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The holographic principle states that on a fundamental teednformation content of a region should depend
on its surface area rather than on its volume. This courttétive idea which has its roots in the nonextensive
nature of black-hole entropy serves as a guiding principléhe search for the fundamental laws of Planck-
scale physics. In this paper we show that a similar phenomemerges from the established laws of classical
and quantum physics: the information contained in part ofsdesn in thermal equilibrium obeys an area law.
While the maximal information per unit area depends cladlsionly on the number of microscopic degrees of
freedom, it may diverge as the inverse temperature in quasitstems. A rigorous relation between area laws
and correlations is established and their explicit behagioevealed for a large class of quantum many-body
states beyond equilibrium systems.

Correlations are information of one system about anothdreyTlie at the heart of classical and
guantum statistical physics when modelling systems inahge from biological networks to condensed
matter in the quantum regime. The study of correlations imilégrium lattice models comes in two
flavors. The more traditional approach is the investigatibthe decay of two-point correlations with
the distance. A lot of knowledge has been acquired in Coratkltatter Physics in this direction and
is now being used and developed further in the study of etgament in Quantum Information Theory
[1-3]. The second approach (see Fig.1) asks how correfati@tween a connected region and its
environment scale with the size of that region. This questias recently been addressed for a variety
of quantum systems at zero temperature [4—13] where aléladions are due to entanglement which in
turn is then measured by the entropy.

The original interest in this topic [12—15] came from theigin that the entropy of black holes scales
with the area of the surfaces at the event horizon—we sayahatrea law holds, in this case with
a maximal information content of one bit per Planck area. &t&ably, a similar entropy scaling is
observed in non-critical quantum lattice systems whiléaal systems are known to allow for small
(logarithmic) deviations [6—11]. Both is in sharp contréstthe behavior of the majority of states in
Hilbert space which exhibit a volume scaling rather than i@a daw. These insights fruitfully guided
recent constructions of powerful classes of ansatz stdtesdhware tailored to cover the relevant aspects
of strongly correlated quantum many-body systems [16, 17].

A heuristic explanation of the area law in non-critical st comes from the existence of a charac-
teristic length scale, the correlation length, on which{mant correlations decay (Fig.1). Intuitively
this apparent localization of correlations should implyaaea law, an argument which can, however,
not easily be made rigorous as seen by considering randontuuastates. A firm connection between
the decay of correlations and the area law is thus still lagkis well as is a proof and extension of
the latter beyond zero temperature. In the following we eahiboth aims by resorting to a concept
of Quantum Information Theory—the mutual information. Tmetivation for this quantity is that (i)
it coincides with the entanglement entropy at zero tempeeai(ii) it measures the total amount of in-
formation of one system about another without 'overlookhigden correlations; (iii) the area law can
be rigourously proven at any finite temperature; (iv) therfgtic picture relating decay of correlations
and area law can be precisely established. Apart from stgpalirthis, we will prove that an area law
is fulfilled by all mixed projected entangled pair states PR, and will discuss the values of mutual
information for certain classes of 1D systems in more detalil

We begin by fixing some notation. We consider systems orcéti C Z7 in D spatial dimensions
which are sufficiently homogeneous (e.g., translationaiiant). Each site of the lattice corresponds
to a classical or quantum spin with configuration spZgeor Hilbert spaceC? respectively. Given
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FIG. 1: Left: The lattice is divided into two regions} and B, with borders0A and 0B, respectively. The
correlation length ig. We are interested in determining the mutual informatiarefttanglement) between the two
regionsA and B. Right: lattices sites il and B that are separated by more thgare basically uncorrelated and
thus do not contribute to the information (or entangleméetyeend and B. Therefore, the mutual information
(or entanglement) is less than the number of lattice sitésarboundary region, i.€|0A|.

a probability distributiorp on A and marginals 4, pp corresponding to disjoint setd, B C A, the
mutual information between these regions is defined by

I(A:B) = H(pa) + H(ps) — H(pa), (1)

whereH (p) = — > p(z) log p(z) is the Shannon entropy. In the quantum casethbecome density
operators (and their partial traces) affihas to be replaced by the von Neumann entrSgy) =
—tr[plogp]. The mutual information has a well defined operational megus the total amount of
correlations between two systems [19]. It quantifies therimftion aboutB which can be obtained
from A and vice versa. Elementary properties of the mutual inféionaare positivity, that it vanishes
iff the system factorizes, and itis non-increasing undscaiding parts of the system [20] (see Appendix
B). We will occasionally writeS 4 meaningS(pa).

AREA LAWSFOR CLASSICAL AND QUANTUM SYSTEMS

Let us start considering classical Gibbs distributionsratéirange interactions. All such distributions
are Markov fields (and vice versa), i.e.qify, ¢, x g are configurations of three regions wheresep-
aratesA from B such that no interaction directly conneetswith B, thenp(z a|zc, 25) = p(zalzc)
holds for all conditional probabilities [Herg is understood as the marginal distribution w.r.t. the re-
gions given by its arguments andx|y) := p(x,y)/p(y)]. Let us denote by A, B the sets of
sites in A, B which are connected to the exterior by an interaction. Exiplg the Markov property
together with the fact that we can express the mutual inftionan terms of a conditional entropy
H(A|B) = H(A) — I(A : B) then leads to an area law

I(A: B) = I(dA : 9B) < H(dA) < |0A|logd, @)

where the first inequality follows from positivity of the asical conditional information. Equation (2)
shows that correlations in classical thermal states awilmad at the boundary. In particular if we take
B the complement of4, then we obtain that the mutual information scales as thextbaty area of
the considered region [21] and the maximal information p@t area is determined by the number of
microscopic degrees of freedom.

For quantum systems less information can be inferred froerbtiundary and the Markov property
does no longer hold in general. Remarkably enough, for tke o the mutual information between



a regionA and its complemenB we can also derive an area law for finite temperatures. Inrdale
show that, we consider again a finite range Hamiltorfiaa- H 4 + Hy + Hp, whereH 4, Hp are all
interaction terms within the two regions atif} collects all those crossing the boundary. The thermal
statepsp corresponding to the inverse temperatgreninimizes the free energy'(p) = tr[Hp] —
%S(p). In particular,F (pap) < F(pa ® pp) from which we obtain

I(A:B) < Btr[Ho(pa ® pp — paB)] 3)

sinceH 4, Hp have the same expectation values in both cases. As the ofiEx).(3) depends solely
on the boundary we obtain again an area law scaling similtrabin Eq.(2). For example, if we just
have two-site interactions we obtalQA : B) < f||h|||0A|, where||h]|| is the maximal eigenvalue
all two—site Hamiltonians across the boundary, i.e., thengith of the interaction. Note that the scale
at which the area law becomes apparent is now determinedebintierse temperaturg. In fact, it

is known that at zero temperature the boundary area scafiigeomutual information, which then
becomed (A : B) = 25(A), breaks down for certain critical systems [6—11], Eq.(3)web that all the
logarithmic corrections appearing in these models disapaeany finite temperature.

By comparing the classical area laws (2) and (3) we notice dhantum states may have higher
mutual information than classical ones as the informatienymit area is no longer bounded by the
number of microscopic degrees of freedom. In fact, our tesoiply that if a system violates inequality
(2), then it must have a quantum character.

Let us now turn to an important class of quantum states whoels peyond Gibbs states, namely pro-
jected entangled pair states (PEPS) [16]. These stategh®aname from projecting ‘virtual spins’,
obtained from assigning entangled pdits = Zil |i4) to the edges of a lattice, onto physical sites
corresponding to the vertices. A natural generalizatiothisf concept to mixed states is to use com-
pletely positive maps for the mapping from the virtual to pisical level [18]. Since every such map
can be purified, these mixed PEPS can be interpreted as p&® REh an additional physical system
which gets traced out in the end. To become more specific lebasider a 2D square lattice. Then
every pure PEPS is characterized by assigning a 5'th orahsoteﬁli‘l‘uyd to each lattice site. Here
the upper index corresponds to the physical site and therliiveual’ ones (running from 1 taD) get
contracted according to the lattice structure. A mixed PERBen obtained by increasing the range of
1 from d to dd g and finally tracing over these additional environmentalrdeg of freedom, which can
be thought of as a second layer of the square lattice. Fonedlet states one can now easily see that the
mutual information between a blockand its complemenB satisfies a boundary area law

I(A: B) < 2|0A|log D, (4)

since it is upper bounded by the mutual information, i.eicéthe block entropy, of the purified state
which is in turn bounded by the number of bonds cut. An intiémgsclass of mixed PEPS are Gibbs
states of Hamiltonians of commuting finite range interatti(see Appendix A). Note that these are not
necessarily classical systems, as a simultaneous diagatiah need not preserve the local structure of
the interaction. The Kitaev model [22] on the square lattibe cluster state [23] Hamiltonian and alll
stabilizer Hamiltonians fall in this class and display Highon-classical features. In fact, all known
resources for measurement based quantum computation B®. PE

Moreover, Gibbs states of arbitrary local Hamiltonians approximately representable as mixed
PEPS[24] (cf. also Appendix B). Here, the approximationdgaa bounded error in trace norm, but in
this case the dimension of the PEPS increase exponentsadlypalylog of the system size.

MUTUAL INFORMATION AND CORRELATIONS

We will now discuss the correlations measured in terms ohtinéual information between separate
regions. Traditionally, these are measured by connecteelation functions’ (M, Mg) := (Ma ®
Mpg) — (Ma){Mpg) of observables\{4, Mp. In fact, these two concepts can be related by expressing
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FIG. 2: Left: We take as regiond and B two concentric spheres of radius — L and L, repectively; Right-
Up: Same for a one—dimensional chain, for which the examglegjiven; Right-Down: Simple 1D model for a
state which is formed by singlet pairs (indicated by linesijoy them) whose length follows a given probability
distribution.

the mutual information as a relative entrof{pas|pa ® pg) = I(A : B) and using the norm bound
S(plo) = %|lp — o|[3. In this way we obtain

I(A:B) > C(Ma, Mp)?

A — 5
A A ®)

Hence, ifI(A : B) decays for instance exponentially in the distance betwéemd B then so will

C. One of the advantages of the mutual information is, of ogutisat there cannot be correlations
‘overlooked’, whereas connected correlation functiongtmibe all arbitrarily small while the state is
still highly correlated—a fact exploited in quantum datdihg and quantum expanders[25].

In the following we will relate the correlation length as eefil by the mutual information with the
area law mentioned in the previous section. To this end densbncentrically nested spheres in dimen-
sionD such that the outer one of radiliscorresponding to regiof is separated from the inner region
A of radiusR — L by a shellC of thickness. <« R (see Fig 2). We denote the mutual information
betweenA and B by I (R) and defin&;, as the minimal lengti such thati,(R) < Io(R)/2 for
all R, i.e. a correlation length as measured by the mutual infdona Note that$,, can be infinite
(in particular, for critical systems) and that it takes iaimcount the decay of all possible correlations.
Using the subadditivity property of the entropy (see Apperi) we obtain the general inequality
I(A: BC) < I(A: B)+ 2S¢ which leads to

Iy < IgM + 2S¢ < 4|8A|§]V[ (6)

Here the first inequality implies the second one by inserfing < 31, and the fact thats(C) <
&v |0A] . So, indeed, we get an area law for the mutual informatioalgdtom the existence of the
length scal€ ,;, which expresses the common sense explanation of Fig. §.aféa law is valid for zero
temperatures and when violated (e.g. by critical systems)ddiately implies an infinite correlation
length¢y, .

EXAMPLESIN ONE DIMENSION

We will now investigate the decay of correlations in termghafmutual information for certain simple
cases. We will show that in all of theg, is directly connected to the standard correlation length. W
will consider infinite lattices in 1 spatial dimension (ség.R2), since the calculations become simpler.



We start out by considering an important class of statessakealled finitely correlated states (FCS)
[26], which naturally appear in several lattice systemsDn They can be viewed as 1D PEPS (or matrix
product states) where all the local projectors are the sdwery FCS is most easily characterized by
a completely positive, trace preserving map (a chanfiet) B(H,) — B(H, ® Hz) with H;, H,
Hilbert spaces of dimensiaR, d respectively. Define furthe?(z) = trz[T(z)] and assume the generic
condition that€ has only one eigenvalue of magnitude one, correspondindike@ pointp = £(p).
The second largest eigenvalug,is related to the standard correlation length throggh —1/1In7.
With this notation, it is very simple to express the statesasponding to regiond, B, andAB, which
are required in order to determine the mutual informationtHe Methods section we show that/as
gets largerp o 5 approaches exponentially fast ® pp. This allows us to bound the mutual information
(see Appendix A) as

IL(R) < 1og(D)o(L e—L/ﬁ). (7)

Sincel (R) increases (decreases) with(L), and is lower bounded by correlation function (5) this
inequality immediately implies tha, is finite and directly related to the correlation length

The simple case considered above includes several irtegagiuations of systems in 1D with finite—
range interactions: frustration—free Hamiltoniang at= 0, all classical Gibbs states, and all quantum
ones corresponding to commuting Hamiltonians. In all cates area law is fulfilled following the
results given in the previous sections. However, it is kndhat for certain critical systems the area
law is violated atl' = 0. In order to analyze how this behavior may emerge, we willsidered a
simple toy model in 1D which display this behavior and for @i, (R) can be exactly determined.
Let us consider a spi§ system formed of singlets (see Fig. 2). The state is suchfribratany given
site, i, the probability of having a singlet with another sife,is a functionf(|i — j|). The mutual
information between two regions is equal to the number oflsits that connect those regions, and
thus it can be easily determined (if we take a large regiorthabwe can average this number). If we
take f(x) o< e~*/¢ we have that: (i) all (averaged) correlation functions geegponentially with the
distance and thdtgives the correlation length; (i), (R) decays exponentially with and that; ~ &;

(iii) an area law is fulfilled. If we takef(x) o 1/(2? + a?) we obtain that: (i) the correlation functions
decay as power laws with the distance; {iiY R) ~ log(2R — L) and thust,, is infinite; (iii) the area
law is violated. Thus, for this specific model we see how tledation of the area law naturally implies
an infinite correlation length.

Finally, let us note another simple connection between tha &w and the decay df,(R) as a
function of the separatioh in the case of homogeneous system at zero temperature. dfifare state
the entropy of a block of length goes to a constadf asS;, = K — f(L) with f(L) — 0 forincreasing
L, thenI(R) — f(L) asR — oo for sufficiently largeL. If the block entropy diverges instead, then
I.(R) — oo for every finite separation.

APPENDIX A
PEPSrepresentation of thermal stabilizer states

Let us briefly sketch a proof of the result that all Gibbs staiEHamiltonians of commuting finite
range interactions are mixed PEPS. For simplicity cons&d@D square lattice. Starting point is to
write the un-normalized Gibbs state as®/’/21e=#H/2 and to interpret thd as a partial trace over
maximally entangled staté® ® ®) to whiche=?#/2 is applied. In order to get an explicit form for the
tensorA assume that horizontally neighboring sites interact/vjeand vertical neighbors via, and
denote by

e /2 =N Uy @ Do, e ™/2=3"Rs®Ls ®)
« E



Schmidt decompositions in the Hilbert-Schmidt HilbertspaThat is, the operatols,, D, Rz, L
form four sets of orthogonal operators, which by assumptiemmute with each other but not neces-
sarily among themselves (e @/, Uz] # 0). Using that the Gibbs state is up to normalization a product
of terms as in Eq.(8) leads then to its PEPS representatittn/wi= d? and

Vtwd = [LrRiUaDy ] 9)

1,12’

wherei = (i1, i2) with iy corresponding to the environmental degrees.

Decay of correlationsfor Finitely correlated states

The reduced density matrpxy of Ny = R — L contiguous sites is obtained as

pa = try [TNA(Q)} . (10)
Similarly the joint reduced state of two regiordsand B which are separated by sites as in Fig. 2 is
given by
pap = lim [TNBeLTNAeLTNB(Q)] (11)

For sufficiently largel, write
el (@) = (1 = en®)trfzlo + en” €' (x), (12)

where&’ is some channel andan L-independent constant. Taken together Eqgs.(10-12) enashie
bound the norm distance

|pas — pa ® ppl|1 < 4en* (13)

independent o4, Nz. That is, the two regions factorize exponentially on a s€ate—1/ Inn which
can be regarded the correlation length of the system. Weotarge this result directly for the mutual
information since the dimension of the Hilbert space ofsysB is infinite. However, we can proceed
by noting that eacii” can be locally purified thereby increasing the sizé#fby a factor ofd D? (with

£ unchanged). Denoting the additional purifying systemsdbyand B’ respectively, we obtain on the
one handl(A : B) < I(AA' : BB') = S(paa ® ppp') — S(paa p’). On the other hand we can
apply Fannes’ inequalityS(p) — S(o)| < Alog(d —1) + H(A,1— A), whereA = 1{|p— ]|, and§

is the dimension of the supporting Hilbert space/td A’ : BB’). The advantage is that in this system
we deal with finite dimensional systems; in fact, in our céise D? so that putting things together we
obtain (7).

APPENDIX B
Propertiesof the mutual information

Here we list some useful properties of the mutual informatiéll of them can be derived starting
from the strong subadditivity (SS) property of the von NeamantropySxy z + Sx < Sxy + Sxz.
First, we have the following bounds:

I(A:B)<I(A:BC)<I(A:B)+2Sc. (14)

The first inequality can be directly proved using SS. The sdamne follows fromSapc > |Sap —
Sc| > Sap — Sc andSg + S¢ > Spc, which both can be easily derived using SS. We can derive
another upper bound to the mutual information by using SBiaiy

I(AB)-'—I(A/B/)Sz;S’AA/:z,S’BB/ (15)



whereAA’ BB’ is any purification ofA B.

Now we show thaf,(R) increases withkR and decreases with. We will do it for a translationally
invariant system with periodic boundary conditions in 1Df the argument can be easily extended to
higher dimensions. From the first inequality in (14) we get Behavior withL. On the other hand,
taking three contiguous regions containingld,and 1 site, respectively, and using SS we obtain that
Sp, —Sp—1 > Sp4+1 — Sp. Iterating this inequality we obtain that, as longlas. N/2 whereN is the
total number of sitesSy, — Sp—1 > Sy—_r+1 — Sn—1, from which the monotonous behavior bf (R)
as a function ofr follows.

Saturation of mutual information implies FCS

For one-dimensional systems the area law just means a Satucd the mutual information. Let
us now gain some first insight into the structure of statesngpathis property. So consider a general
(mixed) 1D translational invariant state and denote theualubformation between a block of length
and the rest of the system lyL) and similarly its entropy bys(L). The latter can be shown to be a
concave function

S(L) > (S(L —1) + S(L +1))/2, (16)

which is nothing but the strong subadditivity inequalitypéipd to a region of lengtli. — 1 surrounded
by two single sites. Eq.(16) has strong implications on thledvior ofI(L). Assume for the moment
that the system is a finite ring of lengij, then

I(L)—I(L—1) = [S(L)—S(L—1)] (17)
—[S(N =L +1) — S(N — L)]

is a difference between two slopes of the entropy functiome @ concavity o5(L), I(L) is increasing

as long ad. < N/2. Moreover, if from some length scale on the mutual informaixactly saturates,
i.e,I(L—1) = I(L) then all slopes betweehand N — L have to be equal so that strong subadditivity
in Eq.(16) holds with equality. States with this propertg,ahowever, nicely characterized [27] and

known to be quantum Markov chains. That is, there exists argHld’ : B(Hf(L_l)) — B(HS")
such that

(id® T)(pr-1) = pr, (18)

wherep;, is the reduced density operator bfsites and successive applicationslofo the lastl — 1
sites generates larger and larger parts of the chain. Fmitefystems these states form a subset of
the FCS where now) = d(Z~1), i.e., the scale at which saturation sets in determines rib#lary
dimension needed to represent the state.
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