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Abstract: A Q-manifold is a graded manifold endowed with a vector field of degree one squar-
ing to zero. We consider the notion of a Q-bundle, that is, a fiber bundle in the category of
Q-manifolds. To each homotopy class of “gauge fields” (sections in the category of graded man-
ifolds) and each cohomology class of a certain subcomplex offorms on the fiber we associate
a cohomology class on the base. Any principal bundle yielding canonically a Q-bundle, this
construction generalizes Chern-Weil classes. Novel examples include cohomology classes that
are locally the de Rham differential of the integrands of topological sigma models obtained by
the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a
characteristic 3-class in this manner. We also relate to equivariant cohomology and Lecomte’s
characteristic classes of exact sequences of Lie algebras.
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1 Introduction

1.1 The notion of a Q-manifold provides a general framework for studying gauge theo-
ries within the Batalin-Vilkovisky formalism [20]. It is particularly useful in the context
of topological sigma models [1]. A Q-manifold, also known asa differential-graded (dg)
manifold, is a graded manifoldM endowed with a degree one vector fieldQ which sat-
isfies the equation [Q,Q] ≡ 2Q2 = 0. Hereafter we suppose that the algebra of functions
onM is non-negatively graded, unless the contrary is stated. Wesay thatM is a Qp-
manifold, if the algebra of functions is locally generated in degree up to p.

1.2 Let us enumerate some basic examples of Q-manifolds appearing in the literature.

(1) A Lie algebrag considered as a purely odd manifold of degree one, denoted asg[1].
The algebra of functions is naturally isomorphic toΛ•g∗, the cochain complex ofg, and
the Q-field is nothing but the Chevalley-Eilenberg differential.

(2) A Lie algebroidE with the degree of fibers shifted by one, denoted asE[1]. The
algebra of functions is identified withΓ(Λ•E∗) and the Q-field is the canonical differen-
tial. Moreover, every Q1-manifold is necessarily of the form E[1] for a certain Lie alge-
broid [22]. In general, a homological vector field of degree one on an arbitrary graded
vector bundle determines anL∞−algebroid structure by use of multi-derived brackets,
cf., e.g., [23].

1e-mail address:Alexei.Kotov @ uni.lu
2e-mail address:Strobl @ math.univ-lyon1.fr
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(3) A PQ-manifold: This is a graded manifoldS supplied with a symplectic formω of
degree p and a functionQ of degree p+1, which obeys the equation of self-commutativity
with respect to the non-degenerate Poisson bracket determined byω. The Q-field is the
hamiltonian vector field ofQ.3

1.3 A morphism of Q-manifolds (Q-morphism) is a degree preserving mapφ, the pull-
back of which commutes with the corresponding homological vector fields, considered as
super derivations of functions, i.e. the following chain property holds:Q1φ

∗ = φ∗Q2. A
morphism of Q1-manifolds is nothing but the morphism of the corresponding Lie alge-
broids ([22]; cf. [2] for a proof of equivalence with the original definition of Lie algebroid
morphisms given in [14]). Given a smooth map of two manifoldsm: M → N, its push-
forward defines a Q-morphismm∗ : T[1]M → T[1]N of the tangent bundles, where a Q-
structure on the odd tangent bundle of a manifold is determined by the de Rham operator
regarded as a homological vector field by use of the identification C∞(T[1]M) ≃ Ω•(M).

Apparently, a composition of two Q-morphisms is again a Q-morphism, so there is a
well-defined category of Q-manifolds. A Q-bundle, afiber bundle in this category, is a
surjective morphism of the total space to the base of the bundle, satisfying an additional
requirement of local triviality: a bundle is built from direct products of local charts on the
base and a fixed fiber glued by a transition cocycle of “gauge transformations”—as will
be detailed further in section 2 below. By a “gauge field”ϕ in a Q-bundleπ : M → M1

we mean a section of the underlying bundle of graded manifolds. In general we do not
assume that a section is a Q-morphism! (The existence of sucha section imposes a certain
constraint on the bundle).

Some examples of these constructions are the following ones, with the third one pro-
viding the relation to ordinary gauge theories:

(1) The product of two Q-manifolds is again a Q-manifold and the projection to each
factor produces a (trivial) Q-bundle structure.

(2) A fiber bundlep: M → M1 determines a natural “non-linear” example of a Q-bundle
by use of the the push-forward map:p∗ : T[1]M → T[1]M1. Apparently, the push-
forward of any section ofp is a section ofp∗, which is, indeed, a morphism of the corre-
sponding Q-manifolds.

(3) Given a principal G-bundlep: P → M, we construct a Q-bundle in the following
way: As total space we take the quotient ofT[1]P/G, where the group action ofG on P
is lifted in the canonical way and the quotient byG can be considered as a bundle over
M. Using the push-forwardp∗ of p, on the other hand, we obtain a (degree-preserving)
map toT[1]M, the base of the Q-bundle. Both spaces are canonically equipped with
the de Rham differential (in the first case restricted toG-invariant differential forms on
P). This construction is known as the Atiyah algebroid ofP, which is a particular Lie
algebroid (T[1]P is obviously a degree oneQ-manifold). A connection inP provides a
lift of tangent vectors onM to tangent vectors ofP; by its equivariance w.r.t. theG-action
this corresponds precisely to a bundle mapϕ : T M → T P/G, i.e. a section of the bundle

3For p > 1 a PQ-manifold isequivalentto a Q-manifold with compatible degree p symplectic form [18].
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p∗ : T[1]P/G → T[1]M. As we will see in detail in section 2 below, the connection is
flat, iff ϕ is a Q-morphism.

(4) A transitive Lie algebroidE → M, in generalization of an Atiyah algebroid: By
definition this is a Lie algebroid with surjective anchorρ, yielding the short exact sequence

0→ g→ E
ρ
→ T M→ 0 , (1.1)

whereg is a bundle of Lie algebras defined by the kernel ofρ. We restrict to the case
that any of the fibers kerρ is isomorphic to a single Lie algebrag.4. This then yields a
Q-bundleρ : E[1] → T[1]M with typical fiberg[1]. Note that sinceρ is a morphism
of Lie algebroids, the projection is a Q-morphism. In this particular case, a gauge field
ϕ : T[1]M → E[1] is a splitting of the exact sequence of Lie algebroids (1.1). It is
sometimes also called a “connection” of the transitive Lie algebroidE, in generalization
of the previous example, and called “flat” in a situation whenϕ is a Q-morphism.

(5) An exact sequence of Lie algebras—cf. example (1) of paragraph 1.2—is a Q-(fiber)-
bundle (as defined above) only in the case when it is isomorphic to a direct sum of Lie
algebras. We will address this situation at the end of the paper.

(6) More generally than examples (2) - (5), one can consider an exact sequence of Lie
algebroids, covering an ordinary fiber bundle; if the total Lie algebroid splits locally into
a direct product of fiber and base Lie algebroids, it fits into the definition of Q1-bundles
above. We will study particular examples of this, where the fibers are some given PQ-
manifold and the base a tangent Lie algebroid, considering applications in section 4 below.

1.4 For an arbitrary degree preserving map of Q-manifoldsϕ : M1 →M2 the difference
F := Q1ϕ

∗ − ϕ∗Q2, which we call the “field strength” ifϕ is a (coarse-grained) section
of a Q-bundleM2 → M1, is non-vanishing in general. It is a degree one derivation of
functions on the target taking values in functions on the source

F : C∞(M2)→ C∞(M1) , (1.2)

for which the following Leibnitz-type property holds:

F(gh) = F(g)ϕ∗(h) + (−1)deg(g)ϕ∗(g)F(h) , ∀g,h ∈ C∞(M2) . (1.3)

ThereforeF can be identified with a degree one section of the pull-back bundleϕ∗(TM2)
overM1 or, as is equivalent, with a degree preserving mapf : M1→ T[1]M2 coveringϕ,
as will be further detailed in section 3 below. The graded manifold T[1]M, whereM is a
Q-manifold, is a double Q-manifold (or a double Q-algebroid, cf. [13, 24]), i.e. it admits
a pair of anti-commuting homological vector fields. It will turn out, cf. Proposition 3.3
below, thatf is a Q-morphism ifT[1]M2 is endowed with the sum of two canonical Q-
structures as differential. Note that in contrast to the Leibnitz property (1.3) of F, the map
f ∗ : C∞(T[1]M2) → C∞(M1) defines a morphism of algebras, and thus, being a chain
map, also a map in cohomologies.

4Note that even under this assumption not every transitive Lie algebroid comes from a principal bundle.
Only if this Lie algeroid can be integrated to a Lie groupoid,this is the case.
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Using the Bernstein-Leites sign convention, functions onT[1]M can be identified with
differential forms onM. Given a trivialization of a Q-bundle over some open cover of
the base, we can always identify a section with a family of degree preserving maps from
the local charts to the fiber, which are related by the transition transformations on double
overlaps. By means of the pullback of the above map f, we obtain a family of chain maps
acting from the total complex of differential forms on the fiber to the complex of functions
on the open charts, which are different in general on double overlaps. However, applying
the collection of chain maps to a differential form on the fiber, which is invariant with
respect to the gluing transition functions (or, equivalently, the “gauge transformations”)—
we will call such formsbasic—, we obtain a well-defined cocycle on the whole base. This
thus provides a map from the cohomology of basic forms on the fiber to the cohomology
of forms on the base, cf. Theorem 3.10 below. The construction will be seen to generalize
the Chern-Weil formalism of characteristic classes associated to principal bundles.

1.5 Some brief remark on our notation and nomenclature: As we recalled above, a con-
nection in a principal bundleP is in bijection to a splitting in (1.1) of the corresponding
Atiyah algebroidE → M, or, what is the same, a (globally well-defined) sectionϕ (in
the coarse-grained sense) of a likewise Q-bundleρ : E[1] → T[1]M. The mapf above
can be seen to generalize the curvature of that connection onP, moreover. Since, on the
other hand, on a Q-bundleπ : M → M1 one can also discuss (super-) connections and
curvatures, we refrained from calling such mapsϕ and f as (generalized) connections and
curvatures, respectively. Instead we thus prefer a physicsoriented nomenclature in this
context, callingϕs “gauge fields” andf s “field strengths”; in the context ofP, they locally
are represented by (Lie algebra valued) 1-forms and 2-formsA andF ∼ FA, respectively.
Note that in a more general situationϕmay correspond to a collection of differential forms
of different degrees, or, whenM1 is not the shifted tangent bundle of some manifold, even
not to differential forms at all.

“Gauge transformations” or “gauge symmetries” will turn out to be related also to
vertical automorphisms of the Q-bundle (vertical automorphisms of a principal bundle
give rise to anchor preserving automorphisms of the Atiyah algebroid), but in general it
will be useful to consider only a subset of the latter ones forgluing transformations.

1.6 The paper is organized as follows. In section 2 we discuss theappropriate notion of
gauge transformations, generalizing [2], for a Q-bundle and describe their action on the
space of gauge fields.

In section 3 we prove the chain property of the mapf , defined above, and show that the
Weil algebra model of characteristic classes is a particular case of our construction. Here
we slightly adapt the notion of a basic form, looking at the action of gauge symmetries
on f , and complete the construction of characteristic classes associated to a section of a
Q-bundle. We also prove the obtained cohomological classesare homotopical invariants
of such sections.

In section 4 we explain a possible construction of characteristic classes whose cocy-
cles turn out to be locally represented by integrands of the (classical part of) topologi-
cal AKSZ-type sigma models. In the case of Hamiltonian Poisson fibrations, the typical
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fiber being a Poisson manifold, one obtains a 3-class in de Rham cohomology on the base
manifold, which, locally, agrees with the original construction of (the integrand of) the
Poisson sigma model in [19]. In section 4 we also address the gauging of Wess-Zumino
terms, its relation to equivariant cohomology, and the characteristic classes of [11] within
the present framework.

2 Q-bundles and gauge symmetries

2.1 In order to explain the notion of gauge fields and gauge symmetries, we start with a
simple example ofg−valued 1-forms on a smooth manifoldM, whereg is a Lie algebra.
GivenA ∈ Ω1(M, g), interpreted as a connection in a trivial bundleM ×G, Lie(G)= g, we
look at its curvature:

FA := dA+
1
2

[A,A] . (2.1)

The group ofG−valued functions onM is acting on connections by:Ag = g−1dg +
Adg−1(A), whereg−1dg is the pull-back byg of the (left) Maurer-Cartan form on the Lie
group and Ad is the adjoint action. The above transformations correspond to vertical
automorphisms of the trivial bundle and are called gauge transformations in the physics
literature. Their infinitesimal version is goverend by ag−valued functionǫ:

δǫA :=
d
dt

Aexp(tǫ) |t=0= dǫ + [A, ǫ] . (2.2)

The condition of flatness,FA = 0, can be also regarded as Maurer-Cartan equation forA.

2.2 Let us adapt this example to the language of dg or Q-manifolds. As we already know,
a Lie algebra can be treated as a Q-manifoldg[1], such that the algebra of functions be-
comes isomorphic toΛ(g∗) with the Q-field given by the Chevalley-Eilenberg differential:

dg(α)(η, η′) = −α([η, η′]) (2.3)

whereα ∈ g∗ andη, η′ ∈ g. The product ofT[1]M andg[1] is again a Q-manifold, the
Q-structure of which is given by the sum of de Rham and Chevalley-Eilenberg derivations
extended to the product in the standard way. Ag−valued 1-form onM can be thought of
as a degree preserving mapϕ : T[1]M → g[1] and its graph as a section of the bundle

T[1]M × g[1] → T[1]M . (2.4)

The pull-back ofϕ is acting as follows: for eachω ∈ Ω(M), α ∈ Λp(g∗) one has

ϕ∗(α ⊗ω) = α( A ∧, . . . ∧, A︸        ︷︷        ︸
p times

) ∧ ω .

Any g−valued functionǫ, acting by the contractionιǫ onΩ(M)⊗Λ(g∗), can be considered
as a super-derivation of degree -1, which super-commutes withΩ(M). The last property
implies that it can be identified with a vertical vector field on the total space of (2.4).
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Proposition 2.3 The following identity holds for eachω ∈ Ω(M) andα ∈ Λp(g∗):

(
dϕ∗ − ϕ∗ (d+ dg)

)
(α ⊗ ω) =

∑

k

(−1)k+1α( A ∧, . . . ∧,

k︷︸︸︷
FA

∧, . . . ∧, A) ∧ ω, (2.5)

ϕ∗Lǫ (α ⊗ ω) =
∑

k

α( A, ∧, . . . ∧,

k︷︸︸︷
δǫA ∧, . . . ∧, A) ∧ ω , (2.6)

where Lǫ is the Lie derivative alongǫ, defined as the super-commutator[Q, ιǫ ] andδǫA is
given by formula (2.2) above.

Proof. Straightforward calculations.�

Note that, instead of thinking of an infinitesimal gauge transformation as a flow on the
space of connections, we define a vector field on the total space of (2.4), the action of
which on the space of connections, regarded as sections of (2.4), can be naturally induced.
One may wonder why, thoughA is extended as a morphism of graded manifolds, its
infinitesimal variation is extended (by the Leibnitz rule) as a derivation. Indeed, it is a
general fact, adapted to the graded case, that the space of infinitesimal variations (the
tangent space) of a smooth mapψ : M → N can be identified with the space of sections of
the pullback bundleψ∗(T N) or, equivalently, with the space of derivationsδ : C∞(N) →
C∞(M) coveringψ:

δ(hh′) = δ(h)ψ∗(h′) + (−1)deg(δ) deg(h)ψ∗(h)δ(h′)

for any h,h′ ∈ C∞(N). As it is clear from (2.5), the curvatureFA is the only obstruction
for A to be a Q-morphism;A gives a flat connection,FA = 0, iff the corresponding section
ϕ : T[1]M → T[1]M × g[1] is a Q-morphism.

2.4 It is evident how to generalize the picture described above for connections in a non-
trivial vector bundle or its associated principal bundleP: For this purpose we return to
example (3) in paragraph 1.3 above, replacing the trivial Q-bundle (2.4) by its Atiyah
algebroidE, i.e. by

ρ : E[1] → T[1]M , (2.7)

whereE = T P/G andρ = p∗ denotes the anchor map. Then a connection becomes
a section of (2.7). An infinitesimal gauge transformation a Lie derivative with respect
to some section ofE lying in the kernel ofρ. The space of such sections is in one-
to-one correspondence with the space of vertical vector fields of degree minus one on
the Q-bundleE[1] → T[1]M; the correspondence is given by the contraction,ιǫ for
any ǫ ∈ Γ(E) can be regarded as a vector field onE[1]. The gauge transformations are
thus generated byLǫ ≡ [Q, ιǫ ], whereǫ ∈ Γ(kerρ) or, equivalently,ρ∗ιǫ = 0. Elements
α⊗ω ∈ Λp(g∗)⊗Ω(M), used in Proposition 2.3 above now generalize merely to functions
on E[1].

2.5 Now we can describe a general Q-bundle, its gauge transformations and fields. The
Lie super-algebra of vector fields onM, denoted asD(M) = ⊕kD

k(M), is a differential
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graded Lie algebra, the differential of which is given by the adjoint action ofQ: adQ(X) :=
[Q,X] for X ∈ D(M). Indeed, sinceQ satisfies the “master equation” [Q,Q] = 0, its
double commutator with any vector field vanishes: by the super Jacobi identity one has

ad2
Q(X) = [Q, [Q,X]] =

1
2

[[Q,Q],X] ≡ 0 .

We call a vector fieldX ∈ D0(M) commuting withQ aninfinitesimal symmetry, or simply
symmetry, of a Q-manifold and a degree zero vector field, which is a commutator ofQ
with some other vector field, aninner derivationor inner (infinitesimal) symmetry. In
the case of a Lie algebrag[1] this agrees with the usual nomenclature, whereas in the
case ofT[1]M e.g. all symmetries are inner in this sense and correspond tovector fields,
i.e. (infinitesimal) diffeomorphisms. By definition, infinitesimal symmetries and inner
derivations are cocycles and coboundaries in (D(M),adQ), respectively. The inclusion
“coboundaries⊂ cocycles” implies that all inner derivations are infinitesimal symmetries
of a Q-manifold. The following identity follows from the super Jacobi identity and the
nilpotency ofadQ:

[adQ(X),adQ(X′)] = adQ
(
[X,X′ ]Q

)
, (2.8)

where [X,X′ ]Q := (−1)degX+1[adQ(X),X′] ≡ [[X,Q],X′ ] is known in mathematics as the
derived bracket [9]. The space of vector fields supplied withthe derived bracket is an
example of a Loday algebra. Note that the derived bracket between two vector fields
is not (super) skew-symmetric, unless the vector fields are super-commuting. Obviously,
vector fields of degree minus one are closed with respect to the derived bracket. Moreover,
as is clear from (2.8), but also can be verified directly, its image byadQ is a (super)Lie
subalgebra inD0(M).

Definition 2.6 A subgroup H of degree preserving maps is called a subgroup ofauto-
morphisms (respectively, inner automorphisms), if its Liealgebra consists of infinitesimal
symmetries (respectively, inner infinitesimal symmetries).

Before writing the general definition, let us examine once more the trivial example, which
is a brick underlying a global design. SupposeM = N × F is a product of two Q-
manifoldsN andF andπ : M→ N is a bundle given by the projection to the first factor.
It is obvious that the space of vertical vector fields can be identified with sections of the
pull-back ofTF w.r.t. the second projection.

Proposition 2.7 LetG be a graded Lie subalgebra of vector fields onF , closed under the
derived bracket. Then the space of functions onN taking values inG is a Lie subalgebra
of vertical vector fields closed under the derived bracket onthe total spaceN × F .

Proof. Let us take an arbitraryY ∈ C∞(N ,G), which can always be written as a linear
combinationY =

∑
j b jYj, whereb j are functions on the base andYj ∈ G. Then the inner

derivative generated byY on the total space is

adQ(Y) = [Q1 +Q2,Y] =
∑

j

Q1(b
j)Yj + (−1)deg(b j)b jadQ2(Yj) . (2.9)
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For anyX =
∑

i aiXi , its derived bracket withY is again a function taking values inG:

[X,Y]Q =
∑

i, j

(−1)deg(Xi )+deg(ai )+1
(
[Q1(ai)Xi + (−1)deg(ai)aiadQ2(Xi),b jYj]

)
=

∑

i, j

(
(−1)deg(ai )+deg(Xi )(deg(b j)+1)+1Q1(ai)b j[Xi,Yj ] + (−1)(deg(Xi )+1) deg(b j)aib j [Xi,Yj ]Q

)
,

which implies thatG is a Loday algebra with respect to the total Q-structure.�

Let us use the notation for the following Lie algebra of vector fields on the total space:

G′ := adQ (C∞(N ,G)) ∩ D0(N ×F ) . (2.10)

Is is not a surprise for us thatG′ consists of vertical vector fields. Indeed, suppose we
are givenX ∈ G′, then there exists some elementǫ ∈ G such thatX = [Q, ǫ]. Both of
two vector fields in the commutator areπ−projectable, sinceπ∗(Q) = Q1 andπ∗(ǫ) =
0, thusπ∗(X) = 0. It well-known that exponentiating a vertical vector field(at least
locally), we obtain a fiber-wisely acting automorphism, i.e. an automorphismΨ satisfying
π ◦ Ψ = π. Apparently, the set of fiber-wisely acting automorphisms is a subgroup of all
automorphisms of a bundle and a composition ofΨwith any section ofπ is again a section.
In this way we can now return to the general, nontrivial bundle situation, formulating the
following

Definition 2.8 A Q-bundleπ : M → M1 with typical fiberF and a holonomy algebra
G ⊂ D<0(F ) (a chosen graded Lie subalgebra of vector fields onF , closed under the de-
rived bracket) is a surjective Q-morphism, satisfying the local triviality condition: there
exists an open cover{Ui} ofM1 such that the restriction ofπ to eachUi admits a trivial-
izationπ−1(Ui) ≃ Ui × F in the category of Q-manifolds and this trivialization is glued
overUi ∩ U j by inner automorphisms which belong toexp(G′) whereG′ is as in (2.10)
withN = Ui ∩U j.
A gauge field is a section ofπ in the category of graded manifolds, that is, a degree
preserving mapϕ : M1 → M which obeysπ ◦ ϕ = Id. A gauge transformation (an
infinitesimal gauge transformation) is a fiber-wisely acting inner automorphism (vertical
inner derivation) of the total space ofπ.

Concatenating a section with a vertical automorphism of thetotal space, one obtains an
action of the group of gauge transformations on the space of sections. In generalization
of (2.6) one then has

Proposition 2.9 Given a gauge fieldϕ and an infinitesimal gauge transformation X=
adQ(Y), the variation ofϕ along X can be identified with the derivation(δXϕ)∗ := ϕ∗X
coveringϕ.

3 Field strength and characteristic classes

3.1 The obvious role of curvature arises from the fact that it canbe regarded as an ob-
struction for a map to satisfy the Maurer-Cartan equation: this motivating example was
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considered in the previous section. In the case of general Q-manifolds, the set of maps
between them does not admit a vector space structure any more, so rather than using the
language of Lie brackets, we dealt with differential graded algebras as a more general
tool. We have also stressed earlier that the Maurer-Cartan (or zero curvature) equation is
a particular example of the chain propertyQ1ϕ

∗ − ϕ∗Q2 = 0. The operator [2]

F := Q1ϕ
∗ − ϕ∗Q2 , (3.1)

calledthe field strength, being a replacement of the curvature, is a degree one derivation of
functions on the target manifoldM2 taking values in functions in the source manifoldM1

and coveringϕ∗. (Hereϕ : M1 →M2 is a morphism of graded manifolds, corresponding
to a gauge field in a trivial bundle. In the case of a non-trivial bundle,M2 =M, the total
space of a Q-bundleπ : M→M1, and the gauge fieldϕ satisfiesπ◦ϕ = Id.) We have ev-
idence, for instance from the Yang-Mills theory, that the curvature is a meaningful object
itself, so one can expect a similar importance of the “field strength”.5 It is advantageous
to reformulate the operator (3.1) somewhat, so that the Leibnitz-property (1.3) is replaced
by a morphism of algebras (appropriate polynomials should go into polynomials of field
strengths). To this end we regard the following non-commuting diagram,

T[1]M1
ϕ∗- T[1]M2

M1

Q1

6

ϕ
- M2

Q2

6

where the homological vector fields are considered as maps and, being of degree one, the
tangent bundle was shifted in degree so that the maps are morphisms of graded manifolds.
Now one notes that both ways fromM1 to T[1]M2 end in the same fiber overM2; thus it
is meaningful to define the differencef : ϕ∗ ◦Q1 − Q2 ◦ ϕ, coveringϕ

T[1]M2

M1
ϕ

-

f

-

M2

?

It is easy to convince oneself that for any functionh ∈ C∞(M2) and anyα, β ∈ C∞(T[1]M2)
one has

f ∗(h) = ϕ∗(h) , f ∗(dh) = F(h) , f ∗(αβ) = f ∗(α) f ∗(β) . (3.2)

We shall see below thatf is a Q-morphism, ifT[1]M2 is endowed with a suitable Q-
structure.

5This idea was implemented e.g. in [21].
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3.2 For any graded manifoldM, the algebra of functions onT[1]M admits a simple
description as the algebra of super differential formsΩ(M) (according to the Bernstein-
Leites sign convention [12]). More precisely, the algebra of forms is generated byh and
dh for all functionsh with the following relations:

h dh′ = (−1)deg(h)(deg(h′)+1)dh′ h , d(hh′) = dh h′ + (−1)deg(h)hdh′ . (3.3)

This algebra is naturally bi-graded by degrees of functionsand orders of forms, such that
d, the super-version of the de Rham differential, becomes a (nilpotent) operator of degree
zero with respect to the first grading and of degree one with respect to the second grading.
The super-commutativity relations are subordinated to thetotal grading which is the sum
of the two. A vector fieldX of degreep gives a contraction of degreep − 1 acting as
follows:

ιX ( f dh) = (−1)deg(f )(deg(X)+1) f X(h) . (3.4)

The super Lie derivative alongX, an operator of degree p, is defined as the commutator

LX := ιXd+ (−1)deg(X)dιX . (3.5)

By construction,LX super-commutes with the de Rham differential and agrees with the
action of vector fields on functions,LX( f ) = X( f ). Furthermore, one can also check that
the Lie derivative respects the super-Lie algebra of vectorfields, generalizing the formulas
for even manifolds, such that the following identities hold:

[LX,LY] = L[X,Y] , [LX, ιY] = ι[X,Y] . (3.6)

In particular, ifQ is a homological vector field, we immediately obtain that6

[d,LQ] = [LQ,LQ] = 0 . (3.7)

As a corollary we conclude that the total space ofT[1]M for a Q-manifoldM is a bi-
graded manifold supplied with a couple of super-commuting Q-structures which are of
degree one w.r.t. the first and the second gradings, respectively. Let us denote the total
differential asQTM = d+ LQ.

Proposition 3.3 The map f: M1 → T[1]M2 is a Q-morphism w.r.t. the total Q-structure
on the target, that is, the following chain property holds:

Q1 f ∗ − f ∗QTM2
= 0 . (3.8)

Proof. Taking into account that the l.h.s. of the equation is alwaysa derivation, it is suf-
ficient to apply it on generators of the algebra of forms (on functions and exact 1-forms).
Using Eqs. (3.2) it is then easy to complete the proof.�

6In Eq. (3.6) the brackets indicategradedcommutators. For an odd vector fieldQ the following equa-
tions are thusanticommutators, the de Rham differential d anticommutes with the Lie derivativeLQ.
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3.4 There exists also a conceptually more enlightening proof ofthe previous proposition.
In fact it is easy to convince oneself that except forϕ all the arrows in the first diagram
above are morphisms of Q-manifolds, if we equip the tangent bundles with the respective
de Rham differentials. Now the mapf : M1 → T[1]M2 differs from the (in this sense)
Q-morhpismϕ∗ ◦ Q1 by a substraction along the tangent fibers by the respective “value”
of Q2. This substraction corresponds to exp(ιQ2), a diffeomorphism ofM2 generated by
the (inT[1]M2 vertical) vector fieldιQ2, as one can most easily verify on local coordinate
functions. Correspondingly, the new map, which is ourf , will remain a chain map, if
the de Rham differential is twisted/conjugated by exp(ιQ2). We summarize this in the
following

Lemma 3.5 The field strength f: M1 → T[1]M of a gauge fieldϕ : M1 → M can be
defined by the formula f= exp(ιQ) ◦ ϕ∗ ◦ Q1. It is a Q-morphism w.r.t.

QTM ≡ d+ LQ = exp(ιQ) d exp(−ιQ) , (3.9)

We remark thatιQ does not square to zero sinceQ is odd; still the last equality follows
easily from the general formula exp(A) B exp(−A) = exp(adA) B (valid for operatorsA
andB that are not both odd) together with (3.6) and [Q,Q] = 0.

3.6 A natural example of the chain map property off is provided by the Weil algebra. It
is well-known that, if one has a graded morphism fromΛ(g∗) of a Lie algebrag to some
differential graded commutative algebraA, which is not necessarily a chain map, we can
always extend it as a chain map, acting from the Weil algebraW(g) = S•(g∗) ⊗ Λ(g∗) to
A. The construction is working as follows: given a graded morphismΛ(g∗) → A, we
identify it with someA which belongs to the dg Lie algebraA ⊗ g, where the differential
and the bracket are extended by linearity:

d(α ⊗ X) := dα ⊗ X , [α ⊗ X, β ⊗ Y] := αβ ⊗ [X,Y]

for anyα, β ∈ A andX,Y ∈ g. DefiningFA := dA + 1
2[A,A] (we recognize the curvature

of a connection in a trivial bundle as a particular example),the required mapW(g) → A
is

Φ ⊗ω 7→ Φ( FA, . . . ,FA︸       ︷︷       ︸
q times

)ω( A, . . . ,A︸   ︷︷   ︸
p times

) , Φ ∈ Sq(g∗) , ω ∈ Λp(g∗) . (3.10)

One can easily check that the grading and differential in the Weil algebra are chosen in
such a way that it becomes isomorphic toΩ(g[1]) supplied with the above total differen-
tial. Furthermore, the chain map described above is nothingbut our mapf , if M2 = g[1]
andA = C∞(M1).7

3.7 LetG be a graded Lie subalgebra of vector fields of negative degreeon a Q-manifold
(M,Q) which is closed under the derived bracket.

7In fact, the statement in Proposition 3.3 can be easily adapted to the situation whereC∞(Mi) are
replaced by arbitrary differential graded commutative super algebras andϕ (or betterϕ∗) by an arbitrary
degree preserving morphism.
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Definition 3.8 A differential formω ∈ Ω(M) is called a (generalized)G-basic form, if
Lǫ(ω) = 0 = LadQ(ǫ)(ω) for eachǫ ∈ G. We denote the space ofG-basic forms asΩ(M)G.

Ω(M)G is a graded commutative algebra, which is stable with respect to both differentials:
The product of two such forms is again aG-basic form. The Lie derivative commutes
with the de Rham operator, so the space is invariant with respect to d. Furthermore, by
the identities (3.6), one has [LQ,Lǫ ] = LadQ(ǫ) and [LQ,LadQ(ǫ)] = 0, thusΩ(M)G is also
closed with respect toLQ.

3.9 Now we apply this machinery in a rather straightforward way for the construction of
characteristic classes associated to any section (gauge field) of a Q-bundle.

Theorem 3.10 Letπ : M→ N be a Q-bundle with a typical fiberF , a holonomy algebra
G, andϕ a section ofπ (in the graded sense)—cf. Definition 2.8. Then there is a well-
defined map in cohomology

Hp(Ω(F )G,QTF )→ Hp(C∞(N),QN) , (3.11)

which does not depend on homotopies ofϕ.

Lemma 3.11 Let (M1,Q1) and (M2,Q2) be Q-manifolds,ϕ a morphismM1 → M2

of the underlying graded manifolds, and Y a vector field onM2 of degree minus one,
generating the inner derivation X= adQ2(Y). Then the induced variation—the induced
infinitesimal gauge transformation—of f∗ : Ω(M2)→ C∞(M1) is given by:δX f ∗ = f ∗LX.

Proof. Since f ∗ is a degree preserving map, its variation w.r.t. an infinitesimal flow, gen-
erated by a degree zero vector field, is a degree preserving derivation abovef ∗. Thus it is
sufficient to check the identity on functionsh and exact 1-forms dh overM2. For the first
part we can use Proposition 2.9, sincef ∗(h) = a∗(h). Likewisely, using this proposition
and eqs. (3.2), we find:

δX f ∗dh = δXF(h) = Q1δXϕ
∗(h) − δXϕ

∗Q2(h) = Q1ϕ
∗X(h) − ϕ∗XQ2(h) .

But, as an inner derivation,X = adQ2(Y) commutes withQ2. Thus,δX f ∗(dh) = FLX( f ) =
f ∗LX(d f ), which concludes the proof.�

Lemma 3.12 Let ω ∈ Ω(M2)G, G vector fields onM2 closed w.r.t. the Lie and the
derived bracket, andω′ be its trivial extension to the total space ofπ : M1 × M2 →

M1. Then f∗(ω′) is invariant under the action ofexp(G′) on sections, whereG′ :=
adQ (C∞(M1,G)) ∩ D0(M1 ×M2). (ϕ : M1 →M1 ×M2, Q ≡ Q1 + Q2).

Proof. Let us replace the target manifoldM2 in Lemma 3.11 by the total spaceM =

M1 ×M2 and an arbitrary graded morphismϕ with a section ofπ. Suppose we are given
an infinitesimal gauge transformationX = adQ(Y). Applying Lemma 3.11 to the variation
of f ∗ alongX and formula (2.9), we obtain:

δX f ∗ω′ = f ∗LadQ(Y)ω
′ =

∑

j

f ∗
(
LQ1(b j)Yj + (−1)deg(b j )Lb jadQ2(Yj )

)
ω′ . (3.12)
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We are left to prove thatf ∗Lhvω
′ = 0 for eachh ∈ C∞(M1) of degree q andv ∈ Dp(M2)

which obeysLvω
′ = 0: By the definition of Lie derivative,

Lhvω
′ =

(
ιhvd+ (−1)p+qdιhv

)
ω′ =

(
(−1)p+qdh∧ ιv + hLv

)
ω′ = (−1)p+qdh∧ ιvω′ .

On the other hand, for any sectionϕ its field strengthF is a vertical derivation:

F(h) = Q1ϕ
∗π∗(h) − ϕ∗(Q1 + Q2)π∗(h) = 0 , ∀h ∈ C∞(M1) ,

sinceπϕ ≡ Id andQπ∗ = π∗Q1. With this equation and (3.2) we then indeed obtain

f ∗Lhvω
′ = (−1)p+q f ∗

(
dh∧ ιvω′

)
= (−1)p+qF(h) f ∗(ιvω′) ≡ 0 .

�

Proof of Theorem 3.10

Let us fix a trivialization ofπ over an open coverUi. Suppose we are given a section
ϕ, then there is a family of sectionsϕi overUi which are the restrictions ofϕ. Applying
f ∗i to each trivial extensionω′i of ω to Ui × F , we obtain a family ofQ1-cocycles in
C∞(Ui), denoted as chari(ω). Taking into account that the trivialization is glued by a
transition cocycle of gauge transformations belonging to exp(G′)—cf. definition 2.8—,
ϕi andϕ j are related by a gauge transformation; thus, applying Lemma3.12, we obtain
chari(ω) = charj(ω) overUi ∩U j. Thus one has a globalQ1−cocycle char(ω), such that
chari(ω) is its restriction toUi.

It remains to prove that ifϕ(t), t ∈ [0,1], is a smooth family of sections, then the coho-
mology class of the corresponding char(ω)(t) does not change. For this purpose we use
the same argument as for the usual Chern-Weil formalism. A family of sectionsϕ(t) can
be thought of as a section ˜ϕ of the following extension ofπ:

π̃ : M× T[1]I → N × T[1]I , I = [0,1] .

By construction, for any functionh on the total space of ˜π, written ash = h0+dt h1, where
hi ∈ C∞(M× I ), the pull-back with respect to ˜ϕ is ϕ̃∗h = ϕ∗(t)h0 + dt ϕ∗(t)h1. The new
field strength operator is̃F = F(t)+ dt ∂tϕ

∗(t). Applying the corresponding characteristic
map toω, we obtain a cocycle onN × T[1]I , which decomposes as follows:

c̃har(ω) = char(ω)(t) + dt β . (3.13)

Using the closedness with respect toQN + dI , we immediately get the identity

∂tchar(ω)(t) = QNβ(t) , (3.14)

which implies the invariance of characteristic classes in cohomology:

char(ω)(1)− char(ω)(0) = QN

1∫

0

dt β(t) .

13



This completes the proof of Theorem 3.10.�
For some purposes like the construction of secondary characteristic classes, it may be

useful to display the transgressionβ(t) explicitely. If qα denote (local) graded coordinates
on the fiberF , and on the chartUi we use the notationϕi(t)∗(qα) =: Aα(t) and fi(t)∗(qα) =:
Fα(t), denoting the corresponding tower of gauge fields and field strengths, then forω =
1
p!ωα1...αp(x)dxα1 ∧ . . . ∧ dxαp one finds

β(t)|Ui =
1

(p− 1)!
ϕi(t)∗

(
ωα1...αp

)
∂t (Aα1(t)) ∧ Fα2(t) ∧ . . . ∧ Fαp(t) (3.15)

Note that ifF is a Qk-manifold andN = T[1]Σ, then Aαs are in general a tower of
differential forms of degree zero up to degreek (and likewiseFαs differential forms of
degree one up to degreek + 1). Also, in generalωα1...αp will depend onxα and thus its
pullback byϕi(t)∗ produce a function in the gauge fields. Clearly, by construction, β(t) is
well-defined globally on the baseN.

3.13 By use of Theorem 3.10 we associate a characteristic class toeach gauge field and
cohomology class of the subcomplex (Ω(F)G,QTF ) of G−invariant forms on the fiber.

Proposition 3.14 Suppose c belongs to the kernel in cohomology of the canonical map
(Ω(F)G,QTF ) → (Ω(F),QTF ). Then the corresponding characteristic class is trivial for
any trivial Q-bundleM→ N.

Proof. If the Q-bundle is trivial, then there exists a projection ofthe total space to the fiber
pF : M → F which is a Q-morphism. The corresponding characteristic class attached
to a gauge fieldϕ, which is nothing butf ∗p∗

F
c, is certainly trivial on the base,f being a

Q-morphism.�

3.15 Bringing the gauge transformation of the field strengthδadQ2
(Y) f ∗ in Lemma 3.11

into the form f ∗ ◦adQTM2
(LY), we observe that it fits the pattern of Proposition 2.9: Given

a gauge fieldϕ : M1 → M in a Q-bundleM → M1 and an infinitesimal gauge trans-
formation generated byadQ(Y), Y a vertical vector field of degree minus one, we can
canonically associate to these data: A Q-bundle (M̃ → M1, Q̃), a gauge field̃ϕ which is
a true section of the Q-bundle (i.e. indeed in the category ofQ-manifolds), and a vertical
vector fieldỸ; hereM̃ = T[1]M, Q̃ = QTM ≡ d+LQ, ϕ̃ = f (a true section due to Propo-
sition 3.3), and̃Y = LY. Using these identifications we can always, vice versa, recover
the primary data. The extended Q-bundle is quite special, however: vector fields in the
gauge transformations have a very particular form, generated byỸ = [ιY,d] for someY
living onM, and likewisely restricted is the holonomy group̃G � G of M̃. Still, in this
language, aG-basic form onF translates into a function on the new fiber̃F = T[1]F
which is annihilated bỹǫ and [Q

F̃
, ǫ̃] where agaiñǫ is of the particular form [ιǫ,d] (for

someǫ living onF generating the holonomyG as before).
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4 Some applications

4.1 The first evident example is a principal G-bundle overM. The corresponding Q-
bundle is provided by the anchor mapρ : E[1] → T[1]M of the associated Atiyah alge-
broid E, cf. examples (3) and (4) in paragraph 1.3. The holonomy algebra isg, the Lie
algebra ofG, and the fiber isg[1]. Using the isomorphismW(g) ≃ Ω(g[1]) explained
in the previous section, we can easily see the isomorphism between the space of basic
forms and symmetricG−invariant polynomials ong∗, Ω(g[1])g ≃ S(g∗)G: An element
of ω ∈ Ω(g[1])g always has the formω = 1

p!ωa1...apdξ
a1 ∧ . . . ∧ dξap, if ξa denote the

odd coordinates ong[1], with ωa1...ap being constant, completely symmetric, and adin-
variant (following from invariance w.r.t.Lǫ, graded antisymmetry ofω, and invariance
w.r.t.LadQ(ǫ), respectively).

As explained before, a section ofρ is a connection in the principalG−bundle, and the
construction of characteristic classes in Theorem 3.10 applied to this particular case re-
produces the Chern-Weil map. Indeed, withFa denoting the local curvature 2-forms, from
the aboveω one obtains

1
p!
ωa1...apF

a1 ∧ . . . ∧ Fap .

Likewise,β(t) of Eq. (3.15) specified to this case, gives the standard transgression formula
in this example.

4.2 Equivariant cohomology and gauging of WZ-terms in sigma models: A near-at-hand
extension of the Weil algebraW(g) is the Weil model of equivariant cohomology. Let
G be a Lie group acting on a manifoldM and ρ : g → D(M), D(M) ≡ Γ(T M), be
the corresponding Lie algebra action. The complex one looksat isC = W(g) ⊗ Ω(M),
equipped with the sum of the previously introduced differential onW(g) and the de Rham
differential on the forms onM. In Q-language this is the space of functions oñM2 :=
T[1](g[1] ×M) and the differential gives rise to a homological vector field on it, whichwe
want to callQW. Theg-action is extended in a natural way to this complex. To describe
this in the language of section 2, we need a map fromg into vector fieldsD(M̃2) ∋ X of
degree minus one such thatadQW(X) generates theg action. This is easy to find: Take an
elementǫ in the Lie algebra, it generates canonically a vector field ofdegree minus one
on g[1] and thus (by lifting as a Lie derivative) also onT[1]g[1]. Likewise ρ(ǫ) gives a
vector field onM, its contractionιρ(ǫ) is a degree minus one vector field onT[1]M. We
denote the sum of these two vector fields byiǫ. Now adQW(iǫ) ≡ [QW, iǫ ] is easily verified
to generate the canonical diagonalg-action onC∞(M2).

An elementα ∈ C is called horizontal if, in the above language, it is annihilated byiǫ
for all ǫ ∈ g. If, in addition, it is alsog-invariant, i.e. also annihilated byadQW(iǫ), it is
called basic. The space of basic elements inC is denoted byCg or byΩ(M)G. Although
the spacẽM2 is of the formT[1](M2) withM2 ≡ g[1] × M and the homological vector
field QW is nothing but the total differential of the Chevalley-Eilenberg differentialQCE ≃

dg on g[1] extended trivially toM2, QW = d + LQCE, the notion of basic elements does
not agree with the one of Defintion 3.8. This, as we will see also inmore detail below, is
related to the last remark in the previous section;ǫ̃ ≡ iǫ = Lǫ + ιρ(ǫ) is of the required form
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of a Lie derivative only onT[1]g[1], but not also onT[1]M.
The reason for this apparent discrepancy is that not all the data have been incorporated

properly into theQ-structure onM2; in particular, the representationρ entered only when
considering̃ǫ. This can be cured easily, however, and will lead us automatically to the
so-called Cartan model of equivariant cohomology. The initial data give rise to an action
Lie algebroidE = M × g over M, ρ yielding its anchor map. The respective homological
vector field ofM2 := E[1] has the form

Q = ρ + QCE (4.1)

where we interpretedρ as an element ing∗×D(M), viewingg∗ as a linear and thus degree
one function ong[1]. For non-abeliang, the vector fieldρ does not square to zero, but it
is easily verified thatρ2 = −[QCE, ρ], so that indeedQ2 = 0.8 Let us call the canonical lift
d+LQ of Q to T[1]M2 by QC. SinceQ differs fromQCE by the addition ofρ and vertical
vector fields onT[1]M2→M2 being contractions of vector fields coming from the base
always (super)commute, it follows immediately from (4.1) and Lemma 3.5 that

QW = exp(−ιρ) QC exp(ιρ) . (4.2)

In this more geometric picture we find that indeed the notion of basic above agrees with
Defintion 3.8:ǫ as before, we see that

exp(−ιρ)Lǫ exp(ιρ) = iǫ (4.3)

exp(−ιρ)LadQ(ǫ) exp(ιρ) = adQW(iǫ) (4.4)

where for the first equality we made use of [Lǫ , ıρ] = ι[ǫ,ρ] = ιρ(ǫ), which in turn commutes
with ιρ, from which the second one follows immediately on observingLadQ(ǫ) = [QC,Lǫ ].
Moreover, elements inC � Ω(E[1]) annihilated byLe are easily seen to be elements in
S•(g∗) ⊗ Ω(M). On the other hand, the mapρ is equivariant and thus the respective ho-
mological vector fieldρ is g-invariant. This implies thatadQW(iǫ) commutes with exp(ιρ),
which in addition to eq. (4.4) yields the equalityLadQ(ǫ) = adQW(iǫ). Thus annihilation by
LadQ(ǫ) impliesg-invariance and basic differential forms on the action Lie algebroidE[1]
following Definition 3.8 correspond precisely to elements in (S•(g∗) ⊗Ω(M))G, which is
the Cartan model of equivariant cohomology.

This is now also the right language and departure point for the discussion of gaug-
ing of WZ-terms in sigma models (cf. also [4]). Let d-dimensional “spacetime” be the
boundary ofN and consider the space of mapsX : N → M as (part of) the “fields” of the
sigma model. A WZ-term then is induced by a closed (d+1)-form H on M, SWZ[X] =∫

N
X∗H. G-invariance ofH yields SWZ invariant under “rigid” G-transformations, but

not under “local” ones, i.e. where the transformation parameters are permitted to vary
alongN. To capture this fact in the present framework, we extendX trivially to a map

8In local coordinatesxi , ξa onM2 = M × g[1], one recognizes inQ = ξaρa −
1
2ξ

bξcCa
bc∂a, whereCa

bc are
the structure constants ofg in the basisξa dual toξa andρa ≡ ρ(ξa), one recognizes the standard YM-type
BRST charge. Although not inspired by [8], the considerations in this paragraph partially parallel, and
possibly also simplify and highlight, those of that paper.
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ϕ0 : (T[1]N,QdR) → (M,0); the WZ-term then can also be written asSWZ[ϕ0] =
∫

N
f ∗0 H,

where f0 = X∗ : T[1]N → T[1]M is the “field strength” ofϕ0. In this simple case the
chain map property of Proposition 3.3 reduces to the wellknown fact that the pullback
mapX∗ commutes with the de Rham differential.

The above mentioned “local G-transformations” will now become gauge transforma-
tions in the trivial Q-bundleT[1]N × M → T[1]N as discussed in section 2. Indeed,
the representationρ singles out a Lie subalgebrag ⊂ D(M) of symmetries onM (there
are certainy no inner infinitesimal symmetries on (M,0)); thus functions onT[1]N with
values in this Lie subalgebra of degree zero vector fields onM can be used as a proper
replacement of the infinitesimal gauge Lie algebra� G′ ∋ X in this context. Its lift to the
field strength,δX f ∗0 = f ∗0LX (cf. Lemma 3.11), produces the correct transformation. Note
that nowϕ0 is considered as a section in the above trivial Q-bundle (andH is extended
in a likewise manner to the trivial bundle); only like this [2] we can accomodate for the
N-dependence of the infinitesimal generatorX of the transformations,X = ǫaρa, in the
notation of the previous footnote, withǫa an arbitrary function onN. Clearly,SWZ[ϕ0] is
not invariant under any such gauge transformation, since the Lie derivative contains the
de Rham differential onN and one obtainsf ∗0LXH = dǫa∧X∗(ιρaH)+ ǫaX∗(LρaH), where
only the second term vanishes by invariance ofH.9

To cure this one wants to introduce extra gauge field dependent terms into the action
functional, i.e. terms depending on additionalg-valued 1-formsAa on (the boundary of)
N. This is possible ifH permits a G-equivariantly closed extensionĤ, cf. also [4]. In our
picture the resulting invariant action functional is now easy to obtain: We simply replace
(M,0) in all of the constructions above by the action Lie algebroid E[1] = M × g[1] with
its canonical differential, eq. (4.1).ϕ now is a section in the trivial Q-bundleT[1]N ×
E[1] → T[1]N andĤ extended trivially fromΩ(E[1]) to a differential form on the total
Q-bundle (analogous to the case ofH before). Gauge transformations are now inner right
away, they are generated byǫs as described in the above Cartan-type model of equivariant
cohomology, tensored with functions on the base. Gauge invariance of f ∗Ĥ now follows
at once from the general result of Lemma 3.12. From Proposition 3.3, moreover, it follows
immediately thatf ∗Ĥ is closed and thatf ∗Ĥ − f ∗H is exact; thus, the additional gauge
fields, corresponding to a degree preserving map fromT[1]N to g[1], indeed need to be
defined over the boundary ofN only.

The formalism developed in this paper is certainly aimed at also more general type of
gauge theories as those stemming from a structural Lie grouplike in this paragraph. We
intend to make this kind of application more explicit elsewhere, focusing in the present
draft mainly on the issue of (generalized) characteristic classes.10

4.3 Another application of the considerations of the previous section is the following

9If one considersf0 as a “gauge field”̃ϕ0 itself, cf. the discussion at the end of the previous section, the
gauge transformations become inner and this becomes a special case of eq. (2.9). However, the field̃ϕ0 is
restricte to derive from the “field strength” of someϕ0 and it is also this perspective that now permits to
discuss the gauging of the WZ term in a concise manner.

10But cf. also [2, 21, 5], as well as the following paragraph, used to prepare grounds for characteristic
classes associated to “PQ”-bundles in the subsequent paragraph 4.7 below.
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Theorem 4.4 Let (S, ω) be a symplectic Qp-manifold, p∈ N+, as in example (3) of
paragraph 1.2, N a(p+2)-dimensional manifold with boundary∂N = Σ, andϕ a (degree
preserving) map from T[1]N toS. Then

∫

N
f ∗ω = SAKS Z

Σ,(cl) (4.5)

where SAKS Z
Σ,(cl) is the (classical part of the) topological sigma model on the(p+1)-dimensional

Σ obtained by the AKSZ-method [1].

If ϕ is a gauge field in the sense of this paper, i.e., being a degreepreserving map,ϕ has
degree zero, one obtains the classical part of the topological action. Permitting all possi-
ble degrees ofϕ, one gets its BV extension, satisfying the classical BV-master equation,
i.e. squaring to zero w.r.t. the BV bracket. Forp = 1 the action reproduces the Poisson
sigma model [19, 7], forp = 2 one obtains the Courant sigma model [6, 16, 17]; the
formula above holds for arbitrary dimensions.

Before proving this, we make some general remarks on PQ-manifolds with p > 011. This
is a Q-manifoldS equipped with a compatible symplectic formω of degree p, i.e. it
obeysLξω = pω, whereξ is the Euler field which provides theZ−grading onS. Non-
degeneracy ofω implies thatS has degree at mostp (if S has a nontrivial body, i.e. its
algebra of functions has degree zero elements, this bound isalso necessarily saturated);
since a lower-degree Q-manifold can also be considered as a degenerate Qp-manifold
for some higher p, we will follow the convention that PQ-manifolds of degree p imply
thatω has degree p. E.g. given a quadratic Lie algebra (g, κ), κ denoting the adinvariant
scalar product, we will view (g[1], ω), ω ∼ κ, as a degree 2 PQ-manifold. Forp > 0 the
symplectic form is necessarily exact: By (3.5), one has dιξω = pω, thusω = dα, where
α = 1

pιξω. For any functionh of degreeq onS we define its Hamiltonian vector fieldXh

of degreeq− p by the formula:ιXhω = (−1)q+1dh. Then Hamiltonian vector fields satisfy
the known relations from the ungraded case:

[Xh1,Xh2] = X{h1,h2} , (4.6)

where{·, ·} is the induced Poisson bracket of degree−p. Now, using the relations (3.6),
we can easily verify that compatibility ofω with Q, LQω = 0, implies thatQ is always
Hamiltonian: iQω = (−1)pdQ with the Hamiltonian functionQ of degree p+1. We sum-
marize this in the following

Lemma 4.5 For a Qp-manifold with compatible sympectic formω one has

ω = dα , α ≡
1
p
ιξω , Q = XQ , Q ≡

p
p+ 1

(−1)pιQα , (4.7)

whereξ is the Euler vector field onS and the HamiltonianQ of the homological vector
field Q satisfies the master equation{Q,Q} = 0.

11This assumption will be kept without further mention.
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The last statement follows from eq. (4.6) and the fact that inpositive degrees the only
constant is zero (Q has degreep + 1 and thus{Q,Q} degreep+ 2). From the above we
derive

Lemma 4.6 The following transgression formula holds:

ω = QTS (α̂) , α̂ = α +
(−1)p

p
Q ≡

1
p

(
1+

1
p+ 1

ιQ

)
ιξω . (4.8)

Proof. With Lemma 4.5 and eq. (3.9) we have exp(ιQ)ω = QTS exp(ιQ)α. The l.h.s. of this
equation isω + (−1)pdQ, by defintion of the Hamiltonian forQ and the fact thatιQιQω
vanishes on behalf of{Q,Q} = 0. The master equation also implies that dQ = QTSQ, from
which we now can derive easily the wished for transgression formula.�

Proof of Theorem 4.4

With Lemma 4.6 one obtainsf ∗ω = d f ∗α̂, where the chain property Prop. 3.3 off has
been used and the fact thatQ1 is just the de Rham differential onN here. Using Stokes
theorem, we are thus left with showing thatf ∗α̂ indeed agrees with the AKSZ action
(where we can replaceN by its boundaryΣ now). By means of the formulas (3.2), one
can convince oneself that for any 1-formα onS one has

f ∗α =
(
ιQT[1]Σϕ

∗ − ϕ∗ιQS

)
α . (4.9)

Together with the first equation in (3.2) and the second equation in (4.7), this implies

f ∗α̂ = ιdΣϕ
∗α + (−1)p+1ϕ∗(Q) , (4.10)

whereQT[1]Σ = dΣ has been used. This expression agrees precisely with the onefound in
[17] for the AKSZ sigma model, which thus completes the proof. �

4.7 Q-bundles with PQ-manifolds (S, ω) as fibers are natural candidates for a non-trivial
characterisitic class along the lines of Theorem 3.10. As wesaw above, the symplec-
tic form ω itself is closed w.r.t. the total differentialQTS on the fiber and for the holon-
omy groupG the Lie algebra of (all or a closed subset of the) Hamiltonianvector fields
of negative degree lends itself naturally, sinceω is then also basic w.r.t.G.12 A PQ-
bundle (a Q-bundle with PQ-fibers) thus carries a canonical characteristic class. For
the Atiyah algebroid of a principalG−bundle (cf. example (3) and (4) in paragraph
1.3) where the Lie algebrag of G is equipped with a non-degenerate invariant symmet-
ric form, the corresponding PQ-bundle has a typical fiberg[1] together with a degree
p = 2 symplectic formω provided by the invariant metric. The canonical character-
istic class is nothing but the second Chern class (or the firstPontrjagin class) of the

12In fact,ω is even exact within the complex (Ω(S),QTS), cf. Lemma 4.6 above; however, in general it
will fail to be exact within the restricted complex (Ω(S)G,QTS ) of basic forms. This happens already for the
standard characteristic classes, paragraph 4.1 above, where the unrestricted cohomology, being isomorphic
to deRham cohomology on the Lie algebra, cf. Lemma 3.5, is obviously trivial. It is also in this context
where Proposition 3.14 comes into play.
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principalG−bundle and the Theorem 4.4 simply gives the well-known localstatement:
“Second Chern form= d(Chern−Simons form)′′. For an arbitrary PQ-bundle over a
baseT[1]N for a smooth manifoldN one thus has a straightforward generalization of the
second Chern class, which is ap+ 2 cohomology class for a degreep QP-fiber.

For example, in the case ofp = 1 a typical fiberF is necessarily of the formT∗[1]P for
some Poisson manifold (P, {·, ·}). Like any Q1-manifold, the total space corresponds to a
Lie algebroidE living over some base manifoldM. Thus the Q-bundle has the form

E[1]
π

- T[1]N

M
?

π0

- N
?

covering an ordinary bundleπ0 : M → N whose typical fiber isP. It can be shown that this
bundleπ0 is a Hamiltonian Poisson fibration, i.e. the Lie algebra of its holonomy group
consist of Hamiltonian vector fields of the Poisson manifoldP. As we will show in detail
in a separate note [10], the 3-form class onN that one obtains in this way does not depend
on the chosen gauge fieldϕ : T[1]N → E[1]. Moreover, it constitutes an obstruction to
lifting the bundleπ0 to one where the transition cocycle takes values in a group whose Lie
algebra is (C∞(P), {·, ·})—while the existence of a lift to the case of Hamiltonian functions
moduloconstants is already guaranteed by the existence of the Q-bundleπ coveringπ0.

4.8 Suppose we are given a bundlep: M → N in the category of Q-manifolds which,
in general, isnot locally trivial. Let us denote byΩ+(N) the ideal of all differential forms
the order of which as a differential form is greater or equal to one, and byI the ideal in
Ω(M) generated by the pullbackp∗Ω+(N). It is clear thatI is closed with respect to both
differentials d andLQ, and thus with respect to the total differentialQTM. For each gauge
field ϕ : N → M the corresponding mapf ∗ : Ω(M) → C∞(N) vanishes onI (this fact
was used in the proof of Lemma 3.12). Therefore we have a well-defined chain map of
complexes

(Ω(M)/I,QTM)
f ∗

→ (C∞(N),QN) , (4.11)

which induces a map in cohomology. The conditions of local triviality and gluing by use
of exp(G′)−valued transition cocycle used in the previous section gives a natural chain
map of complexes

(Ω(F )G,QTF )→ (Ω(M)/I,QTM) , (4.12)

whereF is the typical fiber ofp (Lemma 3.12), the composition of which with (4.11)
determines the characteristic map (3.11) in Theorem 3.10.

Let us consider an exact sequence of Lie algebras

0→ h→ g
p
→ g0→ 0 , (4.13)

20



which defines a locally non-trivial Q-bundlep: g[1] → g0[1] (we denote the induced pro-
jection by the same letterp). The non-triviality means precisely that the exact sequence
(4.13) does not split in the category of Lie algebras; here local triviality would imply the
global one. The chain map (4.11) provided by a gauge fieldϕ : g0 → g in these settings
induces a chain mapS•(h∗)⊗Λ•(g∗)→ Λ•(g∗0). Note that here we used a natural identifica-
tion induced by the embeddingι : h→ g. This chain map, composed with the embedding
S•(h∗)G → S•(h∗) ⊗ Λ•(g∗), gives nothing but the characteristic map of exact triplesof
Lie algebras of Lecomte [11]. For the definition ofS•(h∗)G one again makes use of the
embeddingι. It is this embedding that induces the proper replacement of(4.12).

The complete construction of the characteristic map of Lecomte involves twistings
by representations (V, ρ) of g0, such that the result is taking values inH•(g0,V). In the
picture above we need to replaceg0 andg with the semidirect products̃g0 = g0 ⋉ρ∗ V∗ and
g̃ = g ⋉ρ∗◦p V∗, respectively, which allows extending the sequence (4.13)canonically to:

0→ h→ g̃
p̃
→ g̃0→ 0 .

Applying the characteristic mapS•(h∗)G → H•(g̃0) and using the natural isomorphism
Hq(g̃0) = ⊕k+l=qHk(g0,ΛlV), we immediately obtain the characteristic classes of Lecomte
taking values in all exterior powers of the representationρ.

It may be interesting to find more general conditions for a Q-bundle (weaker than those
in Definition 2.8) providing an extended version of the map (4.12) which includes simul-
taneously the construction of Theorem 3.11 and the Lecomte characteristic classes.
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