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The holographic principle states that on a fundamental level the information content of a region should depend
on its surface area rather than on its volume. This counterintuitive idea which has its roots in the nonextensive
nature of black-hole entropy serves as a guiding principle in the search for the fundamental laws of Planck-
scale physics. In this paper we show that a similar phenomenon emerges from the established laws of classical
and quantum physics: the information contained in part of a system in thermal equilibrium obeys an area law.
While the maximal information per unit area depends classically only on the number of microscopic degrees of
freedom, it may diverge as the inverse temperature in quantum systems. A rigorous relation between area laws
and correlations is established and their explicit behavior is revealed for a large class of quantum many-body
states beyond equilibrium systems.

Correlations are information of one system about another. They lie at the heart of classical and
quantum statistical physics when modelling systems in the range from biological networks to condensed
matter in the quantum regime. The study of correlations in equilibrium lattice models comes in two
flavors. The more traditional approach is the investigationof the decay of two-point correlations with
the distance. A lot of knowledge has been acquired in Condensed Matter Physics in this direction and
is now being used and developed further in the study of entanglement in Quantum Information Theory
[1–3]. The second approach (see Fig.1) asks how correlations between a connected region and its
environment scale with the size of that region. This question has recently been addressed for a variety
of quantum systems at zero temperature [4–13] where all correlations are due to entanglement which in
turn is then measured by the entropy.

The original interest in this topic [12–15] came from the insight that the entropy of black holes scales
with the area of the surfaces at the event horizon—we say thatan area law holds, in this case with
a maximal information content of one bit per Planck area. Remarkably, a similar entropy scaling is
observed in non-critical quantum lattice systems while critical systems are known to allow for small
(logarithmic) deviations [6–11]. Both is in sharp contrastto the behavior of the majority of states in
Hilbert space which exhibit a volume scaling rather than an area law. These insights fruitfully guided
recent constructions of powerful classes of ansatz states which are tailored to cover the relevant aspects
of strongly correlated quantum many-body systems [16, 17].

A heuristic explanation of the area law in non-critical systems comes from the existence of a charac-
teristic length scale, the correlation length, on which two-point correlations decay (Fig.1). Intuitively
this apparent localization of correlations should imply anarea law, an argument which can, however,
not easily be made rigorous as seen by considering random quantum states. A firm connection between
the decay of correlations and the area law is thus still lacking as well as is a proof and extension of
the latter beyond zero temperature. In the following we achieve both aims by resorting to a concept
of Quantum Information Theory—the mutual information. Themotivation for this quantity is that (i)
it coincides with the entanglement entropy at zero temperature; (ii) it measures the total amount of in-
formation of one system about another without ’overlooking’ hidden correlations; (iii) the area law can
be rigourously proven at any finite temperature; (iv) the heuristic picture relating decay of correlations
and area law can be precisely established. Apart from showing all this, we will prove that an area law
is fulfilled by all mixed projected entangled pair states (PEPS), and will discuss the values of mutual
information for certain classes of 1D systems in more detail.

We begin by fixing some notation. We consider systems on latticesΛ ⊆ ZD in D spatial dimensions
which are sufficiently homogeneous (e.g., translational invariant). Each site of the lattice corresponds
to a classical or quantum spin with configuration spaceZd or Hilbert spaceCd respectively. Given
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FIG. 1: Left: The lattice is divided into two regions,A andB, with borders∂A and ∂B, respectively. The
correlation length isξ. We are interested in determining the mutual information (or entanglement) between the two
regionsA andB. Right: lattices sites inA andB that are separated by more thanξ are basically uncorrelated and
thus do not contribute to the information (or entanglement)betweenA andB. Therefore, the mutual information
(or entanglement) is less than the number of lattice sites inthe boundary region, i.e.ξ|∂A|.

a probability distributionρ on Λ and marginalsρA, ρB corresponding to disjoint setsA, B ⊆ Λ, the
mutual information between these regions is defined by

I(A : B) = H(ρA) + H(ρB) − H(ρAB), (1)

whereH(ρ) = −
∑

x ρ(x) log ρ(x) is the Shannon entropy. In the quantum case theρ’s become density
operators (and their partial traces) andH has to be replaced by the von Neumann entropyS(ρ) =
−tr[ρ logρ]. The mutual information has a well defined operational meaning as the total amount of
correlations between two systems [19]. It quantifies the information aboutB which can be obtained
from A and vice versa. Elementary properties of the mutual information are positivity, that it vanishes
iff the system factorizes, and it is non-increasing under discarding parts of the system [20] (see Appendix
B). We will occasionally writeSA meaningS(ρA).

AREA LAWS FOR CLASSICAL AND QUANTUM SYSTEMS

Let us start considering classical Gibbs distributions of finite range interactions. All such distributions
are Markov fields (and vice versa), i.e., ifxA, xC, xB are configurations of three regions whereC sep-
aratesA from B such that no interaction directly connectsA with B, thenρ(xA|xC, xB) = ρ(xA|xC)
holds for all conditional probabilities [Hereρ is understood as the marginal distribution w.r.t. the re-
gions given by its arguments andρ(x|y) := ρ(x, y)/ρ(y)]. Let us denote by∂A, ∂B the sets of
sites inA, B which are connected to the exterior by an interaction. Exploiting the Markov property
together with the fact that we can express the mutual information in terms of a conditional entropy
H(A|B) = H(A) − I(A : B) then leads to an area law

I(A : B) = I(∂A : ∂B) ≤ H(∂A) ≤ |∂A| logd, (2)

where the first inequality follows from positivity of the classical conditional information. Equation (2)
shows that correlations in classical thermal states are localized at the boundary. In particular if we take
B the complement ofA, then we obtain that the mutual information scales as the boundary area of
the considered region [21] and the maximal information per unit area is determined by the number of
microscopic degrees of freedom.

For quantum systems less information can be inferred from the boundary and the Markov property
does no longer hold in general. Remarkably enough, for the case of the mutual information between
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a regionA and its complementB we can also derive an area law for finite temperatures. In order to
show that, we consider again a finite range HamiltonianH = HA + H∂ + HB, whereHA, HB are all
interaction terms within the two regions andH∂ collects all those crossing the boundary. The thermal
stateρAB corresponding to the inverse temperatureβ minimizes the free energyF (ρ) = tr[Hρ] −
1
β S(ρ). In particular,F (ρAB) ≤ F (ρA ⊗ ρB) from which we obtain

I(A : B) ≤ β tr
[

H∂(ρA ⊗ ρB − ρAB)
]

(3)

sinceHA, HB have the same expectation values in both cases. As the r.h.s.of Eq.(3) depends solely
on the boundary we obtain again an area law scaling similar tothat in Eq.(2). For example, if we just
have two–site interactions we obtainI(A : B) ≤ β||h|||∂A|, where||h||| is the maximal eigenvalue
all two–site Hamiltonians across the boundary, i.e., the strength of the interaction. Note that the scale
at which the area law becomes apparent is now determined by the inverse temperatureβ. In fact, it
is known that at zero temperature the boundary area scaling of the mutual information, which then
becomesI(A : B) = 2S(A), breaks down for certain critical systems [6–11], Eq.(3) shows that all the
logarithmic corrections appearing in these models disappear at any finite temperature.

By comparing the classical area laws (2) and (3) we notice that quantum states may have higher
mutual information than classical ones as the information per unit area is no longer bounded by the
number of microscopic degrees of freedom. In fact, our results imply that if a system violates inequality
(2), then it must have a quantum character.

Let us now turn to an important class of quantum states which goes beyond Gibbs states, namely pro-
jected entangled pair states (PEPS) [16]. These states beartheir name from projecting ‘virtual spins’,
obtained from assigning entangled pairs|Φ〉 =

∑D
i=1 |ii〉 to the edges of a lattice, onto physical sites

corresponding to the vertices. A natural generalization ofthis concept to mixed states is to use com-
pletely positive maps for the mapping from the virtual to thephysical level [18]. Since every such map
can be purified, these mixed PEPS can be interpreted as pure PEPS with an additional physical system
which gets traced out in the end. To become more specific let usconsider a 2D square lattice. Then
every pure PEPS is characterized by assigning a 5’th order tensorAi

r,l,u,d to each lattice site. Here
the upper index corresponds to the physical site and the lower ‘virtual’ ones (running from 1 toD) get
contracted according to the lattice structure. A mixed PEPSis then obtained by increasing the range of
i from d to ddE and finally tracing over these additional environmental degrees of freedom, which can
be thought of as a second layer of the square lattice. For all these states one can now easily see that the
mutual information between a blockA and its complementB satisfies a boundary area law

I(A : B) ≤ 2|∂A| logD, (4)

since it is upper bounded by the mutual information, i.e., twice the block entropy, of the purified state
which is in turn bounded by the number of bonds cut. An interesting class of mixed PEPS are Gibbs
states of Hamiltonians of commuting finite range interactions (see Appendix A). Note that these are not
necessarily classical systems, as a simultaneous diagonalization need not preserve the local structure of
the interaction. The Kitaev model [22] on the square lattice, the cluster state [23] Hamiltonian and all
stabilizer Hamiltonians fall in this class and display highly non-classical features. In fact, all known
resources for measurement based quantum computation are PEPS.

Moreover, Gibbs states of arbitrary local Hamiltonians areapproximately representable as mixed
PEPS[24] (cf. also Appendix B). Here, the approximation is up to a bounded error in trace norm, but in
this case the dimension of the PEPS increase exponentially as a polylog of the system size.

MUTUAL INFORMATION AND CORRELATIONS

We will now discuss the correlations measured in terms of themutual information between separate
regions. Traditionally, these are measured by connected correlation functionsC(MA, MB) := 〈MA ⊗
MB〉 − 〈MA〉〈MB 〉 of observablesMA, MB . In fact, these two concepts can be related by expressing
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FIG. 2: Left: We take as regionsA andB two concentric spheres of radiusR − L andL, repectively; Right-
Up: Same for a one–dimensional chain, for which the examplesare given; Right-Down: Simple 1D model for a
state which is formed by singlet pairs (indicated by lines joining them) whose length follows a given probability
distribution.

the mutual information as a relative entropyS(ρAB |ρA ⊗ ρB) = I(A : B) and using the norm bound
S(ρ|σ) ≥ 1

2
||ρ− σ||21. In this way we obtain

I(A : B) ≥
C(MA, MB)2

2||MA||2‖|MB||2
. (5)

Hence, ifI(A : B) decays for instance exponentially in the distance betweenA andB then so will
C. One of the advantages of the mutual information is, of course, that there cannot be correlations
‘overlooked’, whereas connected correlation functions might be all arbitrarily small while the state is
still highly correlated—a fact exploited in quantum data hiding and quantum expanders[25].

In the following we will relate the correlation length as defined by the mutual information with the
area law mentioned in the previous section. To this end consider concentrically nested spheres in dimen-
sionD such that the outer one of radiusR corresponding to regionB is separated from the inner region
A of radiusR − L by a shellC of thicknessL ≪ R (see Fig 2). We denote the mutual information
betweenA andB by IL(R) and defineξM as the minimal lengthL such thatIL(R) < I0(R)/2 for
all R, i.e. a correlation length as measured by the mutual information. Note thatξM can be infinite
(in particular, for critical systems) and that it takes intoaccount the decay of all possible correlations.
Using the subadditivity property of the entropy (see Appendix A) we obtain the general inequality
I(A : BC) ≤ I(A : B) + 2SC which leads to

I0 ≤ IξM
+ 2SC ≤ 4|∂A|ξM . (6)

Here the first inequality implies the second one by insertingIξM
≤ 1

2I0 and the fact thatS(C) ≤
ξM |∂A| . So, indeed, we get an area law for the mutual information solely from the existence of the
length scaleξM , which expresses the common sense explanation of Fig. 1. This area law is valid for zero
temperatures and when violated (e.g. by critical systems) immediately implies an infinite correlation
lengthξM .

EXAMPLES IN ONE DIMENSION

We will now investigate the decay of correlations in terms ofthe mutual information for certain simple
cases. We will show that in all of themξM is directly connected to the standard correlation length. We
will consider infinite lattices in 1 spatial dimension (see Fig. 2), since the calculations become simpler.
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We start out by considering an important class of states, theso–called finitely correlated states (FCS)
[26], which naturally appear in several lattice systems in 1D. They can be viewed as 1D PEPS (or matrix
product states) where all the local projectors are the same.Every FCS is most easily characterized by
a completely positive, trace preserving map (a channel)T : B(H1) → B(H1 ⊗ H2) with H1,H2

Hilbert spaces of dimensionD, d respectively. Define furtherE(x) = tr2[T (x)] and assume the generic
condition thatE has only one eigenvalue of magnitude one, corresponding to afixed point̺ = E(̺).
The second largest eigenvalue,η, is related to the standard correlation length throughξ = −1/ lnη.
With this notation, it is very simple to express the states corresponding to regionsA, B, andAB, which
are required in order to determine the mutual information. In the Methods section we show that asL
gets larger,ρAB approaches exponentially fastρA⊗ρB . This allows us to bound the mutual information
(see Appendix A) as

IL(R) ≤ log(D)O
(

L e−L/ξ
)

. (7)

SinceIL(R) increases (decreases) withR (L), and is lower bounded by correlation function (5) this
inequality immediately implies thatξM is finite and directly related to the correlation lengthξ.

The simple case considered above includes several interesting situations of systems in 1D with finite–
range interactions: frustration–free Hamiltonians atT = 0, all classical Gibbs states, and all quantum
ones corresponding to commuting Hamiltonians. In all cases, the area law is fulfilled following the
results given in the previous sections. However, it is knownthat for certain critical systems the area
law is violated atT = 0. In order to analyze how this behavior may emerge, we will considered a
simple toy model in 1D which display this behavior and for which IL(R) can be exactly determined.
Let us consider a spin12 system formed of singlets (see Fig. 2). The state is such thatfrom any given
site, i, the probability of having a singlet with another site,j, is a functionf(|i − j|). The mutual
information between two regions is equal to the number of singlets that connect those regions, and
thus it can be easily determined (if we take a large region, sothat we can average this number). If we
takef(x) ∝ e−x/ξ we have that: (i) all (averaged) correlation functions decay exponentially with the
distance and thatξ gives the correlation length; (ii)IL(R) decays exponentially withL and thatξM ∼ ξ;
(iii) an area law is fulfilled. If we takef(x) ∝ 1/(x2 + a2) we obtain that: (i) the correlation functions
decay as power laws with the distance; (ii)IL(R) ∼ log(2R − L) and thusξM is infinite; (iii) the area
law is violated. Thus, for this specific model we see how the violation of the area law naturally implies
an infinite correlation length.

Finally, let us note another simple connection between the area law and the decay ofIL(R) as a
function of the separationL in the case of homogeneous system at zero temperature. If fora pure state
the entropy of a block of lengthL goes to a constantK asSL = K−f(L) with f(L) → 0 for increasing
L, thenIL(R) → f(L) asR → ∞ for sufficiently largeL. If the block entropy diverges instead, then
IL(R) → ∞ for every finite separation.

APPENDIX A

PEPS representation of thermal stabilizer states

Let us briefly sketch a proof of the result that all Gibbs states of Hamiltonians of commuting finite
range interactions are mixed PEPS. For simplicity considera 2D square lattice. Starting point is to
write the un-normalized Gibbs state ase−βH/21e−βH/2 and to interpret the1 as a partial trace over
maximally entangled states|Φ⊗ Φ〉 to whiche−βH/2 is applied. In order to get an explicit form for the
tensorA assume that horizontally neighboring sites interact viahh and vertical neighbors viahv and
denote by

e−βhv/2 =
∑

α

Uα ⊗ Dα, e−ηhh/2 =
∑

β

Rβ ⊗ Lβ (8)
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Schmidt decompositions in the Hilbert-Schmidt Hilbert space. That is, the operatorsUα, Dα, Rβ, Lβ

form four sets of orthogonal operators, which by assumptioncommute with each other but not neces-
sarily among themselves (e.g.[U1, U2] 6= 0). Using that the Gibbs state is up to normalization a product
of terms as in Eq.(8) leads then to its PEPS representation with D = d2 and

Ai
r,l,u,d =

[

LrRlUdDu

]

i1,i2
, (9)

wherei = (i1, i2) with i2 corresponding to the environmental degrees.

Decay of correlations for Finitely correlated states

The reduced density matrixρA of NA = R − L contiguous sites is obtained as

ρA = tr1

[

TNA(̺)
]

. (10)

Similarly the joint reduced state of two regionsA andB which are separated byL sites as in Fig. 2 is
given by

ρAB = lim
NB→∞

tr1

[

TNBELTNAELTNB (̺)
]

. (11)

For sufficiently largeL write

EL(x) =
(

1 − cηL
)

tr[x]̺ + cηLE ′(x), (12)

whereE ′ is some channel andc an L-independent constant. Taken together Eqs.(10-12) enableus to
bound the norm distance

||ρAB − ρA ⊗ ρB ||1 ≤ 4cηL (13)

independent ofNA, NB. That is, the two regions factorize exponentially on a scaleξ = −1/ lnη which
can be regarded the correlation length of the system. We cannot use this result directly for the mutual
information since the dimension of the Hilbert space of systemB is infinite. However, we can proceed
by noting that eachT can be locally purified thereby increasing the size ofH2 by a factor ofdD2 (with
E unchanged). Denoting the additional purifying systems byA′ andB′ respectively, we obtain on the
one handI(A : B) ≤ I(AA′ : BB′) = S(ρAA′ ⊗ ρBB′ ) − S(ρAA′BB′ ). On the other hand we can
apply Fannes’ inequality,|S(ρ)− S(σ)| ≤ ∆ log(δ − 1)+ H(∆, 1−∆), where∆ = 1

2
||ρ− σ||1 andδ

is the dimension of the supporting Hilbert space, toI(AA′ : BB′). The advantage is that in this system
we deal with finite dimensional systems; in fact, in our caseδ = D2 so that putting things together we
obtain (7).

APPENDIX B

Properties of the mutual information

Here we list some useful properties of the mutual information. All of them can be derived starting
from the strong subadditivity (SS) property of the von Neumann entropy,SXY Z + SX ≤ SXY + SXZ .
First, we have the following bounds:

I(A : B) ≤ I(A : BC) ≤ I(A : B) + 2SC . (14)

The first inequality can be directly proved using SS. The second one follows fromSABC ≥ |SAB −
SC | ≥ SAB − SC andSB + SC ≥ SBC , which both can be easily derived using SS. We can derive
another upper bound to the mutual information by using SS, namely

I(A : B) + I(A′ : B′) ≤ 2SAA′ = 2SBB′ (15)
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whereAA′BB′ is any purification ofAB.
Now we show thatIL(R) increases withR and decreases withL. We will do it for a translationally

invariant system with periodic boundary conditions in 1D, but the argument can be easily extended to
higher dimensions. From the first inequality in (14) we get the behavior withL. On the other hand,
taking three contiguous regions containing 1,L, and 1 site, respectively, and using SS we obtain that
SL − SL−1 ≥ SL+1 − SL. Iterating this inequality we obtain that, as long asL ≤ N/2 whereN is the
total number of sites,SL − SL−1 ≥ SN−L+1 − SN−L, from which the monotonous behavior ofIL(R)
as a function ofR follows.

Saturation of mutual information implies FCS

For one-dimensional systems the area law just means a saturation of the mutual information. Let
us now gain some first insight into the structure of states having this property. So consider a general
(mixed) 1D translational invariant state and denote the mutual information between a block of lengthL
and the rest of the system byI(L) and similarly its entropy byS(L). The latter can be shown to be a
concave function

S(L) ≥
(

S(L − 1) + S(L + 1)
)

/2, (16)

which is nothing but the strong subadditivity inequality applied to a region of lengthL − 1 surrounded
by two single sites. Eq.(16) has strong implications on the behavior ofI(L). Assume for the moment
that the system is a finite ring of lengthN , then

I(L) − I(L − 1) = [S(L) − S(L − 1)] (17)

−[S(N − L + 1) − S(N − L)]

is a difference between two slopes of the entropy function. Due to concavity ofS(L), I(L) is increasing
as long asL < N/2. Moreover, if from some length scale on the mutual information exactly saturates,
i.e.,I(L−1) = I(L) then all slopes betweenL andN −L have to be equal so that strong subadditivity
in Eq.(16) holds with equality. States with this property are, however, nicely characterized [27] and

known to be quantum Markov chains. That is, there exists a channel T̃ : B
(

H
⊗(L−1)

2

)

→ B
(

H
⊗L

2

)

such that

(id ⊗ T̃ )(ρL−1) = ρL, (18)

whereρL is the reduced density operator ofL sites and successive applications ofT̃ to the lastL − 1
sites generates larger and larger parts of the chain. For infinite systems these states form a subset of
the FCS where nowD = d(L−1), i.e., the scale at which saturation sets in determines the ancillary
dimension needed to represent the state.
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