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Abstract

The nearby orbit method is a powerful tool for constructing semi-
classical solutions of Schrödinger’s equation when the initial datum is a
coherent state. In this paper we first extend this method to arbitrary
squeezed states and thereafter apply our results to the Schrödinger
equation in phase space. This adaptation requires the phase-space
Weyl calculus developed in previous work of ours. We also study the
regularity of the semi-classical solutions from the point of view of the
Feichtinger algebra familiar from the theory of modulation spaces.

Introduction

An excellent method for constructing approximate solutions of the Schrödinger
equation

iℏ
∂ψ

∂t
= Ĥψ , ψ(·, t0) = ψ0 (1)

when the initial function ψ0 is a strongly localized wavepacket is the nearby

orbit method initiated by Heller [16] and Littlejohn [20]. It is a method

∗Email: maurice.de.gosson@univie.ac.at , maurice.degosson@gmail.com
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of choice, because it allows a simultaneous control of the accuracy of the

approximate solutions for both small time and small h (it has been extended
by various authors to “large” times as well, but the results are less complete).

Its gist is the following: let H be the classical Hamiltonian), and denote
by zt = (xt, pt) the solution to Hamilton’s equations equations ẋ = ∂pH ,

ṗ = −∂xH passing through z0 = (x0, p0) at time t = 0; here x0 and p0 are
the position and momentum expectation vectors at time t = 0. Expanding

H in a Taylor series around zt and truncating at the second order one obtains
the function

Hz0
(z, t) = H(zt) +H ′(zt)(z − zt) + 1

2H
′′(zt)(z − zt)

2.

Consider now the new Schrödinger equation

iℏ
∂ψ

∂t
= Ĥz0

ψ , ψ(·, t0) = ψ0. (2)

Due to the fact that Hz0
is a quadratic polynomial in the position and mo-

mentum variables, this equation can be explicitly solved using metaplectic
and Heisenberg operators. The corresponding solutions are then used to

construct approximate solutions of the initial Schrödinger equation (1) (we
will also discuss higher-order approximations in this article).

The aim of this work is to apply the nearby-orbit method to construct
semi-classical solutions of the phase space Schrödinger equation

i~
∂

∂t
Ψ = H( 1

2x+ i~ ∂
∂p,

1
2p− i~ ∂

∂x)Ψ

which we have studied in some detail in our previous works [7, 8] and [9], and
which is obtained by constructing a Weyl calculus in phase space. We will

in addition study the L1(R2n) regularity of the solutions of this equation;
we will see that, perhaps somewhat surprisingly, this is is equivalent to

the regularity of the solutions of the usual configuration space Schrödinger
equation in a particular “modulation pace”, namely the Feichtinger algebra

M1(Rn) of Gabor analysis [12].
The paper is structured as follows:

• In Section 1 we recall the basics of the rigorous theory of the Schrödinger
equation in phase space, following the approach used in our previous

work [7, 8]. The basic tool is the use of a Weyl calculus in phase space
obtained by using what we call “windowed wavepacket transforms”,

which are closely related to the short-time Fourier transform used in
time-frequency and Gabor analysis.
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• In Section 2 we describe in detail the nearby-orbit method and com-

plement it with some effective calculations. We then construct a semi-
classical propagator for the Schrödinger equation in phase space; we

thereafter briefly discuss the range of validity of the method; the main
observation is that the accuracy of the configuration space and phase

space approximations are the same.

• Finally, in Section 3 we show that the previous results are best un-
derstood in terms of a certain modulation space, which plays a crucial
role in Gabor analysis. The idea of studying functional regularity of

the semi-classical solutions of Schrödinger equations is not new; for in-
stance in [21] there are interesting results in terms of a class of Sobolev

spaces. We are actually going to prove that the best adapted functional
space is the Feichtinger algebra defined in [3, 4] in the mid eighties.

Notation

The position vector will be denoted by x = (x1, ..., xn) and the momentum
vector by p = (p1, ..., pn), and we write z = (x, p) for the generic phase space

variable. We will use the generalized gradients

∂x =
[

∂
∂x1

, ..., ∂
∂xn

]
, ∂p =

[
∂

∂p1
, ..., ∂

∂pn

]

and ∂z = (∂x, ∂p).

The symplectic product of z = (x, p), z′ = (x′, p′) is denoted by σ(z, z′):

σ(z, z′) = p · x′ − p′ · x

where the dot · is the usual (Euclidean) scalar product. In matrix notation:

σ(z, z′) = (z′)TJz , J =

[
0n×n In×n

−In×n 0n×n

]
.

The corresponding symplectic group is denoted by Sp(n): the relation S ∈
Sp(n) means that S is a real 2n×2n matrix such that σ(Sz, Sz′) = σ(z, z′);
equivalently

STJS = SJST = J.

We denote the inner product on L2(Rn) by

(ψ|φ) =

∫
ψ(x)φ(x)dnx
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(hence (ψ|φ) = 〈φ|ψ〉) and the inner product on L2(R2n) by

((Ψ|Φ)) =

∫
Ψ(z)Φ(z)d2nz;

the associated norms are denoted by ||ψ|| and |||Ψ|||, respectively.

The Heisenberg-Weyl operators are denoted by T̂ (z0); by definition

T̂ (z0)ψ(x) = e
i
~
(p0·x− 1

2
p0·x0)ψ(x− x0)

for any function ψ defined on Rn and z0 = (x0, p0).

The usual Schwarz spaces of rapidly decreasing functions and tempered
distribution are denoted by S(Rn) and S ′(Rn), respectively.

1 Weyl calculus in phase space

In this Section we briefly review the phase space calculus developed in de

Gosson [7, 9].

1.1 The windowed wavepacket transform

1.1.1 Definition of Uφ

To each φ in S(Rn) such that ||φ|| = 1 we associate the wavepacket transform
Uφ with window φ as being the mapping S(Rn) −→ S(R2n) which to ψ

associates the function

Uφψ(z) =
(

π~

2

)n/2
W (ψ, φ)( 1

2z). (3)

where

W (ψ, φ)(z) =
(

1
2π~

)n
∫
e−ipy/~ψ(x+ 1

2y)φ(x− 1
2y)d

ny; (4)

is the Wigner–Moyal transform of the pair (ψ, φ); explicitly

Uφψ(z) =
(

1
2π~

)n/2
e

i
2~

p·x
∫
e−

i
~
p·x′

ψ(x′)φ(x− x′)dnx′; (5)

thus Uφψ is essentially the “short-time Fourier transform” from time-frequency
analysis. For every window φ ∈ S(Rn) the mapping Uφ is a linear isometry

of L2(Rn) on a closed subspace Hφ of L2(Rn) It follows that we have

((Uφψ|Uφψ
′)) = (ψ|ψ′) (6)
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and hence each of the linear mappings Uφ is an isometry of L2(Rn
x) onto a

closed subspace Hφ of L2(R2n
z ) (the square integrable functions on phase

space). It follows that U∗
φUφ is the identity operator on L2(Rn) and that

Pφ = UφU∗
φ is the orthogonal projection onto the Hilbert space Hφ. For all

φ we have Hφ 6= L2(Rn).

For practical calculations it is often advantageous to choose for φ the
standard coherent state φ~(x) = (π~)−n/4e−|x|2/2~. In this case Uφ is related
to the so-called Bargmann transform Bψ(z) (see [21]); in units where ~ =

1/2π we have

Bψ(x+ ip) = 2−ne−π|z|2/2W (ψ, φ~)( 1
2x,−1

2p),

hence (still in these units)

Uφ~ψ(z) = eπ|z|
2/2Bψ(x− ip). (7)

Another reason for the choice φ = φ~ is that the range Hφ~ of Uφ~ is partic-
ularly simple to characterize:

Proposition 1 Let Ψ ∈ L2(R2n). We have Ψ ∈ Hφ~ if and only if Ψ

satisfies the “anti Cauchy–Riemann conditions”

( ∂
∂xj

+ i ∂
∂pj

)
[
e

1

2~
z2

Ψ(z)
]

= 0

That is, Ψ ∈ Hφ~ if and only Ψ(z) = a(z)e−
1

2~
z2

for some analytic function
a.

Proof. This follows from the relation (7) between the Bargmann transform

Uφ~ ; also see Theorem 3 in [8].

1.1.2 The metaplectic group Mpph(n)

The metaplectic group Mp(n) is a faithful unitary representation of Sp2(n),
the double cover of the symplectic group Sp(n). There are several different

ways to describe the elements of Mp(n) (see for instance Leray [19], Wal-
lach [24], de Gosson [9], and the references therein). For our purposes the
most adequate is to use the notion of generating function for free symplectic

matrices. The metaplectic group is generated by the generalized Fourier
transforms ŜA,m associated to a quadratic form

A(x, x′) = 1
2Px

2 − Lx · x′ + 1
2Qx

2
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with P = PT , Q = Q”, detL 6= 0 by the formula

ŜA,mψ(x) =
(

1
2πi~

)n/2
im

√
| detL|

∫
e

i
~
A(x,x′)ψ(x′)dnx′; (8)

here m corresponds to a choice of the argument of detL modulo 2π. One

proves in fact (Leray [19], de Gosson [9]) that every Ŝ ∈ Mp(n) can be
written (non-uniquely) as the product of two operators of the type (8):

Ŝ = ŜA,mŜA′,m′ and (de Gosson [5]) that the integer

m(Ŝ) = m+m′ − Inert(P ′ +Q) (9)

is independent modulo 4 of the factorization ŜA,mŜA′,m′ of Ŝ; the class mod-

ulo 4 of m(Ŝ) is the Maslov index of the metaplectic operator Ŝ (for details
and proofs see de Gosson [5, 9]). Since Mp(n) is a realization of the double

cover of Sp(n) there exists a natural projection πMp : Mp(n) −→ Sp(n);
that projection is a 2-to-1 group epimorphism defined by the condition

that SA = πMp(ŜA,m) is the free symplectic matrix generated by A, that
is (x, p) = SA(x′, p′) if and only if p = ∂xA(x, x′) and p′ = −∂x′A(x, x′).

The following important metaplectic covariance formulae

ŜT̂ (z0) = T̂ (Sz0)Ŝ , W (Ŝψ, Ŝφ)(z) = W (ψ, φ)(S−1z) (10)

hold for all Ŝ ∈ Mp(n) and z0 ∈ R2n (see for instance [9, 20]); the first
formula (10) is the analogue, at the operator level, of the trivial formula

ST (z0) = T (Sz0)S, where T (z0) is the translation operator z 7−→ z + z0
Let us apply the phase-space formalism described above to metaplectic

operators. Weyl symbols (aA,m)σ of the generators ŜA,m of Mp(n) and then
to extend the formula

ŜA,mψ(x) =
(

1
2π~

)n
∫

(aA,m)σ(z0)T̂ (z0)ψ(x)d2nz0 (11)

by setting

(ŜA,m)phΨ(z) =
(

1
2π~

)n
∫

(aA,m)σ(z0)T̂ph(z0)Ψ(z)d2nz0. (12)

In [6] (also see [9, 11]) we have shown that if πMp(ŜA,m) does not have any
eigenvalue equal to one, then its Weyl symbol is given by

(aA,m)σ(z) =
(

1
2π~

)n
iνA,m | det(S − I)|−1/2e

i
2~

MSz2

(13)
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where MS is the symplectic Cayley transform of S: it is the symmetric

matrix

MS =
1

2
J(S + I)(S − I)−1; (cayley)

the exponent νA,m of i in formula (13) corresponds to a choice of argument

for det(S − I); it is the Conley-Zehnder index (modulo 4) of ŜA,m and is

explicitly related to A and m by the formula

νA,m = m− InertA′′
xx mod 4 (14)

where InertA′′
xx is the number of negative eigenvalues of the Hessian matrix

(for a detailed study of the Conley–Zehnder index see de Gosson [6, 9, 11]).
The operators Ŝph are in one-to-one correspondence with the metaplectic

operators Ŝ and thus generate a group which we denote by Mpph(n); that

group is of course isomorphic to Mp(n). The following equivalent formulae
are easily deduced (see [6, 9]):

Ŝph =
(

1
2π~

)n
iν(S)

√
| det(S − I)|

∫
T̂ph(Sz)T̂ph(−z)d2nz (15)

and

Ŝph =
(

1
2π~

)n
iν(S)

√
| det(S − I)|

∫
e−

i
2~

σ(Sz,z)T̂ph((S − I)z)d2nz. (16)

Notice that the well-known “metaplectic covariance” relation Â ◦ S =
Ŝ−1ÂŜ valid for any Ŝ ∈ Mp(n) with projection S ∈ Sp(n) extends to the

phase-space Weyl operators Âph: we have

ŜphT̂ph(z0)Ŝ
−1
ph = T̂ph(Sz) , Â ◦ Sph = Ŝ−1

ph ÂphŜph. (17)

The following metaplectic covariance formulae, which follow from the defi-

nitions, are also useful:

ŜphUφψ = UφŜψ , ŜphT̂ph(z0) = T̂ph(Sz0)Ŝph . (18)

1.1.3 Phase space Schrödinger equation

The consideration of Schrödinger equations in phase space is rather recent;
their introduction and systematic study seems to go back to Frederick and

Torres-Vega [22, 23]; in [1] Chruscinski and Mlodawski discuss the relation-
ship between the Schrödinger equation in phase space and the star-product
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of deformation quantization (this relation is also considered in de Gosson

[10]).
Let us denote by T̂ph(z0) the operator S ′(R2n) −→ S ′(R2n) defined by

T̂ph(z0)Ψ(z) = e−
i

2~
σ(z,z0)Ψ(z − z0); (19)

these operators are unitary when restricted to L2(R2n) and lead to an ir-
reducible representation of the Heisenberg group. They satisfy the product

formula
T̂ph(z0 + z1) = e−

i
2~

σ(z0,z1)T̂ph(z0)T̂ph(z1) (20)

and hence they verify the same commutation relations

T̂ph(z0)T̂ph(z1) = e
i

2~
σ(z0,z1)T̂ph(z1)T̂ph(z0) (21)

as the usual Heisenberg–Weyl operators T̂ph(z0). Also notice that T̂ph(z0)
−1 =

T̂ph(−z0).
Let Â : S(Rn) −→ S ′(Rn) be a ~-Weyl operator with symbol a; defining

the “twisted” Weyl symbol aσ by

aσ(z) =
(

1
2π~

)n
∫
e−

i
~
σ(z,z′)a(z′)d2nz′

we have

Âψ(x) =
(

1
2π~

)n
∫
aσ(z0)T̂ (z0)ψ(x)d2nz0.

We will denote by Âph the operator S(R2n) −→ S ′(R2n) defined by replacing

T̂ (z0) by T̂ph(z0) in the formula above:

ÂphΨ(z) =
(

1
2π~

)n
∫
aσ(z)T̂ph(z0)Ψ(z)d2nz. (22)

Notice that, as in ordinary Weyl calculus, Âph is a symmetric operator if

and only if Â is, that is if and only if the symbol a is real.
The following results are key to the passage to phase-space Schrödinger

equations:

Proposition 2 For every φ ∈ S(Rn) we have the following intertwining
relations:

T̂ph(z0)Uφ = UφT̂ (z0) , ÂphUφ = UφÂ. (23)
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Proof. The first formula (23) is obtained by a direct calculation; the second

formula (23) immediately follows from using definition (22). (See [7, 9, 11]
for a detailed study of these intertwining relations.)

It is easy to check by a direct computation that the following intertwining
relations holds for the windowed wavepacket transforms:

Uφ(xjψ) =
(

1
2xj + i~ ∂

∂pj

)
Uφψ, (24)

Uφ(−i~ ∂
∂xj

ψ) =
(

1
2pj − i~ ∂

∂xj

)
Uφψ; (25)

notice that these relations are independent of a particular choice of the
window φ. Setting

X̂ph = 1
2x + i~ ∂

∂p , P̂ph = 1
2p− i~ ∂

∂x

formulae (24), (25) justify the notation

Âph = A(X̂ph, P̂ph).

One has the following result linking the solutions of the ordinary Schrödinger

equation (1) to the corresponding phase space Schrödinger equations:

Proposition 3 Let ψ be a solution of the configuration space Schrödinger

equation

iℏ
∂ψ

∂t
= Ĥψ , ψ(·, t0) = ψ0

The function Ψ = Uφψ is a solution of the phase space Schrödinger equation

iℏ
∂Ψ

∂t
= ĤphΨ , Ψ(·, t0) = Uφψ0 (26)

where Ĥph = H(X̂ph, P̂ph).

Proof. This follows from formulae (23) and the discussion above (see [7, 8]
for details).

Notice that the phase-space Schrödinger equations may have solutions
that are not in the range of the transform Uφ. Also, to one solution of the

standard Schrödinger equation one can in general associate infinitely many
solutions of (26) by choosing different windows φ.

2 The Nearby Orbit Method

Let us begin by reviewing the method in the usual situation of the configu-
ration space Schrödinger equation.
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2.1 Description of the method

2.1.1 Schrödinger equation in configuration space

Let H be the Weyl symbol of the operator Ĥ (it is the classical Hamil-

tonian), we denote by (ft,t0) the time-dependent flow determined by H :
t 7−→ ft,t0(z0) is the solution of Hamilton’s equations ż = J∂zH(z, t) pass-
ing through the phase-space point z0 at time t = t0. We will write

zt = (xt, pt) = ft,t0(z0).

Let H ′′ be the Hessian matrix of H in the variables xj, pk and consider the
“variational equation”

d

dt
St,t0(z0) = JH ′′(zt, t)St,t0(z0)

satisfied by the Jacobian matrix

St,t0(z0) =
∂(xt, pt)

∂(xt0, pt0)
=

∂zt
∂zt0

of the canonical transformationft,t0 calculated at the point z0. This equation

determines a path t 7−→ St,t0(z0) of symplectic matrices passing through the
identity matrix I at time t = t0. This path can be lifted in a unique way
to a path t 7−→ Ŝt,t0 in Mp(n) such that Ŝt0,t0 is the identity. we have the

following fundamental property:

Proposition 4 LetH be a quadratic Hamiltonian: HM (z, t) = 1
2M(t)z2 for

a symmetric matrix depending smoothly on t. Denote by St,t′. the classical

propagator: St,t′. ∈ Sp(n). For given t0 let t 7−→ Ŝt,t0 be the unique path in

Mp(n) covering the symplectic path t 7−→ St,t.0 and such that Ŝt0,t0 = I. For

ψ0 ∈ S(Rn) set ψ(x, t) = Ŝt,t0ψ0(x). The function ψ is the solution of the

Cauchy problem

i~
dψ

dt
= ĤMψ , ψ(·, t0) = ψ0 (27)

where ĤM is the operator with Weyl symbol HM .

For a detailed proof see [9] and the references therein; the fact that Ŝt,t0

is the exact propagator highlights the well-known property that the classical
dynamics entirely and unambiguously determines the quantum evolution as
far as quadratic Hamiltonians are concerned (cf. Ehrenfest’s theorem).
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Consider the Schrödinger’s equation

iℏ
∂ψ

∂t
= Ĥψ , ψ(·, t0) = ψ0

where the initial wave function ψ0 is “concentrated” around z0. The nearby

orbit method (at order N = 0) consists in making the Ansatz that the

approximate solution is given by the formula ψ(0)(x, t) = U
(0)
t,t0

(z0)ψ0 where

the propagator” U
(0)
t,t0

(z0) is defined by

ψ(0)(x, t) = U
(0)
t,t0

(z0)ψ0 = e
i
~
γ(t,t0;z0)T̂ (zt)Ŝt,t0(z0)T̂ (z0)

−1ψ0; (28)

the phase γ(t, t0; z0) is here the symmetrized action

γ(t, t0; z0) =

∫ t

t0

(
1
2σ(zt′, żt′)−H(zt′, t

′)
)
dt′ (29)

calculated along the Hamiltonian trajectory leading from z0 at time t0 to zt
at time t.

Remark 5 The function ψ(0)(x, t) defined by (28) is the exact solution of
the Schrödinger equation obtained by replacing H by its truncated Taylor

series
Hz0

(z, t) = H(zt) +H ′(zt)(z − zt) + 1
2H

′′(zt)(z − zt)
2

around zt; notice that Hz0
is time-dependent even if H is not.

Remark 6 Beware! The semi-classical “propagator” U
(0)
t,t0

(z0) is not a lin-
ear operator.

2.1.2 The case of coherent states

An interesting case is when the initial function ψ0 is a coherent state. The
standard coherent state (already mentioned in §1.1.1) is the function

φ~(x) =
(

1
π~

)n/4
e−

1

2~
|x|2; (30)

more generally one defines the standard coherent state centered at z0 by the
formula

φ~

z0
(x) = T̂ (z0)φ~ = e

i
~
(p0·x− 1

2
p0·x0)φ~(x− x0). (31)

Coherent states are normalized: ||φ~
z0
|| = 1, and we have

Wφ~(z) =
(

1
π~

)n
e−

1

~
|z|2 . (32)
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Remark 7 The functions φ~ and φ~
z0

are often also denoted by |0〉 and |z0〉,
respectively, in the quantum-mechanical literature.

If we use coherent states as initial wavefunctions, formula (28) becomes
particularly simple:

Proposition 8 The approximate solution to Schrödinger’s equation

iℏ
∂ψ

∂t
= Ĥψ , ψ(·, t0) = φ~

z0

in the nearby orbit method (at order N = 0) is given by the formula

ψ(0) = e
i
~
γ(t,t0;z0)T̂ (zt)Ŝt,t0(z0)φ

~. (33)

Proof. Formula (33) is of course an immediate consequence of formula (28)

and definition (31) of φ~
z0

since

T̂ (zt)Ŝt,t0(z0)T̂ (z0)
−1φ~

z0
= T̂ (zt)Ŝt,t0(z0)φ

~.

Formula (33) shows that in the nearby orbit approximation Gaussian
wavepackets are first deformed (or “squeezed”) by a metaplectic operator,

and then propagated along the classical trajectories. The “squeezing” ac-
tually preserves the Gaussian character of the initial wavepacket. To un-

derstand this, it is useful to generalize the notion of coherent state, by in-
troducing the notion of ”squeezed coherent states”. These are more general

(normalized) Gaussians of the type

φ~

M (x) =
(

det ImM
(π~)n

)1/4
e

i
2~

Mx2

(34)

and
φ~

M,z0
(x) = T̂ (z0)φ

~

M (x) (35)

where M belongs to the Siegel half-space

Σ+
n = {M : M = MT , ImM > 0}

(M a complex n× n matrix).
Metaplectic operators takes a coherent state into another coherent state:

if Ŝ ∈ Mp(n) has projection S =

[
A B
C D

]
on Sp(n) then

Ŝφ~

M,z0
= φ~

α(S)M,Sz0
, α(S)M = (C +DM)(A+BM)−1 (36)
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where α(S)M ∈ Σ+
n . This result allows us to rewrite formula (33) in the

very concise form

ψ(0) = e
i
~

γ(t,t0;z0)φ~

Mt,zt
, Mt = St,t0(z0)(iI) (37)

which shows in an explicit way the “squeezing” of the wavepacket as it moves

along the classical trajectory.

2.1.3 Some estimates

Making the following (rather mild) assumptions on the Hamiltonian function
H :

• The mapping (z, t) −→ H(z, t) is continuous for |t− t0| ≤ T and C∞

in z = (x, p),

• For every multi-index α ∈ N2n there exist Cα > 0 and µα ∈ R such
that |∂α

z H(z, t)| ≤ Cα(T )(1 + |z|2)µα for|t− t0| ≤ T

we have the following precise result:

Proposition 9 Assume that the Cauchy problem

ℏ
∂ψ

∂t
= Ĥψ , ψ(·, t0) = φ~

z0

has a unique solution defined for 0 ≤ |t − t0| ≤ T . There exist for each
integer N polynomial functions Pj with doPj ≤ 3j and a constant CN (z0, T )

such that the function

ψ(N)(x, t) = e
i
~
γ(t,t0;z0)

∑

0≤j≤N

~
j/2Pj(~

−1/2(x− xt))φ
~

Mt,zt
. (38)

with Mt = α(St(z0))(iI) satisfies

||ψ(·, t)− ψ(N)(·, t)|| ≤ CN (z0, T )~(N+1)/2|t− t0|. (39)

Notice that in particular, at the order N = 0, we have

ψ(0)(x, t) = e
i
~

γ(t,t0;z0)φ~

Mt,zt

and

||ψ(·, t)− ψ(0)(·, t)|| ≤ C0(z0, T )~1/2|t− t0|. (40)

13



The first to prove estimates of the type above (for Hamiltonians H of

the type “kinetic energy plus potential”) was Hagedorn in his pioneering
work [13, 14]; his results were extended by Combescure and Robert [2] to

arbitrary Hamiltonians satisfying the properties listed before the statement
of Proposition 9. Also see Nazaikiinskii et al. [21] (Ch.2, §2.1) for related

results using a slightly different method.

2.2 Nearby-orbit method in phase space

2.2.1 Statement of results

We want to find similar expressions for approximate solutions of the Schrödinger

equation in phase space

i~
∂Ψ

∂t
= HphΨ , Ψ(·, t0) = Ψ0.

The following result gives an explicit formula for the semi-classical propa-
gator in phase space:

Proposition 10 The semi-classical propagator U
(0)
t,t0

takes Ψ0 = Uφψ0 to

the function

Ψ(0) = e
i
~
γ(t,t0;z0)T̂ph(zt)(Ŝt,t0(z0))phT̂ (z0)

−1
ph

Ψ0 (41)

with Ψ0 = Uφψ0 and

γ(t, t0; z0) =

∫ t

0
( 1
2σ(zt′, żt′) −H(zt′, t

′))dt′.

Proof. Set ψ(0) = U
(0)
t,t0

(z0)ψ0; by definition of U
(0)
t,t0

(z0) we have

ψ(0) = e
i
~
γ(z0,t)T̂ (zt)Ŝt,t0(z0)T̂ (z0)

−1ψ0

hence, by repeated use of the intertwining formulae (18):

Uφψ = Uφ

[
e

i
~
γ(t,t0;z0)T̂ (zt)Ŝt,t0(z0)T̂ (z0)

−1ψ0

]

= e
i
~
γ(t,t0;z0)

[
Uφ(T̂ (zt)Ŝt,t0(z0)T̂ (z0)

−1)ψ0

]

= e
i
~
γ(t,t0;z0)T̂ph(zt)

[
Uφ(Ŝt,t0(z0)T̂ (z0)

−1)ψ0

]

= e
i
~
γ(t,t0;z0)T̂ph(zt)Ŝt,t0(z0)ph

[
Uφ(T̂ (z0)

−1ψ0)
]

= e
i
~
γ(t,t0;z0)T̂ph(zt)Ŝt,t0(z0)phT̂ (z0)

−1
phUφψ0

14



which proves (41).

An immediate consequence of Proposition 10 above is:

Corollary 11 (i) If Ψ0 = Uφφ
~
z0

then

Ψ(0) = e
i
~
γ(z0,t)T̂ph(zt)Ŝt(z0)phΦ

~ (42)

where Φ~ = Uφφ
~.

(ii) In the case φ = φ~ the function Φ~ is the Gaussian

Φ~ =
(

1
2π~

)n/2
e−

i
2~

σ(z,z0)e−
1

4~
|z−z0|2 .

Proof. (i) In view of formula (41) we have

Uφψ = e
i
~
γ(t,t0;z0)T̂ph(zt)Ŝt,t0(z0)phT̂ (z0)

−1
phUφφ

~

z0
.

Formula (42) follows since we have

T̂ (z0)
−1
phUφφ

~

z0
= Uφ(T̂ (z0)

−1φ~

z0
) = Uφφ

~ = Φ~.

(ii) We have Uφ~φ~
z0

= T̂ph(z0)Uφ~φ~ and Wφ~(z) = (π~)−ne−|z|2/~ hence

Uφ~φ~

z0
=

(
1

2π~

)n/2
e−

i
2~

σ(z,z0)e−
1

4~
|z−z0|2

2.2.2 Validity of the method

Of course, a natural question is arising at this point:
How good are the semi-classical approximations

U
(0)
t,t0

(z0)ψ0(x) = e
i
~
γ(t,t0;z0)T̂ (zt)Ŝt,t0(z0)T̂ (z0)

−1ψ0(x)

and

U
(0)
t,t0

(z0)ph = e
i
~
γ(z0,t)T̂ph(zt)(Ŝt(z0))phT̂ (z0)

−1
ph Ψ0(x) ?

The main observation is that the study of accuracy of the nearby-orbit

methods for the configuration space Schrödinger equation and of its phase
space variant are equivalent :

Lemma 12 Let Ψ0 = Uφψ0. We have

|||U (N)
t,t0

(z0)phΨ0 − Ψ(·, t)||| = ||U (N)
t,t0

(z0)ψ0 − ψ(·, t)||.

15



Proof. The solution Ψ is given by Ψ(·, t) = Uφ(ψ(·, t)) where ψ is the

solution of the usual Schrödinger equation

iℏ
∂ψ

∂t
= Ĥψ , ψ(·, t0) = ψ0;

since Uφ is a linear isometry we have

|||U (N)
t,t0

(z0)phΨ0 − Ψ(·, t)||| = ||U (N)
t,t0

(z0)ψ0 − ψ(·, t)||

From the results above we deduce:

Proposition 13 Assume that the solution Ψ of the phase-space Schrödinger
equation

iℏ
∂Ψ

∂t
= ĤphΨ , Ψ(·, t0) = Φ~

z0

with Φ~
z0

= Uφφ
~
z0

is unique. Suppose that H satisfies the conditions listed
before the statement of Proposition 9. Then, for |t| < T there exists a

constant CT ≥ 0 such that

|||U (0)
t,t0

(z0)phΦ
~

z0
− Ψ(·, t)||| ≤ C(z0, T )|t− t0|

√
~. (43)

Proof. It suffices to apply Lemma 12 above together with Proposition 9.

This result can be generalized to the higher-order approximations Ψ(N) =

U
(N)
t,t0

(z0)phΨ0 without difficulty:

Proposition 14 Under the same assumptions as above the function Ψ(N) =

Uφψ
(N) where ψ(N) = U

(N)
t,t0

(z0)ψ0 is of the type

Ψ(N)(z, t) = e
i
~
γ(t,t0;z0)

∑

0≤j≤N

~
j/2Pj(~

−1/2(X̂ph − xt))T̂ph(zt)Ŝt,t0(z0)phΦ
~

with Φ~ = Uφφ
~ and satisfies

|||Ψ(N)(·, t)− Ψ(·, t)||| ≤ CN (z0, T )~(N+1)/2|t− t0|.

Proof. In view of formula (38) in Proposition 9 the N -th order approxima-

tion is given by

ψ(N)(x, t) = e
i
~
γ(t,t0;z0)

∑

0≤j≤N

~
j/2Pj(~

−1/2(x− xt))φ
~

Mt,zt

16



where the Pj are polynomials with degree ≤ 3j and Mt = α(Ŝt,t0(z0))(iI);

this formula is just a concise form of

ψ(N)(x, t) = e
i
~

γ(t,t0;z0)
∑

0≤j≤N

~
j/2Pj(~

−1/2(x− xt))T̂ (zt)Ŝt,t0(z0)φ
~.

We have

Uφψ
(N)(z, t) =

e
i
~
γ(t,t0;z0)

∑

0≤j≤N

~
j/2Uφ

[
Pj(~

−1/2(x− xt))T̂ (zt)Ŝt,t0(z0)φ
~

]
(z, t).

In view of the intertwining formula (24) we have

Uφ

[
Pj(~

−1/2(x− xt))T̂ (zt)Ŝt,t0(z0)φ
~

z0

]
=

Pj(~
−1/2(X̂ph − xt))Uφ

[
T̂ (zt)Ŝt,t0(z0)φ

~

]

and

Uφ

[
T̂ (zt)Ŝt,t0(z0)φ

~

]
= T̂ph(zt)Ŝt,t0(z0)phΦ

~

hence the result, using again Lemma 12 and the estimate (39).

3 Regularity in Modulation Spaces

In this Section we study the regularity of semi-classical solutions in a class
of functional spaces due to Feichtinger [3, 4] an to which a voluminous

literature has been devoted (see Gröchenig’s book [12] for complements and
references).

3.1 The Feichtinger algebra M
1(Rn)

3.1.1 The short-time Fourier transform

The short-time Fourier transform Vφ with window φ ∈ S(Rn) is defined by

Vφψ(z) =

∫
e−2πip·x′

ψ(x′)φ(x′ − x)dnx′; (44)

it is related to the Wigner–Moyal transform by

W (ψ, φ)(z) =
(

2
π~

)−n/2
e

2i
~

p·xVφ∨√
2π~

ψ√
2π~

(2z/
√

~) (45)
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where ψ√
2π~

(x) = ψ(x
√

2π~), φ∨(x) = φ(−x). Using formulae (5) and (45)

we thus have the following simple relation between the windowed wavepacket
transform Uφψ and Vφ:

Uφψ(z) = e
i

2~
p·xVφ∨√

2π~

ψ√
2π~

(z/
√

2π~). (46)

3.1.2 Definition of M1(Rn)

Let φ ∈ S(Rn). By definition, the Feichtinger algebra M1(Rn) (sometimes

also denoted by S0(R
n)) is the “modulation space” consisting of all ψ such

that Vφψ ∈ L1(R2n); it immediately follows from formula (46) that this

condition is equivalent to Uφψ ∈ L1(R2n). A crucial (and highly non-trivial!)
fact, which ensures the validity of the definition of M1(Rn), is that the

condition Vφψ ∈ L1(R2n) (resp. Uφψ ∈ L1(R2n)) does not depend on the
choice of the window φ. In addition the formulae

||ψ||φ = ||Uφψ||L1(R2n) =

∫
|Uφψ(z)|d2nz

define a family of equivalent norms on M1(Rn). One moreover has the very

simple and remarkable characterization in terms of the Wigner distribution
([12], p. 247):

Proposition 15 A distribution ψ ∈ S ′(Rn) is in M1(Rn) if and only if

Wψ ∈ L1(Rn).

One moreover shows that M1(Rn) is complete for the topology thus
defined, hence a Banach space; it is in fact even a Banach algebra (see

Remark 18 below).
We have the inclusions:

S(Rn) ⊂M1(Rn) ⊂ C0(Rn) ∩ L1(Rn) ∩ L2(Rn);

it follows from the (continuous) inclusions S(Rn) ⊂M1(Rn) ⊂ L2(Rn) that

M1(Rn) is dense in L2(Rn). Using the theory of rigged Hilbert spaces one
can show that (M1(Rn), L2(Rn),M1(Rn)∗ actually is a “Gelfand triple”.

A typical example of a function that is in M1(Rn) but not in S(Rn) is

given (in the case n = 1) by the “triangle function” ψ(x) = 1− |x| if |x| ≤ 1
and ψ(x) = 0 if |x| ≥ 1.

Remark 16 More generally, it is often useful to consider the weighted mod-

ulation spaces M1
vs(Rn), s ≥ 0, where vs(z) = (1 + |z|2)s/2; by definition

ψ ∈ M1
vs(Rn) if and only if vsUφψ ∈ L1(R2n) for one (and hence all)

φ ∈ S(Rn).
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3.2 Application to the nearby-orbit method; a conjecture

3.2.1 An essential property of M1(Rn)

The Feichtinger algebra has the two following crucial properties:

Proposition 17 Let ψ ∈M1(Rn). We have:
(i) T̂ (z0)ψ ∈M1(Rn) for every z0 ∈ R2n;

(ii) Ŝψ ∈ M1(Rn) for every Ŝ ∈ Mp(n). (In particular M1(Rn) is
invariant under Fourier transformation)

Proof. (i) A straightforward calculation shows that we have

W (T̂ (z0)ψ, φ)(z) = e
i
~
σ(z,z0)W (ψ, φ)(z− 1

2z0)

and hence

Uφ(T̂ (z0)ψ) =
(

π~

2

)n/2
W (T̂ (z0)ψ, φ)( 1

2z)

=
(

π~

2

)n/2
e

i
2~

σ(z,z0)W (ψ, φ)( 1
2(z − z0))

= Uφψ(z − z0)

where the last quality follows from the fact that σ(z−z0, z0) = σ(z, z0). We
thus have

||Uφ(T̂ (z0)ψ)||L1(R2n) =

∫
|Uφψ(z − z0)|d2nz = ||Uφψ||L1(R2n)

and hence T̂ (z0)ψ ∈ M1(Rn). (ii) We have, using the second metaplectic
covariance formula (10)

Uφ(Ŝψ) =
(

π~

2

)n/2
W (Ŝψ, φ)( 1

2z)

=
(

π~

2

)n/2
W (ψ, Ŝ−1φ)( 1

2S
−1z)

= UbS−1φψ(S−1z).

Since detS = 1,
∫

|UbS−1φ
ψ(S−1z)|d2nz =

∫
|UbS−1φ

ψ(z)|d2nz

hence the integral in the right-hand side is convergent if and only if Uφψ ∈
L1(R2n). It follows that Uφ(Ŝψ) ∈ L1(R2n) hence Ŝψ ∈M1(Rn).

Remark 18 The Feichtinger algebra is actually the smallest Banach space

containing S(Rn) and which is invariant under the action of the Heisenberg–
Weyl operators.
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3.2.2 Application to semi-classical solutions

The properties of M1(Rn) listed in Proposition 17 allow us to prove the fol-

lowing regularity result for the semi-classical approximationsψ(0) = U
(0)
t,t0

(z0)ψ0:

Proposition 19 The two following equivalent statements hold:

(i) If ψ0 ∈M1(Rn) then U
(0)
t,t0

(z0)ψ0 ∈M1(Rn);

(ii) Ψ0 ∈ L1(R2n) then U
(0)
t,t0

(z0)phΨ0 ∈ L1(R2n).

Proof. That both statements are equivalent is obvious from the definition

of the Feichtinger algebra. Since

U
(0)
t,t0

(z0)ψ0(x) = e
i
~
γ(t,t0;z0)T̂ (zt)Ŝt,t0(z0)T̂ (z0)

−1ψ0(x)

statement (i) follows by repeated use of Proposition 17.

Remark 20 A rather straightforward adaptation of the proof of Proposition

17 shows that the more general weighted spaces M1
vs(Rn) mentioned in Re-

mark 16 also are closed under Heisenberg–Weyl and metaplectic operators.

It follows that the conclusion of Proposition 19 remain true mutatis mutan-
dis, replacing M1(Rn) and L1(R2n) by M1

vs(Rn) and L1
vs(R2n), respectively.

We note that the conclusions above remain true if we replace Ut,t0(z0)
by the exact propagator Ut,t0 associated to a Schrödinger equation with

quadratic Hamiltonian (this is actually an immediate consequence of Propo-
sition 4). In fact, we conjecture

Conjecture 21 The conclusions of Proposition 19 remain true for the exact
propagator of Schrödinger equations with arbitrary Hamiltonians.

We hope to be able to prove this very important regularity property in

a forthcoming paper.

4 Discussion and Perspectives

Needless to say, there are several problems and questions we have not dis-
cussed in this paper, and to which we will come back in forthcoming publica-

tions. There is one outstanding omission: we haven’t analyzed the domain
of validity of the nearby-orbit method very much in detail; it is on the

other hand well-known that there are problems with long times (“Ehrenfest
time”) when the associated classical systems exhibits a chaotic behavior; as
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Littlejohn already pointed out in his seminal paper [20], the nearby orbit

method fails for long times near classically unstable points; in this sense the
method is very dependent on results on classically chaotic Hamiltonian sys-

tems (which is hardly surprising). We mention that Hagedorn and Joye [15]
have constructed exponentially precise semi-classical approximations (for

small ~) of the solutions of the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∆ψ + V ψ.

They show that if certain analytical conditions on the potential V are sat-

isfied the error is of order e−γ/~ for some γ > 0. It is however not quite
clear how their results and methods could be applied to the phase space

Schrödinger equation; this is a question which certainly deserves to be in-
vestigated.

In the last part of this paper we investigated the relation between the
regularity of the solutions of Schrödinger equations in configuration and
phase space using the Feichtinger algebra, and we made a conjecture. It

seems that the techniques that have been developed during the last two
decades by researchers in Gabor and time-frequency analysis are not so

well-known, in general, by quantum physicists; conversely it is also clear
that the methods used in quantum mechanics are not always known by

applied mathematicians (the Schrödinger equation is one typical example,
the uncertainty principle is another). I think that a synergetic approach to

both Sciences would lead to unexpected advances in many directions. I hope
to come back to this fascinating interaction in a very near future.
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