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Abstract: A Q-manifold is a graded manifold endowed with a vector fieldlegree one squar-
ing to zero. We consider the notion of a Q-bundle, that is, arfiiundle in the category of
Q-manifolds. To each homotopy class of “gauge fields” (sectin the category of graded man-
ifolds) and each cohomology class of a certain subcomplderofis on the fiber we associate
a cohomology class on the base. Any principal bundle yigldianonically a Q-bundle, this
construction generalizes Chern-Weil classes. Novel ekssnpclude cohomology classes that
are locally the de Rham fierential of the integrands of topological sigma models ioleid by
the AKSZ-formalism in arbitrary dimensions. For HamiltaniPoisson fibrations one obtains a
characteristic 3-class in this manner. We also relate tavagant cohomology and Lecomte’s
characteristic classes of exact sequences of Lie algebras.
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1 Introduction

1.1 The notion of a Q-manifold provides a general framework todging gauge theo-
ries within the Batalin-Vilkovisky formalism [20]. It is p&cularly useful in the context

of topological sigma models [1]. A Q-manifold, also knowneagifferential-graded (dg)
manifold, is a graded manifold1 endowed with a degree one vector fi€dvhich sat-
isfies the equation, Q] = 2Q? = 0. Hereafter we suppose that the algebra of functions
on M is non-negatively graded, unless the contrary is stated.s&yethatM is a Qp-
manifold, if the algebra of functions is locally generatadiegree up to p.

1.2 Let us enumerate some basic examples of Q-manifolds amgdarthe literature.

(1) A Lie algebrag considered as a purely odd manifold of degree one, denotgld ps
The algebra of functions is naturally isomorphicAty*, the cochain complex af, and
the Q-field is nothing but the Chevalley-Eilenbergelential.

(2) A Lie algebroidE with the degree of fibers shifted by one, denotecEfl]. The
algebra of functions is identified with(A*E*) and the Q-field is the canonicalftéren-
tial. Moreover, every Q1-manifold is necessarily of thenfidg[1] for a certain Lie alge-
broid [22]. In general, a homological vector field of degreee@n an arbitrary graded
vector bundle determines dn,—algebroid structure by use of multi-derived brackets,
cf., e.q., [23].
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(3) A PQ-manifold: This is a graded manifolsi supplied with a symplectic forrv of
degree p and a functia® of degree p-1, which obeys the equation of self-commutativity
with respect to the non-degenerate Poisson bracket detednyw. The Q-field is the
hamiltonian vector field of.3

1.3 A morphism of Q-manifolds (Q-morphism) is a degree presegynapg, the pull-
back of which commutes with the corresponding homologieater fields, considered as
super derivations of functions, i.e. the following chaimperty holds:Q:¢* = ¢*Q.. A
morphism of Q1-manifolds is nothing but the morphism of tleeresponding Lie alge-
broids ([22]; cf. [2] for a proof of equivalence with the oimgl definition of Lie algebroid
morphisms given in [14]). Given a smooth map of two manifaittsM — N, its push-
forward defines a Q-morphism,: T[1]M — T[1]N of the tangent bundles, where a Q-
structure on the odd tangent bundle of a manifold is detezthivy the de Rham operator
regarded as a homological vector field by use of the identifin&>*(T[1]M) = O (M).

Apparently, a composition of two Q-morphisms is again a Qghsm, so there is a
well-defined category of Q-manifolds. A Q-bundlefilaer bundle in this category, is a
surjective morphism of the total space to the base of the lbusdtisfying an additional
requirement of local triviality: a bundle is built from direproducts of local charts on the
base and a fixed fiber glued by a transition cocycle of “gaugrestormations”—as will
be detailed further in section 2 below. By a “gauge fieldh a Q-bundler: M — M;
we mean a section of the underlying bundle of graded marsfold general we do not
assume that a section is a Q-morphism! (The existence ofassebtion imposes a certain
constraint on the bundle).

Some examples of these constructions are the following, aviés the third one pro-
viding the relation to ordinary gauge theories:

(1) The product of two Q-manifolds is again a Q-manifold ahd projection to each
factor produces a (trivial) Q-bundle structure.

(2) A fiber bundlep: M — M; determines a natural “non-linear” example of a Q-bundle
by use of the the push-forward mam.: T[1]M — T[1]M;. Apparently, the push-
forward of any section op is a section ofp., which is, indeed, a morphism of the corre-
sponding Q-manifolds.

(3) Given a principal G-bundlp: P — M, we construct a Q-bundle in the following
way: As total space we take the quotienflgfl]P/G, where the group action @ on P

is lifted in the canonical way and the quotient 8ycan be considered as a bundle over
M. Using the push-forwarg. of p, on the other hand, we obtain a (degree-preserving)
map toT[1]M, the base of the Q-bundle. Both spaces are canonically pedipith

the de Rham dierential (in the first case restricted @invariant diterential forms on

P). This construction is known as the Atiyah algebroidRfwhich is a particular Lie
algebroid T[1]P is obviously a degree on@-manifold). A connection irP provides a

lift of tangent vectors oM to tangent vectors d?; by its equivariance w.r.t. th&-action

this corresponds precisely to a bundle ngapl M — T P/G, i.e. a section of the bundle

3For p > 1 a PQ-manifold iquivalento a Q-manifold with compatible degree p symplectic form][18



p.: T[1]P/G — T[1]M. As we will see in detail in section 2 below, the connection is
flat, iff ¢ is a Q-morphism.

(4) A transitive Lie algebroidE — M, in generalization of an Atiyah algebroid: By
definition this is a Lie algebroid with surjective anchoyielding the short exact sequence

0-g—E5TM -0, (1.1)

whereg is a bundle of Lie algebras defined by the kernepofWe restrict to the case
that any of the fibers keris isomorphic to a single Lie algebtgt. This then yields a
Q-bundlep: E[1] — T[1]M with typical fiberg[1]. Note that sincep is a morphism
of Lie algebroids, the projection is a Q-morphism. In thistigallar case, a gauge field
¢: T[1]M — E[1] is a splitting of the exact sequence of Lie algebroidd)1.It is
sometimes also called a “connection” of the transitive LgebhroidE, in generalization
of the previous example, and called “flat” in a situation wigds a Q-morphism.

(5) An exact sequence of Lie algebras—cf. example (1) ofgragzh 1.2—is a Q-(fiber)-
bundle (as defined above) only in the case when it is isomorgha direct sum of Lie
algebras. We will address this situation at the end of thepap

(6) More generally than examples (2) - (5), one can considegxact sequence of Lie
algebroids, covering an ordinary fiber bundle; if the toted hlgebroid splits locally into

a direct product of fiber and base Lie algebroids, it fits imt® definition of Q1-bundles
above. We will study particular examples of this, where therfs are some given PQ-
manifold and the base a tangent Lie algebroid, considepptiGtions in section 4 below.

1.4 For an arbitrary degree preserving map of Q-manifglds\i; — M, the diference

F = Qu¢* — ¢*Q,, which we call the “field strength” ifp is a (coarse-grained) section
of a Q-bundleM, — My, is non-vanishing in general. It is a degree one derivation o
functions on the target taking values in functions on thes®u

F:C®(M,) - C*(M,), (1.2)
for which the following Leibnitz-type property holds:
F(gh = F(@)¢"(h) + (-1)*®¢"(g)F(h), ¥g,h e C*(My). (1.3)

ThereforeF can be identified with a degree one section of the pull-backilagy* (T M)

over M; or, as is equivalent, with a degree preserving rhag,; — T[1] M, coveringy,

as will be further detailed in section 3 below. The graded ifiodcth T[1] M, whereM is a
Q-manifold, is a double Q-manifold (or a double Q-algebraid[13, 24]), i.e. it admits

a pair of anti-commuting homological vector fields. It wilirh out, cf. Proposition 3.3
below, thatf is a Q-morphism ifT[1] M; is endowed with the sum of two canonical Q-
structures as dlierential. Note that in contrast to the Leibnitz property8jhf F, the map

f*: C*(T[1IM2) — C*(M,) defines a morphism of algebras, and thus, being a chain
map, also a map in cohomologies.

“Note that even under this assumption not every transitieealgebroid comes from a principal bundle.
Only if this Lie algeroid can be integrated to a Lie groupdfds is the case.
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Using the Bernstein-Leites sign convention, function3 filf M can be identified with
differential forms onM. Given a trivialization of a Q-bundle over some open cover of
the base, we can always identify a section with a family ofrdegpreserving maps from
the local charts to the fiber, which are related by the trarsiransformations on double
overlaps. By means of the pullback of the above map f, we platdgamily of chain maps
acting from the total complex of fierential forms on the fiber to the complex of functions
on the open charts, which areff@girent in general on double overlaps. However, applying
the collection of chain maps to affi#rential form on the fiber, which is invariant with
respect to the gluing transition functions (or, equivdlenihe “gauge transformations”)—
we will call such formdasic—, we obtain a well-defined cocycle on the whole base. This
thus provides a map from the cohomology of basic forms on tiex fo the cohomology
of forms on the base, cf. Theorem 3.10 below. The constmetd be seen to generalize
the Chern-Weil formalism of characteristic classes asgedito principal bundles.

1.5 Some brief remark on our notation and nomenclature: As weallext above, a con-
nection in a principal bundI® is in bijection to a splitting in (1.1) of the corresponding
Atiyah algebroidE — M, or, what is the same, a (globally well-defined) sectjo(in

the coarse-grained sense) of a likewise Q-bupdl&[1] — T[1]M. The mapf above
can be seen to generalize the curvature of that connectidh ororeover. Since, on the
other hand, on a Q-bundle M — M, one can also discuss (super-) connections and
curvatures, we refrained from calling such mapandf as (generalized) connections and
curvatures, respectively. Instead we thus prefer a physiesited nomenclature in this
context, callingps “gauge fields” ands “field strengths”; in the context &, they locally

are represented by (Lie algebra valued) 1-forms and 2-fésdF ~ Fa, respectively.
Note that in a more general situatipmmay correspond to a collection oftterential forms

of different degrees, or, wheWl; is not the shifted tangent bundle of some manifold, even
not to diferential forms at all.

“Gauge transformations” or “gauge symmetries” will turntdaa be related also to
vertical automorphisms of the Q-bundle (vertical autonmsms of a principal bundle
give rise to anchor preserving automorphisms of the Atiyigielaroid), but in general it
will be useful to consider only a subset of the latter onegfaing transformations.

1.6 The paper is organized as follows. In section 2 we discusappeopriate notion of
gauge transformations, generalizing [2], for a Q-bundle describe their action on the
space of gauge fields.

In section 3 we prove the chain property of the nfaplefined above, and show that the
Weil algebra model of characteristic classes is a partia@dae of our construction. Here
we slightly adapt the notion of a basic form, looking at théatof gauge symmetries
on f, and complete the construction of characteristic classescaated to a section of a
Q-bundle. We also prove the obtained cohomological claasehomotopical invariants
of such sections.

In section 4 we explain a possible construction of charatterclasses whose cocy-
cles turn out to be locally represented by integrands of thessgical part of) topologi-
cal AKSZ-type sigma models. In the case of Hamiltonian Rwidgorations, the typical



fiber being a Poisson manifold, one obtains a 3-class in denRishhomology on the base
manifold, which, locally, agrees with the original consfiion of (the integrand of) the
Poisson sigma model in [19]. In section 4 we also addressdhgigg of Wess-Zumino
terms, its relation to equivariant cohomology, and the abtaristic classes of [11] within
the present framework.

2 Q-bundles and gauge symmetries

2.1 In order to explain the notion of gauge fields and gauge symesetve start with a
simple example of—valued 1-forms on a smooth manifold, whereg is a Lie algebra.
GivenA € QY(M, g), interpreted as a connection in a trivial bunex G, Lie(G)= g, we
look at its curvature:

Fa:= dA+ %[A,A] . (2.1)

The group ofG-valued functions orM is acting on connections byA® = gldg +
Adg1(A), wheregdg is the pull-back byg of the (left) Maurer-Cartan form on the Lie
group and Ad is the adjoint action. The above transformaticorrespond to vertical
automorphisms of the trivial bundle and are called gaugestramations in the physics
literature. Their infinitesimal version is goverend by-avalued functiore:

d

5A = aAeXp(“) heo= de + [A, €] . (2.2)

The condition of flatnes$; o = 0, can be also regarded as Maurer-Cartan equatioA.for

2.2 Letus adapt this example to the language of dg or Q-maniféldsve already know,
a Lie algebra can be treated as a Q-manifgld, such that the algebra of functions be-
comes isomorphic ta(g*) with the Q-field given by the Chevalley-Eilenberdtdrential:

dy(@)(n.7') = —a([n. 1)) (2.3)

wherea € g* andn,n’ € g. The product ofT[1]M andg[1] is again a Q-manifold, the
Q-structure of which is given by the sum of de Rham and Cheydflilenberg derivations
extended to the product in the standard way-Aralued 1-form onM can be thought of
as a degree preserving map T[1]M — g[1] and its graph as a section of the bundle

T[1]M x g[1] — T[1]M . (2.4)
The pull-back ofp is acting as follows: for eacly € Q(M), a € AP(g*) one has

gl@vw)=a(A) ... "A)Aw.
— e

ptimes

Any g—valued functiore, acting by the contraction onQ(M) ® A(g*), can be considered
as a super-derivation of degree -1, which super-commutésiM). The last property
implies that it can be identified with a vertical vector field the total space of (2.4).
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Proposition 2.3 The following identity holds for each € Q(M) anda € AP(g*):

k

Z(—l)k”a(Ac .2 Fa 2. MA) Aw, (2.5)
k

(d¢" — ¢ (d+dy)) (¢ ®w)

k

Za(A,c...c’agAc...cA)Aw, (2.6)
k

¢'Le(@® w)

where L. is the Lie derivative along, defined as the super-commutalq; ] ands A is
given by formula (2.2) above.

Proof. Straightforward calculationss

Note that, instead of thinking of an infinitesimal gauge sfanmation as a flow on the
space of connections, we define a vector field on the totalespf¢2.4), the action of
which on the space of connections, regarded as sectionsidf ¢€an be naturally induced.
One may wonder why, thougA is extended as a morphism of graded manifolds, its
infinitesimal variation is extended (by the Leibnitz rules) @ derivation. Indeed, it is a
general fact, adapted to the graded case, that the spacé@mnitesimal variations (the
tangent space) of a smooth mapM — N can be identified with the space of sections of
the pullback bundle*(T N) or, equivalently, with the space of derivatiohsC*(N) —
C*(M) coveringy:

s(hi) = s(h)y* () + (=1)*90 90y (h)s(h)

foranyh,i¥ € C*(N). As it is clear from (2.5), the curvatuie, is the only obstruction
for Ato be a Q-morphismA gives a flat connectiork 5 = O, iff the corresponding section
¢: T[1]IM — T[1]M x g[1] is a Q-morphism.

2.4 Itis evident how to generalize the picture described abovednnections in a non-
trivial vector bundle or its associated principal bun&eFor this purpose we return to
example (3) in paragraph 1.3 above, replacing the trividduQdle (2.4) by its Atiyah

algebroidE, i.e. by

o: E[1] — T[1]M, (2.7)

whereE = TP/G andp = p. denotes the anchor map. Then a connection becomes
a section of (2.7). An infinitesimal gauge transformationia derivative with respect

to some section oE lying in the kernel ofp. The space of such sections is in one-
to-one correspondence with the space of vertical vectadgief degree minus one on
the Q-bundleE[1] — T[1]M; the correspondence is given by the contractiQrfor
any e € I'(E) can be regarded as a vector field Bf1]. The gauge transformations are
thus generated bly, = [Q, ], wheree € I'(kerp) or, equivalentlyp... = 0. Elements
a®w € AP(g*)® Q(M), used in Proposition 2.3 above now generalize merely totfans

on E[1].

2.5 Now we can describe a general Q-bundle, its gauge transtmnsaand fields. The
Lie super-algebra of vector fields oW, denoted aD(M) = &DX(M), is a diferential
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graded Lie algebra, thefiierential of which is given by the adjoint action@Qf ady(X) :=
[Q, X] for X € D(M). Indeed, sinc&) satisfies the “master equationQ[Q] = 0, its
double commutator with any vector field vanishes: by the sdpeobi identity one has

a0 = [Q.[Q.X]] = 5 [[Q.Q1.X] =0.

We call a vector fielK € D°(M) commuting withQ aninfinitesimal symmetgyor simply
symmetry, of a Q-manifold and a degree zero vector field, tvisca commutator oQ

with some other vector field, amner derivationor inner (infinitesimal) symmetry. In
the case of a Lie algebrgl] this agrees with the usual homenclature, whereas in the
case ofT[1]M e.g. all symmetries are inner in this sense and corresponector fields,

i.e. (infinitesimal) ditfeomorphisms. By definition, infinitesimal symmetries andein
derivations are cocycles and coboundariesf{ A1), ady), respectively. The inclusion
“coboundaries cocycles” implies that all inner derivations are infinitesil symmetries

of a Q-manifold. The following identity follows from the sapJacobi identity and the
nilpotency ofady:

[ado(X), ado(X)] = adg ([X. X]q) . (2.8)

where X, X']q = (=1)%%*[ady(X), X'] = [[X, Q], X'] is known in mathematics as the
derived bracket [9]. The space of vector fields supplied i derived bracket is an
example of a Loday algebra. Note that the derived brackevdsst two vector fields
is not (super) skew-symmetric, unless the vector fields @perscommuting. Obviously,
vector fields of degree minus one are closed with respecetdehved bracket. Moreover,
as is clear from (2.8), but also can be verified directly, msge byady is a (super)ie
subalgebra irD°(M).

Definition 2.6 A subgroup H of degree preserving maps is called a subgrowgutaf-
morphisms (respectively, inner automorphisms), if itsdlgebra consists of infinitesimal
symmetries (respectively, inner infinitesimal symmetries

Before writing the general definition, let us examine onceeantbe trivial example, which
is a brick underlying a global design. Supposé = N x ¥ is a product of two Q-
manifoldsN and¥ andr: M — N is a bundle given by the projection to the first factor.
It is obvious that the space of vertical vector fields can leaidied with sections of the
pull-back of T w.r.t. the second projection.

Proposition 2.7 LetG be a graded Lie subalgebra of vector fields®nclosed under the
derived bracket. Then the space of functions\otaking values irG is a Lie subalgebra
of vertical vector fields closed under the derived brackethantotal spaceV x 7.

Proof. Let us take an arbitrary € C*(N, G), which can always be written as a linear

combinationY = 3; blY;, whereb! are functions on the base alge G. Then the inner
derivative generated by on the total space is

ado(Y) = [Qu+ Q2. Y] = >~ Qu(b)Y; + (1) bladg,(Y;) . (2.9)
j
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For anyX = Y, a'X;, its derived bracket witly is again a function taking values @t

[X Y]g = ) (~1)ea0+dea)L([Q (&)X, + (~1)**alade,(X), bYj]) =
I.]
Z ((_1)deg(ai)+deg(><i)(degbj)+l)+lQl(ai)bi [X.Y] + (—1)(degk)+1)degb) iy x; Y]] Q) ,

1]
which implies thatg is a Loday algebra with respect to the total Q-structuare.
Let us use the notation for the following Lie algebra of vedtelds on the total space:

G = ady(C*(N,G)) N DON X F) . (2.10)

Is is not a surprise for us th@’ consists of vertical vector fields. Indeed, suppose we
are givenX € G’, then there exists some element G such thatX = [Q, ¢]. Both of
two vector fields in the commutator are-projectable, sincer.(Q) = Q; andr.(e) =

0, thusn.(X) = 0. It well-known that exponentiating a vertical vector fidat least
locally), we obtain a fiber-wisely acting automorphism, ae automorphisn¥ satisfying

mo ¥ = n. Apparently, the set of fiber-wisely acting automorphissa subgroup of all
automorphisms of a bundle and a compositio¥efith any section ofr is again a section.

In this way we can now return to the general, nontrivial bengltuation, formulating the
following

Definition 2.8 A Q-bundler: M — Mj with typical fiberF and a holonomy algebra
G c D<%(¥) (a chosen graded Lie subalgebra of vector fields/arelosed under the de-
rived bracket) is a surjective Q-morphism, satisfying theal triviality condition: there
exists an open covét(;} of M; such that the restriction of to each?/; admits a trivial-
ization7=}(U;) ~ U; x ¥ in the category of Q-manifolds and this trivialization isighl
overU; N U; by inner automorphisms which belongerp(G’) whereg’ is as in (2.10)
with N = U, NU;.

A gauge field is a section af in the category of graded manifolds, that is, a degree
preserving mapy: M; — M which obeysr o ¢ = Id. A gauge transformation (an
infinitesimal gauge transformation) is a fiber-wisely agtinner automorphism (vertical
inner derivation) of the total space of

Concatenating a section with a vertical automorphism oft¢t@ space, one obtains an
action of the group of gauge transformations on the spaceaiois. In generalization
of (2.6) one then has

Proposition 2.9 Given a gauge fielgp and an infinitesimal gauge transformation X
ado(Y), the variation ofy along X can be identified with the derivati¢fiky)* = ¢*X
coveringe.

3 Field strength and characteristic classes

3.1 The obvious role of curvature arises from the fact that it barregarded as an ob-
struction for a map to satisfy the Maurer-Cartan equatits motivating example was
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considered in the previous section. In the case of generab@Holds, the set of maps
between them does not admit a vector space structure any swrather than using the
language of Lie brackets, we dealt withffdrential graded algebras as a more general
tool. We have also stressed earlier that the Maurer-Cadiarefo curvature) equation is

a particular example of the chain prope@yy* — ¢*Q, = 0. The operator [2]

Fi=Quy -¢'Q, (3.1)

calledthe field strengthbeing a replacement of the curvature, is a degree one tienvat
functions on the target manifolif, taking values in functions in the source manifaiy
and coveringp*. (Herep: M; — M, is a morphism of graded manifolds, corresponding
to a gauge field in a trivial bundle. In the case of a non-ttibindle, M, = M, the total
space of a Q-bundle: M — M;, and the gauge field satisfiesto ¢ = Id.) We have ev-
idence, for instance from the Yang-Mills theory, that thevedure is a meaningful object
itself, so one can expect a similar importance of the “fietdrgth”> It is advantageous
to reformulate the operator (3.1) somewhat, so that theritzproperty (1.3) is replaced
by a morphism of algebras (appropriate polynomials shoalthtp polynomials of field
strengths). To this end we regard the following non-comnuutiagram,

TIIM; —2+ T[LIM,
o] Q2

M,

M

where the homological vector fields are considered as mathsdaing of degree one, the
tangent bundle was shifted in degree so that the maps arémorpof graded manifolds.
Now one notes that both ways fraM; to T[1] M, end in the same fiber ove¥l,; thus it

is meaningful to define the flerencef : ¢. o Q1 — Q, o ¢, coveringy

T[LIM,

My M;
Itis easy to convince oneself that for any functioa C* (M) and anyr, 8 € C*(T[1]M,)
one has

fi(h) = ¢*(h), i (dh)=F(h). (eB) = ()f"(B). (3.2)

We shall see below thdt is a Q-morphism, ifT[1] M, is endowed with a suitable Q-
structure.

SThis idea was implemented e.g. in [21].



3.2 For any graded manifoldM, the algebra of functions om[1] M admits a simple
description as the algebra of supefféiential formsQ(AM) (according to the Bernstein-
Leites sign convention [12]). More precisely, the algelréooms is generated bl and
dh for all functionsh with the following relations:

hdh = (=1)%90@e) Dy | d(hi) = dh I + (—=1)%Ohdh (3.3)

This algebra is naturally bi-graded by degrees of functexms orders of forms, such that
d, the super-version of the de Rhanfteliential, becomes a (nilpotent) operator of degree
zero with respect to the first grading and of degree one wiheet to the second grading.
The super-commutativity relations are subordinated tddked grading which is the sum
of the two. A vector fieldX of degreep gives a contraction of degrge— 1 acting as
follows:

ix (f dh) = (—1)290EeI®+D§ ¥ () . (3.4)
The super Lie derivative along, an operator of degree p, is defined as the commutator
Lx = Lxd + (—1)deg0()dtx . (35)

By construction,Lx super-commutes with the de Rhanffdrential and agrees with the
action of vector fields on functiongx(f) = X(f). Furthermore, one can also check that
the Lie derivative respects the super-Lie algebra of vdattits, generalizing the formulas
for even manifolds, such that the following identities hold

[Lx, Ly] = Lixv1 > [Lxotv] = yxyy - (3.6)
In particular, ifQ is a homological vector field, we immediately obtain that
[d, Lo] =[Lq, L] =0. (3.7)

As a corollary we conclude that the total spacelr¢i] M for a Q-manifold M is a bi-
graded manifold supplied with a couple of super-commutingti@Qctures which are of
degree one w.r.t. the first and the second gradings, respBctiLet us denote the total
differential agQ;, = d + Lo.

Proposition 3.3 The map £ M; — T[1]JM;is a Q-morphism w.r.t. the total Q-structure
on the target, that is, the following chain property holds:

Qlf* - f*QTMZ =0. (38)

Proof. Taking into account that the I.h.s. of the equation is alwagerivation, it is suf-
ficient to apply it on generators of the algebra of forms (amctions and exact 1-forms).
Using Egs. (3.2) itis then easy to complete the praof.

8In Eq. (3.6) the brackets indicatgadedcommutators. For an odd vector fieQithe following equa-
tions are thusinticommutators, the de Rhamfidirential d anticommutes with the Lie derivatifg.
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3.4 There exists also a conceptually more enlightening proti®previous proposition.
In fact it is easy to convince oneself that exceptdgaall the arrows in the first diagram
above are morphisms of Q-manifolds, if we equip the tangentltes with the respective
de Rham dierentials. Now the map: M; — T[1] M, differs from the (in this sense)
Q-morhpismyp, o Q; by a substraction along the tangent fibers by the respectai@é”

of Q.. This substraction corresponds to exp), a difeomorphism ofM, generated by
the (inT[1] M, vertical) vector fieldqg,, as one can most easily verify on local coordinate
functions. Correspondingly, the new map, which is duwill remain a chain map, if
the de Rham dierential is twisteftonjugated by expg,). We summarize this in the
following

Lemma 3.5 The field strength f M; — T[1] M of a gauge fieldo: M; — M can be
defined by the formula £ exp(g) o ¢. o Q1. Itis a Q-morphism w.r.t.

Qrm=d+ Lo = explo)d exptrq) , (3.9)

We remark thatgo does not square to zero sin@eis odd; still the last equality follows
easily from the general formula ex)B exp(~A) = exp(@d,) B (valid for operatorsA
andB that are not both odd) together with (3.6) aig@ Q] = 0.

3.6 A natural example of the chain map propertyfak provided by the Weil algebra. It
is well-known that, if one has a graded morphism fraify*) of a Lie algebray to some
differential graded commutative algelsfla which is not necessarily a chain map, we can
always extend it as a chain map, acting from the Weil algdif@ = S’(g*) ® A(g*) to

A. The construction is working as follows: given a graded nism A(g*) — A, we
identify it with someA which belongs to the dg Lie algebra® g, where the dterential
and the bracket are extended by linearity:

d@®X) =da® X, [a®@XB1Y]:=aB®[XY]

foranya,B € AandX Y € g. DefiningFa := dA + %[A, A] (we recognize the curvature
of a connection in a trivial bundle as a particular exampled,required mapv(g) —» A
is

DPRw > D(Fa,....Fa)w(A...,A), ®eS¥g"),weA’(g). (3.10)
gtimes p times

One can easily check that the grading anidledential in the Weil algebra are chosen in
such a way that it becomes isomorphic2([1]) supplied with the above total fieren-
tial. Furthermore, the chain map described above is nothitigpur mapf, if M, = g[1]
andA = C*(M,).’

3.7 Let G be a graded Lie subalgebra of vector fields of negative degreeQ-manifold
(M, Q) which is closed under the derived bracket.

’In fact, the statement in Proposition 3.3 can be easily adapi the situation wher€>(M;) are
replaced by arbitrary dlierential graded commutative super algebras @rfdr bettery*) by an arbitrary
degree preserving morphism.
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Definition 3.8 A differential formw € Q(M) is called a (generalizedy-basic form, if
L(w) = 0= Lagy(w) for eache € G. We denote the space @fbasic forms a2(M)g.

Q(M)g is a graded commutative algebra, which is stable with regpdioth diferentials:
The product of two such forms is againgabasic form. The Lie derivative commutes
with the de Rham operator, so the space is invariant witheesjeo d. Furthermore, by
the identities (3.6), one hag’p, L] = Ladye and [Lo, Lady@] = 0, thusQ(M)g is also
closed with respect tdq.

3.9 Now we apply this machinery in a rather straightforward warthe construction of
characteristic classes associated to any section (galdjediexn Q-bundle.

Theorem 3.10 Letr: M — N be a Q-bundle with a typical fibef, a holonomy algebra
G, andg a section ofr (in the graded sense)—cf. Definition 2.8. Then there is a-well
defined map in cohomology

HP(Q(F)g, Qrr) = HP(CT(N), Qy) » (3.11)
which does not depend on homotopieg of

Lemma 3.11 Let (M3, Q1) and (M;, Q2) be Q-manifoldsy a morphismM; — M;

of the underlying graded manifolds, and Y a vector fieldMdp of degree minus one,
generating the inner derivation X% adg,(Y). Then the induced variation—the induced
infinitesimal gauge transformation—of:.fQ(M,) — C*(M,) is given by:ox f* = f*Lx.

Proof. Sincef* is a degree preserving map, its variation w.r.t. an infimites flow, gen-
erated by a degree zero vector field, is a degree preservingaien abovef*. Thus it is
suficient to check the identity on functiohsand exact 1-formsidover M. For the first
part we can use Proposition 2.9, sincgh) = a*(h). Likewisely, using this proposition
and egs. (3.2), we find:

Ox f7dh = 6xF (h) = Q1x¢*(h) — dx¢"Q2(h) = Qi X(h) — "X (h) .

But, as an inner derivatioX = adg,(Y) commutes withQ,. Thus,ox f*(dh) = FLx(f) =
f* Lx(df), which concludes the proofi

Lemma 3.12 Let w € Q(M,)g, G vector fields onM, closed w.rt. the Lie and the
derived bracket, andy’ be its trivial extension to the total space of M; x M, —
M. Then f(«’) is invariant under the action oéxp(G’) on sections, whergy’ =
ady (C*(My,G)) N D' (M1 X My). (¢: M1 — Mix Mz, Q= Q1+ Q).

Proof. Let us replace the target manifolél, in Lemma 3.11 by the total spacel =
My x M; and an arbitrary graded morphigprwith a section ofr. Suppose we are given
an infinitesimal gauge transformatidn= ady(Y). Applying Lemma 3.11 to the variation
of f* alongX and formula (2.9), we obtain:

oxf w = f*-EadQ(Y)(U/ = Z f* (‘EQl(bj)Yj + (_1)degbj)£bjadQ2(Yj)) W' . (3.12)
i
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We are left to prove that* Lw«w’ = 0 for eachh € C*(M,) of degree q and € DP(M,)
which obeys/,«w’ = 0: By the definition of Lie derivative,

Lo = (ind + (=1)"Udiny) o = ((-1)P"dh A oy + hLy) o = (=1)"dh A wo” .
On the other hand, for any sectigrits field strength- is a vertical derivation:
F(h) = Que'n"(h) - ¢"(Qu+ Q)" (h) =0, Vhe C*(My),
sincenyp = Id andQn* = 7*Q,. With this equation and (3.2) we then indeed obtain
f* Lo = (=1)P"" (dh A ww') = (1P IF () f*(ww) = 0.
i

Proof of Theorem 3.10

Let us fix a trivialization ofr over an open covet{;. Suppose we are given a section
¢, then there is a family of sectiong over U; which are the restrictions @f. Applying

f* to each trivial extensiow; of w to U; x ¥, we obtain a family ofQ;-cocycles in
C>*(U;), denoted as chgw). Taking into account that the trivialization is glued by a
transition cocycle of gauge transformations belongingxe(@ )—cf. definition 2.8—,

@i andg; are related by a gauge transformation; thus, applying Ler@rh2, we obtain
chag(w) = char(w) over; N U;. Thus one has a glob&l;—cocycle charg), such that
chag(w) is its restriction tol{;.

It remains to prove that ip(t), t € [0, 1], is a smooth family of sections, then the coho-
mology class of the corresponding chay(t) does not change. For this purpose we use
the same argument as for the usual Chern-Weil formalism.miljeof sectionsy(t) can

be thought of as a sectignof the following extension of:

# MXT - N T[], |=[0,1].

By construction, for any functioh on the total space af, Written ash = hy + dt h;, where

h; € C*(M x 1), the pull-back with respect tp i5 ¢*h = ¢*(t)hy + dt ¢*(t)hy. The new
field strength operator i6 = F(t) + dt d.¢*(t). Applying the corresponding characteristic
map tow, we obtain a cocycle oV x T[1]l, which decomposes as follows:

char) = char@)(t) + dt3 . (3.13)
Using the closedness with respecQg + d;, we immediately get the identity

drchar)(t) = QuB(1) , (3.14)

which implies the invariance of characteristic classesoimanology:
1
charw)(1) — char)(0) = Q, fdtﬁ(t) i
0
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This completes the proof of Theorem 3.10.

For some purposes like the construction of secondary cteistic classes, it may be
useful to display the transgressigft) explicitely. If g* denote (local) graded coordinates
on the fiberF, and on the chari{; we use the notatiog (t)*(q*) =: A%(t) andf;(t)*(q*) =:
F*(t), denoting the corresponding tower of gauge fields and fieéhgths, then fow =
éa)(,lm(,p(x)dx"l A ... Adx® one finds

B = =5 00 (00 SOV AFO A AF) (319
Note that if ¥ is a Qk-manifold andV = T[1]Z, thenA’s are in general a tower of
differential forms of degree zero up to degieéand likewiseF®s differential forms of
degree one up to degrdée+ 1). Also, in generaly,,..., Will depend onx* and thus its
pullback byg;(t)* produce a function in the gauge fields. Clearly, by consimagp(t) is
well-defined globally on the bas¥.

3.13 By use of Theorem 3.10 we associate a characteristic classctogauge field and
cohomology class of the subcomple(¢)g, Qr») of G—invariant forms on the fiber.

Proposition 3.14 Suppose ¢ belongs to the kernel in cohomology of the carlanizia
(QF)g, Qrr) = (QAF), Qrr). Then the corresponding characteristic class is trivial fo
any trivial Q-bundleM — N.

Proof. If the Q-bundle is trivial, then there exists a projectioriltd total space to the fiber
p- : M — F which is a Q-morphism. The corresponding characterisasslattached
to a gauge fielg, which is nothing butf*p;c, is certainly trivial on the basdf, being a
Q-morphismo

3.15 Bringing the gauge transformation of the field stren@;hbz(y)f* in Lemma 3.11
into the formf* o adQTMZ(LY), we observe that it fits the pattern of Proposition 2.9: Give
a gauge fieldp: M; — M in a Q-bundleM — M; and an infinitesimal gauge trans-
formation generated bgdo(Y), Y a vertical vector field of degree minus one, we can
canonically associate to these data: A Q-bundte-6 M., Q), a gauge field which is

a true section of the Q-bundle (i.e. indeed in the categoQ-ofanifolds), and a vertical
vector fieldY; hereM = T[UM, Q= Qrpy = d+ Lo, ¢ = f (atrue section due to Propo-
sition 3.3), andY = Ly. Using these identifications we can always, vice versa,verco
the primary data. The extended Q-bundle is quite specialeler: vector fields in the
gauge transformations have a very particular form, geedrayY = [y, d] for someY
living on M, and likewisely restricted is the holonomy groépe G of M. Sitill, in this
language, &-basic form onf translates into a function on the new filser= T[1]F
which is annihilated b¥ and [Qz, €] where agaire is of the particular formd, d] (for
somee living on # generating the holonomy as before).
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4 Some applications

4.1 The first evident example is a principal G-bundle o%r The corresponding Q-
bundle is provided by the anchor map E[1] — T[1]M of the associated Atiyah alge-
broid E, cf. examples (3) and (4) in paragraph 1.3. The holonomyba&yesg, the Lie
algebra ofG, and the fiber igj[1]. Using the isomorphisnW(g) ~ Q(g[1]) explained

in the previous section, we can easily see the isomorphidmees the space of basic
forms and symmetri&—invariant polynomials ony*, Q(a[1]), =~ S(g*)®: An element

of w € Q(g[1]), always has the form = Lwa, 4,06 A ... A dé%, if £ denote the
odd coordinates on[1], with w,, 4, being constant, completely symmetric, and adin-
variant (following from invariance w.r.t£., graded antisymmetry ab, and invariance
W.I.t. Lado(e), r€Spectively).

As explained before, a section pfis a connection in the princip&-bundle, and the
construction of characteristic classes in Theorem 3.10iegpo this particular case re-
produces the Chern-Weil map. Indeed, wkthdenoting the local curvature 2-forms, from
the aboveav one obtains

awal...apFal A...NF%®,

Likewise,s(t) of Eq. (3.15) specified to this case, gives the standardgrassion formula
in this example.

4.2 Equivariant cohomology and gauging of WZ-terms in sigma aigidA near-at-hand
extension of the Weil algebr@/(g) is the Weil model of equivariant cohomology. Let
G be a Lie group acting on a manifoldl andp: ¢ — D(M), D(M) = I'(TM), be
the corresponding Lie algebra action. The complex one l@ksC = W(g) ® Q(M),
equipped with the sum of the previously introducefilatiential onwW(g) and the de Rham
differential on the forms oM. In Q-language this is the space of functions /e :=
T[1](g[1] x M) and the diferential gives rise to a homological vector field on it, whiok
want to callQy. Theg-action is extended in a natural way to this complex. To dbscr
this in the language of section 2, we need a map fganto vector fields@(/\z) > X of
degree minus one such tredg,, (X) generates thg action. This is easy to find: Take an
elemente in the Lie algebra, it generates canonically a vector fieldedree minus one
on g[1] and thus (by lifting as a Lie derivative) also dijl]g[1]. Likewise p(€) gives a
vector field onM, its contraction,) is a degree minus one vector field fil] M. We
denote the sum of these two vector fieldsibyNow adg,, (i) = [Qw, i¢] is easily verified
to generate the canonical diagopgadction onC*(M,).

An elementa € C is called horizontal if, in the above language, it is anrtad byi,
for all e € g. If, in addition, it is alsog-invariant, i.e. also annihilated adg,,(i.), it is
called basic. The space of basic elementS is denoted byC, or by Q(M)g. Although
the spaceV(z is of the formT[1]( M) with M, = g[1] x M andthe homological vector
field Qw is nothing but the total dierential of the Chevalley-EilenbergftBrentialQcg ~
d, on g[1] extended trivially toM;, Qw = d + Lo, the notion of basic elements does
notagree with the one of Defintion 3.8. This, as we will see alsmare detail below, is
related to the last remark in the previous sectog;i. = L. + 1, is of the required form
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of a Lie derivative only orT [1]g[1], but not also oT [1] M.

The reason for this apparent discrepancy is that not all #te ldave been incorporated
properly into theQ-structure onMo; in particular, the representatiprentered only when
consideringe. This can be cured easily, however, and will lead us autaraklyito the
so-called Cartan model of equivariant conomology. Thedhitata give rise to an action
Lie algebroidE = M x g over M, p yielding its anchor map. The respective homological
vector field of M, := E[1] has the form

Q=p+ Qce (4.1)

where we interpreted as an element ig* x D(M), viewingg* as a linear and thus degree
one function ony[1]. For non-abeliany, the vector fielgp does not square to zero, but it
is easily verified thap? = —[Qcg, p], so that indeed)? = 02 Let us call the canonical lift
d+ Lo of Qto T[1] M, by Qc. SinceQ differs fromQce by the addition op and vertical
vector fields onl [1] M, — M, being contractions of vector fields coming from the base
always (super)commute, it follows immediately from (4.hgd_emma 3.5 that

Qw = exp(-) Qc expgy) .- (4.2)

In this more geometric picture we find that indeed the notibbasic above agrees with
Defintion 3.8:¢€ as before, we see that

i, (4.3)
adq,(ie) (4.4)

where for the first equality we made use @[] = e, = tp), Which in turn commutes
with «,, from which the second one follows immediately on obsendig, ) = [Qc, Lc].
Moreover, elements i€ = Q(E[1]) annihilated byL, are easily seen to be elements in
S'(g*) ® Q(M). On the other hand, the mapis equivariant and thus the respective ho-
mological vector fielg is g-invariant. This implies thaadg,, (i) commutes with expy),
which in addition to eq. (4.4) yields the equalifi4y,) = ado, (ic). Thus annihilation by
Lado(e) iImpliesg-invariance and basic fierential forms on the action Lie algebrdi1]
following Definition 3.8 correspond precisely to elememt$$ (g*) ® Q(M))®, which is
the Cartan model of equivariant cohomology.

This is now also the right language and departure point ferdiscussion of gaug-
ing of WZ-terms in sigma models (cf. also [4]). Let d-dimemsal “spacetime” be the
boundary ofN and consider the space of mapsN — M as (part of) the “fields” of the
sigma model. A WZ-term then is induced by a closed {formH on M, Sy X] =
fN X*H. G-invariance ofH yields Sy invariant under “rigid” G-transformations, but
not under “local” ones, i.e. where the transformation pagtars are permitted to vary
alongN. To capture this fact in the present framework, we ext¥ndivially to a map

exp(,) Le expe,)
expt,) Ladye EXPL)

8In local coordinatex', £2 on M, = M x g[1], one recognizes i) = £2p, — %gbgccgcaa, whereC;_ are
the structure constants gfin the basist, dual to£? andp, = p(£,), one recognizes the standard YM-type
BRST charge. Although not inspired by [8], the consideradiin this paragraph partially parallel, and
possibly also simplify and highlight, those of that paper.
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¢o: (T[1]N, Q4r) — (M, 0); the WZ-term then can also be written&gz[¢o] = fN foH,
wherefy = X.: T[1]N — T[1]M is the “field strength” ofgy. In this simple case the
chain map property of Proposition 3.3 reduces to the wellknéact that the pullback
mapX* commutes with the de Rhamftérential.

The above mentioned “local G-transformations” will now bew gauge transforma-
tions in the trivial Q-bundIler[1]N x M — T[1]N as discussed in section 2. Indeed,
the representatiop singles out a Lie subalgebrac D(M) of symmetries orM (there
are certainy no inner infinitesimal symmetries d, 0)); thus functions oM [1]N with
values in this Lie subalgebra of degree zero vector field8/ocan be used as a proper
replacement of the infinitesimal gauge Lie algesrg’ > X in this context. Its lift to the
field strengthgx f; = f7Lx (cf. Lemma 3.11), produces the correct transformation eNot
that nowyyg is considered as a section in the above trivial Q-bundle ¢dnsl extended
in a likewise manner to the trivial bundle); only like thig j@e can accomodate for the
N-dependence of the infinitesimal generaXoof the transformationsX = €%p,, in the
notation of the previous footnote, witt an arbitrary function omN. Clearly, Swz[¢o] is
not invariant under any such gauge transformation, since teederivative contains the
de Rham dierential onN and one obtaing LxH = de? A X*(,,H) + € X*(L,,H), where
only the second term vanishes by invariancéiof

To cure this one wants to introduce extra gauge field depéndens into the action
functional, i.e. terms depending on additiopatalued 1-formsA? on (the boundary of)
N. This is possible iH permits a G-equivariantly closed extensidncf. also [4]. In our
picture the resulting invariant action functional is noveg#o obtain: We simply replace
(M, 0) in all of the constructions above by the action Lie algabi]1] = M x g[1] with
its canonical dierential, eq. (4.1) now is a section in the trivial Q-bundlE[1]N x
E[1] — T[1]N andH extended trivially fromQ(E[1]) to a differential form on the total
Q-bundle (analogous to the caserbbefore). Gauge transformations are now inner right
away, they are generated by as described in the above Cartan-type model of equivariant
cohomology, tensored with functions on the base. Gaugeianee of f*H now follows
at once from the general result of Lemma 3.12. From Promosii3, moreover, it follows
immediately thatf*H is closed and thaf*H — f*H is exact; thus, the additional gauge
fields, corresponding to a degree preserving map fighjN to g[1], indeed need to be
defined over the boundary df only.

The formalism developed in this paper is certainly aimedsd enore general type of
gauge theories as those stemming from a structural Lie dgrkepn this paragraph. We
intend to make this kind of application more explicit elsendy focusing in the present
draft mainly on the issue of (generalized) characteridtisses?

4.3 Another application of the considerations of the previceisn is the following

°If one considerd as a “gauge field, itself, cf. the discussion at the end of the previous sectioa
gauge transformations become inner and this becomes abpase of eq. (2.9). However, the fiehd is
restricte to derive from the “field strength” of somg and it is also this perspective that now permits to
discuss the gauging of the WZ term in a concise manner.

10But cf. also [2, 21, 5], as well as the following paragrapheduso prepare grounds for characteristic
classes associated to “PQ"-bundles in the subsequentrpptad.7 below.
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Theorem 4.4 Let (S, w) be a symplectic Qp-manifold, p N+, as in example (3) of
paragraph 1.2, N §p + 2)-dimensional manifold with boundadN = X, andy a (degree
preserving) map from [IL]N to S. Then

fN o = SpKS? (4.5)

where %?C%Zis the (classical part of the) topological sigma model on(ihel)-dimensional
¥ obtained by the AKSZ-method [1].

If ¢ is a gauge field in the sense of this paper, i.e., being a dggeserving mapy has
degree zero, one obtains the classical part of the topabgation. Permitting all possi-
ble degrees of, one gets its BV extension, satisfying the classical BVierasquation,
i.e. squaring to zero w.r.t. the BV bracket. For= 1 the action reproduces the Poisson
sigma model [19, 7], fop = 2 one obtains the Courant sigma model [6, 16, 17]; the
formula above holds for arbitrary dimensions.

Before proving this, we make some general remarks on PQ{oldaiwith p > 0. This
is a Q-manifoldS equipped with a compatible symplectic forn of degree p, i.e. it
obeysL:.w = pw, where¢ is the Euler field which provides thg-grading onS. Non-
degeneracy of implies thatS has degree at mogt (if S has a nontrivial body, i.e. its
algebra of functions has degree zero elements, this bousldasnecessarily saturated);
since a lower-degree Q-manifold can also be considered a&gendrate Qp-manifold
for some higher p, we will follow the convention that PQ-nfatds of degree p imply
thatw has degree p. E.g. given a quadratic Lie algebra)( « denoting the adinvariant
scalar product, we will viewd[1], w), w ~ «, as a degree 2 PQ-manifold. For> 0 the
symplectic form is necessarily exact: By (3.5), one hge & pw, thusw = da, where
a = %wa. For any functiorh of degreeq on S we define its Hamiltonian vector field,

of degreeq — p by the formulaiyx,w = (—1)%dh. Then Hamiltonian vector fields satisfy
the known relations from the ungraded case:

[xhv Xhz] = Xinuho) » (4.6)

where{-, -} is the induced Poisson bracket of degrge Now, using the relations (3.6),
we can easily verify that compatibility @b with Q, Low = 0, implies thatQ is always
Hamiltonian:iqw = (-1)PdQ with the Hamiltonian functio® of degree p-1. We sum-
marize this in the following

Lemma 4.5 For a Qp-manifold with compatible sympectic forone has

_ _1 _ =P i qy
w=0da, a = png, Q=Xq, Q= p+1( 1P, 4.7)

where¢ is the Euler vector field o and the Hamiltoniar® of the homological vector
field Q satisfies the master equatigh Q} = 0.

This assumption will be kept without further mention.

18



The last statement follows from eq. (4.6) and the fact thgiasitive degrees the only
constant is zerod has degree + 1 and thugd@Q, Q} degreep + 2). From the above we
derive

Lemma 4.6 The following transgression formula holds:
(1P _1

= Qs (@), ¥=a+ =—|(1+
w = Qs (@) a=a 5 p(

1
n 1LQ) Lew . (4.8)

Proof. With Lemma 4.5 and eq. (3.9) we have exp = Qs explo)a. The |.h.s. of this
equation isw + (—1)PdQ, by defintion of the Hamiltonian fo® and the fact thatoiow
vanishes on behalf ¢&, Q} = 0. The master equation also implies th& € Q;:Q, from
which we now can derive easily the wished for transgresstomiila.o

Proof of Theorem 4.4

With Lemma 4.6 one obtaint‘'w = df*a, where the chain property Prop. 3.3 bhas
been used and the fact th@t is just the de Rham ffierential onN here. Using Stokes
theorem, we are thus left with showing th&ir indeed agrees with the AKSZ action
(where we can replacd by its boundaryz now). By means of the formulas (3.2), one
can convince oneself that for any 1-formon S one has

f*a = (LQT[l]ZQO* - go*LQS)a. (4.9)
Together with the first equation in (3.2) and the second eguuat (4.7), this implies
f*a = 1,0 + (-1)P0*(Q) , (4.10)

whereQrpz = dy has been used. This expression agrees precisely with thimoné in
[17] for the AKSZ sigma model, which thus completes the praof

4.7 Q-bundles with PQ-manifolds w) as fibers are natural candidates for a non-trivial
characterisitic class along the lines of Theorem 3.10. Assaw above, the symplec-
tic form w itself is closed w.r.t. the total fferentialQ.s on the fiber and for the holon-
omy groupg the Lie algebra of (all or a closed subset of the) Hamiltorvector fields

of negative degree lends itself naturally, singds then also basic w.r.z.*> A PQ-
bundle (a Q-bundle with PQ-fibers) thus carries a canonibafacteristic class. For
the Atiyah algebroid of a principab—bundle (cf. example (3) and (4) in paragraph
1.3) where the Lie algebraof G is equipped with a non-degenerate invariant symmet-
ric form, the corresponding PQ-bundle has a typical fifj@] together with a degree

p = 2 symplectic formw provided by the invariant metric. The canonical character-
istic class is nothing but the second Chern class (or the Rosttrjagin class) of the

2In fact, w is even exact within the compleR(S), Qrs), cf. Lemma 4.6 above; however, in general it
will fail to be exact within the restricted comple®(S)g, Qrs) of basic forms. This happens already for the
standard characteristic classes, paragraph 4.1 aboveg Wieeunrestricted cohomology, being isomorphic
to deRham cohomology on the Lie algebra, cf. Lemma 3.5, isoaisly trivial. It is also in this context
where Proposition 3.14 comes into play.
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principal G-bundle and the Theorem 4.4 simply gives the well-known lataiement:
“Second Chern form= d(Chern-Simons forn)’. For an arbitrary PQ-bundle over a
baseT[1]N for a smooth manifoldN one thus has a straightforward generalization of the
second Chern class, which iga+ 2 cohomology class for a degreeQP-fiber.

For example, in the case @f= 1 a typical fiberF is necessarily of the forii*[1]P for
some Poisson manifoldP({-,-}). Like any Q1l-manifold, the total space corresponds to a
Lie algebroidE living over some base manifold. Thus the Q-bundle has the form

E[1] T[1]N

M N

Tto

covering an ordinary bundig : M — N whose typical fiber i®. It can be shown that this
bundler, is a Hamiltonian Poisson fibration, i.e. the Lie algebra sthblonomy group
consist of Hamiltonian vector fields of the Poisson manifeldAs we will show in detall

in a separate note [10], the 3-form classithat one obtains in this way does not depend
on the chosen gauge fiejgt T[1]N — E[1]. Moreover, it constitutes an obstruction to
lifting the bundler, to one where the transition cocycle takes values in a grougswhie
algebraisC>(P),{-, -})—while the existence of a lift to the case of Hamiltoniandtions
moduloconstants is already guaranteed by the existence of thenQkdot coveringrny.

4.8 Suppose we are given a bungie M — N in the category of Q-manifolds which,
in general, imotlocally trivial. Let us denote b, (N) the ideal of all diterential forms
the order of which as a fferential form is greater or equal to one, andbyhe ideal in
Q(M) generated by the pullbagkQ, (N). Itis clear thatZ is closed with respect to both
differentials d andCq, and thus with respect to the totafi@irentialQ,,,. For each gauge
field p: N — M the corresponding map‘: Q(M) — C*(N) vanishes oY (this fact
was used in the proof of Lemma 3.12). Therefore we have a defiied chain map of
complexes

(QM)/T, Qra) = (C™(N). Q) . (4.11)

which induces a map in cohomology. The conditions of loguaidlity and gluing by use
of exp(G’)—valued transition cocycle used in the previous sectiongyav@atural chain
map of complexes

(Q(F)g, Qrr) = (QM)/L,Q1y), (4.12)

where¥ is the typical fiber ofp (Lemma 3.12), the composition of which with (4.11)
determines the characteristic map (3.11) in Theorem 3.10.

Let us consider an exact sequence of Lie algebras

0-bh—g->go— 0, (4.13)

20



which defines a locally non-trivial Q-bundfe g[1] — go[1] (we denote the induced pro-
jection by the same lettgy). The non-triviality means precisely that the exact segaen
(4.13) does not split in the category of Lie algebras; hecalltriviality would imply the
global one. The chain map (4.11) provided by a gauge f#eldy — g in these settings
induces a chain ma@ (h*) ® A*(g*) — A*(g;). Note that here we used a natural identifica-
tion induced by the embeddingt — g. This chain map, composed with the embedding
S(H)° — S(b*) ® A*(g*), gives nothing but the characteristic map of exact triges
Lie algebras of Lecomte [11]. For the definition 8f(h*)® one again makes use of the
embedding. It is this embedding that induces the proper replacemeft.aR).

The complete construction of the characteristic map of b&eoinvolves twistings
by representationsV(p) of go, such that the result is taking valueshti(go, V). In the
picture above we need to replaggandg with the semidirect producty = go <, V* and
§ = g %,0p V", respectively, which allows extending the sequence (4&aBpnically to:

O—>b—>§—p>§0—>0,

Applying the characteristic maf*(h*)¢ — H*(3o) and using the natural isomorphism
HY(30) = ®x:+1-qH (30, A'V), we immediately obtain the characteristic classes of heeo
taking values in all exterior powers of the representation

It may be interesting to find more general conditions for au@die (weaker than those
in Definition 2.8) providing an extended version of the magd 23 which includes simul-
taneously the construction of Theorem 3.11 and the Lecohdeacteristic classes.
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