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Abstract

A natural explicit condition is given ensuring that an action of the multiplicative monoid of
non-negative reals on a manifold F' comes from homoteties of a vector bundle structure on F, or,
equivalently, from an Euler vector field. This is used in showing that double (or higher) vector bun-
dles present in the literature can be equivalently defined as manifolds with a family of commuting
Fuler vector fields. Higher vector bundles can be therefore defined as manifolds admitting certain
N"-grading in the structure sheaf. Consequently, multi-graded (super)manifolds are canonically
associated with higher vector bundles that is an equivalence of categories. Of particular interest
are symplectic multi-graded manifolds which are proven to be associated with cotangent bundles.
Duality for higher vector bundles is then explained by means of the cotangent bundles as they
contain the collection of all possible duals. This gives, moreover, higher generalizations of the
known "universal Legendre transformation" T*FE ~ T*E*, identifying the cotangent bundles of all
higher vector bundles in duality. The symplectic multi-graded manifolds, equipped with certain
homological Hamiltonian vector fields, lead to an alternative to D. Roytenberg’s picture general-
ization of Lie bialgebroids, Courant brackets, Drinfeld doubles and can be viewed as geometrical
base for higher BRST and Batalin-Vilkovisky formalisms. This is also a natural framework for
studying n-fold Lie algebroids and related structures.
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1 Introduction

The language of super-geometry is nowadays commonly used not only in some models of mathematical
physics (e.g. in Batalin-Vilkovisky formalism and topological Quantum Field Theory [1, 34]) or homo-
logical algebra but also for some problems viewed earlier as purely geometrical, especially in Poisson
geometry and the theory of Lie algebroids. In this context it became evident that many canonical
super-manifolds are provided with an additional grading in the structure sheaf. In particular, the
problem of finding a proper analog of Drinfeld double Lie algebra for Lie bialgebroids [27] and finding
a nice description of Courant algebroids [17] (with BRST complex and the Weil algebra as particu-
lar examples) have been solved in the language of such graded (super)manifolds by Th. Voronov and
D. Roytenberg [32, 33, 40].

On the other hand, in the traditional language of differential geometry, double (or higher) structures
have been introduced in the categorical sense. For example, double vector bundles have been understood
as "vector bundles in the category of vector bundles" (see [29]-[31], [2, 14, 26]) and recognized as the
structures of great importance in the Lagrangian and Hamiltonian formalism of analytical mechanics
[38, 8]. Double structures appeared also in symplectic and Poisson geometry with A. Wiensten’s and
his collaborators work on symplectic and Poisson groupoids [3, 42, 43] followed by numerous works of
his students and systematic studies of K. C. H. Mackenzie [18]-[25], Y. Kosmann-Schwarzbach [15, 16]
and others.

We had, however, the feeling that, on one hand, the standard definitions of a double (or higher)
vector bundle (cf. [14, 18, 26]), although categorically nice, are operatively too complicated, and, on
the other hand, that standard concepts of super-manifold, or even the concept of N-manifold as defined
and used in [35, 40, 33], are still too general for many purposes. We therefore develop a theory of
higher vector bundles in the spirit of algebraically described compatibility condition for a number of
vector bundle structures and associate with them canonically derived multi-graded super-manifolds.

Our starting point is the observation that a vector bundle can be characterized only with the use
of its homogeneous structure that leads to a much simpler definition of an n-vector bundle (in classical
terms). We prove namely that an n-vector bundle can be equivalently characterized as a manifold
with n commuting Euler vector fields, i.e. as a manifold with certain N-gradation in the algebra of
smooth functions. This implies that an n-vector bundle, as canonically multi-graded, admits its natural
superized counterpart — a multi-graded (super)manifold. Both concepts lead to a unified and elegant
description of various phenomenons of differential geometry. Of particular interest are symplectic multi-
graded manifolds which are proven to be associated with cotangent bundles. Duality for higher vector
bundles can be explained by means of these bundles as they contain the collection of all possible duals.
In fact, we have higher "Legendre transformations” identifying the cotangent bundles of all these duals.
The symplectic multi-graded manifolds, equipped with certain homological Hamiltonian vector fields,
lead to an alternative to D. Roytenberg’s picture generalization of Lie bialgebroids, Courant brackets,
Drinfeld doubles and can be viewed as geometrical base for higher BRST and Batalin-Vilkovisky
formalisms. This is also a natural framework for studying n-fold Lie algebroids and related structures.
The paper 1s organized as follows.

We start with finding a simple characterization of those actions of the multiplicative monoid R
of non-negative reals on a manifold F' that come from homoteties of a vector bundle structure on F'.
This allows us to identify a vector bundle structure with its homogeneous structure (or, equivalently,
its Euler vector field) that clearly simplifies the whole theory, as direct comparison of the additive
structures 1s much more complicated. In particular, a compatibility of two vector bundle structures
can be described easily as the commutation of the corresponding Euler vector fields. We show that this
compatibility condition is equivalent to the concept of double vector bundle described in categorical
terms. In this language, a vector bundle morphism is shown to be just a smooth map intertwining the
homoteties and a vector subbundle — as a submanifold which is homotety-invariant.

The n-vector bundles F, whose structure is described in section 4, admit canonical lifts of their
Euler vector fields to the tangent and to the cotangent bundles TF and T*F| as we show in section
5. In particular, the iterated tangent and cotangent bundles are canonical examples of higher vector
bundles. The cotangent bundle T*F' is of particular interest, since it is canonically fibred not only
over F' but also over all duals F(*k) of I with respect to all its vector bundle structures F' — Fp,).



The side bundles Fl;) are canonically (n — 1)-vector bundles themselves. We prove the existence of a
canonical identifications T*F' ~ T*F, , ~ T* I}, which are additionally symplectomorphisms. This can
be viewed as a generalization of the ce{ebrated "universal Legendre transformation" T*TM ~ T*T*M.
Moreover, the set of higher vector bundles {F, Fiy o F(’;)} is closed (under natural identifications)
with respect to duality. This is a phenomenon observed first for double and triple vector bundles by
K. Konieczna, P. Urbanski and K. C. H. Mackenzie [14, 23, 25].

In Section 6 we prove that symplectic n-vector bundles, 1.e. n-vector bundles equipped with a
symplectic form which is linear (1-homogeneous) with respect to all vector bundle structures, take
always the form T*F for certain (n — 1)-vector bundle F. This, in turn, generalizes the known result
that any vector bundle equipped with a linear symplectic form is, in fact, T*M.

The next two paragraphes are devoted to a natural superization of the previous notions. In this
way we get the concept, already implicitly present in the literature, of a multi-graded manifold — a
super-manifold M with an N™”-gradation in the structure sheaf, and the concept of a multi-graded
symplectic manifold. The crucial here is the equivalence of categories: we have a precise prescription
of passing from a (symplectic) n-vector bundle to the corresponding n-graded (symplectic) manifold
and back.

On multi-graded symplectic manifolds one can consider Master Equations, i1.e. equations of the form
{H, H} = 0 for Hamiltonians of parity different from the parity of the symplectic Poisson bracket {-,-}.
This leads to higher multi-graded analogs of Courant algebroid [17, 33] in the spirit of D. Roytenberg’s
explanation of what a Courant algebroid is. This gives also a possibility of developing higher BRST
and Batalin-Vilkovisky formalisms. The language of multi-graded manifolds is also useful in describing
the structures of n-fold Lie algebroids, as has been already observed by T. Voronov [41]. Section 9 is
devoted to these questions together with the concept of Drinfeld n-tuple — which generalizes the notion
of Drinfeld double Lie algebra and double Lie algebroid. We end up with some results on Drinfeld
n-tuples, they relations to n-fold Lie algebroids, and examples.

To limit the size of this notes, the questions concerning the higher Dirac structures, higher gener-
alized geometries, etc., we postpone to a separate paper. The authors wish to thank F. Przytycki for
helpful discussions on dynamical systems.

2  Vector bundles and homogeneous structures

It is a standard student exercise to show that the additive structure in a real topological vector space
determines the homogeneous structure — the multiplication by reals. The converse is also true. The
Euler’s Homogeneous Function Theorem implies that any differentiable 1-homogeneous function on R™
i1s automatically linear. This suggests that the homogeneity, being much simpler notion, can be used
instead linearity in differential geometry. Let us remark that all geometric objects in this paper, like
manifolds, fibrations, etc., are assumed to be finite-dimensional, paracompact and smooth.

In this section, will use this idea to develop a concept of a vector bundle in terms of its homogeneous
structure. To explain how we will understood the latter, let us consider a vector bundle 7 : F — M.
The homoteties in E define a smooth action of the commutative monoid (R, -) of non-negative reals,
Ry = {a € R:a > 0}, with multiplication:

h:Ry xE—FE, hye):=h(t,e)=t-e.

It should be made clear that by smoothness on R} we mean that the map can be extended to a smooth
map on a neighborhood of Ry in R, thus the whole R. In fact, the above R -action can be extended
to a smooth action h : Rx E — E of the multiplicative monoid R by homoteties with possible negative
factors.

Of course, with any smooth action h: Ry x F — F| hy o hgy = hys, of the multiplicative monoid
(R,-) on a smooth manifold F', one can associate a smooth projection hg : F' — F (as h = ho) onto
a closed subset N = ho(F) of F. In this generality we can define also the vertical lift V}, : F — TF|,
where Vj, () € Tpy(o)F is the tangent vector at ¢ = 0 represented by the smooth curve Ry >t —
xp(t) := h(t,xz) € F. In other words,

Vi F —TF, Vi(x)=in(0) = Tax(0,8,). (1)



One can easily seen that Vj,(z) = 0, for x € N. For the action by homoteties on a vector bundle we
have also the converse: Vi, (e,) = 0= ¢, = 0.

For the terminology, note only that by a wvector subbundle we always mean a subbundle over a
closed submanifold. An important example is the vertical subbundle VFjg,, in the tangent bundle TF
of a vector bundle F' over M over the zero-section 0j; of F' which is canonically isomorphic to F'. We
have the following

Proposition 2.1. For a vector bundle F, the vertical lift gives a canonical isomorphism of vector

bundles Vy : ' — VFq, CTF .

Proof.- In local coordinates (x%,y;) in F, where (2%) are local coordinates in M and (y;) are linear
coordinates in the typical fiber, we have h(t,x,y) = (z,ty). In the adapted coordinates (z¢,y;, 2", v;)
in TF, the vertical lift reads Vj,(z,y) = (x,0,0,y).

O
Note that VF|y can be defined for any manifold I equipped with a smooth projection onto a subset
N as the subset of TFy consisting of vectors which are vertical with respect to the projection. Of
course, in such generality VF|y need not be a vector subbundle in TF.

Definition 2.1. A homogeneous structure on a smooth manifold F will be understood as a smooth
action h : Ry x F' — F of the multiplicative monoid (R4, -) on F which is non-singular in the sense that
the vertical lift V), (z) vanishes only for points @ € N = ho(F), i.e. the curves xp(t) are non-singular
for x ¢ N.

The following theorem shows that the above property of an R -action on F' determines that this action
comes from actual homoteties.

Theorem 2.1. If h : Ry x F — F is a homogeneous structure on the manifold F, then there is a
unique vector bundle structure on F whose homoteties coincide with h.

Proof.- Working separately in components, we can assume that F, thus N = ho(F), is connected. The
non-singularity of ¥V =V, (having fixed h we will skip the subscript) means that N is exactly the
inverse-image by V of the zero-section: N = V~1(0g). The fundamental property of the vertical lift is
that it intertwines the R -action on F with the actual homoteties in TF"

V(hs(x)) = s V(z). (2)

Indeed, we get (2) from the action identity hi(hs(x)) = hs(z) after differentiating both sides with
respect to ¢ at t = 0.

The monoid action h induces a monoid representation in the tangent spaces T, F with x € N. To
see this, for x € N, put Hy(x) : T, F — T, F to be the derivative Hy(x) = D,hy. Tt is easy to see that
Ry >t Hy(x) is a representation of the monoid (R, ) in T, F. Indeed, differentiating the identity
htohg = hg we get Dyhyo Dyhg = Dyhg, 1.e.

Hy(z) o Hy(x) = Hys(). (3)

Now, put P(x) = %lt:OHt(.r). Differentiating (3) with respect to ¢ at ¢ = 0, we get that the linear
map P(x): T,F — T,F commutes with Hg(z) and

P(x)o Hg(x) = Hy(x) o P(x) = s - P(x). (4)

Moreover, after differentiating the latter with respect to s at s = 0, we get P(z)? = P(z). This means
that P(x) is a projection and that H(z) respects the decomposition T, F = K, & E, of T, F into the
direct sum of the kernel K, and the image F, of P(x).

Let us observe that one can interpret P(x) also as the vertical part of the derivative D,V : T, F —
Ty@) TEF with respect to the decomposition of the space tangent to the tangent bundle TF at the
point V(x) = 0, of the zero-section into the vertical subspace tangent to the fiber and the horizontal
subspace tangent to the zero-section:

DV :T,F - Ty TF =T'Fa TLE. (5)



Indeed, if we trivialize locally the tangent bundle TF in a neighborhood U of xy € N in F, say

TU =U xV,V =T,,F, with coordinates (z¢, %), then H;(z¢) : V — V reads H;(wg) = %(TQ) and
0%h
P(xg) = ——(0, x9).

(TO) Itox (Oa TO) (6)

On the other hand, V(z) = (h(0, x), g—}Z(O,x)), so that the projection V : U — V of V on V has the
derivative

D,V =DV V il (0,20) = P(z0) (7)

@ = = — ’,’Ij = €T .
’ o’ Gror ’

The family of vector space projections P, = P(ho(z)) : V — V, 2 € U, in finite-dimensional vector
space V is locally of constant rank. Indeed, the rank of P, is the trace of P, which takes integer values
and continuously depends on z, thus it is locally constant. In our situation it means that the rank of the
projections P, is constant, say k, on N. By V! denote the image P, (V). With our local identification,
V} = Ejy()- The intertwining property (2) implies that 17(7") lies in V.. Indeed, differentiating (2)
with respect to s at s =0, we get Dy ' (V(z)) = P(x)(V(z)) = V(x), ie.

V(x) € Eho(z)- (8)
Since U 3 z + P, € gl(V) is smooth, it is clear that Py := P,, maps V! isomorphically onto
V= Vrlg for x sufficiently close to zq, say from U. This gives a smooth trivialization of the vector
bundle Vi = U, Vil

Oy Vg — U x VY, ®(x,v,) = (z, Po(vs)),

and a smooth map _
Uy :U V), Uy=PoV.

It is casy to see that NNU = \1151{0} and that Wy is of maximal rank at points of N as the derivative
D,V = Pyo P, is ‘onto’.

Hence, due to the Implicit Function Theorem, N NU is a submanifold in U, thus the whole N is a
closed submanifold in F. This impliesin turn that E = (J, .y Eq, locally isomorphic with (NNU) x Vi,
i1s a smooth vector subbundle in TF over N. Moreover, V : F' — E is of maximal rank, thus a local
diffeomorphism along N. For, observe that any vector v € T, F' with x € N, which is annihilated by
the derivative D,V must be annihilated by D,V, thus be tangent to N. But V embeds N as the zero-
section Oy, so D,V is an injection on T, N C T F'. Since V| is an embedding, we can even say that
V is a global diffeomorphism on a neighborhood Uy of N in F onto a neighborhood Wy of the zero-
section in E. Hence, x +— s~1 - V(hs(z)) is a diffeomorphism of h;1(Ux) onto s~1Wy. But, according
to (2), the latter map coincides with V which is therefore a diffeomorphism of F' = J,- hs(Vn) onto
E =, sVo, intertwining h, with the homotety by s. The vector bundle structure on F can be now
taken as the pull-back of the vector bundle structure in E by this diffeomorphism.

Uniqueness follows from the fact that homogeneous structure (homoteties) on a vector space com-
pletely determines the linear structure, as 1-homogeneous smooth functions, i.e. functions satisfying
f(s-x)=s- f(x), are linear. O

Remark 2.1. The monoid (R4, -) contains an open-dense subset of invertible elements (R ,-) — the
multiplicative group of positive reals. It is clear that any action h of (R+, ) restricts to a group action
of (R%,-) which has an infinitesimal generator — the Euler (Liouville) vector field Ay, where Ap(x) is
the vector tangent to the curve zp,(t) at ¢ = 1. In the case of a homogeneous structure this is exactly
the Fuler (Liouville) vector field Ag of the vector bundle E. Of course, this vector field is complete
and its global flow Exp(tAg) determines the homogeneous structure: Fzp(tAg)(z) = €' - z. The
above theorem can be reformulated in terms of this vector field as follows. Note only that the linear
part of a vector field A on F' at its singular point (zero) z¢ is a well-defined liner map T, F — T, F
which in local coordinates is represented by the Jacobian matrix of partial derivatives of coordinates
of A near xg.

Theorem 2.2. A vector field A on a smooth manifold F' is the Euler vector field of a vector bundle
structure on F if and only if



(a) A is complete and the corresponding flow R w— @ = Exp(tA) of diffeomorphisms has the limit
ho(z) = limy—, o ¢ which is a projection of F onto the set N of singular points of A;

(b) For every xo € N, the linear part of A at xg is a projection.

Proof.- One can follow the idea of the above proof for R, -action but we will sketch an alternative
proof in terms of normal hiperbolicity of flows and linearization of vector fields. Since the linear part
of the vector field at singular points has only eigenvalues 0, 1, according to Shoshitaishvili Theorem, at
singular points zg of A we have a local decomopositon of the manifold into the center manifold W0(x)
and the unstable manifold W+ (zo). The manifold W°(zg) is invariant, so in our case it is unique, as
it has to coincide locally with N. This proves that N is a submanifold and we have, at least locally, a
fibration of F into unstable submanifolds over N. But on each W™ (z() the linear part of A at z¢ is
identity, so there are no resonances and A is smoothly equivalent to its linear part, i.e. to the Euler
vector field on T, W0 (). These linearizations on fibers of the fibrations can be glued together to a
linerization of A near N, so to a local Ri-action near N. We can pass to the global action thanks to
the assumption (a). O

Remark 2.2. Of course, there are singular (R, -)-actions which therefore do not correspond to vector
bundle structures. Take for example F' = R with the action h: Ry x R(t,z) — > - . It is clear that
Vy, is trivial: V(z) = (0,0) € TR for all x € R.

Theorem 2.1 easily implies the following.

Theorem 2.3. Fvery closed submanifold of a vector bundle, which is invariant with respect to ho-
moteties, is a vector subbundle (over a closed submanifold of the base).

Proof.- Let E be a closed submanifold of a vector bundle F over M which is homotety-invariant. It
is easy to see that the Ry-action h by homoteteties, reduced to E, is a homogeneous structure on E.
This 1s because, clearly, Vy, , = (Vn)|E, since the vector tangent to a curve in a submanifold can be
naturally viewed as the vector tangent to this curve in the total manifold. This implies that kg is an
action by homoteties with respect to a unique vector bundle structure on E over the closed submanifold
N = ho(E) C M. This vector bundle structure is a vector subbundle of VE|y, C VF|5, ~ F, thus
canonically a subbundle of F. 1

Remark 2.3. A slightly weaker result has been communicated to us by P. Urbariski who assumed that
the intersection of B with every fiber of F' is a vector subspace.

It should be not surprising that the concept of a morphism in the category of vector bundles can
be completely described in terms of the corresponding homogeneous structures.

Theorem 2.4. A smooth map ¢ : F' — F? between the total spaces of two vector bundle structures
hi : F* — M" i =1,2, is a morphism of the vector bundles if and only if it commutes with homoteties

poht=hogp. (9)

Proof.- Note first, that (9) easily implies that ¢ maps M = h(F*) into M? = h%(F?) and fibers into
fibers. We therefore can assume then that F? i = 1,2, are just vector spaces.
Differentiating (9) with respect to ¢t at t = 0, we get

Dop oVt =V? 0.
Since V' : F' — ToF" are linear isomorphisms,
o=V"toDypoV: Fl — F?
is linear. The converse, 1.e. that a vector bundle morphism commutes with homoteties is obvious. [

Corollary 2.1. A smooth map ¢ : F! — F? between the total spaces of two vector bundle structures
1s a morphism of the vector bundles if and only if it relates the Euler vector fields:

Dop(Ap (x)) = Ap (). (10)



Proof.- Differentiating (9) with respect to ¢ at ¢t = 1, we get (10). Conversely, (10) implies that ¢
intertwines the flows induced by Ap1 and Apz, i.e. pohi = h? o for t > 0, thus for all ¢ € Ry by
continuity.

O

3 Commuting Euler vector fields and double vector bundles

Consider now two commuting homogeneous structures h',h? : Ry x F — F, h{ o h? = h? o h} for
all s,t € Ry (or, equivalently two commuting Euler vector fields, [A', A%] = 0). Let us denote the
corresponding bases E' = hj)(F), i = 1,2. We have, in particular,

Bl (W3 (@) = B (h} () (11)

which implies that E? = h3(F) is invariant with respect h'. According to Theorem 2.3, this means
that E? is a vector subbundle of h} : F — E! over the submanifold

M = h§(E?) = hi o h3(F) = h3 o hi(F) = hi(E') = E' N E?. (12)

Analogously, E' is a vector subbundle of h3 : F — E? over M. We will call them side bundles. Thus
we get the following diagram of vector bundle projections

hg
F————>pg? (13)

Fl— M

where we write simply h{ also for its restriction to E?, etc. Note also that E', E?, M are canonically
closed submanifolds in F as the zero-sections of the corresponding vector bundle structures. Moreover,
according to Proposition 2.1, the vertical and the horizontal arrows describe morphisms of vector
bundles.

Let F! be the z-fiber in F of the projection hj). For z € M, let C, be the kernel of the linear
map hZ : F} — E2. This means that C, is also the kernel of h{ : F2 — El and C, = F} N F2. The
submanifold C, of F carries therefore two structures of a vector space hereditary from F} and F?
which, however, coincide according to the following proposition.

Proposition 3.1. Two real vector space structures on a manifold V with commuting homoteties co-
wmncide.

Proof.- Commutation of the homoteties implies that the vector space structures share the same zero
0. Differentiating the commutation relation hj(h?(x)) = h%(h}(x)), with respect to ¢ and s at t = 0
and s = 0, we get

DoV' (V2 (x)) = DoV (V' (2)),

where V' = V}:. But, for a vector space structure, Dy is identity on ToV, so V' = V2. This in turn
implies h' = h? as the vector space structure comes from ToV by identification V : V. — TV
O
Let us go back to the commutative diagram of vector bundle morphisms (13). We can reduce
the whole picture by fixing xg € M and considering the pull-backs of {xp} with respect to all the
projections. This means that we consider the situation when M is just one point which can be then
identified as 0 — the only point of the intersection of the vector spaces E' and E? as submanifolds of
F. We know already that C = Fj N F} is a common vector subspace of Fj and F7. We will call C
the core of (h', h?). Since h{(E?) = {0}, the vector space E? is a subset, thus vector subspace, of F{.
Analogously, E' is a subspace of FZ. Since h3 maps the fiber F} linearly onto E?, its kernel C is a



subspace complementary to E? C F,, as h3 is identical on E?. Thus F} = E? @ C and, analogously,
F¢ = E' & C. Using trivializations of the vector bundles in question (which always exist as the bases
are contractible), we get (13), with M = {0}, in the form

h2
E' x B2 x C — E? (14)
hél lhé
h2
E! - {0}

with obvious projections which are linear maps. Note however that the identification F = E' x E? x C
is not canonical and depends on the choice of the trivializations. Indeed, if (&, ¢qa,6;) are linear
coordinates in E' x E? x C, then a change of the bases in E', E? results in a change of coordinates,

(&, ) Zr%,szb : (15)

Further, a change of the trivialization of h{ over E* which respects the projection on E? results in a
change of coordinates,

(gza(baao/ ZTjgjaZpa(bb,ZO/ ¢b+ZBS . (16)

For the other projection we have

(€0, 00) = [ S° 7.3 hon. S (0 + 6500, | - (17)
J b J s

The changes of coordinates (15) and (16) coincide if and only if they have the common form

(&, ¢, 0.) = ZT%J,Zmb,ZA Y u&; +ZB 0 (18)

with Tl-j, pl, A% and B2 constant. But this change of coordinates, reduced to C, is not linear but

™)

affine which shows that the bundle ¢ = (h}, h3) : F — E' x E? is affine, modelled on the trivial bundle
E'x E? x C.

Let us go back to the whole generality. The collection of all C,, with = € M defines a vector bundle
C over M — the core of (h',h?). If we take g € M and a local chart U C M near x, then, using
local trivializations of all vector bundles over the pull-backs of U (which are contractible bases), we
get from (14) the following local form of (13)

UxE; xE; xCy —UxE}, (19)
UxE, xE, ———U
with obvious projections. One important remark is that, again, the decomposition
(h o hd)~1(U) = (hh 0 k)" (U) = U x B, x EZ, x Gy,

depends on the choice of the trivializations. A change in trivializations results in a change of local
linear coordinates like in (18) but with coefficients depending on = € U:

( uv&za(ba?o/ TU?ZT gjvzpa (bbaZAJ ¢b£ +ZBS . (20)



In the coordinates (., &;, ¢a,0r) € U X E;O X E%O x Cy, the Euler vector fields corresponding to the
vector bundle structures ' and h? read

A= " 0a0s, + > 0:0p,, A= &0 + Y 0,0, (21)
a T k T

They clearly commute. The spaces E;O, E%O, Cy, can be described in terms of the Euler vector fields
as submanifolds defined by equations A' = 0, A2 = 0, A’ = A2 respectively. Note also that the
coordinate functions (x,,&;, da,0,) are (A, A?)-homogeneous of bi-degree (0,0), (1,0),(0,1),(1,1),
respectively. Conversely, any change of coordinates that respects this bi-degree must be of the form
(20) and it preserves Al and A% What we get locally is therefore a local form of a double vector
bundle — the notion introduced by J. Pradines [29, 30, 31] and studied in [2, 14, 41]. This easily implies
that also globally double vector bundles and commuting homogeneous structures are the same objects.

Summarizing our considerations, we get the following.

Theorem 3.1. A double vector bundle can be equivalently defined as a smooth manifold equipped with
two vector bundle structures whose Euler vector fields AY, A? commute.

Theorem 3.2. Any double vector bundle admits an atlas with charts which are invariant with
respect to both homogeneous structures and local coordinates which are (A, A?)-homogencous of
bi-degrees (0,0),(1,0),(0,1),(1,1). Conversely, every manifold F equipped with an atlas whose
charts identify some domains in F with ]_[1.1’1.2:0’1 V(i1,i2), where V(0,0) is a domain in R™, and
V(1,0),V(0,1),V(1,1) are R-vector spaces, and the changes of coordinales respect the bi-degree (i1, 12),
carries a canonical structure of a double vector bundle with the Euler vector fields which are locally of

the form Al = AV(O,l) + AV(l,l) and A2 = AV(LO) + AV(1,1)~

4 Higher vector bundles

A generalization of the concept of vector bundle and double vector bundle suggested by previous
considerations 1s now straightforward:

Definition 4.1. A smooth n-tuple vector bundle (shortly - n-vector bundle) is a smooth manifold F
equipped with n structures of vector bundles whose corresponding Euler vector fields A%, i =1,...,n,
pairwise commute. A morphism between n-vector bundles (F, AL, ..., A™) and (F', (A", ..., (A)") is
a smooth map ¢ : F — F’" which relates AF with (A")*, i.e. Dyp(AF(z)) = (A (p(2)), k=1,...,n,
reF.

Remark 4.1. With respect to the above definition, a non-trivial permutation of the Euler vector
fields leads to non-isomorphic n-vector bundles. Sometimes, however, it is convenient to consider weak
tsomorphisms, 1.e. isomorphisms up to such a permutation.

An inductive reasoning, completely parallel to that proving Theorem 3.2, gives the following.

Theorem 4.1. Any n-vector bundle admits an atlas with charts which are invariant with respect to
all the homogeneous structures and local coordinates which are (Al, ..., A™)-homogeneous of n-degrees
i= (i1, ... in), ix =0, 1.

Conversely, every manifold F equipped with an atlas whose charts identify some domains in F with
W = TLicgoyn V@), where V(0), 0 = (0,...,0), s a domain in R™, and V(i), i # 0, are R-vector
spaces, and the changes of coordinates respect the n-degree i = (i1, ..., iy), carries a canonical structure
of an n-vector bundle with the Fuler vector fields which are locally of the form

AF = Z Ay,
il #0

y . . . .
where ¥ = (i1, ..., k-1, 0, %k+1, - - -, In).



It 1s also a straightforward inductive observation that any smooth change of coordinates in W
respecting the n-degrees (iy, ..., i,) of homogeneity must be of the form

(W)} = Z Z Tél,...,ﬂ;jl,..m)H“zj:’ (22)

where v?, j =1,...,dim(V (i), are linear coordinates in V(i) and T are smooth functions on V/(0).
This shows that our n-bundles coincide with the n-tuple vector bundles described by T. Voronov [41]
and the triple vector bundles (for n = 3) studied by K. Mackenzie [25].

To describe closer the structure of n-vector bundles, let us introduce some conventions. For i, 7 €
{0,1}™, we write |i| = >, ix and ¢ < j, if i < ji for all k= 1,...,n. Denote also ' = (1,0,...,0),
62 =(0,1,0,...,0), etc., and p(i) = {i — 6% € {0,1}" : i, = 1}. Let us write also 1” = (1,...,1) and,
for k=1,...,n, [k] =17 — .

For any ¢ € {0,1}" the submanifold F; = ﬂik:O{Ak = 0} is itself an |i|]-vector bundle with respect
to the Euler vector fields {A* : i, = 1} and bases Fy with i’ € p(i). Thus we get a generalization of the
diagram (13), the characteristic diagram of the n-vector bundle F, which is a commutative diagram
with 2" vertices F; and vector bundle morphisms /7,]5 from F;, with i = 1, to Fi . In particular, F' is
the total space of the n vector bundle structures hf : F — Fiiy. The intersection of their fibers over the
zero-sections give rise to a vector bundle C' over the final base M = (), Fii) — the core of the n-vector
bundle. The final base M is locally represented by V(0) and fibers of C are locally represented by
V(1™). The local coordinates of n-degrees < i form local coordinates on F;. Note that we can view
formally any n-vector bundle as an (n + 1)-vector bundle by adding a trivial (zero) Euler vector field.
In this way, we can regard Fj as an n-vector bundle with trivial Euler vector fields A¥ with i, = 0, i.e.
with the Euler vector fields Al,... A" from F but restricted to F;. Then h%, viewed as a map from
F;, with i = 1, onto Fj, is a morphism of n-vector bundles. If we remove from the characteristic
diagram the total space F' (together with the maps from F'), then we get a smaller diagram of n-vector
bundle morphisms — the base of our n-vector bundle which we denote by B = B(F'). Tt is easy to see
that the base does not determine F'. There 1s however a final object — the base product — denoted by
x B such that B(xB) = B and, for any n-vector bundle F' with base B, there is a submersive n-vector
bundle morphism ¢ g : F' — x B which is identical on B. This morphisms can be viewed as '"removing
the core" operation. For example, the base product for a double vector bundle (13) is the product (or
direct sum) of the vector bundles E' x; E? ~ E' @) E%. In general, xB(F) can be identified with
the image of the map (h{,...,h{) : F' — Fuj X ... X Fjy, i.e., locally, ¢p : F — xB(F) is just the
projection modulo the core:

xB(F) = II va.

i€{0,1}m, i#1n

The coordinate changes in xB(F') are projections of the corresponding coordinate changes (22) for F.
For instance, the characteristic diagram for the triple vector bundle (cf. [25]) looks like

S

Foi Fin (23)

e

Foor [ Fio1
Fo1o [ Fi1
Fooo F1oo
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whereas 1ts base 1s:

Fo11 (24)

Foor [ Fio1
Fo1o [ Fi1
Fooo F1oo

More generally, for any 7 € {0,1}", one can define also n-manifolds manifolds F.; = xB(F;), which
locally looks like
Fei= H V(])
je{0,1}n, j<i

Denote by A*(F) the space of functions on F with n-degree i. It is an A°(F) = C°°(M )-module which
is clearly locally free and finite-dimensional, so it can be viewed as the module of sections of some
vector bundle V(F) over M. For instance, for a double vector bundle F, the module AMD(F) is
locally generated by products of two coordinates of degrees (1,0) and (0, 1), and coordinates of degree
(1,1), so that the symmetric tensor product V:0)(F) vy, VOD(F) is a subbundle in VD (F) and
we have a short exact sequence

0 — VEIF) vy VOU(F) - vED(F) - ¢ — 0.

We can consider also the graded associative and commutative algebra A(F) = @,c7. A'(F) of homo-
geneous functions (with the convention A*(F) = {0} if i ¢ N"). Every its part A% (F) = D A(F)
is a prototype of a higher module: we have canonical operations A1(F) x A*(F) — AIE(F) (or
VI(F) @y VE(F) — VItE(F)) for j + k < i with obvious properties. We can do the same with
respect to the total degree and to define, for m € N, the spaces A™(F) = P, _,, A'(F') of functions
of total degree m, and the corresponding higher modules A™ (F) = Dij<m A*(F). They correspond

to certain vector bundles V™ (F) and V(™) (F) over M.

5 The tangent lift, the phase lift, and duality

In this section we show how to lift Euler vector fields to the tangent and the cotangent bundle. For
the tangent and cotangent lifts of vector fields we refer to [44, 11, 12]. Note only that both lifts respect
the Lie bracket.
Applying the tangent functor to homoteties associated with a homogeneous structure h: Ry x £ —
E we get a new homogeneous structure drth, (dth); = T(ht). Indeed, dth: Ry x TE — TE is clearly
a smooth action of (Ry,-) and the non-singularity assumption is preserved. In the adapted local
coordinates in TE we have
drh(t, z,y, &, 9) = (x, ty, &, ty). (25)

Thus the projection (dth)o maps TE onto TM and the corresponding Euler vector field is the (com-
plete) tangent lift of the Buler vector field of h,

drAp = by, + > 0y, (26)
k k

Note that the tangent lift dTApg is linear, i.e. commutes with the Euler vector field of the tangent
bundle Atg, and on E it reduces to Ag. Moreover, the tangent lifts of commuting vector fields
commute, so we get the following.
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Theorem 5.1. The tangent bundle of an n-vector bundle (F,A', ..., A™) is canonically an (n + 1)-
vector bundle with respect to the Euler vector fields dTA',---,dTA", Atp. The corresponding side
bundles are I' and TFy, k= 1,...,n, respectively. In particular, the iterated tangent bundle TMM =

TT---TM s canomcally an n-vector bundle with (T M); ~ (T Ar).

If]];cq0,1y» V(i) are local charts in F as in Theorem 4.1, then we have Vrp((i,0)) = Vrp((i,1)) = V (i),
i > 0, for factors of local charts in TF. In particular, (TF'); 0y = F; and (TF)q 1) = TE;.

The "phase functor" has not as good properties as the tangent one, since, in general, it associates
only relations with smooth maps. Therefore the cotangent lift d3Ag of Ag, which by definition is the
hamiltonian vector field of the linear function ta, on T*E represented by Ag, is not an Euler vector
field. We get, however, an Euler vector field, denoted by T*Ag and called the phase lift of Ag, if we
add the Euler vector field At«g of the cotangent bundle,

T*AE:d-*rAE—FAT*E. (27)

In the adapted local coordinates,
diAg(a,y,p,m Zykayk > wiox,
J

and

T Ap(z,y,p,m) = Zykayk ij )+ O 70+ > Padh,) (28)
7 a
= Zykayk +Zpa Pa+

The Euler lift T*Ag is linear, i.e. commutes with At«g, and on E it reduces to Ag. The base of
the corresponding homogeneous structure T*h is canonically identified with the dual bundle E* which
is canonically embedded in T*E. The homogeneous structure T*h will be called the phase lift of h.
It commutes with the standard homogeneous structure A" ¥ on T*E. Thus the cotangent bundle
T*E is canonically a double vector bundle with respect to the pair of commuting Euler vector fields
(T*Ag, At«g). Tt is well known that there is a canonical isomorphism of double vector bundles (cf.
[7, 14, 13]) being simultaneously a symplectomorphism of the canonical symplectic structures:

T

T E* (29)

X"’*\E h(}f:* W\E* Yo
(T*h)o id
/ e

which in local coordinates reads

TE(xayapaﬂ') = (.7},7T,p, _y) (30)

and identifies (A1+g, T*Ag) with (T*Ag«, A1+g+). This isomorphism, called sometimes a Legendre
transform, has been first discovered by W. M. Tulczyjew [36] for E = TM in the context of Legendre
transformation in analytical mechanics. Since 7g is a symplectomorphism, we get additionally that
the canonical symplectic form wg on T*E is 1-homogeneous not only with respect to At«g but also
with respect to the phase lift T*Ag. These properties completely determine the vector field T*Apg if
its restriction to E is given. Namely, we have the following.
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Proposition 5.1. Any vector field X on T*M which commutes with the Euler vector field Aty and
satisfies Lxwpr = a - wypy, where a € R and wyy 1s the canonical symplectic form on T*M, is tangent
to M and completely determined by a and its restriction to M. In particular, the cotangent lift d1Y
1s the unique linear and hamiltonian extension to T*M of a vector field Y on M.

Proof.- Write X = Zj (fj (x,p)0p + g (x,p)ap].) in local Darboux coordinates (27, pg). The property
[X, A1+ps] = 0 implies easily that f; are of 0-homogeneous and g; are 1-homogeneous with respect to

At ie. fi(z,p) = fi(x) and g;(z,p) = 34 g5 (x)pr. Now,

_ ) _
a-dej ANdz? = Lxwy = Z (gf(T) + 8—?;(7“)) dpi, A da?,
J

g,k
l.e. of
g (x) = a- 6} — =5 (a).

Thus, for a given a, the vector field X is completely determined by its restriction Zj fi(2)0ps to M.
O

Since the phase lift of an Euler vector field is Euler, the cotangent bundle of an n-vector bun-
dle (F,A',...,A™) is canonically an (n + 1)-vector bundle with respect to the Euler vector fields
T*A', ...  T*A" At.p due to the following proposition.

Proposition 5.2. The phase lifts T*X and T*Y of vector fields X, Y on M commute if and only if
X and Y commute.

Proof.- The linear functions tx,ty on T*M, corresponding to commuting vector fields X and Y,
commute with respect to the symplectic Poisson bracket, so that they hamiltonian vector fields d3 X
and d7Y commute. The cotangent lifts d7 X and d1Y are linear vector fields on T* M, so they commute
with the Euler vector field At«,s. Hence

T X, TY]=[d7X + A1epr, TY + A7) = 0.
Conversely, if T*X and T*Y commute, then [X,Y] = [T*X, T*Y]y; = 0. O

In homogeneous local coordinates (z7) on F, put g (27) to be the degree of 27 with respect to A¥
A¥(z27) = gp(2?)x?. Then, in the adapted local coordinates (27, ps) in T*F,

T*AF = ng(xj)xjarj + Z(l — gx(27))p; Oy, - (31)
k k

If [Ticq0,13» V(@) are local charts in [ as in Theorem 4.1, then we have V-p(1",1) = T*V(0) and
Vrer((3,0)) =V (@), Vrp((d, 1)) = V(A" =4, i >0,

for factors of local charts in T*F'. In particular, (T*F')(; oy = F;. The side bundles of the (n4-1)-vector

bundle T*F are F' and F(*k), k=1,....n, where F(*k) = (F, A, .. ., A")\« is the vector bundle dual to

the vector bundle structure /7,]5 : ' — Fjj) determined by the Euler vector field AF | respectively. But,

according to (29), T*F ~ T*F(*k)a TrAF ~ AT*F(*k)’ S0

(T*F,T*AL L TAA™, Aqep,) = (T*Fjy, Areps . ATer,

e ) (32)

3 P *k
where we use the convention F = F(n+1) and AT*F(*n+1)

an n-vector bundle (with respect to the restrictions of the corresponding Euler vector fields):

= At+p. The dual bundle F(*k) 1s canonically

) AT"F

ATF (n+1) )-

(epy” 7

*
(F(k)a A-|"‘F("1)a R A-|-"F("k_1)a

One can also easily derive the fact that the set of n-vector bundles

(Fa Ala R An)* = {F’ F(*l)’ Tt F(y;l)}’
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the set of duals of the n-vector bundle (F,A',..., A™), is closed with respect to passing to the dual
bundles with respect to any of the vector bundle structure on them (cf. [14, 25]). The corresponding
isomorphisms respect the n-bundle structures, if we accept the weak isomorphisms related to reordering
of the Euler vector fields (or, better to say, by fixing the original order AT*F(*U, ey AT*F(*n+1))' In fact,
for k,l=1,...,n,1 #k,

*

1’ AT*F(*k+1) R AT*F(*H+1) )*AT* P - (Hik:O V(l) X Hikzl V(l)*)AT*F* =

M 0]
(Hik,il:O V(i) x Hikzl,(ln—i)l:O V(7)*) X (Hik:O,ilzl V(i) x Hik:1,(1n—i)l:1 V(7)) =
[L,—o V(@) X IT;2s V)" = (Bl Atern oo ATers AT e ATepe ) (33)

m’ -1’ (1+1)’ (n+1)

*
(F(k)a AT"F("l)a ceey A-|-"F("k_

This implies that the set of duals of an n-vector bundle contains (n + 1)-elements, if we accept weak
isomorphisms, or (n + 1)! elements, if we count permutations of the n-vector bundle structures. For
example, if we start with a double vector bundle (13) with the core C, then we get the following triple
vector bundle:

Our observation can be summarized as follows.

Theorem 5.2. The cotangent bundle T*F of an n-vector bundle (F,A',..., A") is canonically an
(n+1)-vector bundle with respect to the Euler vector fields T*AY, -+ | T*A"™ A1« and the side bundles
F and F(*l), ey F(*;l)-the dual bundles of F with respect to all the vector bundle structures on F'. There

are canonical isomorphisms of the (n + 1)-vector bundles T*F =~ T*F*k). Moreover, the duals of the
n-vector bundle F(*k) are canonically isomorphic to F), F(*l), cey F(*k_l), F(*,H_l), .. .,F(’;l). In particular,
the iterated cotangent bundles (T*)"WM = T*T*...T*M are canonically n-vector bundles.

6 Symplectic and Poisson n-vector bundles

Definition 6.1. A symplectic n-vector bundle is an n-vector bundle (F, A, ... A") equipped with a
symplectic form € which is 1-homogeneous with respect to all vector bundle structures:

LAarQ2=Q, k=1,...,n, (34)
where £ denotes the Lie derivative.

An example of a symplectic vector bundle is the cotangent bundle T*M with the canonical sym-
plectic form wy;. Consequently, the cotangent bundle of any (n — 1)-vector bundle (E, Al, ... A"~
1s a canonical example of a symplectic n-vector bundle. Indeed, we know already that the canonical
symplectic structure wyy is 1I-homogeneous with respect to At«p and with respect to any phase lift.

Theorem 6.1. Any symplectic n-vector bundle (F,A',...,A™ Q), n > 1, is canonically isomorphic
to the cotangent bundle over each of ils side bundles Fiy), equipped with the canonical symplectic form:

n * * * k— * k * n
(F,AY LA™ Q) ~ (T Fyy, T (AllF[k]),...,T (AlF[;),AT*FWT (Alg[:]),...,T (Afr,, ) wh),
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k=1,....n. In particular, all symplectic n-vector bundles
* * 1 * k—1 * k+1 * n
(T F[k], T (AlF[k] ), caey T (AlF[k] ), AT*F[k] y T (AlF[k] ), ceey T (AlF[k] ), wp[k])

k=1,....n, are canonically isomorphic.

Proof.- Since € is a 1-homogeneous symplectic form on the vector bundle /7,]5 : I — Fjy), we have
a canonical isomorphism ¢y : (F,Q) — (T*Fp),wr,,) of symplectic vector bundles which iden-
tifies AF with Atep,,. But Fj is an (n — 1)-vector bundle with respect to the restrictions of
Al AR AR AR s T*Fji), thus F, is a symplectic n-vector bundle with respect to the
Euler vector fields

* 1 * k—1 * k+1 * n
T (A|F[k])a o -aT (A|F[k])a AT*F[k]aT (A|F[k])a o -aT ( |F[k])'

Since @y, is identity on Fly, the vector field T* (AIjF[k]) coincides with (¢). (A7) on Flyj. But the linear

vector field X = (1 )«(A7) on the cotangent bundle T* Fjgy, which additionally satisfies Lxwp,, = wr,
is completely determined by its values on Fj, so

T (A,,) = (o) (A7),
U

Definition 6.2. A Poisson n-vector bundle is an n-vector bundle (F, Al ..., A™) equipped with a
Poisson tensor A which is linear, i.e. homogeneous of degree -1, with respect to all vector bundle
structures:

Lash=—A, k=1,....n. (35)

Of course, any symplectic n-vector bundle is automatically a Poisson n-vector bundle. Since any linear
Poisson structure on a vector bundle E corresponds to a de Rham derivative in the Grassmann algebra
A(E™) associated with the dual bundle, we can associate with any Poisson n-vector bundle F the de
Rham derivatives dy in A(F(*k)). For Poisson structures, homogeneity of degree -1 we call linearity,
since the corresponding Poisson bracket is closed on linear (1-homogeneous) functions. This is exactly
the Lie algebroid bracket on section of the dual bundle. Thus we can state the following.

Proposition 6.1. Any Poisson n-vector bundle F induces Lie algebroid structures on all dual vector
bundles F(*k) — ).

The Lie algebroid structures on all duals of an n-vector bundle F' we will call concordant, if they are
obtained in the above way — from a Poisson n-vector bundle structure on F.

7 Multi-graded manifolds

A graded manifold is a super-manifold equipped with an additional grading in the structure sheaf. The
coordinate transformations are required to preserve this grading. The calculus on graded manifolds
has been developed e.g. in [40, 33, 28]. Our aim is to describe super-manifolds graded by n-tuples of
non-negative integers (i.e. by N").

Definition 7.1. Let G be an abelian semigroup, G 2 g — py € N, g € G, be any function such that
pg # 0 only for finitely many g € G, and let g — g be a semigroup homomorphism G — Zs. A
G-graded manifold M of dimension (p) is a super-manifold whose local coordinates (x;) can be chosen
homogeneous with respect to a G-gradation in the structure sheaf which agrees with the Zs-gradation,
1.e. such that the G-degrees coincide with the parity:

wia; = (—1)9@I@) g

and the changes of coordinates respect the gradation.
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Note also that, if G is an abelian monoid (with additive notation) then the local coordinates of
degree 0 € G give rise naturally to a graded submanifold M of M which is a standard (non-graded)
smooth manifold together with a projection M — M. For other concepts of graded differential
geometry we refer to [33, 40] or to [28]. Especially, the concept of degree-shifting functor [h] we borrow
from the latter. Let h € G. The degree-shifting functor [h] acts on the category of G-graded vector
spaces and assigns to a G-graded space V = ©ycqVj the space W = ©geqWyiyn, where W), consists
of the same elements as V, but has degree g 4+ h. Any functor on G-graded vector spaces gives rise to
an operation on G-graded vector bundles. Note that the shift operator [h] has the effect of decreasing
the degree of fibre coordinates of a G-graded vector bundle &€ — M by h € G. In all our cases G will
be the group Z" (or its sub-semigroup) and g = (g1,...,9%) — g = (g1 + . .. + gr) mod 2.

For a G-graded manifold M we denote by A(M) = P 5 A?(M) the G-graded algebra of smooth

functions on M.

Definition 7.2. An n-graded manifold is an N™-graded manifold M which admits an atlas with local
coordinates of degrees < 1™ =(1,...,1) € N~

Similarly as in the case of n-vector bundles, we have the algebra A(M) = @,y A’ (M) of polynomial
functions. The difference is that this graded associative algebra is graded commutative instead of being
just commutative. The A°(M) = C°°(M)-modules A*(M) and the higher modules A® (M), as well
as the corresponding vector bundles V(M) and V(M) are defined completely analogously. We can
also pass to to the corresponding objects with respect to the total degree.

Remark 7.1. Passing from N"- or Z"-degree i to the total degree |i| = ), ix allows us to associate
with every n-graded manifold an N-manifold of degree n, in the terminology introduced by P. Severa
[35] and exploited by D. Roytenberg [32, 33].

A convenient way to describe the N"-gradation in an n-graded manifold M is to consider the Euler
vector fields A’jw k =1,...,n, whose eigenvalues represent the degrees of homogeneous functions

a(f) = (g1(f),- .., gn(f)). Inlocal coordinates (z7),

Ak =Y gu(a)aid,, (36)
J

so f 1s of degree 7 € N™ if Aljv( (f) =irf, k=1,...,n. we have a fundamental correspondence between
n-vector bundles and n-graded manifolds.

Theorem 7.1. With every n-vector bundle F = (F,A',...,A™) one can canonically associate an
n-graded manifold Mp = gr(F, A, ..., A") such that local coordinates in F of n-degree i < 1™ corre-
spond to graded local coordinates in Mp of degree i. This correspondence gives an equivalence of the
corresponding categories.

Proof.- Assume that an n-vector bundle F' is given by an atlas in which local coordinates 1){’5 transform
as in (22). Passing from F to a super-manifold structure requires a slight caution because in general
the transformation formula (22) does not work in a super-manifold context.

Let us introduce coordinates 67, of degree i € {0,1}™ on a domain Vioy € R™, corresponding to the
coordinates vf Let us fix an order < on the set {0, 1}" such that 6* < ... < §". Let J(i) = (j1, .. i)
be the growing sequence of those k = 1,...,n, for which iy, = 1. Let [i!,...,i"] € {&:1} be the sign of
the permutation (J!,...,J") of the set J(i) = J' U...UJ", where J* = J(i%) and i = i' +...+i".
We claim that the following change of coordinates

@)= > Do AN T e OO0 (37)
0<i<...<i" (J1,-dr)
>, i%=i
satisfies the cocycle condition. This is so because of the following easy properties of the introduced
sign
i

R [ N Ol AT L7 L (38)

7T
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for any permutation o and
i Y A SR | A S I At S S A (39)

One can obtain the corresponding n-graded manifold M g also by means of applying the degree-shifting
functors ([28], Proposition 2.2.27).

Conversely, given a n-graded manifold one easily recover the non-graded transformation functions
T, which produce n-vector bundle F'. Also the morphisms in the considered categories are in one-
to-one correspondence if we apply the rules analogous to the rules just described for the coordinate
changes. In particular, the rule (37) describes graded diffeomorphisms. U

Similarly like in the n-vector bundle case, any n-graded manifolds gives rise to a commutative diagram
of graded vector bundle projections 7(; ;1 : My — M, where i € N", ¢’ € p(i), and M; is the graded
submanifold of M with local coordinates reduced to those whose degrees are < i. Of course, M, is
canonically an |i|-graded manifold. In this way we get graded vector bundles 7% : M — M and the
dual bundles o : M?k) — M.

Given an n-graded manifold M let us denote by dgr(M) the de-gradation of M, i.e. an n-vector
bundle F such that gr(F) = Mpg. If Ais a subset of {1,...,n}, #4 = k, we can consider F as
(n — k)-vector bundle with respect to the Euler vector fields A® with s ¢ A. We denote it by 4 F and
define oM := dgr(M, A4) as (n — k)-graded manifold associated with 4 F, i.e. gr(4F,A%) = 4 M.
Note that the final base of 4F (and so the support of 4 M) has #A-vector bundle structure. If A, B
are disjoint subsets of {1,...,n} then s4upM = 4(pM), since both sides are (n — #A — #B)-graded
manifolds associated with (n — #A — #B)-vector bundle 4upF.

Example 7.1. With a vector bundle E over M we associate the N-graded manifold Mpg. Local
coordinates (z%) on M and a basis of local sections of the dual bundle E* give rise to local homogeneous
coordinates (2%, %) on E. The local coordinates on Mg are (2%, £%) of degrees, respectively, 0 and 1,
and the same change of coordinates as described by the definition of the vector bundle E*. Thus, with
every i-section v from the Grassmann algebra A(E*) we associate a function ¢, of degree i on Mg
in an obvious way, so that A(Mpg) ~ A(E*). A Lie algebroid structure on F is the same as a linear
Poisson structure on E*, or the same as a homological vector field Q, [Q,Q] =0, in Mg.

The graded tangent bundle TM of an n-graded manifold M is by definition the (n + 1)-graded
manifold associated with the tangent bundle T(dgr(M)) of the n-vector bundle dgr(M) being de-
gradation of M, i.e. M = Magr(r). The degree of 8,5 as a function on T*M is —g(2?) € —N".
Similarly, to obtain an (n+ 1)-vector bundle associated with T*dgr(M) — the graded cotangent bundle
T*M — we have to define the degree of 0,; as (1" — g(27),1) € N*™1. One can also say that the
grading in T* M is induced by the Euler vector fields Ar-aq and the phase lifts T*(A’jw) which, in the
standard adapted local coordinates (27, p;) have the form Ap- = Zj p;j0p, and

T*(AR) =D (9s(@?)a? s + (1 = gi(a?)p;0,) -
J
The bases of the corresponding projections are M and M?k), k =1,...,n and this set of n-graded
manifolds is closed with respect to the corresponding dualities.

We say that an r-form (resp., an r-vector field) « is of weight i € 2", w(«) = i, if Lk, (o) = g,
k=1,...,n. Note that with this convention the weight of da’ is w(2’) = g(27) € N, but the degree
of dz7 as a function in TM is (g(z7),1) € N*T1. Similarly, the weight of 9, is —w(z?) = —g(29) € Z,
but the degree of 9,; as a function in T*M is (1" — g(z7),1) € N*+1,

8 Multi-graded symplectic and Poisson manifolds

Definition 8.1. A n-graded symplectic (resp. Poisson) manifold is an n-graded manifold equipped
with a symplectic form of weight 1™ (resp., a Poisson tensor of weight —1™).
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Recall that a differential 2-form w can be locally written in local coordinates (x%) as
1 i -
w= 3 ZJ da’ wi j dat. (40)

A 2-from w on M is called symplectic, if dw = 0 and w is non-degenerate. The latter means that the
induced homomorphism of A(M)-modules

O0:T(TM) - T(T"M), X —ixw,

is invertible. For any (n — 1)-graded manifold M, the n-graded manifold T* M posses a canonical
symplectic form wp of weight 1. Indeed, fixing local coordinates (z7) in M, one can easily seen that
the 2-form waq which in the adapted coordinates (27, ps) in T* M reads

WM = Z dpjd.rj

J

is well defined, symplectic and, since w(dp;) = 1" — w(da?), of weight 1". Note that for any vector
field X on M we can define its phase lift T*X = d3X + Ap«oq exactly like in the standard case. Here,
d3X is the cotangent lift of X — the hamiltonian vector field of the linear function on T*M associated
with X. The phase lifts are linear, i.e. commute with A« and satisfy Lp«xwar = wag. We have
also full analogs of Propositions 5.1 and 5.2.

It is well known that any symplectic vector bundle (E,Ag,Q), i.e. a vector bundle (E,Ag)
equipped with a symplectic form which is 1-homogeneous with respect to the Euler vector field, LA, =
Q) is canonically isomorphic to the cotangent bundle over the base of E with the canonical symplectic
form (E,Ag,Q) ~ (T*M, At«pr,war). A similar fact holds for symplectic N-manifolds of degree 1 in
the terminology of D. Roytenberg or I-graded symplectic manifolds in our terminology: every 1-graded
manifold M equipped with a symplectic form Q of weight 1 (La,,Q = Q) is diffeomorphic to T*M
equipped with the canonical symplectic form (cf. [33, Proposition 3.1]). We can generalize this fact,
1.e. we have the following graded version of Theorem 6.1.

Theorem 8.1. Any n-graded symplectic manifold is canonically isomorphic to the graded cotangent
bundle T*M of an (n — 1)-graded manifold M, equipped with the canonical symplectic form wg.
Moreover, we have canonical symplectomorphisms

(T M, wan) = (T" My warz, )- (41)

Proof.- The proof is completely parallel to that of Theorem 6.1 and we omit it. U

Recall (cf. [9, 10]) that a graded Poisson bracket of degree i on a Z"-graded associative commutative
algebra A = @pezn A is a graded bilinear map {-,-} : A x A — A of degree i € Z" such that

1. {a,b} = —(—1)UelHEDWIHED1p ¢} (graded anticommutativity),
2. {a,bc} = {a,b}c+ (—1)UalHDllpfg ¢} (graded Leibniz rule),

3. {{a,b},c} = {a, {b,c}} — (—=1)UelHEDUPIHEDLL La 1} (graded Jacobi identity), where |a| denotes
the total degree of a, etc.

A homogeneous element g of degree k with the parity opposite to the parity of i we call homological if
{¢. ¢} = 0. It induces a cohomology operator d, = {g, -} of odd total degree |k +i| on A.

The bracket {-,-} = {-, -} on A(T*M) associated with the canonical symplectic form wp and
represented locally by the Poisson tensor Ay = Zj Op; Oys 1s a graded Poisson bracket of degree —1".
Since the algebra A(T*M) is non-negatively graded, negative degrees mean simply 0. Recall also (cf.
[32, 33])that with any linear Poisson structure A on a vector bundle E, thus a de Rham differential
Dy on the Grassmann algebra A(E™) of multi-sections of the dual bundle, one can associate a function
Hp on T* Mg such that vp, ) = {Ha, tu} M- Here, we clearly identify A(Mg) with basic functions
on T*Mpg. In our terminology, Hyx = tp, is the linear function on T*(Mpg) associated with the
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homological vector field Dy on Mg, so {Hy,-} is the cotangent lift dids. In local homogeneous
coordinates (x,y) on E and (z,0,p, &) on T*Mpg, every A of weight -1 is of the form

A= Zpa )Oyr A Oge + = Z 2)y“yr A Dy,

SO

HA—Zpa fpa——z 2)0,E7E°

In other words the function Hj i1s a homological Hamlltoman whose hamiltonian vector field Qa =
{Hp, -} is the cotangent lift of the de Rham derivative dy. This Hamiltonian can be also viewed as
the function tp on T*Mpg associated with the Poisson tensor A € A(E). The Hamiltonian Hy has not
only total degree 3 but it is homogenous of 2-degree (1,2). In some terminology one says also that A
determines a Lie algebroid structure on E and that (M, Q) is a Q-manifold or Lie antialgebroid in
the language of [1, 39, 40, 41]. To find a generalization for Poisson n-bundles (F, A) let us recall that
in this case the Poisson tensor A determines (concordant) Lie algebroid structures on all all vector
bundles F(*k) — Fy), ie. (by definition concordant) homological vector fields qp) of degree §™ on
MF(*k)' We will say that a vector field on an n-graded manifold is un:tal if its homogeneous parts have

weights 0! = (1,0,...,0), 6 = (0,1,0,...,0), etc. Observe that any unital vector fields gy on the side
bundle Ny of an (n+1)-graded symplectic manifold N defines the induced vector field (qg))[s) on Mg,
s=1,...,n+ 1, defined as the restriction of the cotangent lift dyqp, to T*Npy) ~ N. If we consider
the (n + 1)-graded symplectic manifold N'= T* Mg, then MF*k = Np). We have the following.

Proposition 8.1. Homological vector fields q) of degree 6" on MF* = Ny, k =1,...,n, are
concordant if and only if theiwr cotangent lifts comczde (up to the zdentzﬁcation T*MF(*k) ~ T*MF(Z)),
e., if and only if (qr))is) = qps] Jor all k,s =1,...,n

Proof.- The cotangent lifts, uniquely determined by their restrictions to MF(*k) = N, can be easily
seen as represented by the Hamiltonian vector field with the Hamiltonian Hj associated with A. [

9 Higher Courant structures, higher Lie algebroids, and Drin-
feld n-tuples

A Lie bialgebroid, as introduced in [27], is a pair of Lie algebroid structures A, A* on a vector bundle E
and its dual E* and satisfying certain compatibility condition. This compatibility condition has been
recognized in [32] as the commutation of the corresponding homological Hamiltonians {H, Hx/} =0
on T*"Mpg ~ T*Mpg~. This means exactly that the Hamiltonian H = Hj + Hj/ of total degree 3 is
homological and concentrated in 2-degrees (1,2) + (2,1), i.e. the corresponding hamiltonian vector
field @ is concentrated in weights (1,0)+ (0,1). The total weight of @ is 1, but there are homological
vector field of total weight 1 and 2-degrees (—1,2) or (2, —1). They lead to the concept of quasi Lie
bialgebroids. The derived bracket (in the terminology of Y. Kosmann-Schwarzbach)

{Xv Y}Q = {{Xv H}a Y} = _(_1)|I|+H{Q(X)a Y}a

is closed on functions representing sections of E xj; E* and gives a standard model of a Courant
bracket [4, 5] in its non-symmetric version or a Courant algebroid [4, 17, 32]. Note however that the
concept of Courant algebroid is more general and based on graded symplectic manifolds of degree 2
which are not bi-graded in general. The whole structure, 1.e. T*Mpg with the canonical symplectic
Poisson bracket and the homological hamiltonian and unital vector field @ — the Drinfeld double of the
original Lie bialgebroid — is a natural generalization of the Drinfeld double Lie algebra [6].

A natural generalization of the above concepts is as follows.

Definition 9.1. An n-Courant structure is an n-graded symplectic manifold (N, Q) equipped with a
homological Hamiltonian of total degree (n +1). A Drinfeld n-tuple is an n-Courant structure whose
homological hamiltonian vector field is unital.
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We know already that (N,Q) = (T*M,wp) for an (n — 1)-graded manifold M. Let {-,-} be the
symplectic Poisson bracket on (N, Q) = (T*M,waq). This Poisson bracket is a graded Poisson bracket
on A(N) of degree —1" i.e. of total degree —n. It is a general algebraic fact that the derived bracket
{X, Y}y = {{X, H}, Y} of any homological Hamiltonian H € A" (N) of the total degree (n+1) (or
of any homological hamiltonian and vector field @ of total weight 1) is then a Leibniz bracket of total
degree (1 —n). In classical terms, this bracket can be interpreted as a n-Courant algebroid, i.e. as a
bracket on A=Y (N) — the module of sections of the vector bundle C = V=1 () over M. Note that
the symplectic Poisson bracket also gives rise to certain operations on subbundles of C = V(”_l)(./\/),

namely (-,-);x : VI(N) @y VE(N) — VITE=7(N) or, globally, to a graded operation
() : CN) @ C(N) — C(N)
of degree —1™ on the graded vector bundle

CN) = P uV' V).

li|<n

If we do not insist on working with multi-graded symplectic manifolds, which means — cotangent bundles
— and we admit symplectic graded N-manifolds of degree n in the terminology of D. Roytenberg [33],
then, analogously, we get a notion of a Courant algebroid of degree n. In this context, however, the
concept of Drinfeld n-tuple makes no sense.

Recently, the double Lie algebroids, as introduced by K. C. Mackenzie [18] — [22], have been
recognized by T. Voronov [41] as double @-manifolds and generalized to n-fold @Q-manifolds, i.e. n-
graded manifolds Mp (associated with an n-vector bundle F') and endowed with a homological unital
vector field @). This means that Q = Q1 + -+ + @, where @1, ...,Q, are commuting homological

vector fields of n-degrees, respectively, §,..., ™.
More precisely, an n-fold Lie algebroid is an n-vector bundle F equipped with Lie algebroids struc-
tures on the vector bundles hf§ : F — Fiy, k =1,...,n, and satisfying certain compatibility conditions.

In particular; all morphism in the characteristic diagram should be Lie algebroid morphisms. An el-
egant way to describe these conditions is to pass to the corresponding n-graded manifold M = Mpg.
Then, we can interpret these Lie algebroid structures as homological vector fields @y of weight 1 on the
corresponding 1-graded manifolds and finally, due to the commutativity of Lie algebroid morphisms,
as a homological and unital vector field on the n-graded total space M. The compatibility condi-
tions reduce now to the fact that the vector fields Qr commute. Equivalently, the total vector field
Q=Q1+ -+ @y is unital and homological, so we end up with the following (see [41]).

Definition 9.2. An n-fold Lie algebroid is an n-graded manifold with a homological and unital vector

field.
Observe that n-fold Lie algebroid is a particular case of a Drinfeld (n + 1)-tuple.

Proposition 9.1. There is a one-to-one correspondence between n-fold Lie algebroids (M, Q) and
(n + 1)-Drinfeld tuples (T* M, Q) such that Q has trivial summand of weight 5" 1.

Proof.- Let us put @ = d3Q. Then, as easily seen, ¢ is a Hamiltonian and homological vector field on
T* M of weight (0,w(Q)). Conversely, if @ is a Hamiltonian and unital vector field on T* M with the
trivial summand of weight 6"+, then Q = d7@ for some unital vector field @) on M. Moreover, since

d2[Q, Q] = [Q, Q] = 0, then Q is homological. O

Let F'; Mg, Q be as above and let 4,5 € {0,1}", i < j. We claim that the vector field @ induces
(7] — |i])-fold Lie algebroid structure on the (|j| — |i|)-vector bundle whose total space is F; and final
base is F;. Because @ is tangent to M, it is enough to verify the claim for M = Mp, i.e. for j =1".
Moreover, an inductive reasoning shows that we may also assume that |i| = 1 since an (n — |i|)-vector
bundle can be reached in |i] steps in which we simply forget about an Euler vector field. Note that the
(n — 1)-graded manifold {13 M associated with the (n — 1)-vector bundle 5, F defined by Euler vector
fields {A®}, s # k, can be obtained from Mg by applying the parity changing functor to the super
vector bundle M — M), Le. (13 M = Irq,, M. The vector field Q = Q — Qy, is a linear vector field
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with respect to the vector bundle M — M. The following general fact implies that we can pass
from Q to a vector field Q on (M.

Lemma 9.1. Let &€ — M be a super vector bundle and Vecty(E) denotes the Lie algebra of linear
vector fields on E. There exist a canonical A(M)-linear isomorphism of Lie algebras

@ Vecty(E) — Vecto(TIpmE). (42)

Proof.- Let {n;} and {p;} be the corresponding local linear coordinates on & and IIp(&, respectively,
and let ¢ := 7);, so fi; = i + 1. The Lie algebra Vecty(€) is locally spanned by the vector fields 7;0,, .
The following formula

$(1:0n,) = (—1)"7 130,
does not depend on the choice of local coordinates. In fact, if n; = >7.7;Tji(z), Tji(z) € AM),
describes transformations of fiber coordinates of £ then also yi; = >, y1;Tji(), and

8 .
774877_; Zn;ainlj_ank = ZmTli(m)Tjk(m)aﬁk
J L,k

k )
= SO () DT ()T,
1,k

because the parity of Tj;(z) is 7 4 j. Hence

S(i0y) = > (1) T () T @)Dy, = (=1)7 iy

Lk

It is also easy to calculate that ¢ preserves the Lie bracket of vector fields. ([

It follows from above lemma that @ is a homological vector field on f,3M and so induces a (n—1)-fold
Lie algebroid structure on (3, F. Thus we get the following.

Proposition 9.2. An n-fold Lie algebroid structure on an n-vector bundle F' induces canonically, for
1,7 €{0,1}", i < j, an (|j] — |i])-fold Lie algebroid structure on the (|j| — |i|)-vector bundle whose total
space is F; and the final base is F;.

A natural way of constructing n-fold Lie algebroids can be based on the following trivial observation.

Theorem 9.1. If (M, Q) is an n-fold Lie algebroid, then (TM,dtQ + d), where d is the de Rham
differential on TM, is an (n + 1)-fold Lie algebroid.

Proof.- Since the tangent lift of vector fields respects the Schouten brackets [11], dT@ is a homological
vector field with components of weights &', ..., 6". Moreover, any tangent lift, which locally reads

Z <fa (2)Opa + Z %iﬁb&c") ;
b

a

commutes with the de Rham vector field d = Y~ ©%0ya of weight §" ™!, so @ + dr is homological and
unital. O

The question now is: what is the higher analogue of a Lie bialgebroid? Our answer is obvious: it
corresponds to a Drinfeld n-tuple. Recall that a Drinfeld n-tuple is an n-graded symplectic manifold
with a homological Hamiltonian and unital vector field. Let us take an n-graded symplectic manifold
(N, Q). We know already that (M,Q) = (T*M,waq) for an (n — 1)-graded manifold M. If Q =
Q1 + -+ + @, is the decomposition of the homological vector field of a Drinfeld n-tuple on (N, Q) =
(T*M,wa) into homogeneous parts of weights 6%, ..., 0", It is easy to see that [@,Q] = 0 implies
[Qr,Qs) =0 for all r,s =1,...,n, i.e. all vector fields Q are homological and pair-wise commuting.
Moreover, for any s # r, the vector field @, is tangent to Ny and projectable to the vector field q{s]
with respect to the canonical projection N'— Ny
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Therefore, Ny posses canonically n commuting homological vector fields ¢f,, 7,k =1,...,n — the
restrictions of Q1,...,Q,. Here, for technical convenience, we list n vector ﬁeids for each base, but
clearly qf;,] =0, i.e. M is canonically an (n — 1)-fold Lie algebroid. But the collection of all N
is a collection of (n — 1)-graded manifolds M, M?l), .. .MZ‘n_l), closed with respect to duality. As a
matter of fact, according to the graded analog of Proposition 5.1, the vector field @, is the cotangent
lift of q{] for s # r. The compatibility condition for all the (n — 1)-fold Lie algebroids structures on
M, M(l),. MZ‘H 1y 1s expressed by saying that they come from projections of certain homological
hamiltonian and unital vector field on T* M, i.e. from the Drinfeld n-tuple. We can say that n-tuple Lie
algebroid corresponds to a Drinfeld n-tuple, exactly like Lie bialgebra (or Lie bialgebroid) corresponds
to a Drinfeld double Lie algebra (or Lie algebroid). In particular, these structures are compatible with
the base structure BN/, i.e. the projections of qjy and g on N, coincide, where [k, s] € {0,1}" has
zeros exactly at positions k,s = 1,...,n. The pair of homologlcal vector fields: q[S on N, and q[ ]
on ./\/'[k], where ' = MS] and E* = Mk] are regarded as dual vector bundles over Ny, o — the de-graded
manifold NV 4, forms a Lie bialgebroid. Indeed, Q) and Qg are the cotangent lifts of qf“s] and qf’k]
to N~ T*Ny ~ T*Np, so in T*E ~ T*E* they are represented by commuting and homological
Hamiltonians Hy, and H, of degrees (2,1) and (1,2). According to the result of D. Roytenberg [32],
this means exactly that we deal with a Lie bialgebroid. It is not true, however, that in general all these
Lie bialgebroid structures produce a Drinfeld n-tuple even under a natural condition saying that the
vector fields qf’k] and qu] induced from algebroid structures on Ny — N and Ny — N coincide
on Ny, as shows the following example.

Example 9.1. Consider a trivial double vector bundle M =R x R? x R x {*} over a point {*} with
1-dimensional core and trivial side bundles of rank 1 and 2. Then N := T*M carries a 3-vector bundle
structure. Let us denote by vg11, v101 and véé)l,v(%)l the fiber coordinates on the core and the side

vector bundles Np; 31 and Npj o), respectively. Let {€001, 9620)1, eo11} be the corresponding dual basis of
sections of the bundle Njjj — N 31. We endow this bundle with a structure of Lie algebroid by setting
the anchor to zero and A(Npy 3))-linear Lie bracket as follows:

[e(l) e )]'—v .
001> €001 ‘= V010 * €011,

[egf))l, 9011] :=0for k = 1,2. Obviously, this is a nilpotent Lie bracket. The induced homological vector
field q on N in the corresponding graded local coordinates {6}, i € {0, 1}3, has the form

1 2
31] = 9010960)1980)189011'

Let us assume that the other 5 vector bundles N — Ny carries the zero Lie algebroid structure.
Then of course the 3 pairs of Lie algebroids (N, Nyj) over Ny, g constitute a Lie bialgebroid. Note
that the restriction of qfl] to N[ ) is zero, so the vector fields qf’k] coincide on intersections, i.e.

qu”N[k,l] = qu] |Nie,y = 0 for distinct 7, k,1. However they do not come from Drinfeld 3-tuple on N/

because the hamiltonian h?l] = 9010965)196%)19100 associated with qfl] 1s not zero while h?Q] =0.

The following theorem gives sufficient conditions.

Theorem 9.2. Let M be an (n — 1)-graded manifold. A Drinfeld n-tuple on N = T* M 1is equivalent
to a collection of Lie bialgebroid structures on all the pairs of dual vector bundles Ny and Nig over
the common base Ny 5, k # s, related to homological unital vector fields q 5 and qf“s], respectively,
which satisfy the compatzbzlzty condition

(@)is) = a5 for m#k (43)
with the convention q[ss] =0.

Proof.- The vector field qf’k] is of degree 1 with respect to the Euler vector field A" so of degree 0
with respect to A® s £ r. Similar statement is true for the vector field ka] — the (unique) linear
Hamiltonian extension of q  to N ie. Q (q{k]). According to the graded version of Proposition
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5.1, the vector field ka] coincides with Qfs] for k,s # r, so that @, defined as Qfs] for some (thus
all) s # r is of degree 6". Since Qfs] and Qf}]’ r # s, commute because they correspond to the given

bialgebroid structure on (N, Nj;1), the vector fields @, pairwise commute and Q = Q1 + -+ Qp
gives rise to a Drinfeld n-tuple on N' = T* M which induces prescribed bialgebroid structures. O

Since, for a fixed r, the vector fields q{k], k # r, are concordant, we can also characterize a Drinfeld

n-tuple in terms of Poisson structures.

Theorem 9.3. A Drinfeld n-tuple is a collection of Poisson (n — 1)-vector bundles in duality: (F,\)
and (F(*k), Ay), k=1,...,n—1, which are compatible in the sense thal the corresponding Hamiltonians
Hp and Hp,, k=1,...,n— 1, inlerpreted as functions on T*Mp ~ T*MF(*k), commute with respect
to the symplectic Poisson bracket.

Let us end up with some words about reduction. Since we deal, in fact, with a homological Hamil-
tonian system (N, €, H) on a symplectic super-manifold (N, Q), the reduction should be understood
as the Hamiltonian reduction with respect to a coisotropic and n-graded submanifold Ny. If we assume
that the Hamiltonian H is constant on leaves of the characteristic foliation F of Ny and the quotient
N’ = Ny/F is a well-defined multi-graded manifold, then the restriction of Q to Ny projects to a
symplectic form €’ on A, the homological Hamiltonian H projects to a homological Hamiltonian H’
on A" and we end up with a new homological Hamiltonian system (N, Q' H') — new n-Courant or new
Drinfeld n-tuple structure. Of course, this picture covers the reduction associated with the moment
map of a Hamiltonian group action: this is only the choice of the coisotropic submanifold which is
determined by the moment map p — the inverse-image ;1 ~1({0}). Note only that this group action
should respect the graded structure, i.e. it should commute with the Euler vector fields.

Example 9.2. Consider the canonical symplectic triple vector bundle
TTTM ~T*T"TM ~T*TT"M ~ T*T*T*M

with the characteristic diagram

TTM TTTM

/ ~

™M [ TT"M

~

M ™

™ [ TTM

~

The tangent bundle 73y : TM — M is canonically Lie algebroid. The corresponding homological
vector fields on TM is the de Rham vector field Djs which in local coordinates (x, ) (we do not
distinguish coordinates in TM and TM, etc., for simplicity) has the form Dy, = 3" @%0ya, so the
corresponding hamiltonian of degree (2,1) on T*TM is H 1y = >, 2%pa. It is well known that Lie
algebroid structures on T*M such that, together with Dy, give a Lie bialgebroid come from Poisson
structures A = 130 Aqp(2)0za A O, on M. The corresponding Hamiltonian on T*T*M ~ T*TM of
degree (1,2) is associated with the tangent lift dTA of A by H(; 9) = taqa, ie.

. 1 OA, P
Ha9) = Z Aap(2)papy + B Z 8ch (7)ZPopa -
— v

a,b,c

Take now a Lie group action G x M — M which is free and proper, so that the space of orbits M/G
is a manifold, and which preserves A, so that A projects onto a Poisson structure A" on M/G. Let
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(y®) be a basis in the Lie algebra G of G and let Y° = )" f2(x)0y« be the corresponding fundamental
vector fields of this action. Preserving A by the action means that the Schouten brackets [V, A]
vanish. By means of the tangent functor, the action of G can be extended to an action of the group
TG on TM. The Lie algebra of TG is TG and the fundamental vector fields of this action are the
tangent and vertical lifts, dtY® and vrY®, of the fundamental vector fields of the action of G (cf.
[11]). Since dt respects the Schouten bracket and [v1Y, dtA] = vr[Y, A] (see [11]), the extended action
preserves dtA. Moreover, it is easy to see that TM /TG ~ T(M/G) and that the canonical projection
TM — TM/TG ~ T(M/G) is a Poisson map of dtA onto dr(A’).

Consider now the phase prolongation of the TG action, TG x T*TM — T*TM. It is a Hamiltonian
action with a canonical equivariant moment map p : T*TM — (TG)*. The Hamiltonians associated
with dTY % and v1Y™® are, respectively, t4;vs and ty,y= so that the submanifold Ny consisting of common
zeros of all functions tq;ys and tyrys, 1s a coisotropic submanifold of T*TM. Since these functions
are linear, it is a vector subbundle of T*TM — TM. But T*TM is canonically a symplectic double
vector bundle with the other projection onto T*M and Nj is a vector subbundle also with respect to
the other bundle structure. This is because the tangent lifts of vector fields are linear and the vertical
lifts are homogeneous of degree -1, so d5ATtar(tarys) = 0 and d¥A1ar(tyrys) = —tvyys, thus the
corresponding homoteties do not leave Ng. The manifold Ny has therefore its graded counterpart Ny
being a bigraded coisotropic submanifold of T*TM. The characteristic distribution on Ny is spanned
by the (super) vector fields d3dtY™* and dyvrY®. They preserve the Hamiltonian H = H o 1)+ H(1 2)
associated with the Lie bialgebroid structure (Dys, Dp) and the Hamiltonian reduction leads to the
bi-graded symplectic manifold T*T(M/G) with the reduced homological hamiltonian H' associated
with the Lie bialgebroid structure (Dps/q, Dar).

We can go further to the iterated tangent bundle TTM which is a double vector bundle with respect
to projections 71 and T7ys onto TM. It is also canonically a double Lie algebroid corresponding to
the homological vector field ¢ = Dty + dv(Das) on TTM which in local coordinates (z, %, Z, &) takes
the form

g = (F%0pe +%0se) + D _ (#"0ge + i) .

It corresponds to the linear function ¢, on T*TTM which in the adapted local coordinates (x, &, Z, &, p, p, p, D)
of degrees, respectively,

(0,0,0),(1,0,0),(0,1,0),(1,1,0),(1,1,1),(0,1,1), (1,0,1), (0,0, 1),

reads

Lg = H(l’g’l) + H(Q’l’l) = Z (i:apa + j}apa) + Z (.i?apa + j}aﬁa) .
A homological Hamiltonian Hy ;o) of degree (1,1,2) can be obtained from the iterated tangent lift
d7rdtA which is linear with respect to both vector bundle structures:

8Aab

. . W e e
Hoigy = Y Aaw(@) (Bopa + Doba) + Y (#(T}T babio + - (2)7 papb> +
a,b a,b,c

1 8Aab ..c 82Aab _d-c o
Z 2 < ox¢ () + y Oxcozd ()53 | Boba

a,b,c

It clearly commutes with vy, so H = H 11y + H2,1) + Hi,1,2) represents a Drinfeld triple.
The corresponding double Lie algebroid structures on the side bundles are: (TTM, Dty + dv D),
(TT*]W, drDp + DT*]VI), and (T*T]W, d-*rD]y[ + DdTDA)~

Extending the tangent lift action G X TM — TM to the iterated tangent lift action TTGXTTM —
TTM and taking its phase prolongation TTGXT*TTM — T*TTM (which is canonically Hamiltonian),
we get a momentum map g1 : T*TTM — (TTG)* and the corresponding coisotropic submanifold
Ny = py H({0}). This submanifold is 3-homogeneous with respect to the triple vector bundle structure
on T*TTM ~ T*T*TM ~ T*TT*M, so it has its graded counterpart N in the 3-graded symplectic
manifold T*TTM ~ T*T*TM ~ T*TT*M. Like above, the homological Hamiltonian H is constant on
the characteristic distribution of the coisotropic manifold A/} and we get a reduction to the 3-graded
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symplectic manifold T*TT(M/G) with the reduced homological hamiltonian H’ associated with the
three homological vector fields drdtDar, D(ar/q), and drDysyq on TT(M/G).
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