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We discuss the calculation of the 1-loop effective action onfour dimensional, canonically deformed Eu-
clidean space. The theory under consideration is a scalarφ4 model with an additional oscillator potential.
This model is known to be re normalisable. Furthermore, we couple an exterior gauge field to the scalar field
and extract the dynamics for the gauge field from the divergent terms of the 1-loop effective action using a
matrix basis. This results in proposing an action for noncommutative gauge theory, which is a candidate for
a renormalisable model.
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1 Introduction

This talk is based on a joint work with H. Grosse. For more details see [1]. The two dimensional case has
been discussed in [2].

Feynman rules for Quantum Field Theory over noncommutativespaces reveal new structures. They
stem from the modification of space-time at small length scales. Planar contributions show the standard
singularities which can be handled by the usual renormalisation procedure. The non-planar one loop con-
tributions are finite for generic momenta. However, they become logarithmically divergent at exceptional
momenta. The usual UV divergences are then reflected in new singularities in the infrared, which is called
UV/IR mixing. This spoils the usual renormalisation procedure: Inserting such loops to a higher order
diagram generates singularities of any inverse power. In [3], H. Grosse and R. Wulkenhaar were able to
give a solution of this problem for the special case of a scalar theory defined on the canonically deformed
Euclidean spaceR4

θ with commutation relation for the coordinates:

[xµ ⋆, xν] = iθµν ,

whereθij = −θji ∈ R. The⋆-product is given by the Weyl-Moyal product

f ⋆ g (x) = ei/2θµν ∂
∂xµ

∂
∂yν f(x)g(y)

∣

∣

y→x
. (1)

The UV/IR mixing contributions were taken into account through a modification of the free Lagrangian by
adding an oscillator term with parameterΩ,

S0 =

∫

d4x

(

1

2
φ ⋆ [x̃ν, [x̃ν, φ]⋆]⋆ +

Ω2

2
φ ⋆ {x̃ν, {x̃ν, φ}⋆}⋆ +

µ2

2
φ ⋆ φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) , (2)

wherex̃ν = θ−1
ναxα and i∂µf = [x̃µ, f ]⋆. The model fulfills the Langmann-Szabo duality [4] relating

short distance and long distance behaviour. There are indications that a constructive procedure might be
possible and give a nontrivialφ4 model, which is currently under investigation [5].
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2 Wohlgenannt: Induced Gauge Theory

In a different, interesting approach, the UV/IR singularities are interpreted in terms of an induced gravity
action [6].

In order to obtain the action for a gauge theory, which hopefully is renormalisable, we extract the
divergent terms of the heat kernel expansion. Such a procedure leads in the commutative case to a renor-
malisable gauge field action. We introduce the local, unitary gauge groupG under which the scalar fieldφ
transforms covariantly like

φ 7→ u∗ ⋆ φ ⋆ u, u ∈ G. (3)

The introduction of covariant coordinates [7],X̃ν = x̃ν +Aν , leads to the following gauge invariant action:

S =

∫

d4x

(

1

2
φ ⋆ [X̃ν , [X̃ν , φ]⋆]⋆ +

Ω2

2
φ ⋆ {X̃ν , {X̃ν, φ}⋆}⋆ +

µ2

2
φ ⋆ φ +

λ

4!
φ ⋆ φ ⋆ φ ⋆ φ

)

(x) , (4)

with

X̃µ 7→ u∗ ⋆ X̃µ ⋆ u ; Aµ 7→ iu∗ ⋆ ∂µu + u∗ ⋆ Aµ ⋆ u . (5)

Secondly, we apply the heat kernel formalism. The gauge fieldAµ is an external, classical gauge
field coupled toφ. In the following sections, we will explicitly calculate the divergent terms of the one-
loop effective action. In the classical case, the divergentterms determine the dynamics of the gauge
field [8, 9]. There have already been attempts to generalise this approach to the non-commutative realm;
for non-commutativeφ4 theory see [10, 11]. First steps towards gauge kinetic models have been done
in [12–14]. However, the results there are not completely comparable. Our action contains an oscillator
term Ω2

2
φ ⋆ {X̃ν , {X̃ν, φ}⋆}⋆. This term is crucial, it alters the free theory. Therefore,we expand around

the free action−∆ + Ω2x̃2 rather than−∆. As a consequence, the Seeley-de Witt coefficients cannot be
used.

2 The Model

The regularised one loop effective action for the model defined by the classical action (4) is given by

Γǫ
1l[φ] = −1

2

∫ ∞

ǫ

dt

t
Tr

(

e−tH − e−tH0
)

. (6)

For the effective potentialH we have the expression

θ

2

δ2S

δφ2
≡ H = H0 +

θ

2
V . (7)

The effective action is calculated as a power series in the potentialV . In order to do so we employ the
Duhamel expansion which is an iteration of the identity

e−tH − e−tH0

=

∫ t

0

dσ
d

dσ

(

e−σHe−(t−σ)H0
)

= −
∫ t

0

dσ e−σH θ

2
V e−(t−σ)H0

. (8)

Therefore, we get for the 1-loop effective action the following formula:

Γǫ
1l =

θ

4

∫ ∞

ǫ

dt Tr V e−tH0 − θ2

8

∫ ∞

ǫ

dt

t

∫ t

0

dt′ t′ Tr V e−t′H0

V e−(t−t′)H0

(9)

+
θ3

16

∫ ∞

ǫ

dt

t

∫ t

0

dt′
∫ t′

0

dt′′ t′′ Tr V e−t′′H0

V e−(t′−t′′)H0

V e−(t−t′)H0

−θ4

32

∫ ∞

ǫ

dt

t

∫ t

0

dt′
∫ t′

0

dt′′
∫ t′′

0

dt′′′ t′′′ Tr V e−t′′′H0

V e−(t′′−t′′′)H0

V e−(t′−t′′)H0

V e−(t−t′)H0

+O(V 5) .

Copyright line will be provided by the publisher



fdp header will be provided by the publisher 3

The calculations are performed in the matrix basis, where the star product is just a matrix product:

Aν(x) =
∑

p,q∈N2

Aν
pqfpq(x) , φ(x) =

∑

p,q∈N2

φpqfpq(x) ,

for details see [15]. After a suitable rescaling, all the operators depend, beside onθ, only on the following
three parameters:

ρ =
1 − Ω2

1 + Ω2
, ǫ̃ = ǫ(1 + Ω2), µ̃2 =

µ2θ

1 + Ω2
. (10)

The part of the effective potential independent of the gaugefield in the matrix basis is given by

H0
mn;kl

1 + Ω2
=

( µ̃2

2
+(n1+m1+1)+(n2+m2+1)

)

δn1k1δm1l1δn2k2δm2l2

−ρ
(

√
k1l1 δn1+1,k1δm1+1,l1 +

√
m1n1 δn1−1,k1δm1−1,l1

)

δn2k2δm2l2

−ρ
(
√

k2l2 δn2+1,k2δm2+1,l2 +
√

m2n2 δn2−1,k2δm2−1,l2
)

δn1k1δm1l1 . (11)

For the field dependent potentialV we obtain

Vkl;mn

(1 + Ω2)
=

( λ

3!(1 + Ω2)
φ ⋆ φ +

(

X̃ν ⋆ X̃ν − x̃2
)

)

lm
δnk (12)

+
( λ

3!(1 + Ω2)
φ ⋆ φ +

(

X̃ν ⋆ X̃ν − x̃2
)

)

nk
δlm +

( λ

3!(1 + Ω2)
φlmφnk − 2ρAν,lmAν

nk

)

+ρi

√

2

θ

(√
n1A

(1+)

l1

l2
m1

m2

δn1
−1

n2
k1

k2

−
√

n1 + 1A
(1−)

l1

l2
m1

m2

δn1+1

n2
k1

k2

+
√

n2A
(2+)

l1

l2
m1

m2

δ n1

n2−1
k1

k2

−
√

n2 + 1A
(2−)

l1

l2
m1

m2

δ n1

n2+1
k1

k2

)

−ρi

√

2

θ

(√
m1A

(1−)

n1

n2
k1

k2

δ
l1

l2
m1

−1

m2

−
√

m1 + 1A
(1+)

n1

n2
k1

k2

δ
l1

l2
m1+1

m2

+
√

m2A
(2−)

n1

n2
k1

k2

δl1

l2
m1

m2−1
−

√

m2 + 1A
(2+)

n1

n2
k1

k2

δl1

l2
m1

m2+1

)

,

with the definitionsA(1±) = A1 ± iA2, A(2±) = A3 ± iA4. The heat kernele−tH0

of the Schrödinger
operator can be calculated from the propagator given in [3].In the matrix base of the Moyal plane, it has
the following representation:

(

e−tH0
)

mn;kl
= e−t(µ2θ/2+ΩD)δm+k,n+l

2
∏

i=1

Kmini;kili (t) , (13)

Km,m+α;l+α,l(t) =

min(m,l)
∑

u=0

√

(

m

u

)(

l

u

)(

α + m

m − u

)(

α + l

l − u

)

(14)

× e2Ωt

(

1 − Ω2

2Ω
sinh(2Ωt)

)m+l−2u

XΩ(t)α+m+l+1 ,

where

XΩ(t) =
4Ω

(1 + Ω)2e2Ωt − (1 − Ω)2e−2Ωt
. (15)

The above expressions have to be inserted into the Duhamel expansion (9). We are only interested in gauge
theory. Hence, we concentrate on the divergent terms involving only the gauge field and assumeλ = 0.
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4 Wohlgenannt: Induced Gauge Theory

3 Some Remarks on the Calculation

In order to extract the divergent contributions we employ the following method:

• First, expand the integrands of the Duhamel expansion (9) for small auxiliary parameterst, t′, t′′, . . .

• Expand the infinite sums over indices occuring in the heat kernel but not in the gauge field; diver-
gences stem from these infinite sums. The other contractionsare finite assuming thatA is a traceclass
operator.

• Integrate over the auxiliary parameters.

• Convert the results to x-space using
∑

m Tmm = 1
(2πθ)2

∫

d4xT (x).

To first and second order in the potentialV , the effective action contains both, logarithmic and quadratic
divergences. To third and fourth order, only logarithmic ones occur. Higher powers in the potential are
already finite. This can easily be seen from a power counting argument in the auxiliary parameters. Let us
consider the contribution to the effective action of orderk. Due to Eq. (9), there arek auxiliary parameters.
They for themselves produce a factortk−1. The infinite sums over the integral kernels contribute inverse
powers oft. The potentialsV may contribute in the worst case a factor

√
n

k to the infinite sums of order
k. Therefore, these sums contribute a factor

∑

n

nk/2XΩ(t(k))nXΩ(t(k−1) − t(k))n . . .XΩ(t)n (16)

×
∑

m

XΩ(t(k))mXΩ(t(k−1) − t(k))m . . .XΩ(t)m ∼
(

1

t

)⌊k/2⌋+2

, (17)

where⌊l⌋ is the greatest integer function. Hence, the contribution to orderk is given by

(

1

t

)⌊k/2⌋+3−k

. (18)

In the case ofk = 5, the exponent is0 and the integration yields a finite result. For more technical details
see [1].

4 Results and Conclusions

Let us summarise the results. In the selfdual case,Ω = 1 the divergent contributions are of an especially
simple form. The matrix base expressions for the effective potential and the heat kernel simplify a lot. The
effective action describes a pure matrix model.

In the caseΩ 6= 0, we obtain a matrix model structure and a dynamics:

Γǫ
1l =

1

192π2

∫

d4x

{

24

ǫ̃ θ
(1 − ρ2)(X̃ν ⋆ X̃ν − x̃2) (19)

+ ln ǫ

(

12

θ
(1 − ρ2)(µ̃2 − ρ2)(X̃ν ⋆ X̃ν − x̃2) + 6(1− ρ2)2

(

(X̃µ ⋆ X̃µ)⋆2 − (x̃2)2
)

− ρ4FµνF µν

)

}

,

whereFµν = −i[x̃µ, Aν ]⋆ + i[x̃ν, Aµ]⋆− i[Aµ, Aν]⋆ . We propose the logarithmically divergent part as an
action describing the dynamics of the gauge field. Both, the linear inǫ and the logarithmic inǫ divergent
term of the one-loop effective action turn out to be gauge invariant. The proposed action is an interesting
candidate for a renormalisable gauge theory. The sign of theterm quadratic in the covariant coordinates
may change depending on whetherµ̃2 ≶ ρ2. This reflects the structure of a phase transition. The case
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Ω = 1 (ρ = 0) is of course of particular interest. One obtains a pure matrix model. In the limitΩ → 0, we
obtain just the standard deformed Yang-Mills action. In addition, we will attempt to study the perturbative
quantisation. One of the problems of quantising action (19)is connected to the tadpole contribution, which
is non-vanishing and hard to eliminate. The Orsay group alsoconsidered the 1-loop effective action in the
caseΩ 6= 0. They calculated the divergent contributions in x-space byevaluating Feynman diagrams and
arrived at the same result [16,17].

An appropriate rescaling̃Xα →
√

2
√

3√
θ

X̃α andτ ≡ −
√

3 1−ρ2

ρ2 leads to the equations of motion

DνF σν = τX̃σ + τ2{X̃σ , X̃ν ⋆ X̃ν}⋆ , (20)

where we have assumed for simplicityµ̃ = 0 and usedDνF σν = −[X̃ν , [X̃σ, X̃ν ]⋆]⋆. In [18], the matter
fields have been included in order to find some solutions. However, the gauge part (20) alone also exhibits
a number of solutions which are currently under investigation.

For noncommutativeU(1) gauge theory a similar model has been discussed in [19]. Thismodel includes
an oscillator potential for the gauge fields,x̃2A2, and for the ghosts. Other terms occuring here are missing.
Hence, the considered action is not gauge invariant, but a BRST invariance could be established. These
terms may nevertheless come into the game through one loop corrections.
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