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Abstract

The aim of this paper and its sequel is to introduce and classify the holonomy algebras of
the projective Tractor connection. After a brief historical background, this paper presents and
analyses the projective Cartan and Tractor connections, the various structures they can pre-
serve, and their geometric interpretations. Preserved subbundles of the Tractor bundle generate
foliations with Ricci-flat leaves. Contact- and Einstein-structures arise from other reductions of
the Tractor holonomy, as do U(1) and Sp(1, H) bundles over a manifold of smaller dimension.

1 Introduction

This paper is a very small part of the ongoing effort, at least as far back as Cartan and Weyl, to
attempt to put all geometries under one unifying roof – and, just as rapidly, to cut up that roof into
separate results for specific geometric structures.

The aim of this paper is to continue the project started in [Arm1], that of exploring and classifying
the holonomy algebras of various parabolic geometries. Papers [Arm1] and [ArLe] study conformal
holonomies, this one and its sequel [Arm2] are interested in projective ones. Recall that a projective
structure is given by a set of unparameterised geodesics, see definition 1.1.

Both conformal and projective geometry are members of the class of parabolic geometries, a
group that includes, amongst others, almost Grassmanian, almost quaternionic, and co-dimension
one CR structures. The central concepts emerged from E. Cartan’s work [Car1], [Car2], (refined
with discussions and arguments with H. Weyl [Wey1]), whose technique of ‘moving frames’ would
ultimately develop into the concepts of principal bundles and Cartan connections – invariants that
cover a vast amount of geometric structures and furthermore allow for explicit calculations.

This construction was further developed by T.Y. Thomas [Tho1], [Tho2] who developed key ideas
for Tractor calculus in the nineteen twenties and thirties, and S. Sasaki in 1943 [Sas], [SaYa]. A
major milestone was the work of N. Tanaka [Tan] in 1979, before the seminal paper of T.N. Bailey,
M.G. Eastwood and R. Gover in 1994 [BEG].

Since then, there have been a series of papers by A. Čap and R. Gover [CaGo3], [CaGo2], [Gov],
[CaGo1], developing a lot of the techniques that will be used in the present paper – though those
papers looked mainly at conformal geometry. Papers [CSS1], [CSS2] and [CSS3], by A. Čap, J. Slovák
and V. Souček, develop similar methods in a more general setting.

Previous papers had focused on seeing the Cartan connection as a property of a principal bundle
P. But in the more recent ones, the principal bundle is replaced by an associated vector bundle, the
Tractor bundle T , and the Cartan connection by a equivalent connection form for T , the Tractor
connection

−→
∇. With these tools, calculations are considerably simplified.
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1 Introduction

Here, we will start by introducing Cartan and Tractor connections for projective strusctures. We
shall then relate these constructions to more standard geometric invariants – the classes of ‘preferred
connections’, torsion-free affine connections preserving the projective structure. A few Lie algebra
properties and curvature formulas will be needed to show how the Tractor connection is built up
from the preferred connections.

The projective Tractor bundle T is of rank n+1, where n is the dimension of the manifold. The
Tractor connection preserves a volume form on T , so we are looking at holonomy algebras contained
in sl(n+1). We shall first analyse the consequences of reducibility on the Tractor bundle (see Section
6), which generate a foliation of the manifold by Ricci-flat leaves. We then look at specific cases,
and show that the existence of symplectic, orthogonal, complex and hyper-complex structures on the
Tractor bundle imply that the underlying manifold is projectively contact, Einstein, a U(1)-bundle
and an Sp(1,H)-bundle respectively. Holonomies of type su, for instance, correspond to projectively
Sasaki-Einstein manifolds. These results are summarised in table 1.

Preserved structure Geometric structure V Equivalence?

alternating form Contact manifold no
complex structure U(1)-bundle over a complex manifold no

hypercomplex structure Sp(1,H)-bundle over a quaternionic manifold no

metric Einstein manifold yes
subbundle K ⊂ T Folliation by Ricci flat leaves no

Table 1: Tractor holonomy reduction and geometric structures

These are not equivalences, however, except in the projectively Einstein case. There are extra
conditions that have to do with the rho-tensor P, a tensor constructed bijectively from the Ricci
tensor of a preferred connection. The second-order non-linear nature of P make these conditions
somewhat subtle.

The sequel to this paper, [Arm2], will start by generating a projective cone construction, an
affine, torsion-free manifold one dimension higher whose holonomy is the same as that of the Tractor
connection. For this reason, we shall occasionally use the terminology for a tangent bundle connection
(such as symplectic) when referring to the Tractor connection.

This cone result will allow us, using [Arm3] and the original papers [MeSc1] and [MeSc2], to
construct all examples of possible irreducible projective Tractor holonomy, and demonstrate that
there are essentially no others that those described in this paper (except in the projectively Einstein
case, where more variety exists). These result, to be proved in the subsequent paper, are summarised
in tables 2 and 3.

These results are all local, avoiding issues of degneracy of the projection from the Tractor bundle
to tangent bundle, and the difference between Lie algebras and their Lie groups. The manifold M
is always assumes to be restricted to the relevant submanifold.

The author would like to thank Dr. Nigel Hitchin, under whose supervision and inspiration this
paper was initially crafted, and the Erwin Schrdinger Institute of Vienna, who supported and helped
the author while this paper was being finalised. This paper is initially based on a section of the
author’s Thesis [Arm4].
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1 Introduction

algebra g representation V restrictions algebra g representation V

so(p, q) R(p,q) p+ q ≥ 5 g̃2 R(4,3)

so(n,C) Cn n ≥ 5 g2(C) C7

su(p, q) C(p,q) p+ q ≥ 3 spin(7) R8

sp(p, q) H(p,q) p+ q ≥ 2 spin(4, 3) R(4,4)

g2 R7 spin(7,C) C8

Table 2: Projectively Einstein Holonomy algebras

algebra g representation V restrictions manifold (local) properties

sl(n,R) Rn n ≥ 3 Generic

sl(n,C) Cn n ≥ 3 U(1)-bundle over a complex manifold

sl(n,H) Hn n ≥ 2 Sp(1,H)-bundle over a quaternionic manifold

sp(2n,R) R2n n ≥ 2 Contact manifold

sp(2n,C) C2n n ≥ 2 Contact manifold over a complex manifold

Table 3: Projectively non-Einstein Holonomy algebras
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2 Cartan and Tractor Connections 1.1. Projective structures

1.1 Projective structures

A geodesic for a manifold Mn and an affine connection ∇ on it is a curve ψ : U → M , U a subset
of R, such that

∇ψ̇ψ̇ = 0.

An unparametrised geodesic is a curve ψ such that

∇ψ̇ψ̇ = fψ̇,

for some real-valued function f . An unparametrised geodesic may be made into a standard geodesic
by scaling ψ so that ψ̇ is replaced with

(
exp−

∫
fdψ

)
ψ̇.

Definition 1.1 (Projective Structure). A projective structure is the set of all unparametrised
geodesics of a given affine connection.

As we shall see, there are many affine connections preserving the same projective structure. So
the projective structure is often alternately defined as:

Definition 1.2. A projective structure is an equivalence class of affine connections with the same
unparameterised geodesics.

For this paper, we will need to restrict attention to those affine connections that are torsion-free.
This does not unduly constrain us, as

Proposition 1.3. Any projective structure has a torsion-free connection compatible with it.

Proof. Let ∇′ be an affine connection preserving a projective structure, with torsion τ . Then ∇ =
∇′ − 1

2
τ is a torsion-free connection, and if X is the tangent vector of a geodesic of ∇′,

∇XX = ∇′
XX −

1

2
τ (X,X) = ∇′

XX,

so any geodesic of ∇′ is a geodesic of ∇. �

Definition 1.4 (Preferred connections). Given a manifold Mn with a projective structure, a
preferred connection ∇ is a torsion-free affine connection preserving the projective structure.

2 Cartan and Tractor Connections

Traditionally, since Klein, geometries were defined by a manifold M and a Lie group G acting
transitively on M . The stabilizer group of any point x ∈ M is a sub-group P ⊂ G, which changes
by conjugation as x varies.

From a more modern perspective, the focus has shifted to the groupsG and P , with the underlying
space M seen as the quotient

M = G/P.

For the ‘flat’ projective geometry, this model is G = PSL(n+1) and P = GL(n)⋊Rn∗. The Cartan
connection is a ‘curved’ version of these flat geometries. Given any manifoldM , it maps the tangent
space TM locally to the Lie algebra quotient,

(TM )x ∼= g/p,
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2 Cartan and Tractor Connections 2.1. The Tractor Connection

for all x in M . For projective manifolds, g = sl(n+1) and p = gl(n)⋊R(n∗). The Cartan connection
solves the quivalence problem for projective structures (given the structure, there is a unique normal
Cartan connection corresponding to it [CaSc] - normality is a condition similar to torsion-freeness
for a Levi-Civita connection). However the Cartan connection is somewhat tricky to work with, and
an equivalent construction, the Tractor connection, is often used instead. See paper [CaGo3] for a
full study of this; but it will suffice for us to define the Tractor connection directly.

2.1 The Tractor Connection

Given a manifold Mn with a projective structure, choose a preferred connection ∇. Since there
are no restrictions on ∇ beyond the fact that it preserves the projective structure, ∇ corresponds
to a principal connection on G0, the full frame bundle of the tangent bundle T . Note that G0 has
structure group GL(n). One may take the contraction of the curvature R k

hj l of ∇ over the first

and third components to get the Ricci curvature Ric ∈ Γ(T ∗ ⊗ T ∗). Since GL(n) is reductive, R k
hj l

splits into a Ricci-part and a trace-free part: the Weyl curvature W k
hj l.

To see the relationship more clearly, we construct an equivalent tensor from Ric, the rho-tensor
P:

Phj = −
n

n2 − 1
Richj −

1

n2 − 1
Ricjh,

allowing us to write the relationship:

R k
hj l = W k

hj l + Phlδ
k
j + Phjδ

k
l − Pjlδ

k
h − Pjhδ

k
l .

Let L−n be the line bundle ∧nT ∗. Lα is defined to be the weight bundle (L−n)
α

−n , and T [α] =
T ⊗ Lα.

Definition 2.1 (Tractor Bundle). The Tractor bundle T is

T = T [µ]⊕ Lµ

where µ = n
n+1

.

There are other ‘Tractor’ bundles corresponding to different representations of sl(n + 1), the
structure algebra of T (most notably the exterior powers of the standard representations [Lei] and
the twistor representation, see [CaGo2]), but we shall not need them here.

The bundle A of trace-free endomorphisms of T is consequently:

A = T ⊕ gl(n) ⊕ T ∗. (1)

Here the action of T natrually maps the bundle Lµ to T [µ] and the action of T ∗ maps the other way.
A is an algebra bundle; the algebraic bracket on it is given by the conditions that [T, T ] = [T ∗, T ∗] = 0
and

{Ψ,Π} = ΨΠ − ΠΨ,

{Ψ, X} = Ψ(X),

{Ψ, ν} = −Ψ(ν),

{X, ν} = X ⊗ ν + ν(X)Id,

for Ψ,Π sections of A0, X a section of T and ν a section of T ∗.
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2 Cartan and Tractor Connections 2.2. Invariance

Definition 2.2 (Tractor Connection). The Tractor connection
−→
∇ is given in this case by

−→
∇X =

∇X +X + P(X), or, more explicitly,

−→
∇X

(
Y
a

)
=

(
∇XY +Xa

∇Xa+ P(X, Y )

)
. (2)

The dual connection on T ∗ = T ∗[−µ] ⊕ L−µ is given by:

−→
∇X

(
v
b

)
=

(
∇Xv − P(X)b
∇Xb− vxX

)
. (3)

The curvature of
−→
∇ can be seen to be

R
−→
∇
X,Y =




0
W (X, Y )
CY (X, Y )


 ,

where CY is the Cotton-York tensor

CYhjk = ∇hPjk −∇jPhk.

2.2 Invariance

So far, the Tractor connection and bundle defined depend on a choice of preferred connection. How
do these definitions change if we make a different choice? First, we have a triad of results about the
preferred connections themselves, from [CaGo3] (see also [Arm4]):

Proposition 2.3. Given a projective structure, preferred connections are in one to one correspon-
dence with connections on any given weight bundles Lα, α 6= 0.

It is easy to see that a connection on the tangent bundle must define a connection on Lα =
(∧nT ∗)

α
−n but this proposition states that the converse is also true. A consequence of this is that

there are preferred connections preserving any volume form v ∈ L−n; just choose the connection
defined by ∇v = 0. Furthermore:

Proposition 2.4. The preferred connections form an affine space, modeled on T ∗. Two preferred
connections ∇ and ∇′ are related by a one-form Υ as follows:

∇′
XY = ∇XY + {{X,Υ}, Y }.

If both these connections preserve a volume form, then Υ is closed.

And finally:

Proposition 2.5. The splitting of T = T [µ] ⊕ Lµ depends on the choice of preferred connections;
if we change to another preferred connection, related by Υ, then the splitting changes by the action
of exp Υ:

(
Y
v

)
→

(
Y

v + ΥxY

)
. (4)
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3 Symplectic holonomy

Note that this implies that the projection π1 : T → T [µ] is well-defined. This also implies (since
the space of possible splittings of T that respect this projection is modelled on T ∗) that the preferred
connections are in one-to-one correspondence with possible splittings of T .

These propositions are just premises to a main result of [CaGo3]:

Theorem 2.6 (Invariance). Using the change of splitting formula of Proposition 2.5 and the

formula
−→
∇X = ∇X + X + P(X), the Tractor connection is defined independently of the choice of

preferred connection.

3 Symplectic holonomy

Here we shall show a strong link between symplectic holonomy and contact spaces. A reminder of
the definition of a contact space:

Definition 3.1 (Contact space). A contact space is a manifold M2m+1 with a distribution H ⊂ T
of co-dimension one that is maximally non-integrable.

Let θ be a section of the line bundle H⊥ ⊂ T ∗. θ then defines an alternating form dθ on H, and
a Reeb vector field R transverse to H which satisfies

θ(R) = 1

dθ(R,−) = 0.

The maximal non-integrability of H is equivalent with stating that the volume form

vθ = (dθ)m ∧ θ

is nowhere vanishing (notice that vθ is linear in the choice of θ).

Before discussing symplectic holonomy for
−→
∇, we will need the various contact projective struc-

tures defined in [Fox]:

Definition 3.2 (Contact projective structure). A contact path geometry is a family of paths
everywhere tangent to the contact distribution such that at each given point and each direction tangent
to the contact distribution there is a unique path in the family passing through that point and tangent
to that direction. A contact projective structure is a contact path geometry the paths of which are
among the geodesics of an affine connection.

There is an invariant of the contact projective structure, the contact torsion (essentially the
torsion in the contact direction).

Definition 3.3 (Contact adapted projective structure). A contact adapted projective structure
is a contact projective structure with the extra condition that the Weyl tensor W of the projective
structure has the property that WX,Y Z is a section of the contact distribution for all X, Y and Z.

By paper [Fox]:

Theorem 3.4. There is an equivalence between contact projective structures with vanishing contact
torsion and contact adapted projective structures.

The first part of the statement purely concerns the geodesics along the contact distribution,
while the second part deals with the whole projective structure. The next section will be devoted
to proving that:
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3 Symplectic holonomy 3.1. Contact adapted projective structures

Theorem 3.5. If
−→
∇ω = 0 for ω ∈ Γ(∧2T ) non-degenerate, then there is a contact adapted projective

structure on the manifold, consequently a contact projective structure with vanishing contact torsion.
Conversely, given any contact adapted projective structure on the manifold, there is a non-degenerate
ω such that

−→
∇ω = 0.

The converse comes directly from [Fox], which demonstrates that the contact projective ambient
construction defined therein and the ambient cone construction for projective structures (see [Arm2]

and [Tho3]) are isomorphic - in particular, have the same holonomy, which must be that of
−→
∇ as

well, [Arm2]. Since the contact projective ambient construction must preserve an ω, so too must
−→
∇.

See section 3.2 for a discussion of these issues from the Cartan connection point of view.

3.1 Contact adapted projective structures

This section is devoted to proving Theorem 3.5. Throughout, assume that
−→
∇ω = 0 for a non-

degenerate ω ∈ Γ(∧2T ). For any bundle or element B, let Bω the bundle that is ω-orthogonal to
B. The first step of showing that we have a contact projective structure is to identify the contact
distribution:

Proposition 3.6. Let s be any never-zero section of Lµ. Then the bundle H = s−1π1((Lµ)ω) is a
contact distribution. The preferred connections are in one-to-one correspondence with connections
on Lω = T/H. And, up to R+ equivalence, Reeb vector field are in one-to-one correspondence with
preferred connections preserving a volume form.

Proof. Notice that H does not depend on the choice of s, as changing a bundle by a scale change
f send H to fH = H . Let ∇ be any preffered connection, with corresponding splitting T =
T [−µ] ⊕ L−µ. Let t be any section of Lµ and Rt a section of T [µ] defined by:

ω(t, Rt) = 1

ω(Rt, H [µ]) = 0.

The second condition implies that ω(Rt, T [µ]) = 0, since ω(Rt, Rt) is trivially zero. Differentiating
the first equality gives:

0 = ω(
−→
∇X t, R

t) + ω(t,
−→
∇XR

t)

= ω(∇X t, R
t) + ω(t,∇XR

t) + ω(t,P(X,Rt)) (5)

= ∇X t+ ω(t,∇XR
t).

Thus if we project ∇ to being a connection on Lω = T/H , then if acts on Lω exactly as it acts on
L−µ. This demonstrates the one-to-one equivalence.

Let θt be the section of T ∗[µ] defined by θt(H) = 0 and θt(Rt) = 1. Then the following lemma
demonstrates that H is a contact distribution.

If ∇t = 0, then R = t−1Rt is a well defined vector field on M , transverse to H . We aim to show
that it is a Reeb vector field. Since ∇ preserves the volume form t, ∇ acts on T = t−1T [µ] exactly
as it acts on T [µ], giving the further equalities

T = T ⊕ R,

T = T ∗ ⊕ R.

Let θ be the section of T ∗ that is defined by θ(R) = 1, θ(H) = 0. To show that H is a contact
distribution and that R is a Reeb vector field, it suffices to show:
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3 Symplectic holonomy 3.1. Contact adapted projective structures

Lemma 3.7. dθ is equal to ω on H (and is hence non-degenerate) and dθ(R,−) = 0.

Proof of Lemma. Let X and Y be sections of H . The conditions above imply that θ = ω(t).
Differentiating gives:

(∇Xθ)(Y ) = (
−→
∇Xθ)(Y )

= ω(
−→
∇X t, Y ) (6)

= ω(X, Y ).

Since ∇ is torsion-free, dθ(X, Y ) is the skewed part of this, so dθ = ω. The same equation, after
replacing X with R demonstrates that

(∇Rθ)(Y ) = 0. (7)

Equation (5) confirms that

0 = ∇Y t + ω(t,∇YR) = ω(t,∇YR) = (∇Y R)(θ) (8)

Then differentiating the relation θ(R) = 1 gives (∇Y θ)(R) = 0 and hence that dθ(R, Y ) = 0. Since
dθ(R,R) = 0 automatically,

dθ(R,−) = 0.

�

To show equivalence, for any given Reeb vector field, pick the preferred connection ∇ such that
∇(R/H) = 0. This will generate a contact one-form θ, with R as its Reeb vector field. �

So we have a well-defined contact structure on the manifold. To show that this is a contact
projective structure, we need:

Proposition 3.8. The geodesic defined at a point by a tangent vector X ∈ Γ(H) will always remain
tangent to H.

Proof. Pick a preferred connection ∇ preserving a volume form and with a Reeb vector field R. Let
µ with tangent field A be a geodesic of ∇, tangent to H at p ∈ X. A = fR +X, with X a section
of H and f(p) = 0. The geodesic equation is:

0 = ∇AA = A(f)R + f∇AR+ f∇RX + ∇XX.

Differentiating θ(R) = 1 and using equation (8) gives (∇AR)(θ) = 0. Similarly, differentiating
θ(X) = 0 and using equations (7) and (6) demonstrate that (∇RX)(θ) = (∇XX)(θ) = 0. Thus all
the terms in the geodesic equations are sections of H , apart from the first term A(f)R. That implies
that f must be constant along µ, thus that f = 0. �

This establishes that M is a contact projective space. We now merely need to demonstrate the
technical condition that it is adpated:

Proposition 3.9. WX,Y Z is a section of H for all sections X, Y and Z of T .
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3 Symplectic holonomy 3.2. Cartan connection considerations

Proof. Choose a preferred connection ∇ that fixes a volume form. This gives a splitting T =
T [µ] ⊕ Lµ ∼= T ⊕ R. The Weyl curvature W takes values in ∧2T ∗ ⊗ gl(T ). However, since W is
totally trace-free, W actually takes values in ∧2T ∗ ⊗ sl(T ) - consequently WX,Y · (0, 1) = 0. Since
−→
∇ preserves ω, W must also take values in

∧2T ∗ ⊗ sp(ω)

and thus

0 = ω(WX,Y · (Z, 0), (0, 1)) + ω((Z, 0),WX,Y · (0, 1))

= ω(WX,Y · (Z, 0), (0, 1)),

implying that WX,Y (Z, 0) is in T ∩ (0, 1)ω = H . �

3.2 Cartan connection considerations

Paper [Fox] deals with contact adapted projective structures, but is light on the Cartan formalism.
This section is intended to recast some of those results from that point of view; it is intended for
those familiar with Cartan connections in general (see [CaSc] and [CaGo3], for instance).

The Lie algebras for the projective structure on a manifold are |1|-graded:

g = sl(n+ 1), p = gl(n) ⊕ R
n

The Lie algebras for the contact projective structure are |2|-graded:

ǧ = sp(n+ 1), p̌ = csp(n− 1) ⊕ (Rn)∗ ⊕ R
∗,

with csp(n − 1) the conformal symplectic algebra R ⊕ sp(n − 1). The Lie braket on p̌ is given by
the natural action of csp(n− 1) on (Rn)∗ and R∗, and by {η, ν} = ω(η, nu) for a suitable choice of
scaled ω, when η, ν ∈ (Rn)∗. It can easily be seen that p̌ = ǧ∩ p (just notice that p̌ is the subalgebra
of ǧ that preserves a line).

Proposition 3.10. A contact projective structure on a manifold generates a projective structure on
the same manifold.

Proof. The inclusion p̌ ⊂ p gives a bundle inclusion of the Cartan bundle P̌ ⊂ P. The contact
projective Cartan connection ω̌ can then be extended to a connection ω on P by P -equivariance;
this automatically transforms it into a section of TP ⊗ g, as g is the span of ǧ under the action of
P . �

Then what [Fox] effectively demonstrates is that:

Proposition 3.11. ω̌ is torsion-free if and only if ω is normal.

Let us inspect what is meant by the normality of ω̌. Recall that ǧ has a grading ǧ−2 ⊕ ǧ−1ǧ0 ⊕
ǧ1 ⊕ ǧ2 with p̌ =

∑
j≥0 ǧj. The curvature tensor of ω̌ is equivalent (using the Killing form and the

identification P̌ ×P̌ ǧ/p̌ = TM) to a function κ̌ : P̌ → ∧2p̌+ ⊗ ǧ. Normality is given by ∂∗κ = 0,
where ∂∗ is the natural Lie Algebra co-differential. We can thus split κ by homogeneous degree.
Paper [CaSc] demonstrates that the lowest homogenity of κ must be given by a section κj taking
values in H2(p̌+, ǧ). But Konstant’s version of the Bott-Borel-Weil theorem [Kos] gives H2(p̌+, ǧ)
as a being of homogenity two and inside ∧2ǧ1 ⊗ ǧ0.
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4 Complex holonomy: covering a complex space

Proposition 3.12. If ω̌ is normal, then it is torsion-free.

Proof. All other homogenity two or lower components apart from H2(p̌+, ǧ) must vanish. But
H2(p̌+, ǧ) ⊂ ∧2ǧ1 ⊗ ǧ0 itself is not a torsion component, and the only torsion component of higher
homogeneity than two is ∧2ǧ2 ⊗ ǧ−1. However this must vanish since ǧ2 is one-dimensional. �

There are various curvature conditions that allow one to establish when ω̌ is normal, but none
seem natural or informative so far. The relation between the preferred connections ∇ of the contact
projective structure and ∇ of the projective structure itself is worth elucidating, however. ∇ must
have vanishing contact torsion; this implies that for X and Y sections of H ,

∇XY −∇YX − [X, Y ] = {X, Y }.

Now {−,−} is given by a section ν of ∧2H , depending on ∇. All the other contact torsion terms
are identical to the usual torsion terms, with the exception of the Ť1 ⊗ Ť2 ⊗ Ť−1, which is, for R a
section of Ť−2,

∇RX −∇XR− [R,X] = −ν(P11),

where P11 is the Ť ∗
1 ⊗ Ť ∗

1 component of the projective contact structure. Consequently the relation-
ship between ∇ and ∇ is given by

∇ = ∇− ν + ν(P11).

4 Complex holonomy: covering a complex space

Assume that
−→
∇ preserves a complex structure J on T . Given any section s of Lµ, the vector

R = s−1 ⊗ π1J(s)

is well defined. Dividing out by the action of the one-parameter subgroup generated by R gives a
local projection

M → N.

Theorem 4.1. The manifold N has a well defined integrable complex structure JN on it.

The proof of this will take several stages. The perpendicular B⊥ to a bundle B ⊂ A is the set of
elements of A∗ that vanish on B. First notice that the perpendicular bundle H = R⊥ ⊂ T ∗ is well
defined, moreover:

Lemma 4.2. H has a complex structure JH on it, derived from J .

Proof of Lemma. The dual tractor bundle is T ∗ = T [−µ]⊕L−µ, where T [−µ] is the perpendicular
bundle to Lµ ⊂ T . Then H [−µ] ⊂ T [−µ] ⊂ T ∗ is given by the formula

H [−µ] = (Lµ)⊥ ∩ J(Lµ)⊥ = (Lµ ⊕ J(Lµ))
⊥
,

since H is the perpendicular to R and the bundle spanned by R is isomorphic (up to a choice of
scale) to J(Lµ). Since the bundle Lµ ⊕ J(Lµ) is automatically preserved by J , so is H [−µ]. Call
JH the restricted complex structure on H [−µ]. Since JH is a section of H [−µ]⊗H∗[µ] = H ⊗H∗,
it is also a complex structure on H . �

This JH will be the pull back of JN . But before seeing this, we will need a special class of
preferred connections to do calculations. These are the R-tangent connections.
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4 Complex holonomy: covering a complex space

Definition 4.3. An R-tangent connection ∇ is a preferred connection such that in the spliting
T = T [µ]⊕ Lµ defined by ∇,

J(Lµ) ⊂ T [µ].

The name R-tangent comes from the fact that in this case, J(Lµ) is isomorphic modulo a scale
to the span of R in T .

Lemma 4.4. R-tangent connections exist, including R-tangent connections that preserve a volume
form.

Proof of Lemma. Being an R-tangent connection is a linear constraint at each point, so evidently
a splitting exists with these properties. This must correspond to a preferred connection ∇′. We now
aim to change ∇′ to an R-tangent connection that preserves a volume form. Let r be any coordinate
function with R(r) = 1, and let ν ∈ Γ(L−n) be any volume form. Then

∇′ν = ην,

for some one-form η. Replacing ν with w = exp(
∫

(ηxR)dr)ν gives

∇′w = η′w,

where η′xR = 0. Then changing ∇ by Υ = − 1
n+1

η′ gives us a preferred connection ∇. This
connection is still R-tangent since the change of splitting formula of equation (2.5) guarantees that
J(Lµ) (spanned by a scale times R) remains contained in T [µ]. On top of this:

∇Xw = ∇′
Xw + {X,Υ} · w

= −(n + 1)(ΥxX)w + trace (ΥxX Id +X ⊗ Υ) · w

= 0.

�

Back to the properties of H and JH :

Lemma 4.5. H is preserved by action of the R and so is JH .

Proof of Lemma. The first fact is easy to prove; it suffices to show that LRv ∈ Γ(H) for any
section v of H . And this is demonstrated by:

(LRv)xR =
(
d(vxR) + dvxR)

)
xR

= dvxRxR = 0.

To demonstrate the second fact, pick a R-tangent connection ∇ that preserves a volume form w.
Using w

µ

−n we may now express the splittings as

T = T ⊕ R

and

T ∗ = T ∗ ⊕ R.

Notice that for v a section of H , the dual Tractor connection gives, from equation (3):

−→
∇R

(
v
0

)
=

(
∇Rv
−vxR

)
=

(
∇Rv

0

)
.

12



4 Complex holonomy: covering a complex space

Since
−→
∇J = 0 and H is preserved by J , this implies

∇RJv = J∇Rv. (9)

Similarly, for any section X of T :

−XxJ(v) = (
−→
∇XJ(v))x

(
0
1

)

= (
−→
∇Xv)xJ

(
0
1

)

= (
−→
∇Xv)x

(
R
0

)
= (∇Xv)xR,

implying that

(∇v)xR = −J(v). (10)

To prove that LRJH = 0, we need to show that LRJv = J(LRv). However, since ∇ is torsion-free,

LRJv = d(J(v))xR

= (∇RJv) − (∇Jv)xR

= J(∇Rv) − v

= J(∇Rv + J(v))

= J(∇Rv −∇vxR)

= J(d(v)xR) = J(LRv).

by equations (9) and (10). �

Since HxR = 0, H is the pull back of the bundle TN∗. As it has a R-invariant complex structure,
this desends to a complex structure JN on TN . It suffices to show:

Proposition 4.6. JN is integrable.

To prove this, we need to note that:

Lemma 4.7. JN being integrable is implied by the fact that the exterior derivative d on M maps

sections of the complex eigen-bundle H
(1,0)
C

to sections of H
(1,0)
C

∧ T ∗C.

Proof of Lemma. Since the exterior derivative commutes with pull-backs, this implies that the
exterior derivative d on N maps sections of (TN∗

C
)(1,0) to sections of (TN∗

C
)(1,0) ∧ TN∗

C
. Dualising

this relationship implies that TN
(1,0)
C

is closed under the Lie bracket; hence integrability. �

Now we need to show that the conditions of the previous lemma do hold. Continue using the
preferred connection ∇ from Lemma 4.5. Let s be the section of T ∗ corresponding to (0, 1) and

τ = Js. Since R ⊂ T [µ] ⊂ T , then τ ⊂ T ∗[−µ] ⊂ T ∗. The J invariance of
−→
∇ gives:

−→
∇XJv = J

−→
∇Xv

∇XJv − (XxJv)s = J(∇Xv − (Xxv)s),

implying, that if ∇H is ∇ projected onto H along τ ,

∇Xv = ∇H
Xv + Jv(τxX) (11)

and

∇HJv = J(∇Hv). (12)

13



4 Complex holonomy: covering a complex space 4.1. Complex projective structures

Then if v ∈ Γ(HC) we can set v(1,0) = v − iJv. Then

∇v(1,0) = ∇v − i∇Jv

= ∇Hv − i∇HJv + Jvτ + ivτ

= ∇Hv(1,0) − i(v(1,0)τ ).

The first term is a section of T ∗
C
⊗ HC and the second a section of HC ⊗ T ∗

C
. Since ∇ is torsion-

free, dv(1,0) is the skew-symmetrisation of this, hence a section of HC ∧ T ∗
C
. This demonstrates the

integrability of JN , and makes M locally into an U(1)-bundle over N . But is more than that; in

fact,
−→
∇ implies a complex projective structure on N

4.1 Complex projective structures

A connection ∇ is R-invariant if

[R,∇XY ] = ∇[R,X]Y + ∇X [R, Y ].

In pacticular, if X and Y commute with R, then so does ∇XY . If a connection ∇ is R-invariant,
then so are all its curvature terms, including P, as well as any structure that ∇ would preserve.
Thus we can say:

Definition 4.8. A Tractor connection
−→
∇ is said to be R-invariant if it has a preferred connection

∇ that is R-invariant.

Obviously this ∇ is non-unique; it is related to all other R-invariant preferred connections by
the action of any R-invariant Υ.

Definition 4.9 (J-preferred connections). J-preferred connections are preferred connections
that are R-invariant and R-tangent.

If an R-invariant connection exists, it is easy to make if R-tangent as well, by first using an Υ
doing so on any section of the projection M → N , and then extending that Υ into M by requiring
it to be R-invariant. Thus J-preferred connections exist if and only if

−→
∇ is R-invariant.

−→
∇ need not be R-invariant. However, we have a powerfull result if it is:

Theorem 4.10. If
−→
∇ is R-invariant, the set of J-preferred connections determine a complex pro-

jective structure on N .

To prove this, we evidently have to define what we mean by a complex projective structure.
J-preffered connections project to affine connections on TN , using the projection TM/R = TN . By
equation (12), they commute with the complex structure JN .

Definition 4.11 (Generalised complex geodesics). A generalised complex geodesic is a map
ψ : R → N such that

−→
∇ ψ̇ψ̇ ∈ Γ(B),

where B is the bundle spanned by ψ̇ and JN ψ̇. Since a real geodesic is a fortiori a generalised complex
geodesic, these exist at all points, in every direction. However they are non-unique.

14



4 Complex holonomy: covering a complex space 4.1. Complex projective structures

Definition 4.12 (Complex geodesics). A complex geodesic on a complex manifold (N, JN ,∇) is
a map µ from a domain D ⊂ C to N such that µ(U) is totally geodesic [MoMo], [Leb]. They exist if
the connection ∇ is holomorphic – paper [MoMo] erroneously claims their existence in the general
case.

Obviously any curve inside a the image of a complex geodesic is a generalised complex geodesic.
Note that a complex geodesic is a function C → N , whereas generalised complex geodesic are
functions R → N .

Proposition 4.13. All J-preferred connections have the same generalised complex geodesics, and,
if and when they exist, the same complex geodesics.

Proof. Let ψ : R → N be a generalised complex geodesic for a J-preferred connection ∇. Let S = ψ̇

and let ψ̂ be any curve on M that covers ψ and U =
˙̂
ψ. Then, by the properties of ∇ and ψ,

∇UU = f1Ŝ + f2ĴNS + f3R.

where Ŝ and ĴNS are any lifts of the relevant vector fields. We may change ∇ to another J-preferred
connnection ∇′ by using an R-invariant one-form Υ such that ΥxR = 0. For this new connection,

∇′
UU = ∇UU + {{U,Υ}U}

= f1Ŝ + f2ĴNS + f3R+ 2(ΥxU)U.

And since U is also a lift of S, projecting down to N shows that ∇′
SS is in the span of S and JNS,

i.e. that ψ is a generalised complex geodesic for ∇′ on N .

Let D ⊂ C and assume that µ : D → N is a generalised complex geodesic for ∇. Then any curve
ψ in the image of µ is a generalised complex geodesic for ∇, hence for ∇′. Since ∇′ commutes with
JN , this implies that

∇′

ψ̇
ψ̇ and ∇′

ψ̇
JN ψ̇

are sections of µ∗(TD), in other words that µ(D) is a totally geodesic subspace of N for ∇′. Hence
it is a complex geodesic for ∇′, which thus shares the same complex geodesics as ∇. �

Note that this proof did no need the R-invariance of ∇ or ∇′. Hence there may be further
analogues of generalised complex geodesics even when

−→
∇ is not J-invariant.

Definition 4.14 (Complex projective structure). A complex projective structure on N is given
by the complex structure JN and the generalised complex geodesics. The J-preferred connections are
the preferred connections for this complex projective structure.

By an analogous argument to that given for the real case (see Section 2.1), if ∇ and ∇′ are two
J-preferred connections on N

∇̃XY = ∇̃′
XY + ΥC(X)Y + ΥC(Y )X,

with ΥC a section of TN∗
C
. Similarly to Proposition 2.3, the preferred connection ∇ is bijectively

determined by its effect on powers of the holomorphic weight bundle

L−n
C

∼= ∧(n,0)T ∗
C
.

15



4 Complex holonomy: covering a complex space 4.1. Complex projective structures

We can also proceed as in the real case. Let ∇̃ be any J-preffered connection on N . The its Ricci
tensor splits:

R̃ic = ls + la + hs + ha,

where

ls(X, Y ) =
1

4

(
R̃ic(X, Y ) + R̃ic(Y,X) − R̃ic(JNX, JNY ) − R̃ic(JNY, JNX)

)
,

la(X, Y ) =
1

4

(
R̃ic(X, Y ) − R̃ic(Y,X) − R̃ic(JNX, JNY ) + R̃ic(JNY, JNX)

)
,

hs(X, Y ) =
1

4

(
R̃ic(X, Y ) + R̃ic(Y,X) + R̃ic(JNX, JNY ) + R̃ic(JNY, JNX)

)
,

ha(X, Y ) =
1

4

(
R̃ic(X, Y ) − R̃ic(Y,X) + R̃ic(JNX, JNY ) − R̃ic(JNY, JNX)

)
.

So, ls is the JN -linear symmetric component of the tensor R̃ic, la the JN -linear anti-symmetric
component, hs the JN -hermitian symmetric component and ha the JN -hermitian anti-symmetric
component. Then define the complex projective rho-tensor P

C as

P
C = −

ls
2n− 2

−
la + hs + ha

2n+ 2
.

There is also a complex projective Weyl tensor, WC. In details, this is given by

R k
hj l = (WC) k

hj l +
(
(PC)hlδ

k
j − (PCJN)hl(JN)kj − (PC)jlδ

k
h + (PCJN)jl(JN )kh

)

+
(
(PC)hjδ

k
l − (PC)jhδ

k
l − (PCJN)hj(JN )kl + (PCJN )jh(JN)kl

)
(13)

where (PCJN)hj = (PC)hm(JN )mj . If we take the tensor products to be complex, this expression
becomes

R k
hj l = (WC) k

hj l + 2
(
(PC)hl ⊗ δkj − (PC)jl ⊗ δkh

)

+2
(
(PC)hj ⊗ δkl − (PC)jh ⊗ δkl

)
.

The complex Cotton-York tensor is also defined,

CY C(X, Y ;Z) = +(∇̃XP
C)(Y, Z) − (∇̃Y P

C)(X,Z)

−i(∇̃XP
C)(Y, JNZ) + i(∇̃Y P

C)(X, JNZ).

We define the Tractor bundle T C

N as the projection to N of the Tractor bundle T . In terms of the
local information, a choice of J-preferred connections determins a splitting:

T C

N =
(
(T ∗)(1,0) ⊗C L

µN

C

)
⊕ LµN

C
,

with µN = − m
m+1

, where m = (n − 1)/2 is the complex dimension of N . The Tractor connection

similarly projects and the expression for
−→
∇

C

on N is, in local terms,

−→
∇

C

X = ∇̃X +X + P
C(X),

with a complex action of X and P
C.
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5 Orthogonal holonomy: Einstein spaces 4.2. Hypercomplex holonomy

Remark. There is a close connection between a change of real J-preferred connection onM , ∇ → ∇′

and the corresponding change of complex preferred connections ∇̃ → ∇̃′ on N . The first two differ
by a one-form Υ that is zero on R. Then Υ can be made R-invariant by a suitable choice of
isomorphisms H ∼= TN . This makes Υ equivalent to a one-form ΥC on N , which is the one-form
giving the difference between ∇̃ and ∇̃′. The converse of this is true as well.

See papers [MoMo] and [KoOc] for more information. The twistor results of [Hit] are also re-
lated. The sequel paper [Arm2] constructs projective cone structures that tie the complex projective
structure on N and the real projective structure on M even closer together.

4.2 Hypercomplex holonomy

Quaternionic and hypercomplex holonomy are treated in detail in paper [Arm2]; this section just
sumarises the results, since the cone construction of that paper is needed to prove them.

There are three main results:

Proposition 4.15. Any
−→
∇ that preserves a quaternionic structure preserves a hypercomplex struc-

ture.

That mean that if J ′
1, J

′
2 and J ′

3 are complex structures obeying the quaternionic relations, such
that

−→
∇ preserves their span without preserving them individualy, then

−→
∇ must actually fix a trio

of complex structures J1, J2 and J3 (also obeying the quarernionic relations). This comes from the
fact that as a consequence of [Arm2], all projective Tractor holonomies are affine holonomy algebras
of torsion-free Ricci-flat cones. And sl(1,H)⊕ sl(n,H) is not a possible Ricci flat holonomy algebra
by [Arm3].

Proposition 4.16.
−→
∇ must be invariant in all three of the directions Rk = s−1π1Jk(s), s ∈ Lµ.

Unlike the complex case, where R-invariance is not required, here Rk-invariance is guaranteed.

Theorem 4.17. Dividing out by the Rk, one obtains a manifold N three dimensions lower, and
−→
∇ descends to a well-defined torsion-free quaternionic connection ∇N on N , i.e. a connection with
holonomy algebra contained in sl(1,H) × gl(n−3

4
,H).

This means that “quaternionic projective structures” are the same thing as “integrable quater-
nionic structures”. The manifold N has non-canonical quaternionic structures {JN1 , J

N
2 , J

N
3 }; their

span forms HN , a sp(1,H) subundle of T ⊗ T ∗. The bundle HN itself is canonical for the structure,
however, and is preserved by ∇N . Then M itself is locally a subspace of the principle bundle for
HN .

5 Orthogonal holonomy: Einstein spaces

In this section we aim to show that
−→
∇ preserving a metric on T is equivalent to the existence of an

Einstein, non-Ricci-flat, preferred connection ∇.

Some explanations as to what we mean by an Einstein connection in this case:

Definition 5.1. ∇ is Einstein if Ric
∇ is non-degenerate and

∇Ric
∇ = 0.

17



5 Orthogonal holonomy: Einstein spaces

Notice this also implies that ∇ det(Ric
∇) = 0, so ∇ preserves a volume form. Thus Ric

∇ is
symmetric, and ∇ is the Levi-Civita connection of the ‘metric’ Ric

∇, meaning that ∇ is an Einstein
connection in the standard sense, with Einstein coefficient 1.

Proposition 5.2. If ∇ is an Einstein connection, then
−→
∇ preserves a metric h on T .

Proof. Let s ∈ Lµ be a section corresponding to ∇. Then in the splitting defined by ∇, consider the
metric

h(

(
X
a

)
,

(
Y
b

)
) = s−2 (−P(X, Y ) + ab) .

Note that where Ric is of signature (p, q), h is of signature (p+ 1, q). In a more general setting,
if Ric = λg for some metric g of signature (p, q), then h is of signature (p + 1, q) when λ > 0 and
(q + 1, p) when λ < 0.

Remembering the formulas for the Tractor connection, and using s implicitly:

Z.h(

(
X
0

)
,

(
Y
0

)
) = −Z.P(X, Y )

= −P(∇ZX, Y ) − P(X,∇ZY )

= h(
−→
∇Z

(
X
0

)
,

(
Y
0

)
) + h(

(
X
0

)
,
−→
∇Z

(
Y
0

)
)

Z.h(

(
X
0

)
,

(
0
a

)
) = 0

= P(Z,X)a− P(Z,X)a

= h(
−→
∇Z

(
X
0

)
,

(
0
a

)
) + h(

(
X
0

)
,
−→
∇Z

(
0
a

)
)

Z.h(

(
0
a

)
,

(
0
b

)
) = (∇Za)b+ a∇Zb

= h(
−→
∇Z

(
0
a

)
,

(
0
b

)
) + h(

(
0
a

)
,
−→
∇Z

(
0
b

)
),

hence

−→
∇h = 0.

�

Conversely:

Proposition 5.3. If
−→
∇ preserves a metric h on T , then there exists an Einstein preferred connection

∇ on an open dense submanifold of M .

Proof. We need first to show that Lµ ⊂ T cannot degenerate for h, at least on an open dense subset.

Assume h(s, s) = 0 at x ∈M for some nowhere zero s ∈ Γ(Lµ). Then

X.h(s, s) = 2h(∇Xs, s)

= 2h(

(
Xs
∇Xs

)
, s)

= 2h(
(
Xs

)
, s),
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6 Reducible holonomy: Ricci-flatness

and since

(
Xs
0

)
spans an n-dimensional subset of T , this quantity must be non-zero for most X,

bar a (n− 1)-dimensional subset of Tx.

Now on most points of M , we may define a special section s ∈ Γ(Lµ) by requiring

h(s, s) = 1.

and the associated preferred connection ∇ with ∇s = 0. Consequently

0 = X.h(s, s)

= 2h(

(
X
0

)
, s)

so Lµ ⊥ T [µ]. Moreover

0 = X.h(Y s, s)

= h(

(
∇XY

P(X, Y )

)
, s) + h(Y s,Xs)

= P(X, Y ) + h(Y s,Xs).

Hence

h(

(
X
a

)
,

(
Y
b

)
) = s−2 (−P(X, Y ) + ab) ,

as before. As well as this,

X.P(Y, Z) = X.h(Y s, Zs)

= h(

(
∇XY

P(X, Y )

)
, sZ) + h(sY,

(
∇XZ

P(X,Z)

)
)

= P(∇XY, Z) + P(Y,∇XZ),

so

∇XP = 0.

�

6 Reducible holonomy: Ricci-flatness

This section will provide a description of the geometric meanings of reducible Tractor holonomy.
We will not, however, fully classify this case, similar to the fact that reducible holonomy is not fully
classified in the affine case. In this section, by co-volume forms, we mean elements such as

X1 ∧X2 ∧ . . . ∧Xk

where (Xj ) is a frame for a bundle of rank k.

Let K̃ ⊂ T be a rank k ≤ n subbundle preserved by
−→
∇.

Lemma 6.1. On an open dense subset of the manifold, Lµ is not a subbundle of K̃.
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6 Reducible holonomy: Ricci-flatness

Proof of Lemma. This fact is a consequence of the fact that the second fundamental form of Lµ

is maximal, since
−→
∇ comes from a Cartan connection (this second fundamental form is also called

the soldering form).

In more details, let π1 : T → T /Lµ = T [µ] be the quotient projection. Then the second
fundamental form of Lµ,

S : Lµ −→ T ∗ ⊗ T [µ]

is defined by

S(s)(X) = π1
(
−→
∇Xs

)
= sX.

In consequence the image of sections of Lµ under
−→
∇ span all of T . So any bundle K̃ preserved by

−→
∇ cannot contain Lµ on any open set. �

From now on we shall assume, by restricting to open, dense subsets of M , that Lµ ∩ K̃ = 0.
Hence the projection π1 is injective on K̃. Given any nowhere-zero section s of Lµ, define K ⊂ T
as s−1π1(K̃). This bundle does not depend on a choice of s, as changing s changes the scaling but
not the bundle.

Theorem 6.2. Assume
−→
∇ preserves K̃ and K = π(K̃) ⊂ T . Then K is an integrable, totally

geodesic foliation, and there are preferred connections ∇ that:

1. preserve K,

2. preserve a volume form on K,

3. are Ricci-flat on K,

4. have P
∇(−, Y ) = 0 for any section Y of K.

These ∇ preserve a (co-)volume form on all of T if and only if
−→
∇ preserves a co-volume form on

K̃.

Most of this section will be devoted to proving this. Given any spliting of T , K̃ ∩ T [µ] is of

rank k or k − 1. If we are in the latter case, choose a frame {(X1, 0), . . . , (Xk−1, 0), (Xk, µ)} of K̃.
Changing this splitting by the action of Υ such that ΥxXj = 0, j < k and ΥxXk = −µ gives a

splitting where K̃ ⊂ T [µ]. Let ∇ be the preferred connection corresponding to this splitting.

Let X and Y be sections of K, then

(
Y s
0

)

is a section of K̃, for any s ∈ Γ(Lµ). Then

−→
∇X

(
Y s
0

)
=

(
(∇XY )s+ Y (∇Xs)

sP(X, Y )

)
. (14)

Since this must also be a section of K̃, one must have ∇XY as a section of K, and consequently
[X, Y ] = ∇XY −∇YX is a section of K. Hence

Proposition 6.3. K is integrable and totally geodesic.
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6 Reducible holonomy: Ricci-flatness

If one were choose X as any section of T rather than K in Equation (14), one sees that ∇
preserves K and

P(−, Y ) = 0,

since K has no Lµ component.

Remark. Note that as a consequence of this, P is zero on K ⊗K, hence Ric is zero on this foliation
as well. Since K is preserved by ∇ in all directions, Ric

K = Ric
M |K⊗K (this may be seen directly

by taking a frame of K and extending to a frame of T ). In other words, the leaves of the foliations
K are Ricci-flat under the connection ∇ restricted to these leaves.

Lemma 6.4. We may choose ∇ so that it preserves a co-volume form on K.

Proof of Lemma. Since ∇|K is Ricci-flat, it must preserve a co-volume form τ along K. Thus

∇τ = ω ⊗ τ,

where ω is a one-form with ω(K) = 0. Now {Υ, X} acts on τ by taking the trace of the first k
components; or, in other words,

{Υ, X}.τ = − (Υ ⊗X + Υ(X)Id) τ

= −Υ(τ ) ∧X − k(Υ(X))τ.

In other words, if we change preferred connections from ∇ to ∇′ by the choice of

Υ = −
1

k
ω,

then

∇′τ = ω ⊗ τ −
k

k
ω ⊗ τ = 0.

Since Υ(K) = 0, then by Equation (4), ∇′ still determines a splitting with K̃ ⊂ T [µ] ⊂ T . �

Proposition 6.5. There is a relationship between the holonomy of
−→
∇ and the properties of this ∇′:

−→
∇ preserves a co-volume form on K̃ if and only if ∇′ preserves a (co-)volume form on T .

Proof. From equation (2) and since P
∇

′

(−, Y ) = 0 for any section Y of K,
−→
∇ acts on K̃ in the same

way that ∇′ acts on K[µ]. If ∇′ preserves a nowhere zero section s of Lµ, then
−→
∇ preserves skτ on

K̃ .

Conversely, if
−→
∇ preserves a co-volume form τ̃ on K̃, then

τ̃ = tτ

for t some nowhere-zero section of Lkµ. Then

0 = ∇′τ̃

= ∇′tτ

= (∇′t)τ + t(∇′τ )

= (∇′t)τ.

Hence ∇′t = 0. �
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6 Reducible holonomy: Ricci-flatness

Corollary 6.6. Theorem 6.2 clearly has a converse: let ∇ be a preferred connection with a preserved
totally geodesic integrable foliationK such that P

∇(Y,−) = 0 for a section Y of K. Then
−→
∇ preserves

a subbundle K̃ of T . If there exists preferred connections with these properties which preserve co-
volume forms on K and a (co-)volume form on T , then

−→
∇ preserves a co-volume form on K̃.

As a consequence of this, if K̃ is a rank n bundle, then K = T , and there exists a Ricci-flat
preferred connection ∇ on M . Since it is Ricci-flat, it must preserve a volume form, hence:

Corollary 6.7. If
−→
∇ preserves a rank k = n bundle K̃, it always preserves a volume form on K̃.

Notice that since the rho-tensor of ∇ is zero on K, as is the rho-tensor of ∇|K, the tractor
connection of K is a restriction of that of M :

−→
∇
K

X

(
Y sν

tν

)
=

−→
∇X

(
Y s
t

)

whenever X and Y are sections of K, and ν = µK

µM
= n(k+1)

(n+1)k .

There is another useful characterisation in the ‘nearly irreducible’ case, where n = k:

Theorem 6.8. If
−→
∇ preserves a bundle K of rank n and acts irreducibly on K then the holonomy

algebra of
−→
∇ is

−→
hol = hol∇ ⊕ T or

−→
hol = hol∇,

where hol∇ is the affine holonomy algebra of the Ricci-flat preferred connection ∇ on M . The Lie
bracket is given by the standard one on hol∇, the trivial one on T , and action of hol∇ on T in cross
terms.

Proof. Remember the algebra bundle splitting from equation (1):

A = T ∗ ⊕ gl(T ) ⊕ T.

In the splitting given by ∇, T [µ] = K̃ is preserved by
−→
∇, thus there can be no T ∗ component to the

holonomy of
−→
∇. As

−→
∇ and ∇ act identically on T [µ], the T ⊗ T ∗ component of the holonomy of

−→
∇

must be the affine holonomy of ∇. Then given the conditions on
−→
∇, hol∇ must act irreducibly on

T [µ].

Then the algebra hol∇ ⊕ T decomposes into two pieces, hol∇ and T , under the action of hol∇.
In other words, if the holonomy of

−→
∇ has any T component, it has the full T .

In actual fact, (see [Arm4])
−→
hol = hol∇ if and only if M is a projective cone in the sense of paper

[Arm2]. �

There is no complementary foliation to K and the condition P(−, Y ) = 0 is a second order
non-linear differential one; consequently it is hard to understand exactly what restrictions they
impose on the projective structure. A pair of examples from the author’s thesis [Arm4] suffice to
show that these restrictions are geometrically not that strong, even when the various dimensions or
co-dimensions are low.

Proposition 6.9. The condition P(−, Y ) = 0 is truly a restriction on the rho-tensor; one may have
connections ∇ with this property where Ric

∇(−, Y ) 6= 0, even when K is of co-dimension one.

and
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Proposition 6.10. Assume k ≥ 3. Then ∇ restricted to one leaf of K may be flat, even if it is non-
flat and with maximal holonomy sl(k) when restricted to a different leaf of K. This result remains
valid if ∇ preserves a volume form or not, is Ricci-flat or not, and whatever the codimension of K
is.

These results can then be generalised to a wide variety of varying holonomy groups. So it seems
that the condition P(−, Y ) = 0 is not enough to pin down the geometry in any significant way.
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[CaGo2] A. Čap and A.R. Gover: Tractor bundles for irreducible parabolic geometries, Global anal-
ysis and harmonic analysis (Marseille-Luminy, 1999), 129-154, Smin. Congr., 4, Soc. Math.
France, Paris, (2000).
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