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Abstract. We discuss a scheme for a construction of linear conformally
invariant differential operators from curved Casimir operators; we then
explicitly carry this out for several examples. Apart from demonstrating
the efficacy of the approach via curved Casimirs, this shows that this
method is general in that it applies both in regular and in singular in-
finitesimal character, and also that it can be used to construct standard
as well as non–standard operators. (Nevertheless the scheme discussed
here does not recover all operators.) The examples treated include con-
formally invariant operators with leading term, in one case, a square of
the Laplacian, and in another case, a cube of the Laplacian.

1. Introduction

Curved Casimir operators were originally introduced in [7] in the setting
of general parabolic geometries. For any natural vector bundle associated
to such a geometry, there is a curved Casimir operator which acts on the
space of smooth sections of the bundle. The name of the operator is due
to the fact that on the homogeneous model of the geometry, it reduces to
the canonical action of the quadratic Casimir element. The curved Casimir
operators may be expressed by a simple (Laplacian like) formula in terms of
the fundamental derivative from [3] and hence share the very strong natu-
rality properties of the fundamental derivative. While on a general natural
vector bundle the curved Casimir operator is of order at most one, it always
acts by a scalar on a bundle associated to an irreducible representation. This
scalar can be easily computed from representation theory data. It was al-
ready shown in [7] that using this and the naturality properties, one can use
the curved Casimir operators systematically to construct higher order in-
variant differential operators. Namely, [7] contains a general construction of
splitting operators, which are basic ingredients in all versions of the curved
translation principle.

Essentially the same construction can be also used to directly obtain in-
variant differential operators acting between sections of bundles associated
to irreducible representations. One considers the tensor product of a tractor
bundle and an irreducible bundle. Such a bundle has an invariant filtration
such that the quotients of subsequent filtrations components are completely
reducible. Adapting the action of the centre of the structure group (which
amounts to tensoring with a density bundle), one may force a coincidence of
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curved Casimir eigenvalues for irreducible components in different subquo-
tients. As we shall see this leads to an invariant linear differential operator
acting between the sections of these components. A more difficult issue is
to prove, in some general context, that the resulting operator is nontrivial.
General tools for doing this systematically are developed in [5].

The purpose of this article is to carry out the construction of invariant
operators explicitly for a few examples in the realm of conformal structures.
First, this shows that the general ideas can be made explicit rather eas-
ily. Secondly, it shows that the curved Casimir operators can be used to
produce both standard and non–standard operators, and they work both
in regular and in singular infinitesimal character; this is in contrast to the
usual constructions of BGG sequences as developed in [6, 1].

Finally, we want to indicate how some of the well known and intriguing
phenomena concerning conformally invariant powers of the Laplacian show
up in the approach via curved Casimirs. In particular, this concerns the fact
that the critical powers of the Laplacian are not strongly invariant and the
non–existence of supercritical powers of the Laplacian.
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2. Examples of conformally invariant operators

constructed from curved Casimirs

2.1. Conformal structures, tractor bundles, and tractor connec-

tions. We shall use the conventions on conformal structures from [4]. We
consider a smooth manifold M of dimension n ≥ 3 endowed with a conformal
equivalence class [g] of pseudo–Riemannian metrics of some fixed signature
(p, q). We use Penrose abstract index notation, so Ea will denote the tan-
gent bundle TM and Ea the cotangent bundle T ∗M . Several upper or lower
indices will indicate tensor products of these basic bundles, round brackets
will denote symmetrisation, square brackets alternation, and the subscript
0 indicates a tracefree part.

For w ∈ R we denote by E [w] the bundle of (−w
n
)–densities on M . For

any choice of metric g in the conformal class, sections of E [w] can be iden-
tified with smooth functions but changing from g to ĝ = f2g (where f is a
positive smooth function on M), this function changes by multiplication by
fw. Adding [w] to the notation for a bundle indicates a tensor product by



INVARIANT OPERATORS VIA CURVED CASIMIRS:EXAMPLES 3

E [w]. Using these conventions, the conformal structure can be considered
as a smooth section gab of the bundle E(ab)[2], called the conformal metric.
Contraction with gab defines an isomorphism Ea ∼= Ea[2], whose inverse can

be viewed as a smooth section gab of E(ab)[−2]. We shall use gab and gab to
raise and lower tensor indices.

The standard tractor bundle of (M, [g]) will be denoted by EA. This is a
vector bundle of rank n+2 canonically associated to the conformal structure.
It is endowed with a canonical bundle metric hAB of signature (p + 1, q + 1)
which will be used to raise and lower tractor indices. Further, there is a
canonical linear connection ∇T on EA which is equivalent to the conformal
Cartan connection. Finally, there is a canonical inclusion E [−1] →֒ EA whose
image is an isotropic line subbundle of EA. This can be viewed as a canonical
section XA of EA[1] which satisfies hABXAXB = 0. Next, XA := hABXB

can be interpreted as a projection EA → E [1]. These data fit together to
define a composition series for EA that we shall denote E [1] +

�
� Ea[1] +

�
� E [−1];

the second +
�
� indicates that E [−1] is a subbundle of EA while the first +

�
�

means Ea[1] is (isomorphic to) a subbundle of the quotient bundle EA/E [−1]
and that (EA/E [−1])/Ea[1] ∼= E [1]. (The motivation for the notation is that
summands include, while there is a projection onto direct summands). Gen-
eral tractor bundles then correspond to SO(p+1, q+1)–invariant subspaces

in tensor powers of R
(p+1,q+1), and we will also use abstract index notation

for tractor indices.
Any choice of a metric g in the conformal class gives rise to a splitting

EA ∼= E [1] ⊕ Ea[1] ⊕ E [−1] of the composition series. The change of this
splitting caused by a conformal rescaling of the metric can be easily described
explicitly, see [2], but we will not need these formulae here. What we will
need is the expression of the tractor connection in the splitting associated to
g in terms of the Levi–Civita connection ∇ of g. To formulate this efficiently,
we need the adjoint tractor bundle of (M, [g]). By definition, this is the
bundle so(EA) ∼= E[AB] of endomorphisms of EA which are skew symmetric
with respect to the tractor metric. By definition, this bundle naturally acts
on EA and hence (tensorially) on any tractor bundle.

Now the composition series of EA gives rise to a composition series E[AB] =
Ea +

�
� (E[ab][2]⊕ E [0]) +

�
� Ea, so the adjoint tractor bundle contains T ∗M as a

natural subbundle and has TM as a natural quotient. A choice of metric
in the conformal class also splits this composition series, so we obtain an
isomorphism E[AB]

∼= Ea ⊕ (E[ab][2] ⊕ E [0]) ⊕ Ea depending on the choice of
metric. In particular, we can view elements of T ∗M naturally as elements
of the adjoint tractor bundle and, choosing a metric in the conformal class,
we can also view elements of TM as elements in the adjoint tractor bundle.

There are explicit formulae how the identifications of tractor bundles be-
have under a conformal change of metric, see e.g. Theorem 1.3 of [2]. How-
ever, we will not need this formulae here, since we will always deal with
operations which are known to be invariant in advance and use the split-
tings only to compute explicit formulae for these operations. We shall only
need the formula for the canonical tractor connection in a splitting, which
also can be found in Theorem 1.3 of [2]. This formula is given in the propo-
sition below. Note that, comparing with [2], the difference in the sign of the
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term involving the Rho tensor (also sometimes called the Schouten tensor)
is due to the fact that [2] uses a different sign convention for the Rho–tensor
than [4].

Proposition. Consider a tractor bundle T → M for a conformal structure
[g] on M , and let ∇T be the canonical tractor connection on T . Choose a
metric g in the conformal class with Rho tensor P and let ∇ be its Levi Civita
connection, acting on T via the isomorphism with a direct sum of weighted
tensor bundles induced by the choice of metric. Further let us denote by •
both the actions of T ∗M and of TM (the latter depending on the choice of
metric) coming from the inclusion of the bundles into the adjoint tractor
bundle. Then for any vector field ξ ∈ X(M) and any section s ∈ Γ(T ) we
have

∇T

ξ s = ∇ξs + ξ • s − P(ξ) • s.

2.2. A formula for the curved Casimir operator. The main tool used
to efficiently treat examples is a new formula for the curved Casimir operator
acting on the tensor product of a tractor bundle and an irreducible bundle.
Consider the group G := SO(p+1, q+1) and let P ⊂ G be the stabiliser of an

oriented isotropic line in the standard representation R(p+1,q+1) of G. Then it
is well known that P is the semidirect product of the (orientation preserving)
conformal group CSO(p, q) and a normal vector subgroup P+

∼= Rn∗. It is
also well known that a conformal structure of signature (p, q) on a smooth
manifold M determines a canonical Cartan geometry of type (G, P ), so in
particular there is a canonical principal bundle on M with structure group
P . Forming associated bundles, any representation of the group P gives rise
to a natural vector bundle on conformal manifolds.

The conformal group CSO(p, q) is naturally a quotient of P , so any rep-
resentation of CSO(p, q) gives rise to a representation of P . The resulting
representations turn out to be exactly those representations of P which are
completely reducible, so they split into direct sums of irreducibles. The cor-
responding bundles are called completely reducible bundles and they split
into direct sums of irreducible bundles. The completely reducible bundles
are exactly the usual tensor and density bundles. On the other hand, one
can look at restrictions to P of representations of G, and these give rise
to tractor bundles. The standard tractor bundle EA and the adjoint trac-
tor bundle E[AB] from 2.1 above correspond to the standard representation

R
(p+1,q+1) respectively the adjoint representation so(p+1, q+1) of G in this

way.
Now recall first from Theorem 3.4 of [7] that the curved Casimir operator

on an irreducible bundle W → M acts by a real multiple of the identity, and
we denote the corresponding scalar by βW . This scalar can be computed
in terms of weights of the representation which induces W . If the lowest
weight of this representation is −ν, then βW = 〈ν, ν + 2ρ〉, where ρ is half
the sum of all positive roots. On a completely reducible bundle, the action
of the curved Casimir is tensorial and can be obtained by decomposing the
bundle into irreducible pieces, multiplying each piece by the corresponding
factor and then adding back up.
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Proposition. Let (M, [g]) be a conformal manifold of signature (p, q) and
let T → M be a bundle which can be written as the tensor product of a tractor
bundle and an irreducible bundle. Choose a metric g in the conformal class
and let ∇ be its Levi–Civita connection, acting on T via the identification
with a completely reducible bundle induced by the choice of g. Further, let
β : T → T be the bundle map which, in this identification, acts on each
irreducible component W ⊂ T by multiplication by βW . Let • denote the
action of T ∗M on T coming from the natural action on the tractor bundle.
Then for a local orthonormal frame ξℓ for TM with dual frame ϕℓ for T ∗M ,
the curved Casimir operator C acts on s ∈ Γ(T ) by

C(s) = β(s) − 2
∑

ℓ ϕℓ • (∇ξℓ
s − P(ξℓ) • s)

Proof. We use the formula for C in terms of an adapted local frame for the
adjoint tractor bundle from Proposition 3.3 of [7]. Having chosen the metric
g, the adjoint tractor bundle splits as TM⊕so(TM)⊕T ∗M , and for any local
frame {Ar} for so(TM), the local frame {ξℓ, Ar, ϕ

ℓ} for the adjoint tractor
bundle is evidently adapted. According to Proposition 3.3 of [7], one may
write C(s) as the sum of −2

∑

ℓ ϕℓ •Dξℓ
s (with D denoting the fundamental

derivative) and a tensorial term, in which only actions of elements of so(TM)
show up. Hence the latter term preserves any irreducible summand of T ,
and the proof of Theorem 3.4 of [7] shows that, on such a summand W ,
C(s) acts by multiplication by βW . To complete the proof, it thus suffices
to show that

Dξℓ
s = ∇ξℓ

s − P(ξℓ) • s.

If T is a tractor bundle, then this follows immediately from the formula for
the fundamental derivative in section 1.7 of [2]. The formula there (applied
to standard tractors) shows that Dξℓ

equals ∇ξℓ
on the tangent bundle and

on a non–trivial density bundle. By naturality, this is true for arbitrary
irreducible bundles, and the result follows. �

This formula shows that to compute explicitly the curved Casimir on
the tensor product of a tractor bundle with an irreducible bundle, only two
ingredients are needed: first we need to systematically compute the numbers
βW , and second we need an explicit formula for the action of T ∗M on the
tractor bundle, since this can be first used to compute P(ξ) • s and then the
action of ϕℓ.

2.3. The construction principle. The construction principle we use is
actually very close to the construction of splitting operators in section 3.5
of [7]. Let T be the tensor product of a tractor bundle and a tensor bundle.
The natural filtration of the tractor bundle (inherited from the filtration of
the standard tractor bundle from 2.1) induces a natural filtration of T , which
we write as T = T 0 ⊃ T 1 ⊃ · · · ⊃ T N . Each of the subquotients T i/T i+1

splits into a direct sum of irreducible tensor bundles. On sections of each of
these bundles, the curved Casimir operator acts by a scalar by Theorem 3.4
of [7], and this scalar is computable from the highest (or lowest) weight of
the inducing representation. We denote by β1

i , . . . , βni

i the different scalars
that occur in this way.
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Now define Li :=
∏ni

ℓ=1(C − βℓ
i ). This can be viewed as a differential

operator of order ≤ ni acting on sections of T . Moreover, naturality of
the curved Casimir operator implies that Li preserves each of the subspaces
formed by sections of one filtration component. Moreover, for each j, the
operator induced on sections of T j/T j+1 is given by the same formula, but
with C being the curved Casimir operator for that quotient bundle. In
particular, this implies that Li induces the zero operator on Γ(T i/T i+1)
and hence Li(Γ(T i)) ⊂ Γ(T i+1).

Now fix indices i < j and an irreducible component W ⊂ T i/T i+1. Con-
sider the composition πj ◦Lj ◦ . . . ◦Li+1, where πj is the tensorial operator
induced by the projection T i → T i/T j+1. Evidently, this composition de-
fines a differential operator mapping sections of T i to sections of T i/T j+1.
However, by construction, sections of T i+1 are mapped to sections of T i+2

by Li+1, which are mapped to sections of T i+3 by Li+2, and so on. Hence
our operator factors to sections of T i/T i+1 and restricting to sections of W ,
we obtain an operator L : Γ(W ) → Γ(T i/T j+1).

In section 3.5 of [7], it is then assumed that the Casimir eigenvalue β
corresponding to the irreducible bundle W is different from all the βk

ℓ for
i < k ≤ j and all ℓ. In that case, composing the projection T i/T j →
T i/T i+1 with L, one obtains a non–zero multiple of the identity, and hence
L is a splitting operator.

But now let us assume that (with appropriate numeration) β = β1
j , and

let W̃ ⊂ T j/T j+1 be the sum of the irreducible components corresponding

to this eigenvalue. Then we can write Lj as (C − β) ◦ L̃j where operator L̃j

is a polynomial in C. Next, since all polynomials in C commute, we can also
write the composition πj ◦ Lj ◦ . . . ◦ Li+1 as πj ◦ L̃j ◦ . . . ◦ Li+1 ◦ (C − β).
But the latter composition evidently maps a section of T i, whose image in
T i/T i+1 has values in W to a section of T j. Hence in this case, L has values
in sections of T j/T j+1. Moreover, since

(C − β) ◦ πj ◦ Lj ◦ . . . ◦ Li+1 = πj ◦ Lj ◦ . . . ◦ Li+1 ◦ (C − β)

evidently induces the zero operator on Γ(W ), we conclude that L actually

has values in Γ(W̃ ), so we have obtained an operator L : Γ(W ) → Γ(W̃ ).

2.4. Computing the Casimir eigenvalues. We need a systematic nota-
tion for weights and their relation to irreducible bundles. Since these issues
are slightly different in even and odd dimensions, we will restrict our atten-
tion to the case of even dimension n = 2m from now on; in many senses
conformally invariant powers of the Laplacian are more interesting in even
dimensions. Note that the weights involved are actually defined on the com-
plexification gC = so(2m + 2, C) of g = so(p + 1, q + 1). The process of
assigning weights to real representations of g and g0 = co(p, q) is discussed
in section 3.4 of [7].

We use the notation from chapter 19 of [9] for weights for gC = so(2m +
2, C). Hence weights will be denoted by tuples (a1, a2, . . . , am+1), and the
(highest weights of) irreducible tensor representations (we will not require
any spin representations) correspond to tuples in which all the ai are integers
and a1 ≥ a2 ≥ · · · ≥ an−1 ≥ ±an. For example, for i < m, the ith exterior
power ΛiC2m+2 is irreducible and corresponds to the tuple a1 = · · · = ai = 1
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and ai+1 = · · · = am+1 = 0. In this notation, the half sum of all positive
roots is given by ρ = (m, m− 1, . . . , 1, 0).

Weights for the complexification of g0 can be viewed as functionals on
the same space, the conditions on dominance and integrality are different,
however. Since this difference concerns the first entry only, we use the
notation (a1|a2, . . . , am+1) for these weights.

The formula for the Casimir eigenvalues is in terms of lowest weights.
For weights of tensor representations of gC this coincides with the highest
weight since any such representation is isomorphic to its dual. It will be
helpful to keep in mind that the lowest weight of a representation of gC

coincides with the lowest weight of the irreducible quotient representation of
(g0)C. This is sufficient to understand the correspondence between weights
and irreducible bundles. For example, the standard representation of gC

corresponds to the weight (1, 0, . . . , 0) and the standard tractor bundle EA,
whose irreducible quotient is E [1]. Hence E [1] corresponds to the weight
(1|0, . . . , 0) and therefore E [w] corresponds to (w|0, . . . , 0) for w ∈ R.

More generally, for i < m, the ith exterior power of the standard repre-
sentation corresponds to (1, . . . , 1, 0, . . . , 0) (with i entries equal to 1) and is
also a notation for ΛiEA, which clearly has Λi−1Ea ⊗ E [i] as an irreducible
quotient. Hence Ea and Ea correspond to (−1|1, 0, . . . , 0) and (1|1, 0, . . . , 0),
respectively, and E[ab][w] corresponds to (w − 2|1, 1, 0 . . . , 0). The highest

weight of Sk
0Ea is just k times the highest weight of Ea, so Sk

0Ea[w] corre-
sponds to (w − k|k, 0, . . . , 0), and so on.

The final ingredient needed to apply the formula for Casimir eigenvalues
is the inner product on weights. Taking as our invariant bilinear form half
the trace form on the Lie algebra (which leads to the nicest conventions), one
simply obtains the standard inner product. For example, for W = Sk

0Ea[w]
the corresponding weight λ = (w − k|k, 0, . . . , 0) and

βW = 〈λ, λ + 2ρ〉 = (w − k)(w + 2m− k) + k(2m + k − 2).

2.5. Standard tractors twisted by one–forms. We now have all the
technical input at hand, so we look at the first example. Consider the
tensor product Ea[w]⊗EA of the standard tractor bundle with the bundle of
weighted one–forms. We will describe the curved Casimir operator on this
bundle and find basic splitting operators and all the invariant differential
operators between irreducible bundles that can be constructed from this
curved Casimir. From the composition series for EA from 2.1 we get a
composition series Ea[w + 1] +

�
� Eab[w + 1] +

�
� Ea[w − 1] for our bundle. We

use the convention that in the middle slot the first indices come from Ea[w]
and the second ones from the tractor bundle. The middle term decomposes
as E(ab)0[w + 1] ⊕ E [w − 1] ⊕ E[ab][w + 1], and if n ≥ 6 then each of the
summands is irreducible. For n = 4, the bundle E[ab][w + 1] splits into the
sum of self–dual and anti–self–dual two forms, which then are irreducible.
As we shall see below, however, this does not cause any change, so we can
treat all even dimensions ≥ 4 uniformly. According to these decompositions,
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sections Ea[w] ⊗ EA will be written as vectors of the form




σa

Aab | α | Bab

ρa





with Aab = A(ab)0 and Bab = B[ab]. Following the usual conventions the
top slot is the projecting slot, so σa has weight w + 1 while ρa has weight
w − 1. The action of ϕi ∈ Ω1(M) on the standard tractor bundle can be
immediately computed from the matrix representation of g, and using this,
we obtain

ϕi·





σa

Aab | α | Bab

ρa



 =





0
−σ(aϕb)0 | − σiϕi | − σ[aϕb]

Aabϕ
b + 1

n
αϕa + Babϕ

b



 .

The Casimir eigenvalues βW for the irreducible components in our bundle
can be computed using the formulae from 2.4. In dimension four, the self–
dual and anti–self–dual parts in E[ab][w + 1] correspond to the weights (w−
1|1, 1) and (w−1|1,−1), respectively. This shows that, for any choice of the
weight w, the curved Casimir operator acts by the same scalar on sections of
the two bundles. Hence in our constructions schemes for operators we may
always treat the sum of these two bundles as if it were a single irreducible
component, which shows that the general discussion applies to dimension
four as well. The numbers βW are given by

(1)





a0 + n − 1
a0 − 2w + n + 1 | a0 − 2w − n + 1 | a0 − 2w + n − 3

a0 − 4w − n + 3



 ,

where a0 = w(w + n). We will denote the eigenvalue in the top slot by β0,
the one in the bottom slot by β2, and the three middle ones by β1

1 , β2
1 and

β3
1 . Using this, we can now write out the curved Casimir operator explicitly.

Acting by ∇− P• on a typical element, we get




∇aσb

∇aAbc + Pa(bσc)0 | ∇aα + Pa
dσd | ∇aBbc − Pa[bσc]

∇aρb − Pa
dAdb −

1
n
αPab + Pa

dBdb



 .

Via Proposition 2.2 we can compute C by applying to this the action of the
index a, multiplying the result by −2, and adding the components of the
original element multiplied by the appropriate scalar. This gives





β0σa

β1
1Aab + 2∇(aσb)0 | β2

1α + 2∇cσc | β3
1Bab + 2∇[aσb]

β2ρa − 2∇cAca − 2P
c
(cσa)0 −

2
n
∇aα − 2

n
Pa

cσc − 2∇cBca − 2P
c
[cσa]



 .

¿From this formula, we can immediately read off a number of invariant first
order splitting operators as well as invariant first order operators between
irreducible bundles. For example, elements with σa = α = Bab = 0 form
a natural subbundle of EA ⊗ Ea[w] for each w. On sections of this natural
subbundle, C − β2 id defines a natural operator given by





0
Aab | 0 | 0

ρa



 7→





0
(β1

1 − β2)Aab | 0 | 0
−2∇cAca.
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Since the value is independent of ρa, it descends to a natural operator defined
on E(ab)0[w+1]. If β1

1 −β2 6= 0 or equivalently w 6= 1−n, this is the splitting

operator Γ(E(ab)0[w+1]) → Γ(EA
a [w]) as constructed in [7]. However, for w =

1−n, the operator has values in the natural subbundle Ea[−n] ⊂ EA
a [1−n], so

we obtain a natural differential operator Γ(E(ab)0[2− n]) → Γ(Ea[−n]) given

by Aab 7→ −2∇bAba. This is the adjoint of the conformal Killing operator.
In the same way, one obtains splitting operators for the other middle slots,

and first order operators E [0] → Ea[0] (the exterior derivative from functions
to one–forms) and E[ab][4 − n] → Ea[2 − n] (the divergence or equivalently
the exterior derivative from (n − 2)–forms to (n − 1)–forms).

To construct invariant operators defined on the quotient bundle Ea[w+1],
consider the differences of the β’s from β0, which are given by





0
c1
1 | c2

1 | c3
1

c2



 :=





0
2w − 2 | 2w + 2n − 2 | 2w + 2

4w + 2n − 4





¿From the formula for C from above, we can read off the three first order
invariant operators obtained in the case that ci

1 = 0. For c1
1 = 0, i.e. w = 1

we get the conformal Killing operator Ea[2] = Ea → E(ab)0[2]. For c2
1 = 0

we get w = 1 − n and we obtain the divergence Ea[2 − n] → E [−n] (or
equivalently the exterior derivative from (n− 1)–forms to n–forms. Finally,
c3
1 = 0 corresponds to w = −1 as this gives the exterior derivative from

one–forms to two forms.
To construct the full splitting operator defined on Ea[w + 1] respectively

an operator from this bundle to Ea[w−1] (for a special value of w), we have
to form (C−β2)◦(C−β1

1)◦(C−β2
1)◦(C−β3

1). This gives a splitting operator
provided that all ci

1 and c2 are nonzero by Theorem 2 of [7]. For c2 = 0,
i.e. w = 1 − n

2 , we see from 2.3 that we obtain an invariant differential op-
erator Γ(Ea[2−

n
2 ]) → Γ(Ea[−

n
2 ]) of order at most two. We can immediately

calculate this operator using the above formula for C. Its value on σa reads
as





c2c
1
1c

2
1c

3
1σa

2c2c
2
1c

3
1∇(aσb)0 | 2c2c

1
1c

3
1∇

iσi | − 2c2c
1
1c

2
1∇[aσb]

Aa(σ)



 ,

where

Aa(σ) = − 2c2
1c

3
1(2∇

i∇(iσa)0 + c1
1P

i
(iσa)0) −

2
nc1

1c
3
1(2∇a∇

iσi + c2
1Pa

iσi)

+2c1
1c

2
1(2∇

i∇[iσa] − c3
1P

i
[aσi])

In particular, we see that for c2 = 0, only the bottom slot is non–zero, and,
as expected, we obtain an invariant operator σ 7→ Aa(σ). We can easily
compute the principal part of this operator by looking only at the second
order terms and commuting derivatives. This shows that, up to a non–zero
factor, the principal part is given by

σa 7→ (n − 2)
(

n∆σa − 4∇a∇
iσi

)

.

In particular, except for the case n = 2, which is geometrically irrelevant,
we obtain a true second order operator.
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Collecting our results, we see that from curved Casimirs on the bundle
Ea[w]⊗EA we obtain seven invariant operators between irreducible bundles.
Six of these are first order, while one is of order two. The first order oper-
ators belong to two different BGG sequences. The two exterior derivatives
and the two divergences are part of the de–Rham sequence, i.e. the BGG
sequence of the trivial representation. The conformal Killing operator and
its adjoint are well known to be part of the BGG sequence corresponding
to the adjoint representation. Finally, for n ≥ 6 the second order opera-
tor Γ(Ea[2 − n

2 ]) → Γ(Ea[−
n
2 ]) is not part of any BGG sequence, since the

corresponding representations (or rather the Verma modules associated to
their duals) have singular infinitesimal character. Moreover, the resulting
operator is a non–standard operator. Hence we see that even for this simple
example, we obtain both standard and non–standard operators both in reg-
ular and singular infinitesimal character. In dimension four, the situation
is slightly different, since the two critical weights w = −1 and w = 1 − n

2
coincide. This means that the second order operator is obtained as the com-
position of the divergence and the exterior derivative. Hence for n = 4, we
obtain the Maxwell operator, which is a standard operator in the BGG–
sequence of the trivial representation.

3. Conformally invariant powers of the Laplacian

In this section, we show how to construct the conformally invariant square
and cube of the Laplacian from curved Casimir operators. There are some
well known subtle phenomena concerning these operators. As shown in [11]
in dimension four and in [10] in general, there are no conformally invariant
powers of the Laplacian in even dimensions n = 2m whose order exceeds
n. Moreover, the mth power (called the critical power) is of much more
subtle nature than the lower powers. As shown in [8], for all lower powers of
the Laplacian (as well as all operators occurring in BGG–sequences) there
are formulae which are strongly invariant (induced from homomorphisms
on semi–holonomic jet modules), while the critical powers do not have this
property. As we shall see, these phenomena are reflected very nicely in the
constructions via curved Casimir operators. For the square of the Laplacian,
a different construction has to be used in the critical dimension four. On
the other hand, the construction for the cube of the Laplacian completely
breaks down in dimension four.

3.1. The square of the Laplacian in dimensions 6= 4. We consider
the tracefree part in the symmetric square of the standard tractor bundle
twisted by a weight, i.e. the bundle E(AB)0[w]. ¿From the composition series
of the standard tractor bundle in 2.1 we see that

E(AB)0[w] = E [w + 2] +
�
� Ea[w + 2] +

�
� (E(ab)0[w + 2]⊕E [w]) +

�
� Ea[w] +

�
� E [w− 2].

We will again use a vector notation with the projecting slot on top. To
compute the action of p+, one has to represent typical elements in each slot
by tensor products of standard tractors, and then compute the tensorial
action. It is obvious how to get such representatives, except for the two
components in the middle. Using ∨ to denote the symmetric tensor product,
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the representatives for E [w] are the multiples of the element
(

1
0
0

)

∨
(

0
0
1

)

− 1
n

∑

j

(

0
ej

0

)

∨
(

0
ej

0

)

for dual bases {ej} and {ej}. On the other hand, typical representatives for

the elements in E(ab)0[w + 2] are given by the sum of
(

0
µa

0

)

∨
(

0
νb
0

)

and an

appropriate multiple of the g–invariant expression representing the tractor
metric. Using these facts, one easily computes that the p+–action as a map
Ea ⊗ E(AB)0 → E(AB)0 is in vector notation given by

ϕi·













σ
µa

Aab | α
νa

ρ













=













0
−2σϕa

−ϕ(aµb)0 | ϕiµi

2ϕiAia −
n+2
n

αϕa

ϕiνi













.

¿From this, we can determine the formula for the curved Casimir operator
as in 2.5 to obtain

C













σ
µa

Aab | α
νa

ρ













=













β0σ
β1µa + 4∇aσ

β1
2Aab + 2∇(aµb)0 + 4P(ab)0σ | β2

2α − 2∇cµc − 4Pσ

β3νa − 4∇cAca − 4P
c
(cµa)0 + 2n+2

n
∇aα − 2n+2

n
Pa

cµc

β4ρ − 2∇cν
c + 4P

cdAcd − 2n+2
n

Pα













Computing the Casimir eigenvalues corresponding to the irreducible com-
ponents which occur in that formula is straightforward and gives













β0

β1

β1
2 | β2

2

β3

β4













=













w(w + n) + 4w + 2n + 4
w(w + n) + 2w + 2n

w(w + n) + 2n | w(w + n)
w(w + n) − 2w

w(w + n) − 4w − 2n + 4













.

The differences of β0 from these numbers are given by

(2)













0
2w + 4

4w + 4 | 4w + 2n + 4
6w + 2n + 4

8w + 4n













The critical weight for which we can expect an operator from the top slot
to the bottom slot is therefore given by w = −m in dimension n = 2m.
Inserting this into (2), we obtain

(3)













0
4 − n

4 − 2n | 4
4 − n

0













.

This already shows that something special will happen in dimension four,
since there we obtain a coincidence of four (rather than two) of the Casimir
eigenvalues. There would be another potential speciality (a coincidence of
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three of the eigenvalues) in dimension n = 2, but this is not geometrically
relevant.

According to 2.3, an operator from the top slot to the bottom slot is
induced by (C−β4)◦ (C −β3)◦ (C −β1

2)◦ (C −β2
2)◦ (C −β1). To compute the

principal part of this induced operator, one can apply this composition to
an element for which only the top component is nonzero. Moreover, observe
that any derivative moves down one level, so terms in lower levels which
contain only few derivatives can be ignored. Finally, one can freely commute
derivatives when determining the principal part. Using this simplifications
and computing the composition in the opposite order as written above, it is
easy to verify directly that up to a nonzero factor, the principal part equals
(n − 4)∆2σ. In particular, for n 6= 4 the principal part is nonzero and we
have constructed a conformally invariant square of the Laplacian.

3.2. The square of the Laplacian in dimension 4. In dimension four,
the operator considered in 3.1 reads as (C−β4)

3 ◦ (C−β1
2)◦ (C−β2

2 ) because
of the additional coincidences of eigenvalues. From 3.1 we see that the
(fourth order) principal part of the induced operator E → E [−4] vanishes,
and indeed we shall see from the further discussion, that this operator is
identically zero. Still we can obtain a conformally invariant square of the
Laplacian in dimension four from curved Casimirs. Namely, we will show
that actually the operator (C − β4)

2 ◦ (C − β1
2) ◦ (C − β2

2) induces such a
square, but this needs some verifications.

Indeed, let us write the natural filtration of the bundle T = E(AB)0[w] as
T = T 0 ⊃ T 1 ⊃ · · · ⊃ T 4 ⊃ {0}. Now by construction, (C − β1

2) ◦ (C − β2
2)

maps sections of T 2 to sections of T 3, and each occurrence of C − β4 maps
sections of T to sections of T 1, sections of T 1 to sections of T 2, sections
of T 3 to sections of T 4, and sections of T 4 to zero. Thus the composition
(C − β4)

2 ◦ (C − β1
2) ◦ (C −β2

2) vanishes on Γ(T 2), maps Γ(T 1) to Γ(T 4) and
all of Γ(T ) to Γ(T 3). In particular, it induces operators

Γ(E) = Γ(T /T 1) → Γ(T 3/T 4) = Γ(Ea[−2])

Γ(Ea) = Γ(T 1/T 2) → Γ(T 4) = Γ(E [−4]).

If we can prove that both these operators vanish, then we get an induced op-
erator Γ(E) → Γ(E [−4]) as required. Since this is induced by a composition
of four curved Casimirs, it follows immediately that the symbol is induced
by the four–fold action of p+ and hence we have found an invariant square
of the Laplacian.

It turns out that we can write the two operators whose vanishing we want
to prove as compositions. Since β0 = β1 = β3 = β4, the operator C − β4

induces invariant operators Γ(T /T 1) → Γ(T 1/T 2) as well as Γ(T 3/T 4) →
Γ(T 4), and these are just the exterior derivative d mapping functions to
1–forms, respectively the divergence δ, which is a formal adjoint to this.
On the other hand, the composition (C − β1) ◦ (C − β1

2) ◦ (C − β2
2) induces

an invariant operator T : Γ(T 1/T 2) → Γ(T 3/T 4), so this maps 1–forms to
3–forms. The two operators we have to study are the compositions T ◦ d
and δ ◦ T , so we have to prove that these vanish. We do this by showing
that T is the Maxwell operator (as expected).



INVARIANT OPERATORS VIA CURVED CASIMIRS:EXAMPLES 13

Using the formula for C from 3.1, a simple direct computation shows that
the operator T maps µa to

−4∇c∇(cµa)0 + 3∇a∇
cµc + 8P

c
(cµa)0 + 6Pa

cµc.

Now expanding the definition of the tracefree symmetric part respectively
of the Rho–tensor immediately leads to the identities

−4∇c∇(cµa)0 = −2∇c∇cµa − 2∇c∇aµc + ∇a∇
cµc

8P
c
(cµa)0 = 4Pµa + 2Pa

cµc

∇a∇
cµc = ∇c∇aµc − 2Pa

cµc − Pµa.

Putting this together, we immediately get T (µa) = 2∇c∇[aµc] and this com-
pletes the argument.

While we do not intend to discuss the concept of strong invariance in detail
in this paper, we want to make a brief comment on these issues. The curved
Casimir operators themselves are of course strongly invariant in every sense,
since they are of first order. Consequently, any operator directly induced
by a polynomial in curved Casimirs is strongly invariant, too. In particular,
the construction of 3.1 provides strongly invariant squares of the Laplacian
in dimensions different from 4. The construction in dimension four however
depends on vanishing of the compositions T ◦ d and δ ◦ T , which (like the
equation d ◦ d = 0) are not valid in a strong sense. Hence in dimension 4 we
cannot conclude that we get a strongly invariant operator.

3.3. The cube of the Laplacian. To conclude this article, we briefly out-
line what happens for the cube of the Laplacian. The relevant bundle to
obtain a cube of the Laplacian is of course S3

0E
A, which has composition

series

E [w + 3] +
�
� Ea[w + 3] +

�
�

(E(ab)0
[w+3]

E [w+1]

)

+
�
�

(E(abc)0
[w+3]

Ea[w+1]

)

+
�
�

(E(ab)0
[w+1]

E [w−1]

)

+
�
� Ea[w − 1] +

�
� E [w − 3]

We use a vector notation similar as before. Computing the Casimir eigenval-
ues is straightforward, and shows that the weight for which one may expect
an operator from the top slot to the bottom slot is again w = −n

2 . For
this the differences of the Casimir eigenvalue for the top slot from the other
Casimir eigenvalues form the pattern





















0
6 − n

2(4− n) | 8
6 − 3n | 10− n

2(4− n) | 8
6 − n

0





















,

which shows that additional coincidences of Casimir eigenvalues occur in
dimensions 4, 6, and 10. While the special role of dimensions 4 (for which
non–existence of a conformally invariant power of the Laplacian is proved
in [11]) and 6 (for which the cube is the critical power of the Laplacian) has
to be expected, the special role of dimension 10 comes as a surprise.
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To compute the curved Casimir, the main input is again the action of g1

which, viewed as a map Ea ⊗ S3
0E

A → S3
0E

A, is given by

ϕi·





















σ
µa

Aab | α
Φabc | νa

Bab | β
τa

ρ





















=





















0
−3ϕa

−2ϕ(aµb)0 | ϕiµi

−ϕ(aAbc)0 | − 2n+2
n

αϕa + 2ϕiAia

−n+4
n+2ϕ(aνb)0 + 3ϕiΦiab | ϕiνi

−n+4
n βϕa + 2ϕiBia

ϕiτi





















.

¿From this, one easily derives the full formula for the curved Casimir op-
erator on the bundle S3

0E
A[w]. According to 2.3, the operator to consider

is

(4) (C − β0) ◦ (C − β1)
2 ◦ (C − β1

2)
2 ◦ (C − β2

2)
2 ◦ (C − β1

3) ◦ (C − β2
3),

where the squares are due to the fact that β5 = β1 and βi
4 = βi

2 for i = 1, 2.
To compute the principal part of the induced operator, one proceeds in a
manner similar to 3.1 above. That is by working through the composition
starting with the factor C − β0 and then working down level by level. One
takes only terms of high enough order in each level, and freely commutes
derivatives. This shows that, up to a nonzero factor, the principal part is
given by

σ 7→ (n − 4)(n − 6)(n − 10)∆3σ.

We want to point out however, that while the factors (n − 4), (n − 6), and
(n− 10) occur as differences of Casimir eigenvalues, the fact that they arise
in the principal part is not at all straightforward, but has to be verified
by rather nasty computations. In all dimensions except for these three
critical ones, our operator directly defines a conformally invariant cube of
the Laplacian.

Concerning the critical dimensions, the situation is the following. The
easiest of these cases is dimension 10. Here there is an additional coincidence
of Casimir eigenvalues, since β2

3 = β0. Let us write T = S3
0E

A and us denote
the canonical filtration of T by T = T 0 ⊃ · · · ⊃ T 6 ⊃ {0}. Now consider
the composition

(C − β2
3) ◦ (C − β1

2) ◦ (C − β2
2) ◦ (C − β1).

This maps Γ(T ) to Γ(T 3), and if we project to T 3/T 4 and then further to
the component Ea[−4] (which corresponds to the eigenvalue β2

3), then the
composition vanishes on Γ(T 1). Hence it induces an operator from sections
of T /T 1 ∼= E [−2] to sections of Ea[−4]. (It is known from the classification
of conformally invariant operators, that this has to vanish in the conformally
flat case.) Now a direct computation shows that this operator actually is
always identically zero. This shows that

(C − β1
3) ◦ (C − β2

3) ◦ (C − β1
2) ◦ (C − β2

2) ◦ (C − β1)

maps all of Γ(T ) to Γ(T 4). Hence if we further apply (C − β5) ◦ (C − β1
4) ◦

(C − β2
4), the result maps all of Γ(T ) to Γ(T 6).

Similarly, we can consider the composition

(C − β5) ◦ (C − β1
4) ◦ (C − β2

4) ◦ (C − β2
3)
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on the space of those sections of T 3 whose image in T 3/T 4 is a section of
the component Ea[−4] only. As before, this clearly maps all such sections to
sections of T 6, and since β2

3 = β6 it vanishes on sections of the subbundle
T 4. Hence we get an induced operator from sections of Ea[−4] to sections
of T 6 = E [−8]. Once again, a direct computation shows that this operator
vanishes identically (which in the conformally flat case follows from the
known classification results). Now on the other hand, the composition

(C − β1
3) ◦ (C − β1

2) ◦ (C − β2
2) ◦ (C − β1)

maps Γ(T 1) to Γ(T 3) and projecting to T 3/T 4 the result lies in Γ(Ea[−4])
only. Together with the above observation we conclude that if in the com-
position (4) we leave out one of the two factors (C − β0), then the result
still maps sections of T to sections of T 6 and vanishes on sections of T 1.
Hence we again get an induced operator mapping sections of T /T 1 ∼= E [−2]
to sections of E [−8] ∼= T 6. Of course, this also implies that the original
composition (4) induces the zero operator in dimension 10.

A similar computation as for general dimensions now shows that the prin-
cipal part of this operator is a nonzero multiple of σ 7→ ∆3σ. Hence we have
obtained a cube of the Laplacian in dimension 10, although we cannot con-
clude that this is strongly invariant.

Next, let us discuss dimension n = 4, for which there is no conformally
invariant cube of the Laplacian by [11]. Due to the coincidences of Casimir
eigenvalues, the composition (4) here specialises to

(5) (C − β0)
3 ◦ (C − β1)

2 ◦ (C − β2
2)2 ◦ (C − β1

3) ◦ (C − β2
3).

One might hope that one can define a cube of the Laplacian in dimension
four, at last for a certain class of conformal manifolds by leaving out one
of the three factors (C − β0). This turns out to work however, only on the
subcategory of locally conformally flat structures.

The pattern is similar to that arising for the square of the Laplacian in
dimension four. The composition (C −β0) ◦ (C −β1

3) ◦ (C − β2
3) is easily seen

to induce a second order operator Φ mapping sections of E(ab)0[1] ⊂ T 2/T 3

to sections of E(ab)0[−1] ⊂ T 4/T 5. Likewise, the composition (C −β0) ◦ (C −

β1) induces an operator Ψ1 mapping sections of E [1] ∼= T /T 1 to sections
of E(ab)0[1] ⊂ T 2/T 3 as well as an operator Ψ2, which maps sections of

E(ab)0[−1] ⊂ T 4/T 5 to sections of E [−5] ∼= T 6. To get and induced operator
Γ(E [1]) → Γ(E [−5]) after leaving out one of the three factors (C−β0) in (5),
one needs the compositions Φ◦Ψ1 and Ψ2◦Φ to vanish identically. However,
it turns out that both these compositions actually are second order operators
with Weyl curvature in the principal symbol and a tensorial part involving
the Bach tensor. Further, from the explicit form for the principal symbol
one may see that it vanishes only in the locally flat case (where this also
follows from the classification results). In the latter case, one can then
compute the principal part similarly as before to see that one indeed does
obtain a conformally invariant cube of the Laplacian on locally conformally
flat 4–manifolds, but not for a larger class.
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Finally, in the critical dimension n = 6 some details remain unresolved.
Due to the coincidences of Casimir eigenvalues, the composition (4) spe-
cialises to

(6) (C − β0)
3 ◦ (C − β1

2)2 ◦ (C − β2
2)

2 ◦ (C − β1
3) ◦ (C − β2

3).

As for the square of the Laplacian in dimension four, the hope would be to
leave out one of the three factors (C −β0) and still get an induced operator.
Also, the verifications to be made are analogous to ones from 3.2. The
composition

(C − β0) ◦ (C − β1
2)2 ◦ (C − β2

2)2 ◦ (C − β1
3) ◦ (C − β2

3)

induces a fourth order operator T : Γ(Ea) → Γ(Ea[−4]). On the other hand,
(C − β0) induces the exterior derivative d : Γ(E) → Γ(Ea) as well as the
divergence δ : Γ(Ea[−4]) → Γ(E [−6]). Leaving out one of the three factors
(C − β0) in (6), the result induces an operator Γ(E) → Γ(E [−6]) if and only
if the compositions T ◦ d and δ ◦ T vanish identically. Of course, this is true
in the flat case, so there the construction again works. While we have been
able to compute a complete formula for T in the curved case, computing
the two compositions explicitly seems to be a serious task. To sort out this
problem new ideas would be helpful.
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[2] A. Čap, A.R. Gover, Tractor bundles for irreducible parabolic geometries,
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