b−a
+

iγ lnn

2(b−a)
±

πγ

4(b−a)
−

−
i ln C

2(b−a)
+

iγ

2(b−a)
ln

( 2π

b−a

)
+ ε±n , (3)

where γ = α + β + 4 and C = Γ(α + 1)Γ(β + 1)q0(a)q0(b)(b − a)α+β, while
the remainder terms ε±n as n→ ∞ admit the estimates

ε±n =

{
O(1/ ln n) if α or β is integer
O(nm−1(lnn)−m) otherwise

with m = max
{
{α}, {β}

}
and, moreover, ε±n = O

(
lnn/n

)
provided that

N > max{α, β}+ 2.

The problem equivalent to (1)-(2) for integer α and β was studied in [7],
where the eigenvalues k±n have been calculated up to o(1) remainder term.
Theorem formulated above complements and strengthens the main result of
[7], namely it enables one to consider complex-valued potentials q(x) with
zeroes of arbitrary (not necessarily integer) tangency orders at the endpoints
of the support and for such potentials it gives asymptotic formulas for the
resonances with the remainder term quantitatively estimated. In [8] the
asymptotic distribution of the spectrum for the Regge problem is studied
which differs from (1)-(2) by the change of the first boundary condition (2)
to y(a) = 0. The method used here to obtain the asymptotic formulas (3) is
related to the approach developed in [8] and differs essentially from that of [7].
This paper presents the results obtained in colaboration with A.Tarasov a
postgraduate student of Mathematics Department at Moscow State Univer-
sity.
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The spectrum of the problem (1)-(2) is known to coincide with the zeroes
of the function

∆(k) =

∣∣∣∣
y′1(a, k) − ik y1(a, k) y′2(a, k) − ik y2(a, k)
y′1(b, k) + ik y1(b, k) y′2(b, k) + ik y2(b, k)

∣∣∣∣

called the characteristic determinant corresponding to a fundamental set of
solutions {y1(x, k), y2(x, k)} to equation (1). In the course of the proof of
the Theorem an appropriate fundamental set of solutions is to be chosen as
follows y1(x, k) = e−ikxv1(x, k) and y2(x, k) = eikxv2(x, k), where v1(x, k) and
v2(x, k) satisfy the integral equations

v1(x, k) = 1 +
i

2k

∫ x

a

(1 − e2ik(x−t))q(t)v1(t, k) dt , (4)

v2(x, k) = 1 +
i

2k

∫ b

x

(1 − e2ik(t−x))q(t)v2(t, k) dt , (5)

so that one has

y′1(a, k)− ik y1(a, k) = −2ik e−ika,

y′2(b, k) + ik y2(b, k) = 2ik eikb,

and, besides,

y′1(b, k) + ik y1(b, k) = e−ikbv′1(b, k),

y′2(a, k)− ik y2(a, k) = eika v′2(a, k).

Thus the problem in question concerning the asymptotics of eigenvalues is
equivalent to investigation of the roots distribution for the equation

e−2ik(b−a)v′1(b, k)v
′
2(a, k) = 4k2. (6)

In what follows the solutions v1(x, k) and v2(x, k) to equations (4) and
(5) are constructed and their behavior as C+ ∋ k → ∞ is studied. Making
use of the Laplace integrals evaluation technique we show that

v′1(b, k) = q0(b)(b− a)αΓ(β + 1) z−β−1 + Φ1(z) + Ψ1(z), (7)

−v′2(a, k) = q0(a)(b− a)βΓ(α + 1) z−α−1 + Φ2(z) + Ψ2(z), (8)

where z = −2ik, Ψ1,2(z) = O(e−(b−a)Re z), while Φ1(z) = O(z−β−2) and
Φ2(z) = O(z−α−2) provided N > max{α, β}+ 2. These formulas enable one
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to locate the roots of equation (6) which can be reduced (after the substitu-
tion of (7) and (8)) to the form

z − λ ln z + δ(z) = ωn, n ∈ Z, (9)

where λ :=
γ

b−a
, ωn :=

2πin

b−a
−

ln C

b−a
and δ(z) = O(z−1). It is known

that the transcendental equation

z − ln z = ω

possesses a unique solution

z(ω) = ω + lnω + O(lnω/ω)

provided that ω is large enough. The same holds true for equation (9) ap-
pearing in the problem under consideration. Namely for n ∈ Z of sufficiently
large absolute value it proves to have a unique solution

zn = ωn + λ lnωn + O

(
ln |n|

|n|

)
.

The verification of this fact completes the proof of the assertion of the The-
orem in the case N > max{α, β}+ 2. Further the following notation will be
used ‖f‖ := sup

x∈(a,b)

|f(x)| and 〈x〉 := −[−x] for x ∈ R.

2. Fundamental set of solutions to Schrödinger equation

Given p∈C1(a, b) such that p′ ∈ L1(a, b) let us introduce a notation

D :=
{
z = σ + iτ | σ > 0, |z| > 4(b−a)‖p‖

}

and consider an integral equation

u(x, z) = 1 +
1

z

∫ x

a

(1 − e−z(x−t))p(t)u(t, z) dt. (10)

Proposition1. For z ∈ D equation (10) has a solution

u(x, z) = 1 +
1

z

∫ x

a

p(t) dt + U(x, z), (11)

where ‖U( · , z)‖ = O(z−2) and, moreover, ‖u′( · , z)‖ 6 2(b−a)‖p‖.
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Proof. For z ∈ D equation (10) possesses a unique solution which can be
obtained by the standard successive approximations procedure so that

‖u( · , z)−1‖ 6
4(b− a)‖p‖

|z|
6 1.

Further, one can rewrite equation (10) in the form

u(x, z) = 1 +
1

z

∫ x

a

p(t) dt + U(x, z),

where

U(x, z) =
1

z2

(
e−z(x−a)p(a) − p(x) +

∫ x

a

e−z(x−t)p′(t) dt

)
+

+
1

z

∫ x

a

(1−e−z(x−t))p(t)
(
u(t, z)−1

)
dt.

Taking the above estimate into account for z ∈ D one has

‖U( · , z)‖ 6
1

|z|2

(
2‖p‖

(
1 + 4(b− a)2‖p‖

)
+

∫ b

a

|p′(t)| dt

)

and, besides, the inequality

|u′(x, z)| =

∣∣∣∣
∫ x

a

e−z(x−t)p(t)u(t, z) dt

∣∣∣∣ 6 2(b− a)‖p‖

holds that completes the proof.

Let v1(x, k) and v2(x, k) be the solutions of integral equations (4) and (5)
the first of which is of the form (10), while the second one can be rewritten
in such a form:

v2(a+b−y, k) = 1 +
i

2k

∫ y

a

(1 − e2ik(y−s)) q(a+b−s) v2(a+b−s, k) ds.

It can be verified directly that

y1(x, k) := e−ikxv1(x, k), y2(x, k) := eikxv2(x, k)

satisfy equation (1) and, moreover, the Wronskian of these two solutions for
k ∈ C+ is given by the expression

W{y1, y2} = 2ik v1(b, k) − v′1(b, k)
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which is non-zero by virtue of Proposition 1 provided that |k| is sufficiently
large and, therefore, solutions y1(x, k) and y2(x, k) are linearly independent
in this case. For k ∈ C− one can choose ỹ1(x, k) = y1(x,−k) and ỹ2(x, k) =
y2(x,−k) to be a fundamental set of solutions to equation (1).

The spectrum of the problem (1)-(2) is known to be discrete and coincide
with the zeroes of the characteristic determinant

∆[ϕ1, ϕ2](k) =

∣∣∣∣
ϕ′

1(a, k)− ik ϕ1(a, k) ϕ′
2(a, k) − ik ϕ2(a, k)

ϕ′
1(b, k) + ik ϕ1(b, k) ϕ′

2(b, k) + ik ϕ2(b, k)

∣∣∣∣

where {ϕ1(x, k), ϕ2(x, k)} is a certain fundamental set of solutions to (1).
From the above considerations it follows that the eigenvalues of the problem
(1)-(2) in C+ are just the zeroes of the analytic function

∆(k) := ∆[y1, y2](k) =

∣∣∣∣
−2ik e−ika eikav′2(a, k)
e−ikbv′1(b, k) 2ik eikb

∣∣∣∣

while the spectrum in C− of the problem in question consists of the zeroes
of the determinant

∆̃(k) := ∆[ỹ1, ỹ2](k) =

=

∣∣∣∣
0 e−ika[v′2(a,−k)− 2ik v2(a,−k)]

eikb[v′1(b,−k) + 2ik v1(b,−k)] 0

∣∣∣∣ .

In virtue of Proposition 1 one has the inequality

∣∣∣∣v1(b,−k) +
v′1(b,−k)

2ik

∣∣∣∣ > |v1(b,−k)| −
|v′1(b,−k)|

2|k|
> 1 −

3(b− a)‖q‖

|k|

valid for for k ∈ C− such that |k| > 2(b− a)‖q‖ and similarly

∣∣∣∣v2(a,−k)−
v′2(a,−k)

2ik

∣∣∣∣ > 1 −
3(b− a)‖q‖

|k|
.

Consequently the determinant ∆̃(k) does not vanish if k ∈ C− and |k| >
3(b− a)‖q‖ that actually proves the following

Proposition 2. The lower half-plane C− contains just finite number of
eigenvalues of the problem (1)-(2) and, moreover, all of them are located
in the disc

{
|k| 6 3(b− a)‖q‖

}
.
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3. Asymptotics of Laplace type integrals

In what follows a notation aσ := a+ σ−1 is used, where σ > 1/(b− a) so
that aσ ∈ (a, b). Asymptotic behavior of the integral

I(f, z) :=

∫ b

aσ

e−z(b−x)f(x) dx

as σ = Re z → ∞ depending on the properties of function f(x) will be
studied here. Beforehand we introduce an appropriate

Definition. Function f ∈ CN(a, b) belongs to the class (η|N |θ) if for arbi-
trary κ 6 N and δ ∈ (a, b) there exists cδκ > 0 such that

|f (κ)(x)| 6 cδκ

{
[1 + (x− a)η−κ] , x ∈ (a, δ]

(b− x)θ−κ, x ∈ [δ, b)

and indicate the properties of functions f ∈ (η|N |θ) we shall make use of in
the sequel: f ′ ∈ (η − 1|N − 1|θ − 1) and, besides,

f (−1)(x) := −

∫ b

x

f(t) dt ∈ (η|N + 1|θ + 1)

in the case when θ > −1. Moreover, given f ∈ (η|N |θ) and g ∈ (η′|N ′|θ′) it
can be verified that

f(x)g(x) ∈
(
min{η, η′, η+η′}

∣∣ min{N,N ′}
∣∣ θ+θ′

)
.

Lemma1. For arbitrary f ∈ (η|N |θ), θ > −1, an asymptotic estimate

∫ b

aσ

∣∣e−z(b−x)f(x)
∣∣ dx = O(σ−θ−1),

is valid as σ = Re z → ∞. Provided that N = 〈θ〉 one has

I(f, z) = I1(f, z) + I2(f, z),

where I1(f, z) = O(z−Nσ−{θ−0}) and I2(f, z) = O([1 + σ−η]e−σ(b−a)).

Proof. For fixed δ ∈ (a, b) and σ > 1/(δ − a) the following inequality

|I(f, z)| 6 cδ0

∫ δ

aσ

e−σ(b−x)
[
1 + (x− a)η

]
dx + cδ0

∫ b

δ

e−σ(b−x)(b− x)θ dx
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holds, where ∫ b

δ

e−σ(b−x)(b− x)θ dx 6 Γ(θ + 1)σ−θ−1

and, moreover,

∫ δ

aσ

e−σ(b−x)[1 + (x− a)η] dx 6 e−σ(b−δ)

∫ δ

aσ

[
1 + (x− a)η

]
dx = O(σ−θ−1).

Applying integration by parts to I(f, z) and taking into account that
f (κ)(b) = 0 for κ = 0, . . . N − 1, one has

∫ b

aσ

e−z(b−x)f(x) dx =
(−1)N

zN

∫ b

aσ

e−z(b−x)f (N)(x) dx +

+

N∑

κ=1

(−1)κ

zκ
f (κ−1) (aσ) e

−z(b−aσ ) = I1(f, z) + I2(f, z),

where I1(f, z) = O(z−Nσ−{θ−0}) as σ → ∞ by virtue of the first assertion
of the Lemma. The inequality

|I2(f, z)| 6

N∑

κ=1

|z|−κ|f (κ−1)(aσ)|e
−σ(b−aσ )

6
[
1 + σ−η

]
e−σ(b−a)+1

N∑

κ=1

cδκ−1

valid for sufficiently large σ > 0 completes the proof.

Proposition 3. Given θ > −1 and N > 〈θ〉 + 1 let g ∈ (η|N |θ) satisfy the
condition g(x)(b − x)−θ =: g0(x) ∈ CN(a, b]. Then an asymptotic represen-
tation

I(g, z) = g0(b) Γ(θ+1) z−θ−1 + Ĩ1(g, z) + Ĩ2(g, z) (12)

holds as σ = Re z → ∞, where

Ĩ1(g, z) = O(z−〈θ〉−1σ−{θ−0}) and Ĩ2(g, z) = O([1 + σ−η]e−σ(b−a)) .

Moreover Ĩ1(g, z) = O(z−θ−2) provided that N > 〈θ〉 + 2.

Proof. Condition g ∈ (η|N |θ) implies that g0 ∈ (η|N |0) and, therefore
Φ(x) := g0(x) − g0(b) ∈ (η|N |1) since g0 ∈ CN(a, b]. Let us now substitute
expression

g(x) = g0(b)(b− x)θ + r(x),

where r(x) := Φ(x)(b− x)θ ∈ (η|N |θ+1), into the integral

I(g, z) = g0(b)

∫ b

aσ

e−z(b−x)(b− x)θ dx + I(r, z)
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and consider the summands on the r.h.s. separately. The integral from the
first summand can be rewritten in the form

∫ b

aσ

e−z(b−x)(b− x)θ dx =

∫ b−aσ

0

e−zt tθ dt = z−θ−1Γ(θ + 1) + R1(z),

with the remainder term R1(z) which admits the estimate

|R1(z)| 6

∫ ∞

b−aσ

e−σt tθ dt = e−σ(b−aσ)

∫ ∞

b−aσ

e−σ(t−(b−aσ)) tθ dt 6

6 e−σ(b−a)+1

∫ ∞

b−aσ

e−(t−(b−aσ)) tθ dt 6 e1+(b−a)Γ(θ + 1) e−σ(b−a)

provided that σ > 1. Further, since r∈ (η|N |θ+1) and N > 〈θ〉+1, Lemma 1
can be applied to evaluate I(r, z). Namely for σ large enough one has

I(r, z) =

∫ b

aσ

e−z(b−t) r(t) dt = I1(r, z) + I2(r, z),

where I1(r, z) = O
(
z−〈θ〉−1σ−{θ−0}

)
, I2(r, z) = O

(
[1 + σ−η]e−σ(b−a)

)
.

To complete the proof of the first assertion of the Proposition it suffices to
note that functions

Ĩ1(g, z) := I1(r, z), Ĩ2(g, z) := g0(b)R1(z) + I2(r, z)

satisfy the required estimates.
To prove the second assertion in the case when N > 〈θ〉 + 2 the previous

arguments have to be specified. Let us first introduce a modified function

Φ̃(x) := g0(x)− g0(b) − g′0(b)(x−b)

and note that Φ̃ ∈ (η|N |2). Now following the same lines as before one
should substitute expression

g(x) = g0(b)(b− x)θ − g′0(b)(b− x)θ+1 + r̃(x),

where r̃(x) := Φ̃(x)(b− x)θ ∈ (η|N |θ+2), into the integral

I(g, z) = g0(b)

∫ b

aσ

e−z(b−x)(b− x)θ dx −

− g′0(b)

∫ b

aσ

e−z(b−x)(b− x)θ+1 dx + I(r̃, z)
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and again consider the summands on the r.h.s. separately. The integral in
the second summand here has the form

∫ b

aσ

e−z(b−x)(b− x)θ+1 dx = z−θ−2Γ(θ + 2) + R2(z),

with the remainder term R2(z) admitting the estimate

|R2(z)| 6 e1+(b−a)Γ(θ + 2) e−σ(b−a) , σ > 1 .

Since r̃∈ (η|N |θ + 2) and N > 〈θ〉 + 2 then by virtue of Lemma 1 one has

I(r̃, z) =

∫ b

aσ

e−z(b−t) r̃(t) dt = I1(r̃, z) + I2(r̃, z),

where I1(r̃, z) = O
(
z−〈θ〉−2

)
, I2(r̃, z) = O

(
[1 + σ−η]e−σ(b−a)

)
. Summing

up we set

Ĩ1(g, z) = −g′0(b)Γ(θ+2)z−θ−2 + I1(r̃, z),

Ĩ2(g, z) = g0(b)R1(z) − g′0(b)R2(z) + I2(r̃, z),

and the proof of the second assertion is complete.

4. Asymptotic behavior of solution to integral equation

Below it will be assumed without saying that function p(x) vanishes at
points a and b so that

p(x) = (x− a)µp0(x)(b− x)ν ,

where µ, ν > 0 and, besides, p0 ∈ CN [a, b], N > 1. Let u(x, z) be a solu-
tion to equation (10) specified in Proposition 1. In the present section the
asymptotic behavior of the integral

∫ b

a

e−z(b−x)p(x)u(x, z) dx = u′(b, z) (13)

will be studied for absolutely large values of parameter z ∈ D, namely we
shall prove the following
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Proposition 4. Provided that p0 ∈ CN [a, b], N > 〈ν〉 + 1, an asymptotic
formula

u′(b, z) = p0(b)(b− a)µΓ(ν+1) z−ν−1 + Φ(z) + Ψ(z) (14)

is valid, where Φ(z) = O
(
z−〈ν〉−1σ−{ν−0}

)
as σ → ∞ and, moreover, Φ(z) =

O
(
z−ν−2

)
if N > 〈ν〉 + 2, while Ψ(z) = O

(
e−σ(b−a)

)
.

Integration by parts is known to be useful as far as the study of the asymp-
totic behavior of the Laplace type integrals is concerned; in this connection
it should be mentioned that the form of the leading term in the asymptotic
formula and the estimates of the remainder terms depend drastically on the
smoothness of the integrand as well as on the multiplicities of its zeroes at
the endpoints. Below the integration by parts formula is adapted to our set-
ting, i.e. with regard for the specific nature of the integrand. Firstly let us
introduce an integro-differential operation

l : f(x) 7−→ − f ′(x) + p(x)f (−1)(x) ;

due to the properties of functions of the class (η|N |θ) indicated in Section 3
one has

l : (η|N |θ) → (η − 1|N − 1|θ − 1)

provided that η 6 µ, N 6 N and θ > −1.

Lemma 2. Suppose that function f ∈ C1(a, b) has an integrable singularity
at point x = b. Then for an arbitrary segment [c, d] ⊂ (a, b) an equality

∫ d

c

e−z(b−x)f(x)u(x, z) dx =

=
1

z

(
f(x)u(x, z)e−z(b−x) − f (−1)(x)

∫ x

a

e−z(b−t)p(t)u(t, z) dt

)∣∣∣
d

c
+

+
1

z

∫ d

c

e−z(b−x) l(f)(x)u(x, z) dx (15)

holds. Formula (15) remains valid in the case c = a and/or d = b provided
that l(f) (as well as f ′) is integrable in the left/right neighbourhoods of the
endpoints a and/or b .

Proof. Making use of integration by parts

∫ d

c

f(x)u(x, z) de−z(b−x) = f(x)u(x, z)e−z(b−x)
∣∣∣
d

c
−

−

∫ d

c

e−z(b−x)f ′(x)u(x, z) dx −

∫ d

c

e−z(b−x)f(x)u′(x, z) dx

11



followed by a substitution of the integral representation for u′(x, z) we obtain
the required formula, since

∫ d

c

e−z(b−x)f(x)u′(x, z) dx =

∫ d

c

(∫ x

a

e−z(b−x+x−t)p(t)u(t, z) dt

)
df (−1)(x) =

=

(
f (−1)(x)

∫ x

a

e−z(b−t)p(t)u(t, z) dt

)∣∣∣
d

c
−

∫ d

c

e−z(b−x) p(x)f (−1)(x)u(x, z) dx.

Now we shall take advantage of formula (15) in order to evaluate the
derivative u′(b, z) of the solution to equation (10) and obtain the estimate
to be used in the proof of the Theorem. Let us assume that p0 ∈ C〈em〉[a, b],
where m̃ = min{µ, ν}. Then ln(p) ∈ C〈em〉−n(a, b) for n 6 〈m̃〉 has inte-
grable singularities at points a and b. Taking this into account and applying
formula (15) to the integral (13) one has

∫ b

a

e−z(b−x)p(x)u(x, z) dx =
1

z〈em〉

∫ b

a

e−z(b−x) l〈em〉(p)(x)u(x, z) dx.

Because of the integrability of the function l〈 em〉(p) on the segment [a, b] and
uniform boundedness of the norms ‖u( · , z)‖ (cf. the proof of Proposition 1)
the integral on the r.h.s. of the latter equality is bounded uniformly in z ∈ D.
This justifies the following

Lemma3. Provided that p0 ∈ C〈em〉[a, b], where m̃ = min{µ, ν}, the estimate

|u′(b, z)| =

∣∣∣∣
∫ b

a

e−z(b−x)p(x)u(x, z) dx

∣∣∣∣ = O(|z|−〈 em〉)

is valid as |z| → ∞, Re z > 0.

Subsequently in addition to the above estimate the refined asymptotic
formula for u′(b, z) as σ = Re z → ∞ will be required. To this end for-
mula (15) should be applied to the integral (13) as many times as prescribes
the tangency order at which p(x) vanishes at the point b. Function p(x) in
general may have the zeroes at points a and b of different (and not necessary
integer) tangency orders, hence the derivatives of p(x) may have singularities
at point a so that successive application of formula (15) becomes impossible.
To avoid this difficulty it makes sense to divide the segment [a, b] by the point
aσ = a + σ−1 and thus decompose integral (13) into two summands to be
treated separately. To start with let us introduce a notation

R(p, z) :=

∫ aσ

a

e−z(b−x)p(x)u(x, z) dx
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and point out that (by virtue of the estimate ‖u( · , z)‖ 6 2 obtained in fact
in the course of the proof of Proposition 1) the inequality

|R(p, z)| 6

∫ aσ

a

e−σ(b−x) |p(x)u(x, z)|dx 6 4‖p‖e−σ(b−a) (16)

holds provided that z ∈ D and σ > 1.

Lemma4. Suppose that f ∈ (η | 〈θ〉 | θ) while 0 6 〈θ〉 6 N and η 6 µ. Then

J(f, z) :=

∫ b

aσ

e−z(b−x)f(x)u(x, z) dx = J1(f, z) + J2(f, z),

where J1(f, z) = O(z−〈θ〉) and J2(f, z) = O
(
[1 + σ−η]e−σ(b−a)

)
as σ → ∞.

Proof. By Lemma 2 one can several (= 〈θ〉 to be exact) times apply for-
mula (15) to decompose and evaluate the integral

J(f, z) =
J
(
l〈θ〉(f), z

)

z〈θ〉
+

( 〈θ〉−1∑

n=0

ln(f)(x)

zn+1
u(x, z) e−z(b−x) −

−

〈θ〉−1∑

n=0

[ln(f)](−1)(x)

zn+1

∫ x

a

e−z(b−t)p(t)u(t, z) dt

)∣∣∣∣
b

aσ

=

=
J
(
l〈θ〉(f), z

)

z〈θ〉
−

〈θ〉−1∑

n=0

ln(f)(aσ)

zn+1
u(aσ, z) e

−z(b−aσ) +

+

〈θ〉−1∑

n=0

[ln(f)]
(−1)

(aσ)

zn+1
R(p, z).

The estimate ‖u( · , z)‖ 6 2 valid for z ∈ D implies the inequality

∣∣J
(
l〈θ〉(f), z

)∣∣ 6 2

∫ b

aσ

∣∣e−z(b−x) l〈θ〉(f)(x)
∣∣ dx,

where l〈θ〉(f) ∈ (η−〈θ〉 | 0 | θ−〈θ〉) and hence by Lemma 1 the latter integral
is bounded uniformly in z = σ + iτ provided that σ is sufficiently large.
Consequently one has

J1(f, z) := J
(
l〈θ〉(f), z

)
z−〈θ〉 = O

(
z−〈θ〉

)
, σ → ∞.

Further, since ln(f) and [ln(f)](−1) belong to the class (η−n|〈θ〉−n|θ−n) it

follows that both ln(f)(aσ)z
−n−1 and [ln(f)](−1) (aσ)z

−n−1 are O
(
[1+σ−η ]

)

13



and, besides, ln(f)(b) = [ln(f)](−1) (b) = 0 if n < 〈θ〉. Making use of this fact
and taking the estimate (16) (as well as the uniform boundedness of the norm
‖u( · , z)‖) into account we get

J2(f, z) := −

〈θ〉−1∑

n=0

ln(f)(aσ)

zn+1
u(aσ, z) e

−z(b−aσ ) +

+

〈θ〉−1∑

n=0

[ln(f)](−1)(aσ)

zn+1
R(p, z) = O

(
[1+σ−η]e−σ(b−a)

)
, σ → ∞.

Proof of Proposition 4. Due to Lemma 4 and in view of the esti-
mate (16) it suffices to verify an asymptotic formula

z〈ν〉 J1(p, z) = J(l〈ν〉(p), z) =

= p0(b)(b− a)µΓ(ν+1) z−ν+〈ν〉−1 + Υ(z) + O
(
σ〈ν〉 e−σ(b−a)

)

to be valid for σ > 0 large enough, where Υ(z) = O
(
z−1σ−{ν−0}

)
if N >

〈ν〉 + 1 and Υ(z) = O
(
z〈ν〉−ν−2

)
provided that N > 〈ν〉 + 2.

Beforehand let us show (by induction arguments) that for n 6 〈ν〉 the
following representation

ln(p)(x) = (x− a)µ−npn(x)(b− x)ν−n + p̃n(x) (17)

holds in which pn ∈ CN−n[a, b], p̃n ∈ (µ−n+1|N−n+1|ν−n+2) and, moreover,

pn(b) =
Γ(ν+1)

Γ(ν−n+1)
(b− a)np0(b).

The starting point of the induction (n = 0) is guaranteed by the assump-
tion of the Proposition. Suppose now that for a certain n < 〈ν〉 induction
hypothesis is fulfilled. Then

ln+1(p)(x) = (x− a)µ−n−1pn+1(x)(b− x)ν−n−1 + p̃n+1(x),

where

pn+1(x) = [(ν − n)(x− a) − (µ− n)(b− x)]pn(x) − (x− a)(b− x)p′n(x)

and

p̃n+1(x) = −p̃n
′(x) + p(x) [ln(p)](−1)(x) ∈ (µ − n|N − n|ν − n + 1) .

14



Induction hypothesis (with regard for the explicit form of pn+1(x)) implies
that pn+1 ∈ CN−n−1[a, b] and

pn+1(b) = (ν − n)(b− a)pn(b) =
Γ(ν+1)

Γ(ν−n)
(b− a)n+1p0(b).

In particular it follows that function l〈ν〉(f) admits a representation of
the form (17) with n = 〈ν〉 and N > 〈ν〉 + 1, hence p〈ν〉 ∈ C1[a, b], p̃〈ν〉 ∈
(µ− 〈ν〉 + 1 | 2 | θ + 2 ), where θ = ν − 〈ν〉 and, besides,

p〈ν〉(b) =
Γ(ν+1)

Γ(ν−〈ν〉+1)
(b− a)〈ν〉p0(b).

Let us now decompose the integral

J(l〈ν〉(p), z) =

∫ b

aσ

e−z(b−x) l〈ν〉(p)(x)u(x, z) dx =

= I(g, z) +

∫ b

aσ

e−z(b−x)g(x) (u(x, z)− 1) dx + J(p̃〈ν〉, z) (18)

and evaluate separately the summands of this decomposition, where

g(x) := (x− a)µ−〈ν〉p〈ν〉(x)(b− x)ν−〈ν〉 ∈ (µ − 〈ν〉 | 1 | θ)

and g(x)(b− x)−θ is continuously differentiable on (a, b] since p〈ν〉 ∈ C1[a, b].
By Proposition 3 one immediately sees that

I(g, z) = Γ(ν+1)(b − a)µp0(b) z
−ν+〈ν〉−1 +

+ O
(
z−1σ−{ν−0}

)
+ O

(
σ〈ν〉 e−σ(b−a)

)

as σ → ∞. Further, the second summand in (18) can be estimated (by the
use of Proposition 1 and Lemma 1) as follows

∣∣∣∣
∫ b

aσ

e−z(b−x)g(x) (u(x, z) − 1) dx

∣∣∣∣ 6

6 ‖u( · , z) − 1‖

∫ b

aσ

e−σ(b−x)|g(x)| dx = O
(
z−1σ−{ν−0}

)
, σ → ∞.

Finally, due to Lemma 4 inclusion p̃〈ν〉 ∈ (µ − 〈ν〉 + 1 | 2 | θ + 2 ) implies the
asymptotic estimate

∫ b

aσ

e−z(b−x)p̃〈ν〉(x)u(x, z) dx = O(z−2) + O
(
σ〈ν〉 e−σ(b−a)

)
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valid as σ → ∞, that completes the proof of the fist assertion of Proposition 4
concerning the case N > 〈ν〉 + 1.

To prove the second assertion the above arguments need to be modified.
Following the same lines as before let us decompose the integral

J(l〈ν〉(p), z) =

∫ b

aσ

e−z(b−x) l〈ν〉(p)(x)u(x, z) dx =

= I(g, z) +
I(g̃, z)

z
+

∫ b

aσ

e−z(b−x)g(x)U(x, z) dx + J(p̃〈ν〉, z), (19)

making use of the formulas (17) and (11), where g̃(x) := g(x)

∫ x

a

p(t)dt . Since

N > 〈ν〉 + 2 then p〈ν〉 ∈ C2[a, b] and it follows that g(x) ∈ (µ − 〈ν〉 | 2 | θ)
while g(x)(b−x)−θ is twice continuously differentiable on (a, b]. Consequently
by Proposition 3 the first summand in (19) admits a representation

I(g, z) = Γ(ν+1)(b − a)µp0(b) z
−ν+〈ν〉−1 +

+ O
(
z−ν+〈ν〉−2

)
+ O

(
σ〈ν〉 e−σ(b−a)

)
.

To deal with the second summand note that g̃(x) = g(x)
[
p(−1)(x)−p(−1)(a)

]
,

where p(−1) ∈ (µ|N |ν + 1) and so p(−1)g ∈ (µ − 〈ν〉 | 1 | θ + 1), 〈θ + 1〉 = 1.
Applying now Lemma 1 to estimate I(p(−1)g, z) we get

I(g̃, z) = I(p(−1)g, z) − p(−1)(a)I(g, z) = O
(
z−ν+〈ν〉−1

)
+ O

(
σ〈ν〉 e−σ(b−a)

)

as σ → ∞. The third summand on the r.h.s. of (19) is evaluated as follows

∣∣∣∣
∫ b

aσ

e−z(b−x)g(x)U(x, z) dx

∣∣∣∣ 6

6 ‖U( · , z)‖

∫ b

aσ

e−σ(b−x)|g(x)| dx = O
(
z−2

)
, σ → ∞,

where the estimate ‖U( · , z)‖ = O(z−2) from Proposition 1 and the first
assertion of Lemma 1 are used. The last summand J(p̃〈ν〉, z) can be treated
in the same manner as above and the proof is complete.

5. Location of the spectrum

In Section 2 it was shown that the spectrum of the problem (1)-(2) is dis-
crete, i.e. consists of isolated eigenvalues of finite multiplicity, which coincide
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(counting the multiplicities) with the zeroes of a characteristic determinant
corresponding to a certain fundamental set of solutions to equation (1). It
was also established there that the lower half-plane C− contains at most finite
(possibly empty) set of eigenvalues.

Let us consider now the portion of the spectrum of the problem (1)-(2)
located in the upper half-plane C+ and show that the points that are sought
for, i.e. the zeroes of the characteristic determinant ∆(k), split into two
series of (asymptotically simple) eigenvalues k±n of the form (3). Beforehand
it is relevant to search for (and useful to locate) the spectrum-free regions.

After the change of the variable z = −2ik equation ∆(k) = 0 takes the
form

ez(b−a) u′1(b, z)u
′
2(b, z) = z2, (20)

while u1(x, z) and u2(x, z) are the solutions to integral equations

uj(x, z) = 1 +
1

z

∫ x

a

(1 − e−z(x−t))pj(t)uj(t, z) dt, j = 1, 2

with coefficients p1(x) = q(x) and p2(x) = q(a+ b− x). Note that v1(x, k) =
u1(x,−2ik) and v2(x, k) = u2(a + b − x,−2ik) turn out to be the solutions
to equations (4) and (5) respectively. Under the assumptions imposed on
the potential q(x) in Section 1 the function p1(x) (p2(x)) vanishes at points
a and b at the tangency orders α and β (respectively β and α), namely

p1(x) = (x− a)αq0(x)(b− x)β

p2(x) = (x− a)βq0(a + b− x)(b− x)α,

where q0(a) · q0(b) 6= 0, q0 ∈ CN [a, b] and N > max{α, β}+ 1. Below these
requirements are assumed to be fulfilled without saying.

Proposition5. There exits σ0 > 0 such that the region

{
z = σ + iτ | σ > σ0, |z|

κ

> eσ(b−a)
}
, κ = max{α, β} + 2,

is free of the roots of equation (20), while the zone {0 6 σ 6 σ0} contains
but finite number of them.

Proof. Without loss of generality let us assume that α 6 β. Since N > 〈α〉
then according to Lemma 3 for a certain M > 0 the inequalities

|u′j(b, z)| 6 M |z|−α, j = 1, 2 (21)
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are valid provided |z| > 4(b−a)‖q‖ and σ > 0. Thus, given a solution
z = σ+ iτ to equation (20) such that σ > σ1 := max{4(b−a)‖q‖,M2/α} one
has

e−σ (b−a) =

∣∣∣∣
u′1(b, z)u

′
2(b, z)

z2

∣∣∣∣ 6 M2 |z|−2α−2 < |z|−α−2

and, therefore, the zone
{
σ > σ1, |z|α+2 > eσ(b−a)

}
contains no roots of

equation (20).
Further, due to the condition N > 〈β〉+ 1, Proposition 4 can be applied

to obtain the asymptotic representations

u′1(b, z) = C1z
−β−1 + Φ1(z) + Ψ1(z), C1 = q0(b)(b− a)αΓ(β + 1),

u′2(b, z) = C2z
−α−1 + Φ2(z) + Ψ2(z), C2 = q0(a)(b− a)βΓ(α + 1),

where Φ1(z) = o(z−β−1), Φ2(z) = o(z−α−1) and Ψ1,2(z) = O(e−σ(b−a)).
Hence the function

ψ(z) :=
(
C1 + zβ+1Φ1(z)

)[
1

C2 + zα+1 (Φ2(z) + Ψ2(z))
−
ez(b−a)Ψ1(z)

zα+3

]−1

is uniformly bounded in the domain
{
|z|α+2 < eσ(b−a)

}
provided σ is large

enough. Let σ0 > σ1 be chosen so that the inequality |ψ(z)| < |z|α+2 is
satisfied when |z|α+2 < eσ(b−a) and σ > σ0.

Consider now a solution z = σ + iτ to equation (20) from the half-plane
σ > σ0. According to the remarks above one has |z|α+2 < eσ(b−a) and,
moreover, relationship (20) written in the form

e−z(b−a) = z−α−β−4ψ(z),

implies (by the choice of σ0) the following inequality

e−σ(b−a) = |z|−α−β−4|ψ(z)| < |z|−β−2.

This proves actually that the region
{
σ > σ0, |z|β+2 > eσ(b−a)

}
does not

contain the roots of equation (20).
Finally note that by the estimate (21) the l.h.s. of (20) is bounded as

|z| → ∞ provided 0 6 σ 6 σ0, while the r.h.s. is not. Hence the strip{
0 6 σ 6 σ0

}
contains at most finite number of solutions to equation (20)

that completes the proof of the Proposition.

In the rest of this section the location of the roots of equation (20) in the
domain

Ω :=
{
z = σ + iτ | σ > σ0, |z|

κ < eσ(b−a)
}
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will be studied. To this end let us introduce function

ϕ(z) := (C1C2)
−1 zα+β+2 u′1(b, z)u

′
2(b, z) = 1 + O

(
µ(z)

)

analytic in Ω and having (by Proposition 4) the indicated asymptotic behav-
ior as |z| → ∞, where

µ(z) :=

{
zm−1σ−m in case A : N = max{〈α〉, 〈β〉} + 1,
z−1 in case B : N > max {α, β } + 2,

and m := max
{
{α− 0}, {β − 0}

}
. Let σ0 be enlarged (if necessary) in such

a way that |ϕ(z)−1| < 1 for z ∈ Ω. Set C = C1C2, γ = α+β+4 and rewrite
(20) in an equivalent form

exp
{
z(b− a) − γ ln z + ln C + lnϕ(z)

}
= 1 .

Thus z ∈ Ω is a root of equation (20) iff the equality

z − λ ln z + δ(z) = ωn, (9)

is satisfied for a certain n ∈ Z, where λ =
γ

b−a
, ωn =

2πin− ln C

b− a
and

δ(z) :=
lnϕ(z)

b−a
= O(µ(z)). The l.h.s. of (9) is analytic in the domain Ω and

increases unboundedly as |z| → ∞. Hence equation (9) (provided n is fixed)
can have at most finite number of solutions in Ω.

The proof of the Theorem formulated in Section 1 is thus completed by

Lemma5. There exist C > 0 and Ñ > 0 such that for every n ∈ Z, |n| > Ñ,
domain Ω contains a unique root zn of the corresponding equation (9) and,
moreover

|zn − ωn − λ lnωn| 6 C

{
|n|m−1(ln |n|)−m in case A,
|n|−1 ln |n| in case B,

where m = max
{
{α− 0}, {β − 0}

}
.

Proof. The function z−λ ln z+δ(z) is bounded on any compact subset in Ω,
while |ωn| → ∞ as |n|→∞, hence for arbitrary R>0 there exists N(R)>0
such that the intersection Ω ∩

{
|z| 6 R

}
contains no roots of equation (9) if

|n|>N(R). After being divided by z equation (9) takes the form

1 −
ωn

z
= λ

ln z

z
−
δ(z)

z
,
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where the r.h.s. vanishes as |z| → ∞, z ∈ Ω. Therefore, given r>0 one can
find R(r)> 1/r such that the set

{
z ∈ Ω, |z/ωn − 1| > r, |z| > R(r)

}
does

not contain the roots of equation (9) as well. So, for n ∈ Z, |n| > N(R(r)),
the roots of equation (9) in Ω (if any) are necessary located in the domains

Ωn(r) :=
{
z ∈ Ω, |z/ωn − 1| < r, |z| > R(r)

}
.

Let us now choose and fix ρ > 0 so that an inequality |λ ln (z/ωn)| +
|δ(z)| 6 1/2 will be valid for z ∈ Ωn(ρ). Substitution z(ζ) = ωn +λ lnωn +ζ
reduces equation (9) to the form

ζ = λ ln

(
z(ζ)

ωn

)
− δ(z(ζ)). (22)

Due to the choice of ρ the set {|ζ| > 1, z(ζ) ∈ Ωn(ρ)} does not contain any
roots of equation (22). Further, in the disc |ζ| 6 1 the two-sided estimates

|z(ζ)| ≍ |n|, Re z(ζ) ≍ λ ln |n|, eRe z(ζ) (b−a) ≍ |n|γ

are valid provided |n| is sufficiently large. Hence there exists Ñ > N(R(ρ))

such that for |n| > Ñ and |ζ| 6 1 the inequalities

|z(ζ)/ωn−1|<ρ, |z(ζ)| > R(ρ),

hold and, moreover,

Re z(ζ)>σ0, eRe z(ζ) (b−a) > |z(ζ)|κ.

Thus conditions |ζ| 6 1 and |n| > Ñ guarantee that z(ζ) ∈ Ωn(ρ). Conse-
quently, by the choice of ρ the inequality

| ζ | >

∣∣∣∣λ ln

(
z(ζ)

ωn

)
− δ(z(ζ))

∣∣∣∣

is satisfied on the circle |ζ| = 1 provided |n| > Ñ .

According to Rouché theorem equation (22) for |n| > Ñ possesses a single
(simple) root ζn in the disc |ζ| 6 1. Moreover, by virtue of the estimate
δ(z) = O(µ(z)) there exists C > 0 such that

|ζn| 6 max
|ζ|61

∣∣∣∣λ ln

(
1+

λ lnωn

ωn
+
ζ

ωn

)
+ δ(z(ζ))

∣∣∣∣ 6

6 C

{
|n|m−1(ln |n|)−m in case A,
|n|−1 ln |n| in case B,
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if |n| > Ñ . Summing up we see that equation (9) for fixed n ∈ Z, |n| > Ñ ,
has in Ω a unique root zn := z(ζn) = ωn + λ lnωn + ζn and the proof is
complete.
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