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1 IntrodutionThe language of super-geometry is nowadays ommonly used not only in some models of mathematialphysis (e.g. in Batalin-Vilkovisky formalism and topologial Quantum Field Theory [1, 34℄) or homo-logial algebra but also for some problems viewed earlier as purely geometrial, espeially in Poissongeometry and the theory of Lie algebroids. In this ontext it beame evident that many anonialsuper-manifolds are provided with an additional grading in the struture sheaf. In partiular, theproblem of �nding a proper analog of Drinfeld double Lie algebra for Lie bialgebroids [27℄ and �ndinga nie desription of Courant algebroids [17℄ (with BRST omplex and the Weil algebra as partiu-lar examples) have been solved in the language of suh graded (super)manifolds by Th. Voronov andD. Roytenberg [32, 33, 40℄.On the other hand, in the traditional language of di�erential geometry, double (or higher) strutureshave been introdued in the ategorial sense. For example, double vetor bundles have been understoodas "vetor bundles in the ategory of vetor bundles" (see [29℄�[31℄, [2, 14, 26℄) and reognized as thestrutures of great importane in the Lagrangian and Hamiltonian formalism of analytial mehanis[38, 8℄. Double strutures appeared also in sympleti and Poisson geometry with A. Wiensten's andhis ollaborators work on sympleti and Poisson groupoids [3, 42, 43℄ followed by numerous works ofhis students and systemati studies of K. C. H. Makenzie [18℄�[25℄, Y. Kosmann-Shwarzbah [15, 16℄and others.We had, however, the feeling that, on one hand, the standard de�nitions of a double (or higher)vetor bundle (f. [14, 18, 26℄), although ategorially nie, are operatively too ompliated, and, onthe other hand, that standard onepts of super-manifold, or even the onept of N-manifold as de�nedand used in [35, 40, 33℄, are still too general for many purposes. We therefore develop a theory ofhigher vetor bundles in the spirit of algebraially desribed ompatibility ondition for a number ofvetor bundle strutures and assoiate with them anonially derived multi-graded super-manifolds.Our starting point is the observation that a vetor bundle an be haraterized only with the useof its homogeneous struture that leads to a muh simpler de�nition of an n-vetor bundle (in lassialterms). We prove namely that an n-vetor bundle an be equivalently haraterized as a manifoldwith n ommuting Euler vetor �elds, i.e. as a manifold with ertain N-gradation in the algebra ofsmooth funtions. This implies that an n-vetor bundle, as anonially multi-graded, admits its naturalsuperized ounterpart � a multi-graded (super)manifold. Both onepts lead to a uni�ed and elegantdesription of various phenomenons of di�erential geometry. Of partiular interest are sympleti multi-graded manifolds whih are proven to be assoiated with otangent bundles. Duality for higher vetorbundles an be explained by means of these bundles as they ontain the olletion of all possible duals.In fat, we have higher "Legendre transformations" identifying the otangent bundles of all these duals.The sympleti multi-graded manifolds, equipped with ertain homologial Hamiltonian vetor �elds,lead to an alternative to D. Roytenberg's piture generalization of Lie bialgebroids, Courant brakets,Drinfeld doubles and an be viewed as geometrial base for higher BRST and Batalin-Vilkoviskyformalisms. This is also a natural framework for studying n-fold Lie algebroids and related strutures.The paper is organized as follows.We start with �nding a simple haraterization of those ations of the multipliative monoid R+of non-negative reals on a manifold F that ome from homoteties of a vetor bundle struture on F .This allows us to identify a vetor bundle struture with its homogeneous struture (or, equivalently,its Euler vetor �eld) that learly simpli�es the whole theory, as diret omparison of the additivestrutures is muh more ompliated. In partiular, a ompatibility of two vetor bundle struturesan be desribed easily as the ommutation of the orresponding Euler vetor �elds. We show that thisompatibility ondition is equivalent to the onept of double vetor bundle desribed in ategorialterms. In this language, a vetor bundle morphism is shown to be just a smooth map intertwining thehomoteties and a vetor subbundle � as a submanifold whih is homotety-invariant.The n-vetor bundles F , whose struture is desribed in setion 4, admit anonial lifts of theirEuler vetor �elds to the tangent and to the otangent bundles TF and T
∗F , as we show in setion5. In partiular, the iterated tangent and otangent bundles are anonial examples of higher vetorbundles. The otangent bundle T

∗F is of partiular interest, sine it is anonially �bred not onlyover F but also over all duals F ∗
(k) of F with respet to all its vetor bundle strutures F → F[k].2



The side bundles F[k] are anonially (n − 1)-vetor bundles themselves. We prove the existene of aanonial identi�ations T
∗F ≃ T

∗F ∗
(k) ≃ T

∗F ∗
(l) whih are additionally sympletomorphisms. This anbe viewed as a generalization of the elebrated "universal Legendre transformation" T

∗
TM ≃ T

∗
T
∗M .Moreover, the set of higher vetor bundles {F, F ∗

(1), . . . , F
∗
(n)} is losed (under natural identi�ations)with respet to duality. This is a phenomenon observed �rst for double and triple vetor bundles byK. Koniezna, P. Urba«ski and K. C. H. Makenzie [14, 23, 25℄.In Setion 6 we prove that sympleti n-vetor bundles, i.e. n-vetor bundles equipped with asympleti form whih is linear (1-homogeneous) with respet to all vetor bundle strutures, takealways the form T

∗F for ertain (n− 1)-vetor bundle F . This, in turn, generalizes the known resultthat any vetor bundle equipped with a linear sympleti form is, in fat, T
∗M .The next two paragraphes are devoted to a natural superization of the previous notions. In thisway we get the onept, already impliitly present in the literature, of a multi-graded manifold � asuper-manifold M with an N

n-gradation in the struture sheaf, and the onept of a multi-gradedsympleti manifold. The ruial here is the equivalene of ategories: we have a preise presriptionof passing from a (sympleti) n-vetor bundle to the orresponding n-graded (sympleti) manifoldand bak.On multi-graded sympleti manifolds one an onsider Master Equations, i.e. equations of the form
{H,H} = 0 for Hamiltonians of parity di�erent from the parity of the sympleti Poisson braket {·, ·}.This leads to higher multi-graded analogs of Courant algebroid [17, 33℄ in the spirit of D. Roytenberg'sexplanation of what a Courant algebroid is. This gives also a possibility of developing higher BRSTand Batalin-Vilkovisky formalisms. The language of multi-graded manifolds is also useful in desribingthe strutures of n-fold Lie algebroids, as has been already observed by T. Voronov [41℄. Setion 9 isdevoted to these questions together with the onept of Drinfeld n-tuple � whih generalizes the notionof Drinfeld double Lie algebra and double Lie algebroid. We end up with some results on Drinfeld
n-tuples, they relations to n-fold Lie algebroids, and examples.To limit the size of this notes, the questions onerning the higher Dira strutures, higher gener-alized geometries, et., we postpone to a separate paper. The authors wish to thank F. Przytyki forhelpful disussions on dynamial systems.2 Vetor bundles and homogeneous struturesIt is a standard student exerise to show that the additive struture in a real topologial vetor spaedetermines the homogeneous struture � the multipliation by reals. The onverse is also true. TheEuler's Homogeneous Funtion Theorem implies that any di�erentiable 1-homogeneous funtion on R

nis automatially linear. This suggests that the homogeneity, being muh simpler notion, an be usedinstead linearity in di�erential geometry. Let us remark that all geometri objets in this paper, likemanifolds, �brations, et., are assumed to be �nite-dimensional, paraompat and smooth.In this setion, will use this idea to develop a onept of a vetor bundle in terms of its homogeneousstruture. To explain how we will understood the latter, let us onsider a vetor bundle π : E → M .The homoteties in E de�ne a smooth ation of the ommutative monoid (R+, ·) of non-negative reals,
R+ = {a ∈ R : a ≥ 0}, with multipliation:

h : R+ ×E → E , ht(e) := h(t, e) = t · e .It should be made lear that by smoothness on R+ we mean that the map an be extended to a smoothmap on a neighborhood of R+ in R, thus the whole R. In fat, the above R+-ation an be extendedto a smooth ation h̃ : R×E → E of the multipliative monoid R by homoteties with possible negativefators.Of ourse, with any smooth ation h : R+ × F → F , ht ◦ hs = hts, of the multipliative monoid
(R, ·) on a smooth manifold F , one an assoiate a smooth projetion h0 : F → F (as h2

0 = h0) ontoa losed subset N = h0(F ) of F . In this generality we an de�ne also the vertial lift Vh : F → TF|N ,where Vh(x) ∈ Th0(x)F is the tangent vetor at t = 0 represented by the smooth urve R+ ∋ t 7→
xh(t) := h(t, x) ∈ F . In other words,

Vh : F → TF , Vh(x) = ẋh(0) = Txh(0, ∂t). (1)3



One an easily seen that Vh(x) = 0x for x ∈ N . For the ation by homoteties on a vetor bundle wehave also the onverse: Vh(em) = 0 ⇒ em = 0m.For the terminology, note only that by a vetor subbundle we always mean a subbundle over alosed submanifold. An important example is the vertial subbundle VF|0M
in the tangent bundle TFof a vetor bundle F over M over the zero-setion 0M of F whih is anonially isomorphi to F . Wehave the followingProposition 2.1. For a vetor bundle F , the vertial lift gives a anonial isomorphism of vetorbundles Vh : F → VF|0M

⊂ TF .Proof.- In loal oordinates (xa, yi) in F , where (xa) are loal oordinates in M and (yi) are linearoordinates in the typial �ber, we have h(t, x, y) = (x, ty). In the adapted oordinates (xa, yi, ẋ
b, ẏj)in TF , the vertial lift reads Vh(x, y) = (x, 0, 0, y).

�Note that VF|N an be de�ned for any manifold F equipped with a smooth projetion onto a subset
N as the subset of TF|N onsisting of vetors whih are vertial with respet to the projetion. Ofourse, in suh generality VF|N need not be a vetor subbundle in TF .De�nition 2.1. A homogeneous struture on a smooth manifold F will be understood as a smoothation h : R+×F → F of the multipliativemonoid (R+, ·) on F whih is non-singular in the sense thatthe vertial lift Vh(x) vanishes only for points x ∈ N = h0(F ), i.e. the urves xh(t) are non-singularfor x /∈ N .The following theorem shows that the above property of an R+-ation on F determines that this ationomes from atual homoteties.Theorem 2.1. If h : R+ × F → F is a homogeneous struture on the manifold F , then there is aunique vetor bundle struture on F whose homoteties oinide with h.Proof.- Working separately in omponents, we an assume that F , thus N = h0(F ), is onneted. Thenon-singularity of V = Vh (having �xed h we will skip the subsript) means that N is exatly theinverse-image by V of the zero-setion: N = V−1(0F ). The fundamental property of the vertial lift isthat it intertwines the R+-ation on F with the atual homoteties in TF :

V(hs(x)) = s · V(x). (2)Indeed, we get (2) from the ation identity ht(hs(x)) = hts(x) after di�erentiating both sides withrespet to t at t = 0.The monoid ation h indues a monoid representation in the tangent spaes TxF with x ∈ N . Tosee this, for x ∈ N , put Ht(x) : TxF → TxF to be the derivative Ht(x) = Dxht. It is easy to see that
R+ ∋ t 7→ Ht(x) is a representation of the monoid (R+, ·) in TxF . Indeed, di�erentiating the identity
ht ◦ hs = hst we get Dxht ◦Dxhs = Dxhst, i.e.

Ht(x) ◦Hs(x) = Hts(x). (3)Now, put P (x) = d
dt |t=0

Ht(x). Di�erentiating (3) with respet to t at t = 0, we get that the linearmap P (x) : TxF → TxF ommutes with Hs(x) and
P (x) ◦Hs(x) = Hs(x) ◦ P (x) = s · P (x). (4)Moreover, after di�erentiating the latter with respet to s at s = 0, we get P (x)2 = P (x). This meansthat P (x) is a projetion and that Hs(x) respets the deomposition TxF = Kx ⊕Ex of TxF into thediret sum of the kernel Kx and the image Ex of P (x).Let us observe that one an interpret P (x) also as the vertial part of the derivative DxV : TxF →

TV(x)TF with respet to the deomposition of the spae tangent to the tangent bundle TF at thepoint V(x) = 0x of the zero-setion into the vertial subspae tangent to the �ber and the horizontalsubspae tangent to the zero-setion:
DxV : TxF → TV(x)TF = T

v
xF ⊕ T

h
xF. (5)4



Indeed, if we trivialize loally the tangent bundle TF in a neighborhood U of x0 ∈ N in F , say
TU = U × V , V = Tx0F , with oordinates (xa, ẋb), then Ht(x0) : V → V reads Ht(x0) = ∂ht

∂x
(x0) and

P (x0) =
∂2h

∂t∂x
(0, x0). (6)On the other hand, V(x) = (h(0, x), ∂h

∂t
(0, x)), so that the projetion Ṽ : U → V of V on V has thederivative

Dx0 Ṽ = Dv
x0
V =

∂2h

∂x∂t
(0, x0) = P (x0). (7)The family of vetor spae projetions Px = P (h0(x)) : V → V, x ∈ U , in �nite-dimensional vetorspae V is loally of onstant rank. Indeed, the rank of Px is the trae of Px whih takes integer valuesand ontinuously depends on x, thus it is loally onstant. In our situation it means that the rank of theprojetions Px is onstant, say k, on N . By V 1

x denote the image Px(V ). With our loal identi�ation,
V 1

x = Eh0(x). The intertwining property (2) implies that Ṽ(x) lies in V 1
x . Indeed, di�erentiating (2)with respet to s at s = 0, we get Dv

h0(x)(V(x)) = P (x)(V(x)) = V(x), i.e.
V(x) ∈ Eh0(x). (8)Sine U ∋ x 7→ Px ∈ gl(V ) is smooth, it is lear that P0 := Px0 maps V 1

x isomorphially onto
V 1

0 := V 1
x0

for x su�iently lose to x0, say from U . This gives a smooth trivialization of the vetorbundle V 1
U =

⋃
x∈U V

1
x ,

ΦU : V 1
U → U × V 1

0 , Φ(x, vx) = (x, P0(vx)) ,and a smooth map
ΨU : U → V 1

0 , ΨU = P0 ◦ Ṽ .It is easy to see that N ∩U = Ψ−1
U {0} and that ΨU is of maximal rank at points of N as the derivative

DxΨU = P0 ◦ Px is `onto'.Hene, due to the Impliit Funtion Theorem, N ∩U is a submanifold in U , thus the whole N is alosed submanifold in F . This implies in turn that E =
⋃

x∈N Ex, loally isomorphi with (N∩U)×V 1
0 ,is a smooth vetor subbundle in TF over N . Moreover, V : F → E is of maximal rank, thus a loaldi�eomorphism along N . For, observe that any vetor v ∈ TxF with x ∈ N , whih is annihilated bythe derivative DxV must be annihilated by DxṼ, thus be tangent to N . But V embeds N as the zero-setion 0N , so DxV is an injetion on TxN ⊂ TxF . Sine V|N is an embedding, we an even say that

V is a global di�eomorphism on a neighborhood UN of N in F onto a neighborhood W0 of the zero-setion in E. Hene, x 7→ s−1 · V(hs(x)) is a di�eomorphism of h−1
s (UN ) onto s−1W0. But, aordingto (2), the latter map oinides with V whih is therefore a di�eomorphism of F =

⋃
s≥1 hs(VN ) onto

E =
⋃

s≥1 sV0, intertwining hs with the homotety by s. The vetor bundle struture on F an be nowtaken as the pull-bak of the vetor bundle struture in E by this di�eomorphism.Uniqueness follows from the fat that homogeneous struture (homoteties) on a vetor spae om-pletely determines the linear struture, as 1-homogeneous smooth funtions, i.e. funtions satisfying
f(s · x) = s · f(x), are linear. �Remark 2.1. The monoid (R+, ·) ontains an open-dense subset of invertible elements (R∗

+, ·) � themultipliative group of positive reals. It is lear that any ation h of (R+, ·) restrits to a group ationof (R∗
+, ·) whih has an in�nitesimal generator � the Euler (Liouville) vetor �eld ∆h, where ∆h(x) isthe vetor tangent to the urve xh(t) at t = 1. In the ase of a homogeneous struture this is exatlythe Euler (Liouville) vetor �eld ∆E of the vetor bundle E. Of ourse, this vetor �eld is ompleteand its global �ow Exp(t∆E) determines the homogeneous struture: Exp(t∆E)(x) = et · x. Theabove theorem an be reformulated in terms of this vetor �eld as follows. Note only that the linearpart of a vetor �eld ∆ on F at its singular point (zero) x0 is a well-de�ned liner map Tx0F → Tx0Fwhih in loal oordinates is represented by the Jaobian matrix of partial derivatives of oordinatesof ∆ near x0.Theorem 2.2. A vetor �eld ∆ on a smooth manifold F is the Euler vetor �eld of a vetor bundlestruture on F if and only if 5



(a) ∆ is omplete and the orresponding �ow R 7→ ϕt = Exp(t∆) of di�eomorphisms has the limit
h0(x) = limt→−∞ϕt whih is a projetion of F onto the set N of singular points of ∆;(b) For every x0 ∈ N , the linear part of ∆ at x0 is a projetion.Proof.- One an follow the idea of the above proof for R+-ation but we will sketh an alternativeproof in terms of normal hiperboliity of �ows and linearization of vetor �elds. Sine the linear partof the vetor �eld at singular points has only eigenvalues 0, 1, aording to Shoshitaishvili Theorem, atsingular points x0 of ∆ we have a loal deomopositon of the manifold into the enter manifoldW 0(x0)and the unstable manifold W+(x0). The manifold W 0(x0) is invariant, so in our ase it is unique, asit has to oinide loally with N . This proves that N is a submanifold and we have, at least loally, a�bration of F into unstable submanifolds over N . But on eah W+(x0) the linear part of ∆ at x0 isidentity, so there are no resonanes and ∆ is smoothly equivalent to its linear part, i.e. to the Eulervetor �eld on Tx0W

0(x0). These linearizations on �bers of the �brations an be glued together to alinerization of ∆ near N , so to a loal R+-ation near N . We an pass to the global ation thanks tothe assumption (a). �Remark 2.2. Of ourse, there are singular (R+, ·)-ations whih therefore do not orrespond to vetorbundle strutures. Take for example F = R with the ation h : R+ × R(t, x) 7→ t2 · x. It is lear that
Vh is trivial: V(x) = (0, 0) ∈ TR for all x ∈ R.Theorem 2.1 easily implies the following.Theorem 2.3. Every losed submanifold of a vetor bundle, whih is invariant with respet to ho-moteties, is a vetor subbundle (over a losed submanifold of the base).Proof.- Let E be a losed submanifold of a vetor bundle F over M whih is homotety-invariant. Itis easy to see that the R+-ation h by homoteteties, redued to E, is a homogeneous struture on E.This is beause, learly, Vh|E

= (Vh)|E , sine the vetor tangent to a urve in a submanifold an benaturally viewed as the vetor tangent to this urve in the total manifold. This implies that h|E is anation by homoteties with respet to a unique vetor bundle struture on E over the losed submanifold
N = h0(E) ⊂ M . This vetor bundle struture is a vetor subbundle of VE|0E

⊂ VF|0F
≃ F , thusanonially a subbundle of F . �Remark 2.3. A slightly weaker result has been ommuniated to us by P. Urba«ski who assumed thatthe intersetion of E with every �ber of F is a vetor subspae.It should be not surprising that the onept of a morphism in the ategory of vetor bundles anbe ompletely desribed in terms of the orresponding homogeneous strutures.Theorem 2.4. A smooth map ϕ : F 1 → F 2 between the total spaes of two vetor bundle strutures

hi
0 : F i →M i, i = 1, 2, is a morphism of the vetor bundles if and only if it ommutes with homoteties

ϕ ◦ h1
t = h2

t ◦ ϕ . (9)Proof.- Note �rst, that (9) easily implies that ϕ mapsM1 = h1
0(F

1) into M2 = h2
0(F

2) and �bers into�bers. We therefore an assume then that F i, i = 1, 2, are just vetor spaes.Di�erentiating (9) with respet to t at t = 0, we get
D0ϕ ◦ V1 = V2 ◦ ϕ.Sine Vi : F i → T0F

i are linear isomorphisms,
ϕ = (V2)−1 ◦D0ϕ ◦ V1 : F 1 → F 2is linear. The onverse, i.e. that a vetor bundle morphism ommutes with homoteties is obvious. �Corollary 2.1. A smooth map ϕ : F 1 → F 2 between the total spaes of two vetor bundle struturesis a morphism of the vetor bundles if and only if it relates the Euler vetor �elds:
Dxϕ(∆F1 (x)) = ∆F2 (ϕ(x)). (10)6



Proof.- Di�erentiating (9) with respet to t at t = 1, we get (10). Conversely, (10) implies that ϕintertwines the �ows indued by ∆F1 and ∆F2 , i.e. ϕ ◦ h1
t = h2

t ◦ ϕ for t > 0, thus for all t ∈ R+ byontinuity.
�3 Commuting Euler vetor �elds and double vetor bundlesConsider now two ommuting homogeneous strutures h1, h2 : R+ × F → F , h1

t ◦ h2
s = h2

s ◦ h1
t forall s, t ∈ R+ (or, equivalently two ommuting Euler vetor �elds, [∆1,∆2] = 0). Let us denote theorresponding bases Ei = hi

0(F ), i = 1, 2. We have, in partiular,
h1

t (h
2
0(x)) = h2

0(h
1
t (x)) (11)whih implies that E2 = h2

0(F ) is invariant with respet h1. Aording to Theorem 2.3, this meansthat E2 is a vetor subbundle of h1
0 : F → E1 over the submanifold

M = h1
0(E

2) = h1
0 ◦ h

2
0(F ) = h2

0 ◦ h
1
0(F ) = h2

0(E
1) = E1 ∩ E2. (12)Analogously, E1 is a vetor subbundle of h2

0 : F → E2 over M . We will all them side bundles. Thuswe get the following diagram of vetor bundle projetions
F

h2
0 //

h1
0

��

E2

h1
0

��

E1
h2
0 // M

(13)where we write simply h1
0 also for its restrition to E2, et. Note also that E1, E2,M are anoniallylosed submanifolds in F as the zero-setions of the orresponding vetor bundle strutures. Moreover,aording to Proposition 2.1, the vertial and the horizontal arrows desribe morphisms of vetorbundles.Let F i

x be the x-�ber in F of the projetion hi
0. For x ∈ M , let Cx be the kernel of the linearmap h2

0 : F 1
x → E2

x. This means that Cx is also the kernel of h1
0 : F 2

x → E1
x and Cx = F 1

x ∩ F 2
x . Thesubmanifold Cx of F arries therefore two strutures of a vetor spae hereditary from F 1

x and F 2
xwhih, however, oinide aording to the following proposition.Proposition 3.1. Two real vetor spae strutures on a manifold V with ommuting homoteties o-inide.Proof.- Commutation of the homoteties implies that the vetor spae strutures share the same zero0. Di�erentiating the ommutation relation h1

t (h
2
s(x)) = h2

s(h
1
t (x)), with respet to t and s at t = 0and s = 0, we get

D0V
1(V2(x)) = D0V

2(V1(x)),where Vi = Vhi . But, for a vetor spae struture, D0V is identity on T0V , so V1 = V2. This in turnimplies h1 = h2 as the vetor spae struture omes from T0V by identi�ation V : V → T0V .
�Let us go bak to the ommutative diagram of vetor bundle morphisms (13). We an reduethe whole piture by �xing x0 ∈ M and onsidering the pull-baks of {x0} with respet to all theprojetions. This means that we onsider the situation when M is just one point whih an be thenidenti�ed as 0 � the only point of the intersetion of the vetor spaes E1 and E2 as submanifolds of

F . We know already that C = F 1
0 ∩ F 2

0 is a ommon vetor subspae of F 1
0 and F 2

0 . We will all Cthe ore of (h1, h2). Sine h1
0(E

2) = {0}, the vetor spae E2 is a subset, thus vetor subspae, of F 1
0 .Analogously, E1 is a subspae of F 2

0 . Sine h2
0 maps the �ber F 1

0 linearly onto E2, its kernel C is a7



subspae omplementary to E2 ⊂ F 1
0 , as h2

0 is idential on E2. Thus F 1
0 = E2 ⊕ C and, analogously,

F 2
0 = E1 ⊕C. Using trivializations of the vetor bundles in question (whih always exist as the basesare ontratible), we get (13), with M = {0}, in the form

E1 ×E2 × C
h2
0 //

h1
0

��

E2

h1
0

��

E1
h2
0 // {0}

(14)with obvious projetions whih are linear maps. Note however that the identi�ation F = E1×E2×Cis not anonial and depends on the hoie of the trivializations. Indeed, if (ξi, φa, θr) are linearoordinates in E1 × E2 ×C, then a hange of the bases in E1, E2 results in a hange of oordinates,
(ξ′i, φ

′
a) =




∑

j

τ j
i ξj,

∑

b

ρb
aφb



 . (15)Further, a hange of the trivialization of h1
0 over E1 whih respets the projetion on E2 results in ahange of oordinates,

(ξ′i, φ
′
a, θ

′
r) =



∑

j

τ j
i ξj ,

∑

b

ρb
aφb,

∑

b

αb
r(ξ)φb +

∑

s

βs
r(ξ)θs


 . (16)For the other projetion we have

(ξ′i, φ
′
a, θ

′
r) =




∑

j

τ j
i ξj ,

∑

b

ρb
aφb,

∑

j

γj
r (φ)ξj +

∑

s

δs
r(φ)θs



 . (17)The hanges of oordinates (15) and (16) oinide if and only if they have the ommon form
(ξ′i, φ

′
a, θ

′
r) =




∑

j

τ j
i ξj ,

∑

b

ρb
aφb,

∑

b,j

Abj
r φbξj +

∑

s

Bs
rθs



 (18)with τ j
i , ρb

a, Abj
r , and Bs

r onstant. But this hange of oordinates, redued to C, is not linear buta�ne whih shows that the bundle ζ = (h1
0, h

2
0) : F → E1×E2 is a�ne, modelled on the trivial bundle

E1 × E2 ×C.Let us go bak to the whole generality. The olletion of all Cx with x ∈M de�nes a vetor bundle
C over M � the ore of (h1, h2). If we take x0 ∈ M and a loal hart U ⊂ M near x0, then, usingloal trivializations of all vetor bundles over the pull-baks of U (whih are ontratible bases), weget from (14) the following loal form of (13)

U × E1
x0

×E2
x0

× Cx0
//

��

U × E1
x0

��
U ×E1

x0
× E2

x0
// U

(19)with obvious projetions. One important remark is that, again, the deomposition
(h2

0 ◦ h
1
0)

−1(U) = (h1
0 ◦ h

2
0)

−1(U) = U ×E1
x0

× E2
x0

×Cx0depends on the hoie of the trivializations. A hange in trivializations results in a hange of loallinear oordinates like in (18) but with oe�ients depending on x ∈ U :
(x′u, ξ

′
i, φ

′
a, θ

′
r) =


xu,

∑

j

τ j
i (x)ξj,

∑

b

ρb
a(x)φb,

∑

b,j

Abj
r (x)φbξj +

∑

s

Bs
r(x)θs


 . (20)8



In the oordinates (xu, ξi, φa, θr) ∈ U × E1
x0

× E2
x0

× Cx0 the Euler vetor �elds orresponding to thevetor bundle strutures h1 and h2 read
∆1 =

∑

a

φa∂φa
+
∑

r

θr∂θr
, ∆2 =

∑

k

ξk∂ξk
+
∑

r

θr∂θr
. (21)They learly ommute. The spaes E1

x0
, E2

x0
, Cx0 an be desribed in terms of the Euler vetor �eldsas submanifolds de�ned by equations ∆1 = 0, ∆2 = 0, ∆1 = ∆2, respetively. Note also that theoordinate funtions (xu, ξi, φa, θr) are (∆1,∆2)-homogeneous of bi-degree (0, 0), (1, 0), (0, 1), (1, 1),respetively. Conversely, any hange of oordinates that respets this bi-degree must be of the form(20) and it preserves ∆1 and ∆2. What we get loally is therefore a loal form of a double vetorbundle � the notion introdued by J. Pradines [29, 30, 31℄ and studied in [2, 14, 41℄. This easily impliesthat also globally double vetor bundles and ommuting homogeneous strutures are the same objets.Summarizing our onsiderations, we get the following.Theorem 3.1. A double vetor bundle an be equivalently de�ned as a smooth manifold equipped withtwo vetor bundle strutures whose Euler vetor �elds ∆1,∆2 ommute.Theorem 3.2. Any double vetor bundle admits an atlas with harts whih are invariant withrespet to both homogeneous strutures and loal oordinates whih are (∆1,∆2)-homogeneous ofbi-degrees (0, 0), (1, 0), (0, 1), (1, 1). Conversely, every manifold F equipped with an atlas whoseharts identify some domains in F with ∏i1,i2=0,1 V (i1, i2), where V (0, 0) is a domain in R

m, and
V (1, 0), V (0, 1), V (1, 1) are R-vetor spaes, and the hanges of oordinates respet the bi-degree (i1, i2),arries a anonial struture of a double vetor bundle with the Euler vetor �elds whih are loally ofthe form ∆1 = ∆V (0,1) + ∆V (1,1) and ∆2 = ∆V (1,0) + ∆V (1,1).4 Higher vetor bundlesA generalization of the onept of vetor bundle and double vetor bundle suggested by previousonsiderations is now straightforward:De�nition 4.1. A smooth n-tuple vetor bundle (shortly - n-vetor bundle) is a smooth manifold Fequipped with n strutures of vetor bundles whose orresponding Euler vetor �elds ∆i, i = 1, . . . , n,pairwise ommute. A morphismbetween n-vetor bundles (F,∆1, . . . ,∆n) and (F ′, (∆′)1, . . . , (∆′)n) isa smooth map ϕ : F → F ′ whih relates ∆k with (∆′)k, i.e. Dxϕ(∆k(x)) = (∆′)k(ϕ(x)), k = 1, . . . , n,
x ∈ F .Remark 4.1. With respet to the above de�nition, a non-trivial permutation of the Euler vetor�elds leads to non-isomorphi n-vetor bundles. Sometimes, however, it is onvenient to onsider weakisomorphisms, i.e. isomorphisms up to suh a permutation.An indutive reasoning, ompletely parallel to that proving Theorem 3.2, gives the following.Theorem 4.1. Any n-vetor bundle admits an atlas with harts whih are invariant with respet toall the homogeneous strutures and loal oordinates whih are (∆1, . . . ,∆n)-homogeneous of n-degrees
i = (i1, . . . , in), ik = 0, 1.Conversely, every manifold F equipped with an atlas whose harts identify some domains in F with
W =

∏
i∈{0,1}n V (i), where V (0), 0 = (0, . . . , 0), is a domain in R

m, and V (i), i 6= 0, are R-vetorspaes, and the hanges of oordinates respet the n-degree i = (i1, . . . , in), arries a anonial strutureof an n-vetor bundle with the Euler vetor �elds whih are loally of the form
∆k =

∑

i′
k
6=0

∆V (i) ,where i′k = (i1, . . . , ik−1, 0, ik+1, . . . , in). 9



It is also a straightforward indutive observation that any smooth hange of oordinates in Wrespeting the n-degrees (i1, . . . , in) of homogeneity must be of the form
(v′)j

i =
∑

P
ia=i

∑

(j1,...,jr)

T j
(i1,...,ir;j1,...,jr)

∏

a

vja

ia , (22)where vj
i , j = 1, . . . , dim(V (i)), are linear oordinates in V (i) and T ∗

∗ are smooth funtions on V (0).This shows that our n-bundles oinide with the n-tuple vetor bundles desribed by T. Voronov [41℄and the triple vetor bundles (for n = 3) studied by K. Makenzie [25℄.To desribe loser the struture of n-vetor bundles, let us introdue some onventions. For i, j ∈
{0, 1}n, we write |i| =

∑
k ik and i ≤ j, if ik ≤ jk for all k = 1, . . . , n. Denote also δ1 = (1, 0, . . . , 0),

δ2 = (0, 1, 0, . . . , 0), et., and p(i) = {i− δk ∈ {0, 1}n : ik = 1}. Let us write also 1n = (1, . . . , 1) and,for k = 1, . . . , n, [k] = 1n − δk.For any i ∈ {0, 1}n the submanifold Fi =
⋂

ik=0{∆
k = 0} is itself an |i|-vetor bundle with respetto the Euler vetor �elds {∆k : ik = 1} and bases Fi′ with i′ ∈ p(i). Thus we get a generalization of thediagram (13), the harateristi diagram of the n-vetor bundle F , whih is a ommutative diagramwith 2n verties Fi and vetor bundle morphisms hk

0 from Fi, with ik = 1, to Fi′
k
. In partiular, F isthe total spae of the n vetor bundle strutures hk

0 : F → F[k]. The intersetion of their �bers over thezero-setions give rise to a vetor bundle C over the �nal base M =
⋂

k F[k] � the ore of the n-vetorbundle. The �nal base M is loally represented by V (0) and �bers of C are loally represented by
V (1n). The loal oordinates of n-degrees ≤ i form loal oordinates on Fi. Note that we an viewformally any n-vetor bundle as an (n+ 1)-vetor bundle by adding a trivial (zero) Euler vetor �eld.In this way, we an regard Fi as an n-vetor bundle with trivial Euler vetor �elds ∆k with ik = 0, i.e.with the Euler vetor �elds ∆1, . . . ,∆n from F but restrited to Fi. Then hk

0 , viewed as a map from
Fi, with ik = 1, onto Fi′

k
, is a morphism of n-vetor bundles. If we remove from the harateristidiagram the total spae F (together with the maps from F ), then we get a smaller diagram of n-vetorbundle morphisms � the base of our n-vetor bundle whih we denote by B = B(F ). It is easy to seethat the base does not determine F . There is however a �nal objet � the base produt � denoted by

×B suh that B(×B) = B and, for any n-vetor bundle F with base B, there is a submersive n-vetorbundle morphism ψF : F → ×B whih is idential on B. This morphisms an be viewed as "removingthe ore" operation. For example, the base produt for a double vetor bundle (13) is the produt (ordiret sum) of the vetor bundles E1 ×M E2 ≃ E1 ⊕M E2. In general, ×B(F ) an be identi�ed withthe image of the map (h1
0, . . . , h

n
0 ) : F → F[1] × . . .× F[n], i.e., loally, ψF : F → ×B(F ) is just theprojetion modulo the ore:

×B(F ) =
∏

i∈{0,1}n, i 6=1n

V (i).The oordinate hanges in ×B(F ) are projetions of the orresponding oordinate hanges (22) for F .For instane, the harateristi diagram for the triple vetor bundle (f. [25℄) looks like
F011

��

||xxxxx
xxx

F111
oo

��

||xxxxx
xxx

F001

��

F101
oo

��

F010

||xxxxx
xxx

F110
oo

||xxxxx
xxx

F000 F100
oo

(23)
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whereas its base is:
F011

��

||xxxxx
xxx

F001

��

F101
oo

��

F010

||xxxxx
xxx

F110
oo

||xxxxx
xxx

F000 F100
oo

(24)
More generally, for any i ∈ {0, 1}n, one an de�ne also n-manifolds manifolds F<i = ×B(Fi), whihloally looks like

F<i =
∏

j∈{0,1}n, j<i

V (j).Denote by Ai(F ) the spae of funtions on F with n-degree i. It is an A0(F ) = C∞(M)-module whihis learly loally free and �nite-dimensional, so it an be viewed as the module of setions of somevetor bundle V i(F ) over M . For instane, for a double vetor bundle F , the module A(1,1)(F ) isloally generated by produts of two oordinates of degrees (1, 0) and (0, 1), and oordinates of degree
(1, 1), so that the symmetri tensor produt V (1,0)(F ) ∨M V (0,1)(F ) is a subbundle in V (1,1)(F ) andwe have a short exat sequene

0 → V (1,0)(F ) ∨M V (0,1)(F ) → V (1,1)(F ) → C → 0.We an onsider also the graded assoiative and ommutative algebra A(F ) =
⊕

i∈Zn Ai(F ) of homo-geneous funtions (with the onvention Ai(F ) = {0} if i /∈ N
n). Every its part A(i)(F ) =

⊕
j≤i A

j(F )is a prototype of a higher module: we have anonial operations Aj(F ) × Ak(F ) → Aj+k(F ) (or
V j(F ) ⊗M V k(F ) → V j+k(F )) for j + k ≤ i with obvious properties. We an do the same withrespet to the total degree and to de�ne, for m ∈ N, the spaes Am(F ) =

⊕
|i|=m Ai(F ) of funtionsof total degree m, and the orresponding higher modules A(m)(F ) =

⊕
|i|≤m Ai(F ). They orrespondto ertain vetor bundles Vm(F ) and V (m)(F ) over M .5 The tangent lift, the phase lift, and dualityIn this setion we show how to lift Euler vetor �elds to the tangent and the otangent bundle. Forthe tangent and otangent lifts of vetor �elds we refer to [44, 11, 12℄. Note only that both lifts respetthe Lie braket.Applying the tangent funtor to homoteties assoiated with a homogeneous struture h : R+×E →

E we get a new homogeneous struture dTh, (dTh)t = T(ht). Indeed, dTh : R+ × TE → TE is learlya smooth ation of (R+, ·) and the non-singularity assumption is preserved. In the adapted loaloordinates in TE we have
dTh(t, x, y, ẋ, ẏ) = (x, ty, ẋ, tẏ). (25)Thus the projetion (dTh)0 maps TE onto TM and the orresponding Euler vetor �eld is the (om-plete) tangent lift of the Euler vetor �eld of h,
dT∆E =

∑

k

yk∂yk
+
∑

k

ẏk∂ẏk
. (26)Note that the tangent lift dT∆E is linear, i.e. ommutes with the Euler vetor �eld of the tangentbundle ∆TE, and on E it redues to ∆E . Moreover, the tangent lifts of ommuting vetor �eldsommute, so we get the following. 11



Theorem 5.1. The tangent bundle of an n-vetor bundle (F,∆1, . . . ,∆n) is anonially an (n + 1)-vetor bundle with respet to the Euler vetor �elds dT∆1, · · · , dT∆n,∆TF . The orresponding sidebundles are F and TF[k], k = 1, . . . , n, respetively. In partiular, the iterated tangent bundle T
(n)M =

TT · · ·TM is anonially an n-vetor bundle with (T(n)M)i ≃ (T(|i|)M).If∏i∈{0,1}n V (i) are loal harts in F as in Theorem 4.1, then we have VTF ((i, 0)) = VTF ((i, 1)) = V (i),
i > 0, for fators of loal harts in TF . In partiular, (TF )(i,0) = Fi and (TF )(i,1) = TFi.The "phase funtor" has not as good properties as the tangent one, sine, in general, it assoiatesonly relations with smooth maps. Therefore the otangent lift d∗

T
∆E of ∆E , whih by de�nition is thehamiltonian vetor �eld of the linear funtion ι∆E

on T
∗E represented by ∆E , is not an Euler vetor�eld. We get, however, an Euler vetor �eld, denoted by T

∗∆E and alled the phase lift of ∆E , if weadd the Euler vetor �eld ∆T∗E of the otangent bundle,
T
∗∆E = d∗

T
∆E + ∆T∗E . (27)In the adapted loal oordinates,

d∗
T∆E(x, y, p, π) =

∑

k

yk∂yk
−
∑

j

πj∂πjand
T
∗∆E(x, y, p, π) = (

∑

k

yk∂yk
−
∑

j

πj∂πj
) + (

∑

j

πj∂πj
+
∑

a

pa∂pa
) (28)

=
∑

k

yk∂yk
+
∑

a

pa∂pa
.The Euler lift T

∗∆E is linear, i.e. ommutes with ∆T∗E , and on E it redues to ∆E . The base ofthe orresponding homogeneous struture T
∗h is anonially identi�ed with the dual bundle E∗ whihis anonially embedded in T

∗E. The homogeneous struture T
∗h will be alled the phase lift of h.It ommutes with the standard homogeneous struture hT

∗E on T
∗E. Thus the otangent bundle

T
∗E is anonially a double vetor bundle with respet to the pair of ommuting Euler vetor �elds

(T∗∆E ,∆T∗E). It is well known that there is a anonial isomorphism of double vetor bundles (f.[7, 14, 13℄) being simultaneously a sympletomorphism of the anonial sympleti strutures:
T
∗E

TE //

hT
∗E

0

!!DD
DD

DD
DD

(T∗h)0

���
��

�
�
�
��

�
�
��
�
�
�

T
∗E∗

(T∗hE∗
)0

""EEEEEEEE

hE∗

0

��






























E
id //

h0

���
��
�
�
��
�
�
�
��
�
�
�

E

h0

���
��

�
�
�
��

�
�
�
��
�
�

E∗ id //

hE∗

0

""EEE
EE

EE
E E∗

hE∗

0

##GGGGGGGG

M
id // M

(29)
whih in loal oordinates reads

TE(x, y, p, π) = (x, π, p,−y) (30)and identi�es (∆T∗E ,T
∗∆E) with (T∗∆E∗ ,∆T∗E∗). This isomorphism, alled sometimes a Legendretransform, has been �rst disovered by W. M. Tulzyjew [36℄ for E = TM in the ontext of Legendretransformation in analytial mehanis. Sine TE is a sympletomorphism, we get additionally thatthe anonial sympleti form ωE on T

∗E is 1-homogeneous not only with respet to ∆T∗E but alsowith respet to the phase lift T
∗∆E. These properties ompletely determine the vetor �eld T

∗∆E ifits restrition to E is given. Namely, we have the following.12



Proposition 5.1. Any vetor �eld X on T
∗M whih ommutes with the Euler vetor �eld ∆T∗M andsatis�es LXωM = a · ωM , where a ∈ R and ωM is the anonial sympleti form on T

∗M , is tangentto M and ompletely determined by a and its restrition to M . In partiular, the otangent lift d∗
T
Yis the unique linear and hamiltonian extension to T

∗M of a vetor �eld Y on M .Proof.- Write X =
∑

j

(
fj(x, p)∂xj + gj(x, p)∂pj

) in loal Darboux oordinates (xj , pk). The property
[X,∆T∗M ] = 0 implies easily that fj are of 0-homogeneous and gj are 1-homogeneous with respet to
∆T∗M , i.e. fj(x, p) = fj(x) and gj(x, p) =

∑
k g

k
j (x)pk. Now,

a ·
∑

j

dpj ∧ dxj = LXωM =
∑

j,k

(
gk

j (x) +
∂fk

∂xj
(x)

)
dpk ∧ dxj,i.e.

gk
j (x) = a · δk

j −
∂fk

∂xj
(x).Thus, for a given a, the vetor �eld X is ompletely determined by its restrition ∑j fj(x)∂xj to M .

� Sine the phase lift of an Euler vetor �eld is Euler, the otangent bundle of an n-vetor bun-dle (F,∆1, . . . ,∆n) is anonially an (n + 1)-vetor bundle with respet to the Euler vetor �elds
T
∗∆1, · · · ,T∗∆n,∆T∗F due to the following proposition.Proposition 5.2. The phase lifts T

∗X and T
∗Y of vetor �elds X, Y on M ommute if and only if

X and Y ommute.Proof.- The linear funtions ιX , ιY on T
∗M , orresponding to ommuting vetor �elds X and Y ,ommute with respet to the sympleti Poisson braket, so that they hamiltonian vetor �elds d∗

T
Xand d∗

T
Y ommute. The otangent lifts d∗

T
X and d∗

T
Y are linear vetor �elds on T

∗M , so they ommutewith the Euler vetor �eld ∆T∗M . Hene
[T∗X,T∗Y ] = [d∗

TX + ∆T∗M ,T∗Y + ∆T∗M ] = 0.Conversely, if T
∗X and T

∗Y ommute, then [X, Y ] = [T∗X,T∗Y ]|M = 0. �In homogeneous loal oordinates (xj) on F , put gk(xj) to be the degree of xj with respet to ∆k,
∆k(xj) = gk(xj)xj. Then, in the adapted loal oordinates (xj, ps) in T

∗F ,
T
∗∆k =

∑

k

gk(xj)xj∂xj +
∑

k

(1 − gk(xj))pj∂pj
. (31)If ∏i∈{0,1}n V (i) are loal harts in F as in Theorem 4.1, then we have VT∗F (1n, 1) = T

∗V (0) and
VT∗F ((i, 0)) = V (i), VT∗F ((i, 1)) = V (1n − i)∗, i > 0,for fators of loal harts in T

∗F . In partiular, (T∗F )(i,0) = Fi. The side bundles of the (n+1)-vetorbundle T
∗F are F and F ∗

(k), k = 1, . . . , n, where F ∗
(k) = (F,∆1, . . . ,∆n)∗

∆k is the vetor bundle dual tothe vetor bundle struture hk
0 : F → F[k] determined by the Euler vetor �eld ∆k, respetively. But,aording to (29), T

∗F ≃ T
∗F ∗

(k), T
∗∆k ≃ ∆T∗F∗

(k)
, so

(T∗F,T∗∆1, . . . ,T∗∆n,∆T∗F , ) ≃ (T∗F ∗
(k),∆T∗F∗

(1)
, . . . ,∆T∗F∗

(n+1)
), (32)where we use the onvention F = F ∗

(n+1) and ∆T∗F∗
(n+1)

= ∆T∗F . The dual bundle F ∗
(k) is anoniallyan n-vetor bundle (with respet to the restritions of the orresponding Euler vetor �elds):

(F ∗
(k),∆T∗F∗

(1)
, . . . ,∆T∗F∗

(k−1)
,∆T∗F∗

(k+1)
, . . . ,∆T∗F∗

(n+1)
).One an also easily derive the fat that the set of n-vetor bundles

(F,∆1, . . . ,∆n)∗ = {F, F ∗
(1), . . . , F

∗
(n)},13



the set of duals of the n-vetor bundle (F,∆1, . . . ,∆n), is losed with respet to passing to the dualbundles with respet to any of the vetor bundle struture on them (f. [14, 25℄). The orrespondingisomorphisms respet the n-bundle strutures, if we aept the weak isomorphisms related to reorderingof the Euler vetor �elds (or, better to say, by �xing the original order ∆T∗F∗
(1)
, . . . ,∆T∗F∗

(n+1)
). In fat,for k, l = 1, . . . , n, l 6= k,

(F ∗
(k),∆T∗F∗

(1)
, . . . ,∆T∗F∗

(k−1)
,∆T∗F∗

(k+1)
, . . . ,∆T∗F∗

(n+1)
)∗∆

T∗F∗
(l)

=
(∏

ik=0 V (i) ×
∏

ik=1 V (i)∗
)∗
∆

T∗F∗
(l)

=

(∏
ik,il=0 V (i) ×

∏
ik=1,(1n−i)l=0 V (i)∗

)
×
(∏

ik=0,il=1 V (i)∗ ×
∏

ik=1,(1n−i)l=1 V (i)
)

=
∏

il=0 V (i) ×
∏

il=1 V (i)∗ = (F ∗
(l),∆T∗F∗

(1)
, . . . ,∆T∗F∗

(l−1)
,∆T∗F∗

(l+1)
, . . . ,∆T∗F∗

(n+1)
) . (33)This implies that the set of duals of an n-vetor bundle ontains (n + 1)-elements, if we aept weakisomorphisms, or (n + 1)! elements, if we ount permutations of the n-vetor bundle strutures. Forexample, if we start with a double vetor bundle (13) with the ore C, then we get the following triplevetor bundle:

F ∗
(2)

��

~~}}
}}

}}
}}

T ∗Foo

��

}}{{
{{

{{
{{

{

C∗

��

F ∗
(1)

oo

��

E2

}}zz
zz

zz
zz

Foo

||xx
xx

xx
xx

x

M E1ooOur observation an be summarized as follows.Theorem 5.2. The otangent bundle T
∗F of an n-vetor bundle (F,∆1, . . . ,∆n) is anonially an

(n+1)-vetor bundle with respet to the Euler vetor �elds T
∗∆1, · · · ,T∗∆n,∆T∗F and the side bundles

F and F ∗
(1), . . . , F

∗
(n)-the dual bundles of F with respet to all the vetor bundle strutures on F . Thereare anonial isomorphisms of the (n + 1)-vetor bundles T

∗F ≃ T
∗F ∗

(k). Moreover, the duals of the
n-vetor bundle F ∗

(k) are anonially isomorphi to F, F ∗
(1), . . . , F

∗
(k−1), F

∗
(k+1), . . . , F

∗
(n). In partiular,the iterated otangent bundles (T∗)(n)M = T

∗
T
∗ · · ·T∗M are anonially n-vetor bundles.6 Sympleti and Poisson n-vetor bundlesDe�nition 6.1. A sympleti n-vetor bundle is an n-vetor bundle (F,∆1, . . . ,∆n) equipped with asympleti form Ω whih is 1-homogeneous with respet to all vetor bundle strutures:

L∆kΩ = Ω, k = 1, . . . , n , (34)where L denotes the Lie derivative.An example of a sympleti vetor bundle is the otangent bundle T
∗M with the anonial sym-pleti form ωM . Consequently, the otangent bundle of any (n− 1)-vetor bundle (E,∆1, . . . ,∆n−1)is a anonial example of a sympleti n-vetor bundle. Indeed, we know already that the anonialsympleti struture ωM is 1-homogeneous with respet to ∆T∗F and with respet to any phase lift.Theorem 6.1. Any sympleti n-vetor bundle (F,∆1, . . . ,∆n,Ω), n ≥ 1, is anonially isomorphito the otangent bundle over eah of its side bundles F[k], equipped with the anonial sympleti form:

(F,∆1, . . . ,∆n,Ω) ≃ (T∗F[k],T
∗(∆1

|F[k]
), . . . ,T∗(∆k−1

|F[k]
),∆T∗F[k]

,T∗(∆k+1
|F[k]

), . . . ,T∗(∆n
|F[k]

), ωF[k]
),14



k = 1, . . . , n. In partiular, all sympleti n-vetor bundles
(T∗F[k],T

∗(∆1
|F[k]

), . . . ,T∗(∆k−1
|F[k]

),∆T∗F[k]
,T∗(∆k+1

|F[k]
), . . . ,T∗(∆n

|F[k]
), ωF[k]

)

k = 1, . . . , n, are anonially isomorphi.Proof.- Sine Ω is a 1-homogeneous sympleti form on the vetor bundle hk
0 : F → F[k], we havea anonial isomorphism ϕk : (F,Ω) → (T∗F[k], ωF[k]

) of sympleti vetor bundles whih iden-ti�es ∆k with ∆T∗F[k]
. But F[k] is an (n − 1)-vetor bundle with respet to the restritions of

∆1, . . . ,∆k−1,∆k+1, . . . ,∆n, so T
∗F[k], thus F , is a sympleti n-vetor bundle with respet to theEuler vetor �elds

T
∗(∆1

|F[k]
), . . . ,T∗(∆k−1

|F[k]
),∆T∗F[k]

,T∗(∆k+1
|F[k]

), . . . ,T∗(∆n
|F[k]

).Sine ϕk is identity on F[k], the vetor �eld T
∗(∆j

|F[k]
) oinides with (ϕk)∗(∆

j) on F[k]. But the linearvetor �eldX = (ϕk)∗(∆
j) on the otangent bundle T

∗F[k], whih additionally satis�es LXωF[k]
= ωF[k]is ompletely determined by its values on F[k], so

T
∗(∆j

|F[k]
) = (ϕk)∗(∆

j).

�De�nition 6.2. A Poisson n-vetor bundle is an n-vetor bundle (F,∆1, . . . ,∆n) equipped with aPoisson tensor Λ whih is linear, i.e. homogeneous of degree -1, with respet to all vetor bundlestrutures:
L∆kΛ = −Λ, k = 1, . . . , n . (35)Of ourse, any sympleti n-vetor bundle is automatially a Poisson n-vetor bundle. Sine any linearPoisson struture on a vetor bundle E orresponds to a de Rham derivative in the Grassmann algebra

A(E∗) assoiated with the dual bundle, we an assoiate with any Poisson n-vetor bundle F the deRham derivatives dk in A(F ∗
(k)). For Poisson strutures, homogeneity of degree -1 we all linearity,sine the orresponding Poisson braket is losed on linear (1-homogeneous) funtions. This is exatlythe Lie algebroid braket on setion of the dual bundle. Thus we an state the following.Proposition 6.1. Any Poisson n-vetor bundle F indues Lie algebroid strutures on all dual vetorbundles F ∗

(k) → F[k].The Lie algebroid strutures on all duals of an n-vetor bundle F we will all onordant, if they areobtained in the above way � from a Poisson n-vetor bundle struture on F .7 Multi-graded manifoldsA graded manifold is a super-manifold equipped with an additional grading in the struture sheaf. Theoordinate transformations are required to preserve this grading. The alulus on graded manifoldshas been developed e.g. in [40, 33, 28℄. Our aim is to desribe super-manifolds graded by n-tuples ofnon-negative integers (i.e. by N
n).De�nition 7.1. Let G be an abelian semigroup, G ∋ g 7→ pg ∈ N, g ∈ G, be any funtion suh that

pg 6= 0 only for �nitely many g ∈ G, and let g 7→ g̃ be a semigroup homomorphism G → Z2. A
G-graded manifold M of dimension (p) is a super-manifold whose loal oordinates (xi) an be hosenhomogeneous with respet to a G-gradation in the struture sheaf whih agrees with the Z2-gradation,i.e. suh that the G-degrees oinide with the parity:

xixj = (−1)eg(xi)eg(xj)xjxi,and the hanges of oordinates respet the gradation.15



Note also that, if G is an abelian monoid (with additive notation) then the loal oordinates ofdegree 0 ∈ G give rise naturally to a graded submanifoldM of M whih is a standard (non-graded)smooth manifold together with a projetion M → M . For other onepts of graded di�erentialgeometry we refer to [33, 40℄ or to [28℄. Espeially, the onept of degree-shifting funtor [h] we borrowfrom the latter. Let h ∈ G. The degree-shifting funtor [h] ats on the ategory of G-graded vetorspaes and assigns to a G-graded spae V = ⊕g∈GVg the spae W = ⊕g∈GWg+h, where Wg+h onsistsof the same elements as Vg but has degree g + h. Any funtor on G-graded vetor spaes gives rise toan operation on G-graded vetor bundles. Note that the shift operator [h] has the e�et of dereasingthe degree of �bre oordinates of a G-graded vetor bundle E → M by h ∈ G. In all our ases G willbe the group Z
n (or its sub-semigroup) and g = (g1, . . . , gk) 7→ g̃ = (g1 + . . .+ gk)mod 2.For a G-graded manifoldM we denote by A(M) =

⊕
g∈G Ag(M) the G-graded algebra of smoothfuntions on M.De�nition 7.2. An n-graded manifold is an N

n-graded manifoldM whih admits an atlas with loaloordinates of degrees ≤ 1n = (1, . . . , 1) ∈ N
n.Similarly as in the ase of n-vetor bundles, we have the algebra A(M) =

⊕
i∈Nn Ai(M) of polynomialfuntions. The di�erene is that this graded assoiative algebra is graded ommutative instead of beingjust ommutative. The A0(M) = C∞(M)-modules Ai(M) and the higher modules A(i)(M), as wellas the orresponding vetor bundles V i(M) and V (i)(M) are de�ned ompletely analogously. We analso pass to to the orresponding objets with respet to the total degree.Remark 7.1. Passing from N

n- or Z
n-degree i to the total degree |i| =

∑
k ik allows us to assoiatewith every n-graded manifold an N -manifold of degree n, in the terminology introdued by P. �evera[35℄ and exploited by D. Roytenberg [32, 33℄.A onvenient way to desribe the N

n-gradation in an n-graded manifoldM is to onsider the Eulervetor �elds ∆k
M, k = 1, . . . , n, whose eigenvalues represent the degrees of homogeneous funtions

g(f) = (g1(f), . . . , gn(f)). In loal oordinates (xj),
∆k

M =
∑

j

gk(xj)xj∂xj , (36)so f is of degree i ∈ N
n if ∆k

M(f) = ikf , k = 1, . . . , n. we have a fundamental orrespondene between
n-vetor bundles and n-graded manifolds.Theorem 7.1. With every n-vetor bundle F = (F,∆1, . . . ,∆n) one an anonially assoiate an
n-graded manifold MF = gr(F,∆1, . . . ,∆n) suh that loal oordinates in F of n-degree i ≤ 1n orre-spond to graded loal oordinates in MF of degree i. This orrespondene gives an equivalene of theorresponding ategories.Proof.- Assume that an n-vetor bundle F is given by an atlas in whih loal oordinates vj

i 's transformas in (22). Passing from F to a super-manifold struture requires a slight aution beause in generalthe transformation formula (22) does not work in a super-manifold ontext.Let us introdue oordinates θj
i , of degree i ∈ {0, 1}n on a domain V(0) ⊂ R

m, orresponding to theoordinates vj
i . Let us �x an order ≺ on the set {0, 1}n suh that δ1 ≺ . . .≺ δn. Let J(i) = (j1, . . . , j|i|)be the growing sequene of those k = 1, . . . , n, for whih ik = 1. Let [i1, . . . , ir] ∈ {±1} be the sign ofthe permutation (J1, . . . , Jr) of the set J(i) = J1 ∪ . . . ∪ Jr, where Ja = J(ia) and i = i1 + . . .+ ir.We laim that the following hange of oordinates

(θ′)j
i =

∑

0<i1≺...≺irP
a ia=i

∑

(j1,...,jr)

[i1, . . . , ir] T j
(i1,...,ir;j1,...,jr) θ

j1
i1 . . . θ

jr

ir , (37)satis�es the oyle ondition. This is so beause of the following easy properties of the introduedsign
[iσ1 , . . . , iσr ]θ

jσ1

iσ1 . . . θ
jσr

iσr = [i1, . . . , ir]θj1
i1 . . . θ

jr

ir (38)16



for any permutation σ and
[i1,1 + . . .+ i1,s, i2, . . . , ir][i1,1, . . . , i1,s] = [i1,1, . . . , i1,s, i2, . . . , ir]. (39)One an obtain the orresponding n-graded manifoldMF also by means of applying the degree-shiftingfuntors ([28℄, Proposition 2.2.27).Conversely, given a n-graded manifold one easily reover the non-graded transformation funtions

T ∗
∗ , whih produe n-vetor bundle F . Also the morphisms in the onsidered ategories are in one-to-one orrespondene if we apply the rules analogous to the rules just desribed for the oordinatehanges. In partiular, the rule (37) desribes graded di�eomorphisms. �Similarly like in the n-vetor bundle ase, any n-graded manifolds gives rise to a ommutative diagramof graded vetor bundle projetions τ(i,i′) : Mi → Mi′ , where i ∈ N

n, i′ ∈ p(i), and Mi is the gradedsubmanifold of M with loal oordinates redued to those whose degrees are ≤ i. Of ourse, Mi isanonially an |i|-graded manifold. In this way we get graded vetor bundles τk : M → M[k] and thedual bundles σk : M∗
(k) → M[k].Given an n-graded manifold M let us denote by dgr(M) the de-gradation of M, i.e. an n-vetorbundle F suh that gr(F ) = MF . If A is a subset of {1, . . . , n}, #A = k, we an onsider F as

(n − k)-vetor bundle with respet to the Euler vetor �elds ∆s with s 6∈ A. We denote it by AF andde�ne AM := dgr(M,∆A) as (n − k)-graded manifold assoiated with AF , i.e. gr(AF,∆
A) = AM.Note that the �nal base of AF (and so the support of AM) has #A-vetor bundle struture. If A, Bare disjoint subsets of {1, . . . , n} then A∪BM = A(BM), sine both sides are (n − #A− #B)-gradedmanifolds assoiated with (n− #A− #B)-vetor bundle A∪BF .Example 7.1. With a vetor bundle E over M we assoiate the N-graded manifold ME . Loaloordinates (xa) onM and a basis of loal setions of the dual bundle E∗ give rise to loal homogeneousoordinates (xa, yi) on E. The loal oordinates on ME are (xa, ξi) of degrees, respetively, 0 and 1,and the same hange of oordinates as desribed by the de�nition of the vetor bundle E∗. Thus, withevery i-setion ν from the Grassmann algebra A(E∗) we assoiate a funtion ιν of degree i on MEin an obvious way, so that A(ME) ≃ A(E∗). A Lie algebroid struture on E is the same as a linearPoisson struture on E∗, or the same as a homologial vetor �eld Q, [Q,Q] = 0, in ME .The graded tangent bundle TM of an n-graded manifold M is by de�nition the (n + 1)-gradedmanifold assoiated with the tangent bundle T(dgr(M)) of the n-vetor bundle dgr(M) being de-gradation of M, i.e. M = Mdgr(M). The degree of ∂xj as a funtion on T

∗M is −g(xj) ∈ −N
n.Similarly, to obtain an (n+1)-vetor bundle assoiated with T

∗dgr(M) � the graded otangent bundle
T
∗M � we have to de�ne the degree of ∂xj as (1n − g(xj), 1) ∈ N

n+1. One an also say that thegrading in T
∗M is indued by the Euler vetor �elds ∆T∗M and the phase lifts T

∗(∆k
M) whih, in thestandard adapted loal oordinates (xj , pj) have the form ∆T∗M =

∑
j pj∂pj

and
T
∗(∆k

M) =
∑

j

(
gk(xj)xj∂xj + (1 − gk(xj)pj∂pj

)
.The bases of the orresponding projetions are M and M∗

(k), k = 1, . . . , n and this set of n-gradedmanifolds is losed with respet to the orresponding dualities.We say that an r-form (resp., an r-vetor �eld) α is of weight i ∈ Z
n, w(α) = i, if L∆k

M
(α) = ikα,

k = 1, . . . , n. Note that with this onvention the weight of dxj is w(xj) = g(xj) ∈ N
n, but the degreeof dxj as a funtion in TM is (g(xj), 1) ∈ N

n+1. Similarly, the weight of ∂xj is −w(xj) = −g(xj) ∈ Z
n,but the degree of ∂xj as a funtion in T

∗M is (1n − g(xj), 1) ∈ N
n+1.8 Multi-graded sympleti and Poisson manifoldsDe�nition 8.1. A n-graded sympleti (resp. Poisson) manifold is an n-graded manifold equippedwith a sympleti form of weight 1n (resp., a Poisson tensor of weight −1n).17



Reall that a di�erential 2-form ω an be loally written in loal oordinates (xi) as
ω =

1

2

∑

i,j

dxi ωi,j dx
j. (40)A 2-from ω on M is alled sympleti, if dω = 0 and ω is non-degenerate. The latter means that theindued homomorphism of A(M)-modules

ω̃ : Γ(TM) → Γ(T∗M), X 7→ iXω,is invertible. For any (n − 1)-graded manifold M, the n-graded manifold T
∗M posses a anonialsympleti form ωM of weight 1n. Indeed, �xing loal oordinates (xj) in M, one an easily seen thatthe 2-form ωM whih in the adapted oordinates (xj, ps) in T

∗M reads
ωM =

∑

j

dpjdx
jis well de�ned, sympleti and, sine w(dpj) = 1n − w(dxj), of weight 1n. Note that for any vetor�eld X on M we an de�ne its phase lift T

∗X = d∗
T
X+∆T∗M exatly like in the standard ase. Here,

d∗
T
X is the otangent lift of X � the hamiltonian vetor �eld of the linear funtion on T

∗M assoiatedwith X. The phase lifts are linear, i.e. ommute with ∆T∗M and satisfy LT∗XωM = ωM. We havealso full analogs of Propositions 5.1 and 5.2.It is well known that any sympleti vetor bundle (E,∆E,Ω), i.e. a vetor bundle (E,∆E)equipped with a sympleti formwhih is 1-homogeneous with respet to the Euler vetor �eld, L∆E
Ω =

Ω is anonially isomorphi to the otangent bundle over the base of E with the anonial sympletiform (E,∆E ,Ω) ≃ (T∗M,∆T∗M , ωM). A similar fat holds for sympleti N-manifolds of degree 1 inthe terminology of D. Roytenberg or 1-graded sympleti manifolds in our terminology: every 1-gradedmanifold M equipped with a sympleti form Ω of weight 1 (L∆MΩ = Ω) is di�eomorphi to T
∗Mequipped with the anonial sympleti form (f. [33, Proposition 3.1℄). We an generalize this fat,i.e. we have the following graded version of Theorem 6.1.Theorem 8.1. Any n-graded sympleti manifold is anonially isomorphi to the graded otangentbundle T

∗M of an (n − 1)-graded manifold M, equipped with the anonial sympleti form ωM.Moreover, we have anonial sympletomorphisms
(T∗M, ωM) ≃ (T∗M∗

(k), ωM∗
(k)

). (41)Proof.- The proof is ompletely parallel to that of Theorem 6.1 and we omit it. �Reall (f. [9, 10℄) that a graded Poisson braket of degree i on a Z
n-graded assoiative ommutativealgebra A = ⊕k∈ZnAk is a graded bilinear map {·, ·} : A×A → A of degree i ∈ Z

n suh that1. {a, b} = −(−1)(|a|+|i|)(|b|+|i|){b, a} (graded antiommutativity),2. {a, bc} = {a, b}c+ (−1)(|a|+|i|)|b|b{a, c} (graded Leibniz rule),3. {{a, b}, c} = {a, {b, c}}− (−1)(|a|+|i|)(|b|+|i|){b, {a, c}} (graded Jaobi identity), where |a| denotesthe total degree of a, et.A homogeneous element q of degree k with the parity opposite to the parity of i we all homologial if
{q, q} = 0. It indues a ohomology operator dq = {q, ·} of odd total degree |k + i| on A.The braket {·, ·} = {·, ·}M on A(T∗M) assoiated with the anonial sympleti form ωM andrepresented loally by the Poisson tensor ΛM =

∑
j ∂pj

∂xj is a graded Poisson braket of degree −1n.Sine the algebra A(T∗M) is non-negatively graded, negative degrees mean simply 0. Reall also (f.[32, 33℄)that with any linear Poisson struture Λ on a vetor bundle E, thus a de Rham di�erential
DΛ on the Grassmann algebra A(E∗) of multi-setions of the dual bundle, one an assoiate a funtion
HΛ on T

∗ME suh that ιDΛ(ν) = {HΛ, ιν}ME
. Here, we learly identify A(ME) with basi funtionson T

∗ME . In our terminology, HΛ = ιDΛ is the linear funtion on T
∗(ME) assoiated with the18



homologial vetor �eld DΛ on ME , so {HΛ, ·} is the otangent lift d∗
T
dΛ. In loal homogeneousoordinates (x, y) on E and (x, θ, p, ξ) on T

∗ME , every Λ of weight -1 is of the form
Λ =

∑

a,r

ρr
a(x)∂yr ∧ ∂xa +

1

2

∑

r,s

Cu
r,s(x)y

u∂yr ∧ ∂ys ,so
HΛ =

∑

a,r

ρr
a(x)ξrpa −

1

2

∑

r,s

Cu
r,s(x)θuξ

rξs .In other words the funtion HΛ is a homologial Hamiltonian whose hamiltonian vetor �eld QΛ =
{HΛ, ·} is the otangent lift of the de Rham derivative dΛ. This Hamiltonian an be also viewed asthe funtion ιΛ on T

∗ME assoiated with the Poisson tensor Λ ∈ A(E). The HamiltonianHΛ has notonly total degree 3 but it is homogenous of 2-degree (1, 2). In some terminology one says also that Λdetermines a Lie algebroid struture on E and that (M, QΛ) is a Q-manifold or Lie antialgebroid inthe language of [1, 39, 40, 41℄. To �nd a generalization for Poisson n-bundles (F,Λ) let us reall thatin this ase the Poisson tensor Λ determines (onordant) Lie algebroid strutures on all all vetorbundles F ∗
(k) → F[k], i.e. (by de�nition onordant) homologial vetor �elds q[k] of degree δn on

MF∗
(k)
. We will say that a vetor �eld on an n-graded manifold is unital if its homogeneous parts haveweights δ1 = (1, 0, . . . , 0), δ2 = (0, 1, 0, . . . , 0), et. Observe that any unital vetor �elds q[k] on the sidebundle N[k] of an (n+1)-graded sympleti manifoldN de�nes the indued vetor �eld (q[k])[s] on N[s],

s = 1, . . . , n+ 1, de�ned as the restrition of the otangent lift d∗
T
q[k] to T

∗N[k] ≃ N . If we onsiderthe (n+ 1)-graded sympleti manifold N = T
∗MF , then MF∗

(k)
= N[k]. We have the following.Proposition 8.1. Homologial vetor �elds q[k] of degree δn on MF∗

(k)
= N[k], k = 1, . . . , n, areonordant if and only if their otangent lifts oinide (up to the identi�ation T

∗MF∗
(k)

≃ T
∗MF∗

(s)
),i.e., if and only if (q[k])[s] = q[s] for all k, s = 1, . . . , n.Proof.- The otangent lifts, uniquely determined by their restritions to MF∗

(k)
= N[k], an be easilyseen as represented by the Hamiltonian vetor �eld with the Hamiltonian HΛ assoiated with Λ. �9 Higher Courant strutures, higher Lie algebroids, and Drin-feld n-tuplesA Lie bialgebroid, as introdued in [27℄, is a pair of Lie algebroid strutures Λ,Λ∗ on a vetor bundle Eand its dual E∗ and satisfying ertain ompatibility ondition. This ompatibility ondition has beenreognized in [32℄ as the ommutation of the orresponding homologial Hamiltonians {HΛ, HΛ′} = 0on T

∗ME ≃ T
∗ME∗ . This means exatly that the Hamiltonian H = HΛ + HΛ′ of total degree 3 ishomologial and onentrated in 2-degrees (1, 2) + (2, 1), i.e. the orresponding hamiltonian vetor�eld Q is onentrated in weights (1, 0)+ (0, 1). The total weight of Q is 1, but there are homologialvetor �eld of total weight 1 and 2-degrees (−1, 2) or (2,−1). They lead to the onept of quasi Liebialgebroids. The derived braket (in the terminology of Y. Kosmann-Shwarzbah)

{X, Y }Q = {{X,H}, Y } = −(−1)|x|+n{Q(X), Y },is losed on funtions representing setions of E ×M E∗ and gives a standard model of a Courantbraket [4, 5℄ in its non-symmetri version or a Courant algebroid [4, 17, 32℄. Note however that theonept of Courant algebroid is more general and based on graded sympleti manifolds of degree 2whih are not bi-graded in general. The whole struture, i.e. T
∗ME with the anonial sympletiPoisson braket and the homologial hamiltonian and unital vetor �eld Q � the Drinfeld double of theoriginal Lie bialgebroid � is a natural generalization of the Drinfeld double Lie algebra [6℄.A natural generalization of the above onepts is as follows.De�nition 9.1. An n-Courant struture is an n-graded sympleti manifold (N ,Ω) equipped with ahomologial Hamiltonian of total degree (n + 1). A Drinfeld n-tuple is an n-Courant struture whosehomologial hamiltonian vetor �eld is unital. 19



We know already that (N ,Ω) = (T∗M, ωM) for an (n − 1)-graded manifold M. Let {·, ·} be thesympleti Poisson braket on (N ,Ω) = (T∗M, ωM). This Poisson braket is a graded Poisson braketon A(N ) of degree −1n, i.e. of total degree −n. It is a general algebrai fat that the derived braket
{X, Y }H = {{X,H}, Y } of any homologial HamiltonianH ∈ An+1(N ) of the total degree (n+1) (orof any homologial hamiltonian and vetor �eld Q of total weight 1) is then a Leibniz braket of totaldegree (1 − n). In lassial terms, this braket an be interpreted as a n-Courant algebroid, i.e. as abraket on A(n−1)(N ) � the module of setions of the vetor bundle C = V (n−1)(N ) overM . Note thatthe sympleti Poisson braket also gives rise to ertain operations on subbundles of C = V (n−1)(N ),namely 〈·, ·〉j,k : V j(N ) ⊗M V k(N ) → V j+k−n(N ), or, globally, to a graded operation

〈·, ·〉 : C(N ) ⊗M C(N ) → C(N )of degree −1n on the graded vetor bundle
C(N ) =

⊕

|i|<n

MV
i(N ).If we do not insist on working withmulti-graded sympleti manifolds, whih means � otangent bundles� and we admit sympleti graded N-manifolds of degree n in the terminology of D. Roytenberg [33℄,then, analogously, we get a notion of a Courant algebroid of degree n. In this ontext, however, theonept of Drinfeld n-tuple makes no sense.Reently, the double Lie algebroids, as introdued by K. C. Makenzie [18℄ � [22℄, have beenreognized by T. Voronov [41℄ as double Q-manifolds and generalized to n-fold Q-manifolds, i.e. n-graded manifolds MF (assoiated with an n-vetor bundle F ) and endowed with a homologial unitalvetor �eld Q. This means that Q = Q1 + · · · + Qn, where Q1, . . . , Qn are ommuting homologialvetor �elds of n-degrees, respetively, δ1, . . . , δn.More preisely, an n-fold Lie algebroid is an n-vetor bundle F equipped with Lie algebroids stru-tures on the vetor bundles hk

0 : F → F[k], k = 1, . . . , n, and satisfying ertain ompatibility onditions.In partiular, all morphism in the harateristi diagram should be Lie algebroid morphisms. An el-egant way to desribe these onditions is to pass to the orresponding n-graded manifold M = MF .Then, we an interpret these Lie algebroid strutures as homologial vetor �elds Qk of weight 1 on theorresponding 1-graded manifolds and �nally, due to the ommutativity of Lie algebroid morphisms,as a homologial and unital vetor �eld on the n-graded total spae M. The ompatibility ondi-tions redue now to the fat that the vetor �elds Qk ommute. Equivalently, the total vetor �eld
Q = Q1 + · · ·+Qn is unital and homologial, so we end up with the following (see [41℄).De�nition 9.2. An n-fold Lie algebroid is an n-graded manifold with a homologial and unital vetor�eld.Observe that n-fold Lie algebroid is a partiular ase of a Drinfeld (n+ 1)-tuple.Proposition 9.1. There is a one-to-one orrespondene between n-fold Lie algebroids (M, Q) and
(n + 1)-Drinfeld tuples (T∗M, Q̃) suh that Q̃ has trivial summand of weight δn+1.Proof.- Let us put Q̃ = d∗

T
Q. Then, as easily seen, q̃ is a Hamiltonian and homologial vetor �eld on

T
∗M of weight (0, w(Q)). Conversely, if Q̃ is a Hamiltonian and unital vetor �eld on T

∗M with thetrivial summand of weight δn+1, then Q̃ = d∗
T
Q for some unital vetor �eld Q on M. Moreover, sine

d∗
T
[Q,Q] = [Q̃, Q̃] = 0, then Q is homologial. �Let F , MF , Q be as above and let i, j ∈ {0, 1}n, i < j. We laim that the vetor �eld Q indues

(|j| − |i|)-fold Lie algebroid struture on the (|j| − |i|)-vetor bundle whose total spae is Fj and �nalbase is Fi. Beause Q is tangent to Mj it is enough to verify the laim for M = MF , i.e. for j = 1n.Moreover, an indutive reasoning shows that we may also assume that |i| = 1 sine an (n− |i|)-vetorbundle an be reahed in |i| steps in whih we simply forget about an Euler vetor �eld. Note that the
(n− 1)-graded manifold {k}M assoiated with the (n− 1)-vetor bundle {k}F de�ned by Euler vetor�elds {∆s}, s 6= k, an be obtained from MF by applying the parity hanging funtor to the supervetor bundle M → M[k], i.e. {k}M = ΠM[k]

M. The vetor �eld Q̃ := Q−Qk is a linear vetor �eld20



with respet to the vetor bundle M → M[k]. The following general fat implies that we an passfrom Q̃ to a vetor �eld Q̄ on {k}M.Lemma 9.1. Let E → M be a super vetor bundle and V ect0(E) denotes the Lie algebra of linearvetor �elds on E . There exist a anonial A(M)-linear isomorphism of Lie algebras
φ : V ect0(E) → V ect0(ΠME). (42)Proof.- Let {ηi} and {µi} be the orresponding loal linear oordinates on E and ΠME , respetively,and let ĩ := η̃i, so µ̃i = ĩ+ 1. The Lie algebra V ect0(E) is loally spanned by the vetor �elds ηi∂ηj

.The following formula
φ(ηi∂ηj

) = (−1)ĩ+j̃µi∂µjdoes not depend on the hoie of loal oordinates. In fat, if η′i =
∑

j ηjTji(x), Tji(x) ∈ A(M),desribes transformations of �ber oordinates of E then also µ′
i =

∑
j µjTji(x), and

η′i∂η′
j

=
∑

k

η′i
∂ηk

∂η′j
∂ηk

=
∑

l,k

ηlTli(x)T
jk(x)∂ηk

=
∑

l,k

(−1)l̃(̃i+l̃+k̃+j̃)Til(x)T
jkηl∂ηk

,beause the parity of Tij(x) is ĩ+ j̃. Hene
φ(η′i∂η′

j
) =

∑

l,k

(−1)ĩ+j̃µlTil(x)T
jk(x)∂µk

= (−1)ĩ+j̃µ′
i∂µ′

j
.It is also easy to alulate that φ preserves the Lie braket of vetor �elds. �It follows from above lemma that Q̄ is a homologial vetor �eld on {k}M and so indues a (n−1)-foldLie algebroid struture on {k}F . Thus we get the following.Proposition 9.2. An n-fold Lie algebroid struture on an n-vetor bundle F indues anonially, for

i, j ∈ {0, 1}n, i < j, an (|j|− |i|)-fold Lie algebroid struture on the (|j|− |i|)-vetor bundle whose totalspae is Fj and the �nal base is Fi.A natural way of onstruting n-fold Lie algebroids an be based on the following trivial observation.Theorem 9.1. If (M, Q) is an n-fold Lie algebroid, then (TM, dTQ + d), where d is the de Rhamdi�erential on TM, is an (n + 1)-fold Lie algebroid.Proof.- Sine the tangent lift of vetor �elds respets the Shouten brakets [11℄, dTQ is a homologialvetor �eld with omponents of weights δ1, . . . , δn. Moreover, any tangent lift, whih loally reads
∑

a

(
fa(x)∂xa +

∑

b

∂fa

∂xb
ẋb∂ẋa

)
,ommutes with the de Rham vetor �eld d =

∑
a ẋ

a∂xa of weight δn+1, so Q+ dT is homologial andunital. �The question now is: what is the higher analogue of a Lie bialgebroid? Our answer is obvious: itorresponds to a Drinfeld n-tuple. Reall that a Drinfeld n-tuple is an n-graded sympleti manifoldwith a homologial Hamiltonian and unital vetor �eld. Let us take an n-graded sympleti manifold
(N ,Ω). We know already that (N ,Ω) = (T∗M, ωM) for an (n − 1)-graded manifold M. If Q =
Q1 + · · · +Qn is the deomposition of the homologial vetor �eld of a Drinfeld n-tuple on (N ,Ω) =
(T∗M, ωM) into homogeneous parts of weights δ1, . . . , δn. It is easy to see that [Q,Q] = 0 implies
[Qr, Qs] = 0 for all r, s = 1, . . . , n, i.e. all vetor �elds Qk are homologial and pair-wise ommuting.Moreover, for any s 6= r, the vetor �eld Qr is tangent to N[s] and projetable to the vetor �eld qr

[s]with respet to the anonial projetion N → N[s].21



Therefore, N[s] posses anonially n ommuting homologial vetor �elds qr
[s], r, k = 1, . . . , n � therestritions of Q1, . . . , Qn. Here, for tehnial onveniene, we list n vetor �elds for eah base, butlearly qr

[r] = 0, i.e. N[s] is anonially an (n − 1)-fold Lie algebroid. But the olletion of all N[s]is a olletion of (n − 1)-graded manifolds M,M∗
(1), . . .M

∗
(n−1), losed with respet to duality. As amatter of fat, aording to the graded analog of Proposition 5.1, the vetor �eld Qr is the otangentlift of qr

[s] for s 6= r. The ompatibility ondition for all the (n − 1)-fold Lie algebroids strutures on
M,M∗

(1), . . .M
∗
(n−1) is expressed by saying that they ome from projetions of ertain homologialhamiltonian and unital vetor �eld on T

∗M, i.e. from the Drinfeld n-tuple. We an say that n-tuple Liealgebroid orresponds to a Drinfeld n-tuple, exatly like Lie bialgebra (or Lie bialgebroid) orrespondsto a Drinfeld double Lie algebra (or Lie algebroid). In partiular, these strutures are ompatible withthe base struture BN , i.e. the projetions of qr
[k] and qr

[s] on N[k,s] oinide, where [k, s] ∈ {0, 1}n haszeros exatly at positions k, s = 1, . . . , n. The pair of homologial vetor �elds: qk
[s] on N[s], and qs

[k]on N[k], where E = N[s] and E∗ = N[k] are regarded as dual vetor bundles over N[k,s] � the de-gradedmanifold N[k,s], forms a Lie bialgebroid. Indeed, Qk and Qs are the otangent lifts of qk
[s] and qs

[k]to N ≃ T
∗N[s] ≃ T

∗N[k], so in T
∗E ≃ T

∗E∗ they are represented by ommuting and homologialHamiltonians Hk and Hs of degrees (2, 1) and (1, 2). Aording to the result of D. Roytenberg [32℄,this means exatly that we deal with a Lie bialgebroid. It is not true, however, that in general all theseLie bialgebroid strutures produe a Drinfeld n-tuple even under a natural ondition saying that thevetor �elds qr
[k] and qr

[l] indued from algebroid strutures on N[k] → N[r,k] and N[l] → N[r,l] oinideon N[k,l], as shows the following example.Example 9.1. Consider a trivial double vetor bundle M = R × R
2 × R × {∗} over a point {∗} with

1-dimensional ore and trivial side bundles of rank 1 and 2. Then N := T
∗M arries a 3-vetor bundlestruture. Let us denote by v011, v101 and v

(1)
001, v

(2)
001 the �ber oordinates on the ore and the sidevetor bundles N[1,3] and N[1,2], respetively. Let {e(1)

001, e
(2)
001, e011} be the orresponding dual basis ofsetions of the bundle N[1] → N[1,3]. We endow this bundle with a struture of Lie algebroid by settingthe anhor to zero and A(N[1,3])-linear Lie braket as follows:

[e
(1)
001, e

(2)
001] := v010 · e011,

[e
(k)
001, e011] := 0 for k = 1, 2. Obviously, this is a nilpotent Lie braket. The indued homologial vetor�eld q3[1] on N[1] in the orresponding graded loal oordinates {θa

i }, i ∈ {0, 1}3, has the form
q3[1] = θ010θ

(1)
001θ

(2)
001∂θ011 .Let us assume that the other 5 vetor bundles N[k] → N[k,l] arries the zero Lie algebroid struture.Then of ourse the 3 pairs of Lie algebroids (N[k], N[l]) over N[k,l] onstitute a Lie bialgebroid. Notethat the restrition of q3[1] to N[1,2] is zero, so the vetor �elds qr

[k] oinide on intersetions, i.e.
qr
[k]|N[k,l] = qr

[l]|N[k,l] = 0 for distint r, k, l. However they do not ome from Drinfeld 3-tuple on Nbeause the hamiltonian h3
[1] = θ010θ

(1)
001θ

(2)
001θ100 assoiated with q3[1] is not zero while h3

[2] = 0.The following theorem gives su�ient onditions.Theorem 9.2. Let M be an (n− 1)-graded manifold. A Drinfeld n-tuple on N = T
∗M is equivalentto a olletion of Lie bialgebroid strutures on all the pairs of dual vetor bundles N[k] and N[s] overthe ommon base N[k,s], k 6= s, related to homologial unital vetor �elds qs

[k] and qk
[s], respetively,whih satisfy the ompatibility ondition

(qr
[k])[s] = qr

[s] for r 6= k (43)with the onvention qs
[s] = 0.Proof.- The vetor �eld qr

[k] is of degree 1 with respet to the Euler vetor �eld ∆r, so of degree 0with respet to ∆s, s 6= r. Similar statement is true for the vetor �eld Qr
[k] � the (unique) linearHamiltonian extension of qr

[k] to N , i.e. Qr
[k] = d∗

T
(qr

[k]). Aording to the graded version of Proposition22



5.1, the vetor �eld Qr
[k] oinides with Qr

[s] for k, s 6= r, so that Qr de�ned as Qr
[s] for some (thusall) s 6= r is of degree δr. Sine Qr

[s] and Qs
[r], r 6= s, ommute beause they orrespond to the givenbialgebroid struture on (N[s], N[r]), the vetor �elds Qr pairwise ommute and Q = Q1 + · · · + Qngives rise to a Drinfeld n-tuple on N = T

∗M whih indues presribed bialgebroid strutures. �Sine, for a �xed r, the vetor �elds qr
[k], k 6= r, are onordant, we an also haraterize a Drinfeld

n-tuple in terms of Poisson strutures.Theorem 9.3. A Drinfeld n-tuple is a olletion of Poisson (n− 1)-vetor bundles in duality: (F,Λ)and (F ∗
(k),Λk), k = 1, . . . , n−1, whih are ompatible in the sense that the orresponding Hamiltonians

HΛ and HΛk
, k = 1, . . . , n− 1, interpreted as funtions on T

∗MF ≃ T
∗MF∗

(k)
, ommute with respetto the sympleti Poisson braket.Let us end up with some words about redution. Sine we deal, in fat, with a homologial Hamil-tonian system (N ,Ω, H) on a sympleti super-manifold (N ,Ω), the redution should be understoodas the Hamiltonian redution with respet to a oisotropi and n-graded submanifoldN0. If we assumethat the Hamiltonian H is onstant on leaves of the harateristi foliation F of N0 and the quotient

N ′ = N0/F is a well-de�ned multi-graded manifold, then the restrition of Ω to N0 projets to asympleti form Ω′ on N ′, the homologial Hamiltonian H projets to a homologial HamiltonianH ′on N ′ and we end up with a new homologial Hamiltonian system (N ′,Ω′, H ′) � new n-Courant or newDrinfeld n-tuple struture. Of ourse, this piture overs the redution assoiated with the momentmap of a Hamiltonian group ation: this is only the hoie of the oisotropi submanifold whih isdetermined by the moment map µ � the inverse-image µ−1({0}). Note only that this group ationshould respet the graded struture, i.e. it should ommute with the Euler vetor �elds.Example 9.2. Consider the anonial sympleti triple vetor bundle
T
∗
TTM ≃ T

∗
T
∗
TM ≃ T

∗
TT

∗M ≃ T
∗
T
∗
T
∗Mwith the harateristi diagram

T
∗
TM

��

zzttttttttt
T
∗
TTMoo

��

xxrrrrrrrrrr

T
∗M

��

TT
∗Moo

��

TM

zzttttttttt
TTMoo

xxrrrrrrrrrr

M TMooThe tangent bundle τM : TM → M is anonially Lie algebroid. The orresponding homologialvetor �elds on TM is the de Rham vetor �eld DM whih in loal oordinates (x, ẋ) (we do notdistinguish oordinates in TM and TM , et., for simpliity) has the form DM =
∑

a ẋ
a∂xa , so theorresponding hamiltonian of degree (2, 1) on T

∗
TM is H(2,1) =

∑
a ẋ

apa. It is well known that Liealgebroid strutures on T
∗M suh that, together with DM , give a Lie bialgebroid ome from Poissonstrutures Λ = 1

2

∑
a Λab(x)∂xa ∧ ∂xb on M . The orresponding Hamiltonian on T

∗
T
∗M ≃ T

∗
TM ofdegree (1, 2) is assoiated with the tangent lift dTΛ of Λ by H(1,2) = ιdTΛ, i.e.

H(1,2) =
∑

a,b

Λab(x)paṗb +
1

2

∑

a,b,c

∂Λab

∂xc
(x)ẋcṗbṗa .Take now a Lie group ation G×M →M whih is free and proper, so that the spae of orbits M/Gis a manifold, and whih preserves Λ, so that Λ projets onto a Poisson struture Λ′ on M/G. Let23



(ys) be a basis in the Lie algebra G of G and let Y s =
∑

a f
s
a (x)∂xa be the orresponding fundamentalvetor �elds of this ation. Preserving Λ by the ation means that the Shouten brakets [Y s,Λ]vanish. By means of the tangent funtor, the ation of G an be extended to an ation of the group

TG on TM . The Lie algebra of TG is TG and the fundamental vetor �elds of this ation are thetangent and vertial lifts, dTY
s and vTY

s, of the fundamental vetor �elds of the ation of G (f.[11℄). Sine dT respets the Shouten braket and [vTY, dTΛ] = vT[Y,Λ] (see [11℄), the extended ationpreserves dTΛ. Moreover, it is easy to see that TM/TG ≃ T(M/G) and that the anonial projetion
TM → TM/TG ≃ T(M/G) is a Poisson map of dTΛ onto dT(Λ′).Consider now the phase prolongation of the TG ation, TG×T

∗
TM → T

∗
TM . It is a Hamiltonianation with a anonial equivariant moment map µ : T

∗
TM → (TG)∗. The Hamiltonians assoiatedwith dTY

s and vTY
s are, respetively, ιdTY s and ιvTY s so that the submanifoldN0 onsisting of ommonzeros of all funtions ιdTY s and ιvTY s , is a oisotropi submanifold of T

∗
TM . Sine these funtionsare linear, it is a vetor subbundle of T

∗
TM → TM . But T

∗
TM is anonially a sympleti doublevetor bundle with the other projetion onto T

∗M and N0 is a vetor subbundle also with respet tothe other bundle struture. This is beause the tangent lifts of vetor �elds are linear and the vertiallifts are homogeneous of degree -1, so d∗
T
∆TM (ιdTY s) = 0 and d∗

T
∆TM(ιvTY s) = −ιvTY s , thus theorresponding homoteties do not leave N0. The manifold N0 has therefore its graded ounterpart N0being a bigraded oisotropi submanifold of T

∗
TM . The harateristi distribution on N0 is spannedby the (super) vetor �elds d∗

T
dTY

s and d∗
T
vTY

s. They preserve the HamiltonianH = H(2,1) +H(1,2)assoiated with the Lie bialgebroid struture (DM , DΛ) and the Hamiltonian redution leads to thebi-graded sympleti manifold T
∗
T(M/G) with the redued homologial hamiltonian H ′ assoiatedwith the Lie bialgebroid struture (DM/G, DΛ′).We an go further to the iterated tangent bundle TTM whih is a double vetor bundle with respetto projetions τTM and TτM onto TM . It is also anonially a double Lie algebroid orresponding tothe homologial vetor �eld q = DTM + dT(DM ) on TTM whih in loal oordinates (x, ẋ, x̄, ẍ) takesthe form

q =
∑

a

(x̄a∂xa + ẍa∂ẋa) +
∑

a

(ẋa∂xa + ẍa∂x̄a) .It orresponds to the linear funtion ιq on T
∗
TTM whih in the adapted loal oordinates (x, ẋ, x̄, ẍ, p, ṗ, p̄, p̈)of degrees, respetively,

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1), (1, 0, 1), (0, 0, 1),reads
ιq = H(1,2,1) +H(2,1,1) =

∑

a

(x̄apa + ẍaṗa) +
∑

a

(ẋapa + ẍap̄a) .A homologial Hamiltonian H(1,1,2) of degree (1, 1, 2) an be obtained from the iterated tangent lift
dTdTΛ whih is linear with respet to both vetor bundle strutures:

H(2,1,1) =
∑

a,b

Λab(x) (p̈bpa + ṗbp̄a) +
∑

a,b,c

(
∂Λab

∂xc
(x)ẋcṗap̈b +

∂Λab

∂xc
(x)x̄cp̄ap̈b

)
+

∑

a,b,c

1

2

(
∂Λab

∂xc
(x)ẍc +

∑

d

∂2Λab

∂xc∂xd
(x)x̄dẋc

)
p̈bp̈a .It learly ommutes with ιq, so H = H(2,1,1) + H(1,2,1) + H(1,1,2) represents a Drinfeld triple.The orresponding double Lie algebroid strutures on the side bundles are: (TTM,DTM + dTDM ),

(TT
∗M, dTDΛ +DT∗M ), and (T∗

TM, d∗
T
DM +DdTDΛ).Extending the tangent lift ation G×TM → TM to the iterated tangent lift ation TTG×TTM →

TTM and taking its phase prolongationTTG×T
∗
TTM → T

∗
TTM (whih is anonially Hamiltonian),we get a momentum map µ1 : T

∗
TTM → (TTG)∗ and the orresponding oisotropi submanifold

N1 = µ−1
1 ({0}). This submanifold is 3-homogeneous with respet to the triple vetor bundle strutureon T

∗
TTM ≃ T

∗
T
∗
TM ≃ T

∗
TT

∗M , so it has its graded ounterpart N1 in the 3-graded sympletimanifold T
∗
TTM ≃ T

∗
T
∗
TM ≃ T

∗
TT

∗M . Like above, the homologial HamiltonianH is onstant onthe harateristi distribution of the oisotropi manifold N1 and we get a redution to the 3-graded24



sympleti manifold T
∗
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