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EXACT CATEGORIES

THEO BÜHLER

Abstract. We survey the basics of homological algebra in exact categories

in the sense of Quillen. All diagram lemmas are proved directly from the ax-
ioms, notably the five lemma, the 3×3-lemma and the snake lemma. We briefly

discuss exact functors, idempotent completion and weak idempotent complete-
ness. We then show that it is possible to construct the derived category of an

exact category without any embedding into abelian categories. The construc-
tion of classical derived functors with values in an abelian category painlessly

translates to exact categories, i.e., we give proofs of the comparison theorem
for projective resolutions and the horseshoe lemma. After discussing some ex-

amples we elaborate on Thomason’s proof of the Gabriel-Quillen embedding
theorem in an appendix.
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1. Introduction

There are several notions of exact categories. On the one hand, there is the
notion in the context of additive categories commonly attributed to Quillen [32]
with which the present article is concerned; on the other hand, there is the non-
additive notion due to Barr [2] to mention but the two most prominent ones. While
Barr’s definition is intrinsic and an additive category is exact in his sense if and
only if it is abelian, Quillen’s definition is extrinsic in that one has to specify a
distinguished class of short exact sequences (an exact structure) in order to obtain
an exact category.

From now on we shall only deal with additive categories, so functors are tacitly
assumed to be additive. On every additive category A the class of all split exact
sequences provides the smallest exact structure, i.e., every other exact structure
must contain it. In general, an exact structure consists of kernel-cokernel pairs
subject to some closure requirements, so the class of all kernel-cokernel pairs is a
candidate for the largest exact structure. It is quite often the case that the class of
all kernel-cokernel pairs is an exact structure, but this fails in general: Rump [34]
constructs an example of an additive category with kernels and cokernels whose
kernel-cokernel pairs fail to be an exact structure.

It is commonplace that basic homological algebra in categories of modules over
a (sheaf of) rings extends to abelian categories. By using the Freyd-Mitchell full
embedding theorem ([13] and [28]), diagram lemmas can be transferred from mod-
ule categories to general abelian categories, i.e., one may argue by chasing elements
around in diagrams. There is a point in proving the fundamental diagram lemmas
directly, and be it only to familiarize oneself with the axioms. A careful study of
what is actually needed in order to prove the fundamentals reveals that in most
situations the axioms of exact categories are sufficient. An a posteriori reason is
provided by the Gabriel-Quillen embedding theorem which reduces homological
algebra in exact categories to the case of abelian categories, the slogan is “rela-
tive homological algebra made absolute”, (Freyd [12]). In the appendix we present
Thomason’s proof of the Gabriel-Quillen embedding theorem for the sake of com-
pleteness, but we will not apply it in these notes. The author is convinced that the
embedding theorem should be used to transfer the intuition from abelian categories
to exact categories rather than to prove (simple) theorems with it. A direct proof
from the axioms provides much more insight than a reduction to abelian categories.

That being said, we turn to a short description of the contents of this paper.
In section 2 we state and discuss the axioms and draw the basic consequences,

in particular we give the characterization of pull-back squares and Keller’s proof of
the obscure axiom.

In section 3 we prove the (short) five lemma, the Noether isomorphism theorem
and the 3 × 3-lemma.

Section 4 briefly discusses quasi-abelian categories, a source of many examples
of exact categories. Contrary to the notion of an exact category, the property of
being quasi-abelian is intrinsic.

Exact functors are briefly touched upon in section 5 and after that we treat
the idempotent completion and the property of weak idempotent completeness in
sections 6 and 7.

We come closer to the heart of homological algebra when discussing admissible
morphisms, long exact sequences, the five lemma and the snake lemma in section 8.
In order for the snake lemma to hold, it seems that the assumption of weak idem-
potent completeness is necessary.
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After that we briefly remind the reader of the notions of chain complexes and
chain homotopy in section 9, before we turn to acyclic complexes and quasi-iso-
morphisms in section 10. Notably, we give an elementary proof of Neeman’s crucial
result that the category of acyclic complexes is triangulated. We do not indulge in
the details of the construction of the derived category of an exact category because
this is well treated in the literature.

On a more leisurely level, projective and injective objects are treated in section 11
preparing the grounds for a treatment of classical derived functors (with values in
an abelian category) in section 12, where we state and prove the resolution lemma,
the comparison theorem and the horseshoe lemma, i.e., the three basic ingredients
for the classical construction.

We end with a short list of examples in section 13.
In Appendix A we give Thomason’s proof of the Gabriel-Quillen embedding the-

orem of an exact category into an abelian one. In a second appendix we give a
proof of the folklore fact that under the assumption of weak idempotent complete-
ness Heller’s axioms for an “abelian” category are equivalent to Quillen’s axioms
for an exact category.

Historical Note. Quillen’s notion of an exact category has its predecessors e.g.
in Heller [19], Buchsbaum [7], Yoneda [40], Butler-Horrocks [9] and Mac Lane [26,
XII.4]. It should be noted that Buchsbaum, Butler-Horrocks and Mac Lane assume
the existence of an ambient abelian category and miss the crucial push-out and pull-
back axioms, while Heller and Yoneda anticipate Quillen’s definition. According to
Quillen [32, p. “92/16/100”], assuming idempotent completeness, Heller’s notion of
an “abelian category” [19, § 3], i.e., an additive category equipped with an “abelian
class of short exact sequences”1 coincides with the present definition of an exact
category. We give a proof of this assertion in appendix B. Yoneda’s quasi-abelian S-
categories are nothing but Quillen’s exact categories and it is a remarkable fact that
Yoneda proves that Quillen’s “obscure axiom” follows from his definition, see [40,
p. 525, Corollary], a fact rediscovered thirty years later by Keller in [23, A.1].

Prerequisites. The prerequisites are kept at a minimum. The reader should know
what an additive category is and be familiar with fundamental categorical concepts
such as kernels, pull-backs, products and duality. Acquaintance with basic category
theory as presented in Hilton-Stammbach [20, Chapter II] or Weibel [39, Appen-
dix A] should amply suffice for a complete understanding of the text.

Disclaimer. This article is written for the reader who wants to learn about exact
categories and knows why. Very few motivating examples are given in this text.

The author makes no claim to originality. All the results are well-known in some
form and they are scattered around in the literature. The raison d’être of this
article is the lack of a systematic elementary exposition of the theory. The works of
Heller [19], Keller [23, 24] and Thomason [37] heavily influenced the present paper
and many proofs given here can be found in their papers.

2. Definition and Basic Properties

In this section we introduce the notion of an exact category and draw the basic
consequences of the axioms. We do not use the minimal axiomatics as provided
by Keller [23, Appendix A] but prefer to use a convenient self-dual presentation
of the axioms due to Yoneda [40, § 2] (modulo some of Yoneda’s numerous 3 × 2-
lemmas and our Proposition 2.12). The author hopes that the Bourbakists among

1It appears that Heller’s article [19] was written independently of Grothendieck’s influential
Tôhoku paper [18] where today’s notion of an abelian category was introduced.
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the readers will pardon this faux pas. We will discuss that the present axioms
are equivalent to Quillen’s [32, § 2] in the course of events. The main points of
this section are a characterization of push-out squares (Proposition 2.12) and the
obscure axiom (Proposition 2.15).

2.1. Definition. Let A be an additive category. A kernel-cokernel pair (i, p) in
A is a pair of composable morphisms

A′ i
−→ A

p
−→ A′′

such that i is a kernel of p and p is a cokernel of i. If a class E of kernel-cokernel
pairs on A is fixed, an admissible monic is a morphism i for which there exists a
morphism p such that (i, p) ∈ E . Admissible epics are defined dually. We depict
admissible monics by  and admissible epics by ։ in diagrams.

An exact structure on A is a class E of kernel-cokernel pairs which is closed
under isomorphisms and satisfies the following axioms:

[E0] For all objects A ∈ A , the identity morphism 1A is an admissible monic.
[E0op] For all objects A ∈ A , the identity morphism 1A is an admissible epic.

[E1] The class of admissible monics is closed under composition.
[E1op] The class of admissible epics is closed under composition.

[E2] The push-out of an admissible monic along an arbitrary morphism exists
and yields an admissible monic.

[E2op] The pull-back of an admissible epic along an arbitrary morphism exists and
yields an admissible epic.

Axioms [E2] and [E2op] are subsumed in the diagrams

A

��

// //

PO

B

��

A′ // // B′

and

A′

��

// //

PB

B′

��

A // // B

respectively.
An exact category is a pair (A , E ) consisting of an additive category A and an

exact structure E on A . Elements of E are called short exact sequences.

2.2. Remark. Note that E is an exact structure on A if and only if E
op is an exact

structure on A
op. This allows for reasoning by dualization.

2.3. Remark. Isomorphisms are admissible monics and admissible epics. Indeed,
this follows from the commutative diagram

A

∼=1A

��

f

∼=
// B //

∼=f−1

��

0

∼=

��

A //
1A

// A // // 0,

the fact that exact structures are assumed to be closed under isomorphisms and
that the axioms are self-dual.

2.4. Remark (Keller [23, App. A]). The axioms are somewhat redundant and can
be weakened. For instance, let us assume instead of [E0] and [E0op] that 10, the
identity of the zero object, is an admissible epic. For any object A there is the
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pull-back diagram

A

��

1A
//

PB

A

��

0
10

// 0

so [E2op] together with our assumption on 10 shows that [E0op] holds. Since 10

is a kernel of itself, it is also an admissible monic, so we conclude by [E2] that
[E0] holds as well. More importantly, Keller proves in loc. cit. (A.1, proof of the
proposition, step 3), that one can also dispose of one of [E1] or [E1op]. Moreover,
he mentions (A.2, Remark), that one may also weaken one of [E2] or [E2op]—this
is a straightforward consequence of (the proof of) Proposition 3.1.

2.5. Remark. Keller [23, 24] uses conflation, inflation and deflation for what we
call short exact sequence, admissible monic and admissible epic. This terminology
stems from Gabriel-Rŏıter [15, Ch. 9] who give a list of axioms for exact categories
whose underlying additive category has weakly split idempotents in the sense of
section 7, see Keller’s appendix to [11] for a thorough comparison of the axioms.

2.6. Exercise. An admissible epic which is additionally monic is an isomorphism.

2.7. Lemma. The sequence

A //
[ 1
0 ]

// A ⊕ B
[ 0 1 ]

// // B

is short exact.

Proof. The following diagram is a push-out square

0 // //

��

��

PO

B
��

[ 0
1 ]

��

A //
[ 10 ]

// A ⊕ B.

The top arrow and the left hand arrow are admissible monics by [E0op] while the
bottom arrow and the right hand arrow are admissible monics by [E2]. The lemma
now follows from the facts that the sequence in question is a kernel-cokernel pair
and that E is closed under isomorphisms. �

2.8. Remark. Lemma 2.7 shows that Quillen’s axiom a) [32, § 2] stating that
split exact sequences belong to E follows from our axioms. Conversely, Quillen’s
axiom a) obviously implies [E0] and [E0op]. Quillen’s axiom b) coincides with our
axioms [E1], [E1op], [E2] and [E2op]. We will prove that Quillen’s axiom c) follows
from our axioms in Proposition 2.15.

2.9. Proposition. The direct sum of two short exact sequences is short exact.

Proof. Let A′
A։ A′′ and B′

B ։ B′′ be two short exact sequences. First
observe that for every object C the sequence

A′ ⊕ C A ⊕ C ։A′′

is exact—the second morphism is an admissible epic because it is the composition
of the admissible epics [ 1 0 ] : A ⊕ C ։A and A։ A′′; the first morphism in the
sequence is a kernel of the second one, hence an admissible monic. Now it follows
from [E1] that

A′ ⊕ B′
A ⊕ B
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is an admissible monic because it is the composition of the two admissible monics
A′ ⊕ B′

A ⊕ B′ and A ⊕ B′
A ⊕ B. It is obvious that

A′ ⊕ B′
A ⊕ B ։A′′ ⊕ B′′

is a kernel-cokernel pair, hence the proposition is proved. �

2.10. Corollary. The exact structure E is an additive subcategory of the additive
category A

→→ of composable morphisms of A . �

2.11. Remark. In Exercise 3.9 the reader is asked to show that E is exact with
respect to a natural exact structure.

2.12. Proposition. Consider a commutative square

A // i
//

f

��

B

f ′

��

A′ // i′
// B′

in which the horizontal arrows are admissible monics. The following assertions are
equivalent:

(i) The square is a push-out.

(ii) The sequence A //

h
i

−f

i

//B ⊕ A′
[ f ′ i′ ]

// //B′ is short exact.

(iii) The square is bicartesian, i.e., both a push-out and a pull-back.
(iv) The square is part of a commutative diagram

A // i
//

f

��

B

f ′

��

p
// // C

A′ // i′
// B′

p′

// // C

with exact rows.

Proof. (i) ⇒ (ii): The push-out property is equivalent to the assertion that [ f ′ i′ ]
is a cokernel of

[
i

−f

]
, so it suffices to prove that the latter is an admissible monic.

But this follows from [E1] since
[

i
−f

]
is equal to the composition of the morphisms

A //
[ 10 ]

// A ⊕ A′

h
1 0

−f 1

i

∼=
// A ⊕ A′ //

[ i 0
0 1 ]

// B ⊕ A′

which are all admissible monics, see Remark 2.3.
(ii) ⇒ (iii) and (iii) ⇒ (i): obvious.
(i) ⇒ (iv): Let p : B ։C be a cokernel of i. The push-out property of the square

yields that there is a unique morphism p′ : B′ → C such that p′f = p and p′i′ = 0.
Observe that p′f = p implies that p′ is epic. In order to see that p′ is a cokernel
of i′, let g : B′ → X be such that gi′ = 0. Then gf ′i = gi′f = 0, so gf ′ factors
uniquely over a morphism h : C → X such that gf ′ = hp. We claim that hp′ = g:
this follows from the push-out property of the square because hp′f ′ = hp = gf ′

and hp′i′ = 0 = gi′. Since p′ is epic, the factorization h of g is unique, so p′ is a
cokernel of i′.
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(iv) ⇒ (ii): Form the pull-back over p and p′ in order to obtain the commutative
diagram

A
��

j

��

A
��

i

��

A′ //
j′

// D

PB

q′

// //

q

����

B

p

����

A′ // i′
// B′

p′

// // C

with exact rows and columns using the dual of the implication (i) ⇒ (iv). Since the
square

B

f ′

��

B

p

����

B′
p′

// // C

is commutative, there is a unique morphism k : B → D such that q′k = 1B and
qk = f ′. Since q′(1D − kq′) = 0, there is a unique morphism l : D → A′ such that
j′l = 1D − kq′. Note that lk = 0 because j′lk = (1D − kq′)k = 0 and j′ is monic.
Furthermore

i′lj = (qj′)lj = q(1D − kq′)j = −(qk)(q′j) = −f ′i = −i′f

implies lj = −f since i′ is monic.
The morphisms

[ k j′ ] : B ⊕ A′ → D and
[

q′

l

]
: D → B ⊕ A′

are mutually inverse since

[ k j′ ]
[

q′

l

]
= kq′ + j′l = 1D and

[
q′

l

]
[ k j′ ] =

[
q′k q′j′

lk lj′

]
=

[
1B 0
0 1A′

]
.

Now

[ f ′ i′ ] = q [ k j′ ] and
[

i
−f

]
=

[
q′

l

]
j

show that A

h
i

−f

i

−−−−→ B ⊕ A′ [ f ′ i′ ]
−−−−→ B′ is isomorphic to A

j
−→ D

q
−→ B′. �

The following simple observation will only be used in the proof of Lemma 10.3.
We state it here for ease of reference.

2.13. Corollary. The surrounding rectangle in a diagram of the form

A

a

��

PB

f
// // B

b

��

PO

//
g

// C

c

��

A′
f ′

// // B′ //
g′

// C ′

is bicartesian and A //

h
−a
gf

i

// A′ ⊕ C
[ g′f ′ c ]

// // C ′ is short exact.

Proof. It follows from Proposition 2.12 and its dual that both squares are bicarte-
sian. Gluing two bicartesian squares along a common arrow yields another bicarte-
sian square, which entails the first part and the fact that the sequence of the second

part is a kernel-cokernel pair. The equation [ g′f ′ c ] = [ g′ c ]
[

f ′ 0
0 1C

]
exhibits [ g′f ′ c ]

as a composition of admissible epics by Proposition 2.9 and Proposition 2.12. �
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2.14. Proposition. The pull-back of an admissible monic along an admissible epic
yields an admissible monic.

Proof. Consider the diagram

A′

e′

����

PB

i′
// B′

e

����

pe
// // C

A // i
// B

p
// // C.

The pull-back square exists by axiom [E2op] which also implies that e′ is an admis-
sible epic. Let p be a cokernel of i, so it is an admissible epic and pe is an admissible
epic by axiom [E1op]. In any category, the pull-back of a monic is a monic (if it
exists). In order to see that i′ is an admissible monic, it suffices to prove that i′ is
a kernel of pe. Suppose that g′ : X → B′ is such that peg′ = 0. Since i is a kernel
of p, there exists a unique f : X → A such that eg′ = if . Applying the universal
property of the pull-back square, we find a unique f ′ : X → A′ such that e′f ′ = f
and i′f ′ = g′. Since i′ is monic, f ′ is the unique morphism such that i′f ′ = g′ and
we are done. �

2.15. Proposition (Obscure Axiom). Suppose that i : A → B is a morphism in
A admitting a cokernel. If there exists a morphism j : B → C in A such that the
composite ji : AC is an admissible monic then i is an admissible monic.

2.16. Remark. The statement of the previous proposition is given as axiom c) in
Quillen’s definition of an exact category [32, § 2]. At that time, it was already proved
to be a consequence of the other axioms by Yoneda [40, Corollary, p. 525]. The
redundancy of the obscure axiom was rediscovered by Keller [23, A.1]. Thomason
baptized axiom c) the “obscure axiom” in [37, A.1.1].

A convenient and quite powerful strengthening of the obscure axiom holds under
the rather mild additional hypothesis that A have weakly split idempotents, see
Proposition 7.5.

Proof of Proposition 2.15 (Keller). Let k : B → D be a cokernel of i. From
the push-out diagram

A //
ji

//

i

��

PO

C

��

B // // E

and Proposition 2.12 we conclude that

A

h
i
ji

i

−−−→ B ⊕ C

is an admissible monic. Because

B ⊕ C

h
1B 0
−j 1C

i

−−−−−−→ B ⊕ C

is an isomorphism it is in particular an admissible monic, hence

[ i
0 ] =

[
1B 0
−j 1C

] [
i
ji

]
: A −→ B ⊕ C
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is an admissible monic as well. Because
[

k 0
0 1C

]
is a cokernel of [ i

0 ], it is an admissible
epic. Consider the following diagram

A
i

// B

[ 10 ]
��

k
//

PB

D

[ 10 ]
��

A //

[ i
0 ]

// B ⊕ C h
k 0
0 1C

i// // D ⊕ C.

Since the right hand square is a pull-back, it follows that k is an admissible epic
and that i is a kernel of k, so i is an admissible monic. �

2.17. Corollary. Let (i, p) and (i′, p′) be two pairs of composable morphisms. If
the direct sum (i ⊕ i′, p ⊕ p′) is exact then (i, p) and (i′, p′) are both exact.

Proof. It is clear that (i, p) and (i′, p′) are kernel-cokernel pairs. Since i has p as
a cokernel and since

[ 1
0 ] i =

[
i 0
0 i′

]
[ 1
0 ]

is an admissible monic, the obscure axiom implies that i is an admissible monic. �

2.18. Exercise. Suppose that the commutative square

A′ //
f ′

//

a

��

PO

B′

��

b

��

A //
f

// B

is a push-out. Prove that a is an admissible monic.
Hint: Let b′ : B ։B′′ be a cokernel of b : B′

B. Prove that a′ = b′f : A → B′′

is a cokernel of a, then apply the obscure axiom.

3. Some Diagram Lemmas

In this section we will prove variants of diagram lemmas which are well-known
in the context of abelian categories, in particular we will prove the five lemma and
the 3× 3-lemma. Further familiar diagram lemmas will be proved in section 8. The
proofs will be based on the following simple observation:

3.1. Proposition. Let (A , E ) be an exact category. A morphism from a short exact
sequence A′

B′
։C ′ to another short exact sequence AB ։C factors over a

short exact sequence A D ։C ′

A′ //
f ′

//

a

��

BC

B′
g′

// //

b′

��

C ′

A // m
// D

e
// //

b′′

��

BC

C ′

c

��

A //
f

// B
g

// // C

in such a way that the two squares marked BC are bicartesian. In particular there
is a canonical isomorphism of the push-out A ∪A′ B′ and the pull-back B ×C C ′.

Proof. Form the push-out under f ′ and a in order to obtain the object D and
the morphisms m and b′. Let e : D → C ′ be the unique morphism such that
eb′ = g′ and em = 0 and let b′′ : D → B be the unique morphism D → B such
that b′′b′ = b : B′ → B and b′′m = f . It is easy to see that e is a cokernel of
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m (see the proof of Proposition 2.12 (i) ⇒ (iv)) and hence the result follows from
Proposition 2.12 since the square DC ′BC is commutative [this is because a and
b′′b′ determine c uniquely]. �

3.2. Corollary (Five Lemma, I). Consider a morphism of short exact sequences

A′ // //

a

��

B′ // //

b

��

C ′

c

��

A // // B // // C.

If a and c are isomorphisms (or admissible monics, or admissible epics) then so
is b.

Proof. Assume first that a and c are isomorphisms. Because isomorphisms are
preserved by push-outs and pull-backs, it follows from the diagram of Proposi-
tion 3.1 that b is the composition of two isomorphisms B′ → D → B. If a and c
are both admissible monics, it follows from the diagram of Proposition 3.1 together
with [E2] and Proposition 2.14 that b is the composition of two admissible monics.
The case of admissible epics is dual. �

3.3. Exercise. If in a morphism

A′ // //

a

��

B′ // //

b

��

C ′

c

��

A // // B // // C.

of short exact sequences two out of a, b, c are isomorphisms then so is the third.
Hint: Use e.g. that c is uniquely determined by a and b.

3.4. Remark. The reader insisting that Corollary 3.2 should be called “three
lemma” rather than “five lemma” is cordially invited to give the details of the
proof of Lemma 8.9 and to solve Exercise 8.10. We will however use the more
customary name five lemma.

3.5. Lemma (“Noether Isomorphism C/B ∼= (C/A)/(B/A)”). Consider the com-
mutative diagram

A // // B
��

��

// // X
��

��

A // // C // //

����

Y

����

Z Z

in which the first two horizontal rows and the middle column are short exact. Then
the third column exists, is short exact, and is uniquely determined by the requirement
that it makes the diagram commutative. Moreover, the upper right hand square is
bicartesian.

Proof. The morphism X → Y exists since the first row is exact and the composi-
tion A → C → Y is zero while the morphism Y → Z exists since the second row is
exact and the composition B → C → Z vanishes. By Proposition 2.12 the square
containing X → Y is bicartesian. It follows that X → Y is an admissible monic
and that Y → Z is its cokernel. The uniqueness assertion is obvious. �
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3.6. Corollary (3 × 3-Lemma). Consider a commutative diagram

A′ //
f ′

//

a

��

B′
g′

// //

b

��

C ′

c

��

A //
f

//

a′

��

B
g

// //

b′

��

C

c′

��

A′′ //
f ′′

// B′′
g′′

// // C ′′

in which the rows are exact and assume in addition that one of the following con-
ditions holds:

(i) the two outer columns are short exact and b′b = 0;
(ii) the middle column and either one of the outer columns is short exact.

Then the remaining column is short exact as well.

Proof. Assume that condition (i) holds. We apply Proposition 3.1 to the mor-
phism between the first two rows in order to obtain a commutative diagram

A′ //
f ′

//

��

a

��

BC

B′
g′

// //

��

b̄

��

C ′

A //
f̄

// D
ḡ

// //

��

b̂

��

BC

C ′

��

c

��

A //
f

// B
g

// // C

with b = b̂b̄—it follows from the five lemma that b̄ and b̂ are admissible monics,
hence so is b. If we can prove that b′ is a cokernel of b we are done.

Note that the morphism ā : D → A′′ satisfying āf̄ = a′ and āb̄ = 0 is a cokernel

of b̄ while the morphism c′g : B → C ′′ is a cokernel of b̂.
We will need to know in a moment that the square

(∗)

D
ā

//

b̂

��

A′′

f ′′

��

B
b′

// B′′

is commutative. Indeed, we have on the one hand (f ′′ā)f̄ = f ′′a′ = b′f = (b′b̂)f̄

and on the other (f ′′ā)b̄ = 0 = b′b = (b′b̂)b̄ so that this follows from the push-out
property of the square A′B′AD—note that the hypothesis b′b = 0 enters at this
point of the argument.

Let e : B ։E be a cokernel of b. Noether’s isomorphism 3.5 yields the commu-
tative diagram

B′ // b̄
// D
��

b̂

��

ā
// //

BC

A′′

��

d

��

B′ // b
// B

e
// //

c′g
����

E

d′

����

C ′′ C ′′.

with exact rows and columns. Applying the push-out property of upper right hand
square to the commutative square (∗) yields a unique morphism ê : E → B′′ such
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that f ′′ = êd and b′ = êe. Moreover, the push-out property of the square DA′′BE
together with g′′êe = g′′b′ = c′g = d′e and g′′êd = g′′f ′′ = 0 = d′d implies that the
diagram

A′′ // d
// E

ê

��

d′

// // C ′′

A′′ //
f ′′

// B′′
g′′

// // C ′′

is commutative and hence the two sequences are isomorphic by the five lemma.
This finally establishes that b′ = êe is a cokernel of b and settles case (i).

The two possibilities in case (ii) are dual to each other, so we need only consider
the case that the middle and the right hand column are exact. By the obscure
axiom 2.15 it suffices to prove that a has a′ as a cokernel because fa = bf ′ is an
admissible monic. Observe right away that a′a = 0 because f ′′a′a = b′bf ′ = 0 and
f ′′ is monic.

Again, Proposition 3.1 yields a commutative diagram

A′ //
f ′

//

a

��

BC

B′
g′

// //

b̄

��

C ′

A //
f̄

// D
ḡ

// //

��

b̂

��

BC

C ′

��

c

��

A //
f

// B
g

// // C

such that b = b̂b̄. Note that b̂ is an admissible monic by the five lemma and that
it has c′g : B → C ′′ as a cokernel. By the dual of the Noether isomorphism 3.5 we
obtain the commutative diagram

B′ // b̄
// D

ā
// //

��

b̂

��

A′′

��

f ′′

��

B′ // b
// B

c′g
����

b′
// // B′′

g′′

����

C ′′ C ′′.

with exact rows and columns. Observe that f ′′(āf̄) = b′b̂f̄ = b′f = f ′′a′ implies
that āf̄ = a′ since f ′′ is monic.

We now prove that a′ is a cokernel of a, so let a morphism x : A → X with xa = 0
be given. The push-out property of the square A′B′AD yields a unique morphism
x̄ : D → X such that x̄f̄ = x and x̄b̄ = 0. But then the exactness of the dotted
row in the last diagram shows that x̄ = yā for a unique morphism y : A′′ → X and
this morphism satisfies ya′ = yāf̄ = x̄f̄ = x. In order to see that the factorization
x = ya′ is unique, we prove that a′ is epic. To this end, consider the diagram

A //
f

//

a′

��

BC

B
g

// //

β

��

C

A′′ // // D′ // //

β′

����

BC

C

c′

����

A′′ //
f ′′

// B′′
g′′

// // C ′′
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obtained from Proposition 3.1. By the five lemma β′ is an admissible epic and its
kernel is isomorphic to C ′ by Proposition 2.12. It is easy to see that there is a
commutative diagram

B′ // b
//

g′

����

B
b′

// //

β

��

B′′

C ′ //
ker β′

// D′
β′

// // B′′

which implies that β is an admissible epic by the five lemma, and hence a′ is an
admissible epic by the pull-back property of the square ABA′′D′. �

3.7. Exercise. Consider the solid arrow diagram

A′ // //

��

��

B′

��

��

// // C ′

��

��

A // //

����

B // //

����

C

����

A′′ // // B′′ // // C ′′

with exact rows and columns. Strengthen the Noether isomorphism 3.5 to the state-
ment that there exist unique maps C ′ → C and C → C ′′ making the diagram
commutative and the sequence C ′

C ։C ′′ is short exact.

3.8. Exercise. In the situation of the 3× 3-lemma prove that there are two exact
sequences A′

A ⊕ B′ → B ։C ′′ and A′
B → B′′ ⊕ C ։ C ′′ in the sense that

the morphism → factors as ։ in such a way that consecutive ։ are short
exact [compare also with Definition 8.8].

3.9. Exercise. Let (A , E ) be an exact category and consider E as a full subcate-
gory of A

→→. We have shown that E is additive in Corollary 2.10. Let F be the
class of short sequences of type

(A′ // //

��

��

B′ // //

��

��

C ′)
��

��

(A // //

����

B // //

����

C)

����

(A′′ // // B′′ // // C ′′)

with short exact columns [we write (A B ։C) to indicate that we think of the
sequence as an object of E ]. Prove that (E , F ) is an exact category.

4. Quasi-Abelian Categories

4.1. Definition. An additive category A is called quasi-abelian if

(i) Every morphism has a kernel and a cokernel.
(ii) The class of kernels is stable under push-out along arbitrary morphisms and

the class of cokernels is closed under pull-back along arbitrary morphisms.

4.2. Remark. The concept of a quasi-abelian category is self-dual, that is to say
A is quasi-abelian if and only if A

op is quasi-abelian.

4.3. Exercise. Let A be an additive category with kernels. Prove that every pull-
back of a kernel is a kernel.



14 THEO BÜHLER

4.4. Proposition (Schneiders [35, 1.1.7]). The class E max of all kernel-cokernel
pairs on a quasi-abelian category is an exact structure.

Proof. It is clear that E max is closed under isomorphisms and that the classes
of kernels and cokernels contain the identity morphisms. The pull-back and push-
out axioms are part of the definition of quasi-abelian categories. By duality it only
remains to show that the class of cokernels is closed under composition. So let
f : A։ B and g : B ։ C be cokernels and put h = gf . In the diagram

Ker f
u

// Ker h
v

//

��

ker h

��

Ker g
��

ker g

��

Ker f //
ker f

// A
f

// //

h

��

B

g

����

C C

there exist unique morphisms u and v making it commutative. The upper right
hand square is a pull-back, so v is a cokernel and u is its kernel. But then it follows
by duality that the upper right hand square is also a push-out and this together
with the fact that h is epic implies that h is a cokernel of ker h. �

4.5. Remark. Note that we have just re-proved the Noether isomorphism 3.5 in
the special case of quasi-abelian categories.

4.6. Definition. The coimage of a morphism f in a category with kernels and cok-
ernels is Coker (ker f), while the image is defined to be Ker (coker f). The analysis
(cf. [26, IX.2]) of f is the commutative diagram

A
f

//

coimf
)) ))RRRRRR B coker f

)) ))RRRRRR

Ker f
66

ker f 66mmmmm

Coim f
f̂

// Im f
66 im f

66nnnnn

Coker f

in which f̂ is uniquely determined by requiring that the diagram is commutative.

4.7. Remark. The difference between quasi-abelian categories and abelian cate-

gories is that in the quasi-abelian case the canonical morphism f̂ in the analysis f
is not in general an isomorphism. Indeed, it is easy to see that a quasi-abelian is

abelian provided that f̂ is always an isomorphism. Equivalently, not every monic is
a kernel and not every epic is a cokernel.

4.8. Proposition ([35, 1.1.5]). Let f be a morphism in the quasi-abelian category

A . The canonical morphism f̂ : Coimf → Im f is monic and epic.

Proof. By duality it suffices to check that the morphism f̄ in the diagram

A
f

//

j
)) ))RRRRRR B

Coimf
f̄

55llllll

is monic. Let x : X → Coim f be a morphism such that f̄x = 0. The pull-back
y : Y → A of x along j satisfies fy = 0, so y factors over Ker f and hence jy = 0.
But then the map Y ։X → Coimf is zero as well, so x = 0. �

4.9. Remark. Every morphism f in a quasi-abelian category A has two epic-monic
factorizations, one over Coim f and one over Im f . The quasi-abelian category A

is abelian if and only if the two factorizations coincide for all morphisms f .
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4.10. Remark. An additive category with kernels and cokernels is called semi-
abelian if the canonical morphism Coim f → Im f is always monic and epic. We have
just proved that quasi-abelian categories are semi-abelian. It may seem obvious that
the concept of semi-abelian categories is strictly weaker than the concept of a quasi-
abelian category. However, it is surprisingly delicate to come up with an explicit
example. This led Răıkov to conjecture that every semi-abelian category is quasi-
abelian. A counterexample to this conjecture was recently found by Rump [34].

4.11. Remark. We do not develop the theory of quasi-abelian categories any fur-
ther. The interested reader may consult Schneiders [35], Rump [33] and the refer-
ences therein.

5. Exact Functors

5.1. Definition. Let (A , E ) and (A ′, E ′) be exact categories. An (additive) func-
tor F : A → A

′ is called exact if F (E ) ⊂ E
′. The functor F reflects exactness if

F (σ) ∈ E
′ implies σ ∈ E for all σ ∈ A

→→.

5.2. Proposition. An exact functor preserves push-outs along admissible monics
and pull-backs along admissible epics.

Proof. An exact functor preserves admissible monics and admissible epics, in
particular it preserves diagrams of type

��

// //

��
// //

and
��

// //

��
// //

so the result follows immediately from Proposition 2.12 and its dual. �

6. Idempotent Completion

An additive category A is idempotent complete [21, 1.2.1, 1.2.2] if for every
idempotent p : A → A, i.e. p2 = p, there is a decomposition A ∼= K ⊕ I of A
such that p ∼= [ 0 0

0 1 ]. Notice that A is idempotent complete if and only if every
idempotent has a kernel.

For every additive category A there is a fully faithful embedding iA : A → A
∧

into an idempotent complete additive category. Let A
∧ be the following category:

objects are pairs (A, p) consisting of an object in A and an idempotent p : A → A;
the morphisms are given by

HomA ∧ ((A, p), (B, q)) = q ◦ HomA (A, B) ◦ p

with the obvious composition. It is easy to see that A
∧ is additive with biproduct

(A, p) ⊕ (A′, p′) = (A ⊕ A′, p ⊕ p′) and that the functor A → A
∧ given on objects

by A 7→ (A, 1A) is fully faithful. If p : A → A is an idempotent then (A, 1A) is
isomorphic to (A, 1 − p) ⊕ (A, p) in A

∧ and, more generally, A
∧ is idempotent

complete [21, 1.2.2]. If A is already idempotent complete then iA : A → A
∧ is

easily seen to be an equivalence of categories.

6.1. Proposition. The functor iA : A → A
∧ is 2-universal among functors from

A to idempotent complete categories:

(i) Let F : A → I be a functor to an idempotent complete category I . There

exists a functor F̃ : A
∧ → I and a natural isomorphism α̃ : F ⇒ F̃ i.

(ii) For every pair (F̄ , ᾱ) having the property of point (i) there is a unique natural

isomorphism β : F̃ ⇒ F̄ such that ᾱ = (βiA ) ◦ α̃.
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Proof. There is only one way to extend F to a functor F∧ : A
∧ → I

∧, it is
given on objects by F∧(A, p) = (F (A), F (p)). Since I is idempotent complete,
the functor iI : I → I

∧ is an equivalence, so we can choose a quasi-inverse

jI : I
∧ → I of iI and we obtain the desired functor by setting F̃ = jI F∧. The

natural isomorphism jI iI ⇒ idI yields the natural isomorphism α̃ : F ⇒ F̃ iA .
This settles point (i), we leave point (ii) as an exercise for the reader. �

6.2. Remark. Another way of phrasing the proposition is: Let A be a small addi-
tive category and let I be an idempotent complete category. The inclusion functor
iA : A → A

∧ induces an equivalence of functor categories

(iA )∗ : Hom (A ∧, I )
≃
−→ Hom(A , I ).

6.3. Example. Let F be the category of free modules over a ring R. Its idempotent
completion F

∧ is equivalent to the category of projective modules over R.

Let now (A , E ) be an exact category. Call a sequence in A
∧ short exact if it is

a direct summand in A
∧ of a sequence in E and denote the class of short exact

sequences in A
∧ by E

∧.

6.4. Proposition. The class E
∧ is an exact structure on A

∧. The inclusion func-
tor iA : (A , E ) → (A ∧, E ∧) preserves and reflects exactness and is 2-universal
among exact functors to idempotent complete exact categories:

(i) Let F : A → I be an exact functor to an idempotent complete exact category

I . There exists an exact functor F̃ : A
∧ → I and a natural isomorphism

α̃ : F ⇒ F̃ iA .
(ii) For every pair (F̄ , ᾱ) having the property of point (i) there is a unique natural

isomorphism β : F̃ ⇒ F̄ such that ᾱ = (βiA ) ◦ α̃.

Proof. To prove that E
∧ is an exact structure is straightforward but rather te-

dious, so we skip it.2 Given this, it is clear that the functor A → A
∧ is exact and

reflects exactness. If F : A → I is an exact functor to an idempotent complete
exact category then F∧ : A

∧ → I
∧ is exact. Finally, I and I

∧ are equivalent as
exact categories, so we are done by appealing to the proof of Proposition 6.1. �

6.5. Remark. One can interpret Proposition 6.4 by saying that the equivalence
of categories of Remark 6.2 restricts to an equivalence of the full subcategories of

exact functors (iA )∗ : HomEx ((A ∧, E ∧), I )
≃
−→ HomEx ((A , E ), I ).

7. Weak Idempotent Completeness

Thomason introduced in [37, A.5.1] the notion of an exact category with “weakly
split idempotents”. It turns out that this is a property of the underlying additive
category rather than the exact structure.

Recall that in an arbitrary category a morphism r : B → C is called a retraction
if there exists a section s : C → B of r in the sense that rs = 1C. Dually, a morphism
c : A → B is a coretraction if it admits a section s : B → A, i.e., sc = 1A. Observe
that retractions are epics and coretractions are monics. Moreover, a section of a
retraction is a coretraction and a section of a coretraction is a retraction.

7.1. Lemma. In an additive category A the following are equivalent:

(i) Every coretraction has a cokernel.
(ii) Every retraction has a kernel.

2Thomason [37, A.9.1 (b)] gives a short argument relying on the embedding into an abelian
category, but it can be done by completely elementary means as well.



EXACT CATEGORIES 17

7.2. Definition. If the conditions of the previous lemma hold then A is said to
be weakly idempotent complete.

7.3. Remark. Assume that r : B → C is a retraction with section s : C → B.
Then sr : B → B is an idempotent. Let us prove that this idempotent gives rise to
a splitting of B if r admits a kernel k : A → B.

Indeed, since r(1B − sr) = 0, there is a unique morphism t : B → A such that
kt = 1B − sr. It follows that k is a coretraction because ktk = (1B − sr)k = k
implies that tk = 1A. Moreover kts = 0, so ts = 0, hence [ k s ] : A ⊕ C → B is
an isomorphism with inverse [ t

r ]. In particular, the sequences A → B → C and
A → A ⊕ C → C are isomorphic.

Proof of Lemma 7.1. By duality it suffices to prove that (ii) implies (i).
Let c : C → B be a coretraction with section s. Then s is a retraction and,

assuming (ii), it admits a kernel k : A → B. By the discussion in Remark 7.3, k is
a coretraction with section t : B → A and it is obvious that t is a cokernel of c. �

7.4. Corollary. Let (A , E ) be an exact category. The following are equivalent:

(i) The additive category A is weakly idempotent complete.
(ii) Every coretraction is an admissible monic.
(iii) Every retraction is an admissible epic.

Proof. It follows from Remark 7.3 that every retraction r : B → C admitting a
kernel gives rise to a sequence A → B → C which is isomorphic to the split exact
sequence AA ⊕C ։C, hence r is an admissible epic by Lemma 2.7, whence (i)
implies (iii). By duality (i) implies (ii) as well. Conversely, every admissible monic
has a cokernel and every admissible epic has a kernel, hence (ii) and (iii) both
imply (i). �

In a weakly idempotent complete exact category the obscure axiom (Proposi-
tion 2.15) has an easier statement—this is Heller’s cancellation axiom [19, (P2),
p. 492]:

7.5. Proposition. Let (A , E ) be an exact category. The following are equivalent:

(i) The additive category A is weakly idempotent complete.
(ii) Consider two morphisms g : B → C and f : A → B. If gf : A։ C is an

admissible epic then g is an admissible epic.

Proof. (i) ⇒ (ii): Form the pull-back over g and gf and consider the diagram

A

1A

%%

f

��

∃!

  

B′ // //

g′

��

PB

B

g

��

A
gf

// // C

which proves g′ to be a retraction, so g′ has a kernel K′ → B′. Because the diagram
is a pull-back, the composite K′ → B′ → B is a kernel of g and now the dual of
Proposition 2.15 applies to yield that g is an admissible epic.

For the implication (ii) ⇒ (i) simply observe that (ii) implies that retractions
are admissible epics. �

7.6. Remark ([29, 1.12]). Every small additive category A has a weak idempotent
completion A

′. Objects of A
′ are the pairs (A, p), where p : A → A is an idempotent
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factoring as p = cr for some retraction r : A → X and coretraction c : X → A with
rc = 1B, while the morphisms are given by

HomA ′ ((A, p), (B, q)) = q ◦ HomA (A, B) ◦ p.

It is easy to see that the functor A → A
′ given on objects by A 7→ (A, 1A) is

2-universal among functors from A to a weakly idempotent complete category.
Moreover, if (A , E ) is exact then so is (A ′, E ′), where the sequences in E

′ are the
direct summands in A

′ of sequences in E , and the functor A → A
′ preserves and

reflects exactness and is 2-universal among exact functors to weakly idempotent
complete categories.

7.7. Remark. Contrary to the construction of the idempotent completion, there
is the set-theoretic subtlety that the weak idempotent completion might not be
well-defined if A is not small: it is not clear a priori that the objects (A, p) form a
class—essentially for the same reason that the monics in a category need not form
a class, see e.g. the discussion in Borceux [4, p. 373f].

8. Admissible Morphisms and the Snake Lemma

Throughout this section (A , E ) denotes an exact category.

8.1. Definition. A morphism f : A → B is called admissible if it factors

A
f
◦ //

e '' ''NNNNNN B

I
77 m

77ooooo

as a composition of an admissible monic with an admissible epic. Admissible mor-
phisms will sometimes be displayed as ◦ // in diagrams.

8.2. Remark. Let f be an admissible morphism. If e′ is an admissible epic and
m′ is an admissible monic then m′fe′ is admissible if the composition is defined.
However, admissible morphisms are not closed under composition in general. Notice
also that every zero morphism is admissible.

8.3. Remark. We choose the terminology admissible morphism even though strict
morphism seems to be more standard (see e.g. [33, 35]). By Exercise 2.6 an ad-
missible monic is the same thing as an admissible morphism which happens to be
monic.

8.4. Lemma ([19, 3.4]). The factorization of an admissible morphism is unique up
to unique isomorphism. More precisely: In a commutative diagram of the form

A
e

// //

e′

����

I
��

m

��i
��

I′ //

m′

//

i′
??

B

there exist unique morphisms i, i′ making the diagram commutative. In particular,
i and i′ are mutually inverse isomorphisms.

Proof. Let k be a kernel of e. Since m′e′k = mek = 0 and m′ is monic we have
e′k = 0, hence there exists a unique morphism i : I → I′ such that e′ = ie.
Moreover, m′ie = m′e′ = me and e epic imply m′i = m. Dually for i′. �
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8.5. Remark. An admissible morphism has an analysis (cf. [26, IX.2])

A
f
◦ //

e '' ''NNNNNN B c

'' ''OOOOOO

K
77
k 77ooooo

I
77 m

77ooooo
C

where k is a kernel, c is a cokernel, e is a coimage and m is an image of f and the
isomorphism classes of K, I and C are well-defined by Lemma 8.4.

8.6. Exercise. If A is an exact category in which every morphism is admissible
then A is abelian. [A solution is given by Freyd in [14, Proposition 3.1]].

8.7. Lemma. Admissible morphisms are stable under push-out along admissible
monics and pull-back along admissible epics.

Proof. Let A։ I B be an admissible epic-admissible monic factorization of an
admissible morphism. To prove the claim about push-outs construct the diagram

A // //

��

��

PO

I // //

��

��

PO

B
��

��

A′ // // I′ // // B′.

Proposition 2.14 yields that A′ → I′ is an admissible epic and the rest is clear. �

8.8. Definition. A sequence of admissible morphisms

A′
f
◦ //

e '' ''N
NNNNN A

f ′

◦ //

e′ '' ''N
NNNNN A′′

I
88 m

88ppppp
I′

77
m′

77ooooo

is exact if I A։ I′ is short exact. Longer sequences of admissible morphisms are
exact if the sequence given by any two consecutive morphisms is exact. Since the
term “exact” is heavily overloaded, we also use the synonym “acyclic”, in particular
in connection with chain complexes.

8.9. Lemma (Five Lemma, II). If the commutative diagram

A1

∼=

��

◦ // A2

∼=

��

◦ // A3

f

��

◦ // A4

∼=

��

◦ // A5

∼=

��

B1 ◦ // B2 ◦ // B3 ◦ // B4 ◦ // B5

has exact rows then f is an isomorphism.

Sketch of the Proof. Choose factorizations Ai ։ Ii Ai+1 of Ai → Ai+1 and
Bi ։ Ji Bi+1 of Bi → Bi+1 for i = 1, . . . , 4. Using Lemma 8.4 and Exercise 3.3
there are isomorphisms I1

∼= J1 and I2
∼= J2 which one may insert into the diagram

without destroying its commutativity. Dually for I4
∼= J4 and I3

∼= J3. The five
lemma 3.2 then implies that f is an isomorphism. �

8.10. Exercise. Assume that A is weakly idempotent complete (Definition 7.2).

(i) (Sharp Four Lemma) Consider a commutative diagram

A1

����

◦ // A2

∼=

��

◦ // A3

f

��

◦ // A4
��

��

B1 ◦ // B2 ◦ // B3 ◦ // B4

with exact rows. Prove that f is an admissible monic. Dualize.
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(ii) (Sharp Five Lemma) If the commutative diagram

A1

����

◦ // A2

∼=

��

◦ // A3

f

��

◦ // A4

∼=

��

◦ // A5
��

��

B1 ◦ // B2 ◦ // B3 ◦ // B4 ◦ // B5

has exact rows then f is an isomorphism.

Hint: Use Proposition 7.5, Exercise 2.6, Exercise 3.3 as well as Corollary 3.2.

8.11. Proposition (Snake Lemma [19, 4.3]). Assume that A is weakly idempotent
complete (Definition 7.2). For every commutative diagram

K′

��

��

k
// K
��

��

k′

// K′′

��

��

A′ ◦ //

◦

��

A ◦ //

◦

��

A′′ //

◦

��

0

0 // B′ ◦ //

����

B ◦ //

����

B′′

����

C ′
c

// C
c′

// C ′′

with exact rows and columns there are morphisms k, k′, c, c′ and δ : K′′ → C ′ fitting
into an exact sequence

K′ ◦
k

// K ◦
k′

// K′′
δ
◦ // C ′ ◦

c
// C ◦

c′
// C ′′

depending naturally on the diagram.

Proof (Heller). First observe that the morphisms k, k′, c, c′ in the statement
of the proposition are uniquely determined by the requirement that the resulting
diagram must commute.

Unfolding the definition of admissible morphisms and introducing names for the
morphisms we obtain the following commutative diagram

K′

��

κ′

��

K
��

κ

��

K′′

��

κ′′

��

Ã // ea
//

??

β

??

0
��

@
@

@
@ A′

ea′

// //

e′

����

Ā // ā
//

α
~~~~

A
a′

// //

e

����

A′′

ω

}}}}

e′′

����

I′ // ι
//

  
ι′′

  

��

m′

��

I
π′

// // J ′′

π′′

!! !!

J ′ // ι′
//

~~
ω′

~~

I
π

// //

��

m

��

I′′
��

m′′

��

}}
α′

}}

0

  
A

A
A

A

B′ // b
//

γ′

����

B
b̄

// //

γ

����

B̄ //
eb

// B′′
eb′

// //

γ′′

����

B̃

C ′ C C ′′

β′

>> >>

with exact rows and columns—ignore the dotted arrows for the moment.
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The assumption that A be weakly idempotent complete allows us to use Propo-
sition 7.5 and its dual in order to recognize admissible monics and epics. Thus it
follows from mι = bm′ that ι is an admissible monic and, dually, πe = e′′a′ implies
that π is an admissible epic. Let π′ : I ։ J ′′ be a cokernel of ι and let ι′ : J ′

 I
be a kernel of π. Because e′ is epic (or because m′′ is monic) we have πι = 0, hence
there are factorizations ι = ι′ι′′ and π = π′′π′. Proposition 7.5 yields that ι′′ is an
admissible monic and that π′′ is an admissible epic.

Next, π′eā = 0 because ã′ is epic, so there exist α : Ā → I′ such that ια = eā
and ω : A′′ → J ′′ such that ωa′ = π′e. Since ι is monic we have e′ = αã′, hence α
is an admissible epic. Since ωa′ = π′e it follows that ω is an admissible epic and
we have e′′ = π′′ω since a′ is epic. Finally note that e′ = αã′ implies that e′ã = 0,

hence there exists β : Ã → K′ such that ã′ = κ′β, in particular β is an admissible
monic.

Dually, we have b̄mι′ = 0 and this implies the existence of morphisms α′, ω′ and
finally β′ making the diagram commutative and which are admissible monics and
epics as indicated in the diagram.

We have thus constructed all the dotted arrows and argued why the resulting
diagram is commutative.

Let X′
 Ā be a kernel of α : Ā ։ I′, let X′′

A′′ be a kernel of ω : A′′
։J ′′

and let Z J ′′ be a kernel of π′′ : J ′′
։ I′′. Now use the Noether isomorphism 3.5

and the 3× 3-lemma 3.6 in order to construct the following commutative diagrams
with exact rows and columns:

Ã //
β

// K′

��

κ′

��

// // X′

��

��

Ã // ea
// A′

ea′

// //

e′

����

Ā

α

����

I′ I′

X′ // //

��

��

K
��

��

// // X′′

��

��

Ā // ā
//

α

����

A
a′

// //

e

����

A′′

ω

����

I′ // ι
// I

π′

// // J ′′

X′′ // // K′′

��

κ′′

��

// // Z
��

��

X′′ // // A′′
ω

// //

e′′

����

J ′′

π′′

����

I′′ I′′.

Notice that the dotted arrows in the diagrams above already yield half of the desired
exact sequence. We now need to construct an admissible monomorphism Z  C ′.
Before doing this, we apply the Noether isomorphism 3.5 to the diagram

I′ // ι′′
// J ′

��

ι′

��

// // Z
��

��

I′ // ι
// I

π′

// //

π

����

J ′′

π′′

����

I′′ I′′.

Now let B′
։ Y ′ be a cokernel of ω′ : J ′

B′ and let B̄ ։ Y ′′ be a cokernel of
α′ : I′′  B̄. Again, the Noether isomorphism 3.5 and the 3× 3-lemma 3.6 give the
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commutative diagrams

I′
��

ι′

��

I′
��

m′

��

J ′ // ω′

//

����

B′ // //

γ′

����

Y ′

Z // // C ′ // // Y ′

J ′ // ι′
//

��

ω′

��

I
π

// //

��

m

��

I′′
��

α′

��

B′ // b
//

����

B
b̄

// //

γ

����

B̄

����

Y ′ // // C // // Y ′′

I′′
��

α′

��

I′′
��

m′′

��

B̄ //
eb

//

����

B′′
eb′

// //

γ′′

����

B̃

Y ′′ // // C ′′
β′

// //
B̃

with exact rows and columns. Finally, the diagram

K′ ◦
k

//

## ##G
GG

K ◦
k′

//

## ##F
FF

K′′ ◦
δ

//

"" ""F
FF

C ′ ◦
c

//

"" ""E
EE

C ◦
c′

//

"" ""E
EE

C ′′

"" ""E
EE

Ã
<<
<<zzz

X′

<<
<<yy

X′′

::
::vv

Z
==
==zz

Y ′

==
==zz

Y ′′

;;
;;ww

B̃

exhibits the desired exact sequence and the naturality assertion follows easily from
the construction. �

8.12. Remark. The author does not know how to avoid the assumption of weak
idempotent completeness in the proof of the snake lemma. It entered crucially in
the guise of Heller’s cancellation axiom (Proposition 7.5 (ii)).

8.13. Exercise ([19, 4.4]). Retain the assumptions of the snake lemma 8.11. The
connecting morphism δ : K′′ → C ′ has the following property: Given a commutative
square RK′′AA′′

R
v

//

u

��
∃!w

��

K′′

��

κ′′

��

A
a′

// //

◦f

��

A′′

◦f ′′

��

B′ // b
//

γ

����

B ◦
b′

// B′′

C ′

there exists a unique morphism w : R → B′ making the diagram above commuta-
tive, and, moreover, δv = γw.

Hint: Consider the map eu : R → I, the short exact sequence J ′
 I ։ I′′ and

the three small commutative squares involving Z in the proof of the snake lemma.

8.14. Remark. In Exercise 8.13 consider the special case that A is the category
of modules over a ring R. The morphism v corresponds to the element v(1) ∈ K′′

and u(1) ∈ A′′ is some lift of κ′′(v(1)) over a′. Moreover, the usual diagram chase
in the proof of the snake lemma shows that there is an element w(1) ∈ B′ such
that γ(w(1)) is independent of the choice of u(1), hence it makes sense to put
δ(v(1)) = γ(w(1)). Thus, Exercise 8.13 provides the link to the classical proof of
the snake lemma.

9. Chain Complexes and Chain Homotopy

The notion of chain complexes makes sense in every additive category A . A
(chain) complex is a diagram (A•, d•

A)

· · · −→ An−1 d
n−1

A−−−→ An dn
A−−→ An+1 −→ · · ·
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subject to the condition that dndn−1 = 0 for all n and a chain map is a morphism of
such diagrams. The category of complexes and chain maps is denoted by Ch (A ).
Obviously, the category Ch (A ) is additive.

9.1. Lemma. If (A , E ) is an exact category then Ch (A ) is an exact category with
respect to the class Ch (E ) of short sequences of chain maps which are exact in each
degree. If A is abelian then so is Ch (A ).

Proof. The point is that (as in every functor category) limits and colimits of
diagrams in Ch (A ) are obtained by taking the limits and colimits pointwise (in
each degree), in particular push-outs under admissible monics and pull-backs over
admissible epics exist and yield admissible monics and epics. The rest is obvious. �

9.2. Definition. The mapping cone of a chain map f : A → B is the complex

cone (f)
n

= An+1 ⊕ Bn with differential dn
f =

[
−d

n+1

A
0

fn+1 dn
B

]
.

Notice that dn+1
f dn

f = 0 precisely because f is a chain map. It is plain that the

mapping cone defines a functor from the category of morphisms in Ch (A ) to
Ch (A ).

The translation functor on Ch (A ) is defined to be ΣA = cone (A → 0). More
explicitly, ΣA is the complex with components (ΣA)n = An+1 and differentials
dn
ΣA = −dn+1

A . If f is a chain map, its translate is given by (Σf)n = fn+1 . Clearly,
Σ is an additive automorphism of Ch (A ).

The strict triangle over the chain map f : A → B is the 3-periodic (or rather
3-helicoidal, if you insist) sequence

A
f
−→ B

if

−→ cone (f)
jf

−→ ΣA
Σf
−−→ ΣB

Σif

−−→ Σ cone (f)
Σjf

−−→ · · · ,

where the chain map if has components [ 0
1 ] and jf has components [ 1 0 ].

9.3. Remark. Let f : A → B be a chain map. Observe that the sequence of chain
maps

B
if

−→ cone (f)
jf

−→ ΣA

splits in each degree, however it need not be a split exact sequence in Ch (A ),
because the degreewise splitting maps need not assemble to chain maps. In fact, it
is straightforward to verify that the above sequence is split exact in Ch (A ) if and
only if f is chain homotopic to zero in the sense of Definition 9.5.

9.4. Exercise. Assume that A is an abelian category. Prove that the strict triangle
over the chain map f : A → B gives rise to a long exact homology sequence

· · · −→ Hn(A)
Hn(f)
−−−−→ Hn(B)

Hn(if )
−−−−→ Hn(cone (f))

Hn(jf )
−−−−−→ Hn+1(A) −→ · · · .

Deduce that f induces an isomorphism of H∗(A) with H∗(B) if and only if cone (f)
is acyclic.

9.5. Definition. A chain map f : A → B is chain homotopic to zero if there exist
morphisms hn : An → Bn−1 such that fn = dn−1

B hn + hn+1dn
A. A chain complex A

is called null-homotopic if 1A is chain homotopic to zero.

9.6. Remark. The maps which are chain homotopic to zero form an ideal in
Ch (A ), that is to say if h : B → C is chain homotopic to zero then so are
hf and gh for all morphisms f : A → B and g : C → D, if h1 and h2 are chain
homotopic to zero then so is h1 ⊕h2. The set N(A, B) of chain maps A → B which
are chain homotopic to zero is a subgroup of the abelian group HomCh (A ) (A, B).
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9.7. Definition. The homotopy category K (A ) is the category with the chain
complexes over A as objects and HomK (A ) (A, B) := HomCh (A ) (A, B)/N(A, B)
as morphisms.

9.8. Remark. Notice that the null-homotopic complexes are isomorphic to the zero
object in K (A ) (the converse is not true if A fails to be idempotent complete, see
Proposition 10.9). It turns out that K (A ) is additive, but it is very rarely abelian
or exact with respect to a non-trivial exact structure (see Verdier [38, Ch.II, 1.3.6]).
However, K (A ) has the structure of a triangulated category induced by the strict
triangles in Ch (A ), see e.g. Verdier [38], Bĕılinson-Bernstein-Deligne [3], Gelfand-
Manin [17], Grivel [6, Chapter I], Kashiwara-Schapira [22], Keller [24], Neeman [30]
or Weibel [39].

9.9. Remark. For each object A ∈ A , define cone (A) = cone (1A). Notice that
cone (A) is null-homotopic with [ 0 1

0 0 ] as contracting homotopy.

9.10. Remark. If f and g are chain homotopy equivalent, i.e., f − g is chain ho-
motopic to zero, then cone (f) and cone (g) are isomorphic in Ch (A ) but the
isomorphism and its homotopy class will generally depend on the choice of a chain
homotopy. In particular, the mapping cone construction does not yield a functor
defined on morphisms of K (A ).

9.11. Remark. A chain map f : A → B is chain homotopic to zero if and only
if it factors as hiA = f over h : cone (A) → B, where iA = i1A

: A → cone (A).
Moreover, h has components [ hn+1 fn ], where the family of morphisms {hn} is a
chain homotopy of f to zero. Similarly, f is chain homotopic to zero if and only if
f factors through jΣ−1B = j1

Σ−1B
: cone (Σ−1B) → B.

9.12. Remark. The mapping cone construction yields the push-out diagram

A
f

//

iA

��

PO

B

if

��

cone (A) h
1 0
0 f

i // cone (f)

in Ch (A ). Now suppose that g : B → C is a chain map such that gf is chain
homotopic to zero. By Remark 9.11, gf factors over iA and using the push-out
property of the above diagram it follows that g factors over if . This construction
will depend on the choice of an explicit chain homotopy gf ≃ 0 in general. In
particular, cone(f) is a weak cokernel in K (A ) of the homotopy class of f in that
it has the factorization property of a cokernel but without uniqueness. Similarly,
Σ−1 cone (f) is a weak kernel of f in K (A ).

10. Acyclic Complexes and Quasi-Isomorphisms

The present section is probably only of interest to readers acquainted with tri-
angulated categories or at least with the construction of the derived category of
an abelian category. After giving the fundamental definition of acyclicity of a com-
plex over an exact category, we may formulate the intimately connected notion of
quasi-isomorphisms.

We will give an elementary proof of the fact that the homotopy category Ac (A )
of acyclic complexes over an exact category A is a triangulated category. It turns
out that Ac (A ) is a strictly full subcategory of the homotopy category of chain
complexes K (A ) if and only if A is idempotent complete, and in this case Ac (A )
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is even thick in K (A ). Since thick subcategories are strictly full by definition,
Ac (A ) is thick if and only if A is idempotent complete.

By [30, Chapter 2], the Verdier quotient K / T is defined for any strictly full
triangulated subcategory T of a triangulated category K and it coincides with
the Verdier quotient K /T̄ , where T̄ is the thick closure of T . The case we are
interested in is K = K (A ) and T = Ac (A ). The Verdier quotient D (A ) =
K (A )/Ac (A ) is the derived category of A . If A is idempotent complete then

Ac (A ) = Ac (A ) and it is clear that quasi-isomorphisms are then precisely the
chain maps with acyclic mapping cone. If A fails to be idempotent complete, it

turns out that the thick closure Ac (A ) of Ac (A ) is the same as the closure of
Ac (A ) under isomorphisms in K (A ), so a chain map f is a quasi-isomorphism if
and only if cone (f) is homotopy equivalent to an acyclic complex.

Similarly, the derived categories of bounded, left bounded or right bounded com-
plexes are constructed as in the abelian setting. It is useful to notice that for
∗ ∈ {+,−, b} the category Ac∗ (A ) is thick in K∗ (A ) if and only if A is weakly
idempotent complete, which leads to an easier description of quasi-isomorphisms.

10.1. The Homotopy Category of Acyclic Complexes.

10.1. Definition. A chain complex A over an exact category is called acyclic if
each differential factors as An

։Zn+1AAn+1 in such a way that each sequence
ZnAAn

։Zn+1A is exact.

10.2. Remark. An acyclic complex is a complex with admissible differentials (Def-
inition 8.1) which is exact in the sense of Definition 8.8. In particular, ZnA is a
kernel of An → An+1, an image and coimage of An−1 → An and a cokernel of
An−2 → An−1.

The following lemma is due to Neeman. His proof relies on the embedding the-
orem for exact categories. We prefer to give an elementary proof, which should be
compared to the proof of Theorem 12.8.

10.3. Lemma ([29, 1.1]). The mapping cone of a chain map f : A → B between
acyclic complexes is acyclic.

Proof. An easy diagram chase shows that the dotted morphisms in the diagram

An−1
d

n−1

A
//

jn−1

A

## ##H
HHH

HH
HH

H

fn−1

��

An
dn

A
//

jn
A

## ##H
HHH

HH
HHH

fn

��

An+1

fn+1

��

ZnA
<<

in
A

<<yyyyyyyy

∃!gn

��

Zn+1A

::

in+1

A

::ttttttttt

∃!gn+1

��

ZnB
""

in
B

""E
EE

EE
EE

E
Zn+1B

$$

i
n+1

B $$J
JJJ

JJ
JJ

J

Bn−1

d
n−1

B

//

jn−1

B

;; ;;vvvvvvvvv

Bn

dn
B

//

jn
B

;; ;;vvvvvvvvv

Bn+1

exist and are the unique morphisms gn making the diagram commutative.
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By Proposition 3.1 we find objects ZnC fitting into a commutative diagram

An−1
d

n−1

A
//

jn−1

A

$$ $$I
IIIIIIII

f ′n−1

��

An
dn

A
//

jn
A

$$ $$I
IIIIIIII

f ′n

��

An+1

f ′n+1

��

ZnA
;;

in
A

;;wwwwwwww

gn

��

BC

Zn+1A
99

in+1

A

99sssssssss

gn+1

��

BC

Zn−1C

hn−1

:: ::uuuuuuuuu

f ′′n−1

��

BC

ZnC

hn

:: ::uuuuuuuuu

f ′′n

��

BC

Zn+1C

f ′′n+1

��

ZnB
;;

kn

;;wwwwwwww

##

in
B

##G
GGGGGGG

Zn+1B

99

kn+1

99sssssssss

%%

in+1

B %%K
KKKKKKKK

Bn−1

dn−1

B

//

j
n−1

B

:: ::uuuuuuuuu

Bn

dn
B

//

jn
B

:: ::uuuuuuuuu

Bn+1

where fn = f ′′nf ′n and the quadrilaterals marked BC are bicartesian. Recall that
the objects ZnC are obtained by forming the push-outs under inA and gn (or the
pull-backs over jn

B and gn+1) and that ZnB ZnC ։Zn+1A is short exact.
It follows from Corollary 2.13 that for each n the sequence

Zn−1C //

»
−in

Ahn−1

f ′′n−1

–

// An ⊕ Bn−1
[ f ′n knj

n−1

B ]
// // ZnC

is short exact and the commutative diagram

An ⊕ Bn−1

»
−dn

A 0

fn dn−1

B

–

//

[ f ′n knj
n−1

B ]
LLL

&& &&L
LL

An+1 ⊕ Bn

"
−d

n+1

A
0

fn+1 dn
B

#

//

[ f ′n+1 kn+1jn
B ]

MMM

&& &&M
MM

An+2 ⊕ Bn+1

ZnC
99

»
−i

n+1

A hn

f ′′n

–

99rrrrrrrrrr

Zn+1C
77

»
−in+2

A
hn+1

f ′′n+1

–

77oooooooooo

proves that cone (f) is acyclic. �

10.4. Remark. Retaining the notations of the proof we have a short exact sequence

ZnB ZnC ։ Zn+1A.

This sequence exhibits ZnC = Ker
[
−dn+1

A
0

fn+1 dn
B

]
as an extension of Zn+1A = Ker dn+1

A

by ZnB = Ker dn
B .

Let Ac (A ) be the full subcategory of the homotopy category K (A ) consisting
of acyclic complexes over the exact category A . It follows from Proposition 2.9 that
the direct sum of two acyclic complexes is acyclic. Thus Ac (A ) is a full additive
subcategory of K (A ). The previous lemma implies that even more is true:

10.5. Corollary. The homotopy category of acyclic complexes Ac (A ) is a trian-
gulated subcategory of K (A ). �

10.6. Remark. For reasons of convenience, many authors assume that triangulated
subcategories are not only full but strictly full. We do not do so because Ac (A ) is
closed under isomorphisms in K (A ) if and only if A is idempotent complete, see
Proposition 10.9.

10.7. Lemma. Assume that (A , E ) is idempotent complete. Every retract in K (A )
of an acyclic complex A is acyclic.
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Proof (cf. [23, 2.3 a)]). Let the chain map f : X → A be a retraction, i.e., there
is a chain map s : A → X such that snfn − 1Xn = dn−1

X hn + hn+1dn
X for some

morphisms hn : Xn → Xn−1. Obviously, the complex IX with components

(IX)n = Xn ⊕ Xn+1 and differential [ 0 1
0 0 ]

is acyclic. There is a chain map iX : X → IX given by

inX =
[

1Xn

dn
X

]
: Xn → Xn ⊕ Xn+1

and the chain map
[

f
iX

]
: X → A ⊕ IX

has the chain map

[ sn −dn−1

X
hn −hn+1 ] : An ⊕ Xn ⊕ Xn+1 → Xn

as a left inverse. Hence, on replacing the acyclic complex A by the acyclic complex
A ⊕ IX, we may assume that f : X → A has s as a right inverse in Ch (A ). But
then e = fs : A → A is an idempotent in Ch (A ) and it induces an idempotent
on the exact sequences ZnAAn

։Zn+1A witnessing that A is acyclic as in the
first diagram of the proof of Lemma 10.3. This means that ZnAAn

։Zn+1A
decomposes as a direct sum of two short exact sequences (Corollary 2.17) since A

is idempotent complete. Therefore the acyclic complex A = X′⊕Y ′ is a direct sum
of the acyclic complexes X′ and Y ′, and f : induces an isomorphism from X to X′

in Ch (A ). The details are left to the reader. �

10.8. Exercise. Prove that the sequence X → cone (X) → ΣX from Remark 9.3
is isomorphic to a sequence X → IX → ΣX in Ch (A ).

10.9. Proposition ([24, 11.2]). The following are equivalent:

(i) Every null-homotopic complex in Ch (A ) is acyclic.
(ii) The category A is idempotent complete.
(iii) The class of acyclic complexes is closed under isomorphisms in K (A ).

Proof (Keller). Let us prove that (i) implies (ii). Let e : A → A be an idempo-
tent of A . Consider the complex

· · ·
1−e
−−→ A

e
−→ A

1−e
−−→ A

e
−→ · · ·

which is null-homotopic. By (i) this complex is acyclic. This means by definition
that e has a kernel and hence A is idempotent complete.

Let us prove that (ii) implies (iii). Assume that X is isomorphic in K (A ) to an
acyclic complex A. Using the construction in the proof of Lemma 10.7 one shows
that X is a direct summand in Ch (A ) of the acyclic complex A ⊕ IX and we
conclude by Lemma 10.7.

That (iii) implies (i) follows from the fact that a null-homotopic complex X is
isomorphic in K (A ) to the (acyclic) zero complex and hence X is acyclic. �

10.10. Remark. Recall that a subcategory T of a triangulated category K is called
thick if it is strictly full and X ⊕ Y ∈ T implies X, Y ∈ T .

10.11. Corollary. The triangulated subcategory Ac (A ) of K (A ) is thick if and
only if A is idempotent complete. �
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10.2. Boundedness Conditions. A complex A is called left bounded if An = 0
for n ≪ 0, right bounded if An = 0 for n ≫ 0 and bounded if An = 0 for |n| ≫ 0.

10.12. Definition. Denote by K+ (A ), K− (A ) and Kb (A ) the full subcategories
of K (A ) generated by the left bounded complexes, right bounded complexes and
bounded complexes over A .

Observe that Kb (A ) = K+ (A ) ∩ K− (A ). Note further that K∗ (A ) is not
closed under isomorphisms in K (A ) for ∗ ∈ {+,−, b} unless A = 0.

10.13. Definition. For ∗ ∈ {+,−, b} we define Ac
∗ (A ) = K

∗ (A ) ∩ Ac (A ).

Plainly, K∗ (A ) is a full triangulated subcategory of K (A ) and Ac∗ (A ) is a
full triangulated subcategory of K∗ (A ) by Lemma 10.3.

10.14. Proposition. The following assertions are equivalent:

(i) The subcategories Ac+ (A ) and Ac− (A ) of K+ (A ) and K− (A ) are thick.

(ii) The subcategory Acb (A ) of Kb (A ) is thick.
(iii) The category A is weakly idempotent complete.

Proof. Since Acb (A ) = Ac+ (A )∩Ac− (A ), we see that (i) implies (ii). Let us
prove that (ii) implies (iii). Assume that A is not weakly idempotent complete, so
there is an idempotent p : A → A which factors as p = st with ts = 1B in such a
way that s has no cokernel and t has no kernel. The complex X given by

· · · −→ 0 −→ B
s
−→ A

1−st
−−−→ A

t
−→ B −→ 0 −→ · · ·

is not acyclic because s has no cokernel and t has no kernel by hypothesis. However,
X is a direct summand of X ⊕ΣX and we claim that X ⊕ΣX is acyclic, so if A is
not weakly idempotent complete, (ii) does not hold. Indeed, there is an isomorphism
in Ch (A )

B

1

��

[ 10 ]
// B ⊕ A

h
0 −t
s 1−st

i

��

[ 0 0
0 1 ]

// A ⊕ A
h
−1+st st

st 1−st

i

��

[ 1 0
0 0 ]

// A ⊕ B
h
1−st −s

t 0

i

��

[ 0 1 ]
// B

1

��

B
[ 0s ]

// B ⊕ A h
−s 0
0 1−st

i // A ⊕ A h
−1+st 0

0 t

i // A ⊕ B
[ −t 0 ]

// B

where the upper row is obviously acyclic and the lower row is isomorphic to X⊕ΣX.
Let us prove that (iii) implies (i). Assume that X is a direct summand in K+ (A )

of a complex A ∈ Ac+ (A ). This means in particular that we are given a chain
map f : X → A for which there exists a chain map s : A → X and morphisms
hn : Xn → Xn−1 such that snfn − 1Xn = dn−1

X hn + hn+1dn
X . On replacing A by

the acyclic complex A ⊕ IX as in the proof of Proposition 10.9, we may assume
that s is a left inverse of f in Ch+ (A ). In particular, since A is assumed to be
weakly idempotent complete, Proposition 7.5 implies that each fn is an admissible
monic and that each sn is an admissible epic. Moreover, as both complexes X and
A are left bounded, we may assume that An = 0 = Xn for n < 0. It follows that
d0

A : A0
A1 is an admissible monic since A is acyclic. But then d0

Af0 = d0
Xf1 is an

admissible monic, hence Proposition 7.5 implies that d0
X is an admissible monic as

well. Let e1
X : X1

։ Z2X be a cokernel of d0
X and let e1

A : A1
։Z2A be a cokernel
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of d0
A. The dotted morphisms in the diagram

X0 //
d0

X
//

��

f0

��

X1
e1

X
// //

��

f1

��

Z2X
��

g2

��

A0 //
d0

A
//

s0

����

A1
e1

A
// //

s1

����

Z2A

t2

����

X0 //
d0

X
// X1

e1
X

// // Z2X

are uniquely determined by requiring that the resulting diagram be commutative.
By the 3 × 3-lemma 3.6 the third column is short exact. Since s0f0 = 1X0 and
s1f1 = 1X1 it follows that t2g2 = 1Z2X .

Now since A and X are complexes, there are unique maps m2
X : Z2X → X2

and m2
A : Z2A → A2 such that d1

X = m2
Xe1

X and d1
A = m2

Ae1
A. Note that m2

A is an
admissible monic since A is acyclic. The upper square in the diagram

Z2X
m2

X
//

��

g2

��

X2

��

f2

��

Z2A //
m2

A
//

t2

����

A2

s2

����

Z2X
m2

X
// X2

is commutative because e1
X is epic and the lower square is commutative because e2

A

is epic. From the commutativity of the upper square it follows in particular that
m2

X is an admissible monic by Proposition 7.5. An easy induction now shows that
X is acyclic. The assertion about Ac− (A ) follows by duality. �

10.3. Quasi-Isomorphisms. In abelian categories, quasi-isomorphisms are de-
fined to be chain maps inducing an isomorphism in homology. Taking the observa-
tion in Exercise 9.4 and Proposition 10.9 into account, one arrives at the following
generalization for general exact categories:

10.15. Definition. A chain map f : A → B is called a quasi-isomorphism if its
mapping cone is homotopy equivalent to an acyclic complex.

10.16. Remark. Assume that A is idempotent complete. By Proposition 10.9, a
chain map f is a quasi-isomorphism if and only if cone (f) is acyclic. In particular,
for abelian categories, the a quasi-isomorphism is the same thing as a chain map
inducing an isomorphism on homology.

10.17. Remark. If p : A → A is an idempotent in A which does not split, then
the complex C given by

· · ·
1−p
−−→ A

p
−→ A

1−p
−−→ A

p
−→ · · ·

is null-homotopic but not acyclic. However, f : 0 → C is a chain homotopy equiva-
lence, hence it should be a quasi-isomorphism, but cone (f) = C fails to be acyclic.

10.4. The Definition of the Derived Category. The derived category of the
exact category of A is defined to be the Verdier quotient

D (A ) = K (A )/Ac (A )

as described e.g. in Neeman [30, Chapter 2] or Keller [24, §§ 10, 11].
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When dealing with the boundedness conditions ∗ ∈ {+,−, b} we define

D
∗ (A ) = K

∗ (A )/Ac
∗ (A ).

It is not difficult to prove that the canonical functor D∗ (A ) → D (A ) is an equiv-
alence between D

∗ (A ) and the full subcategory of D (A ) generated by the com-
plexes satisfying the boundedness condition ∗, see Keller [24, 11.7].

10.18. Remark. If A is idempotent complete then a chain map becomes an isomor-
phism in D (A ) if and only if its cone is acyclic by Corollary 10.11. If A is weakly
idempotent complete then a chain map in Ch

∗ (A ) becomes an isomorphism in
D

∗ (A ) if and only if its cone is acyclic by Proposition 10.14.

10.19. Remark. With these constructions at hand one can now introduce (total)
derived functors in the sense of Grothendieck-Verdier, see e.g. Keller [24, §§13-15]
or any one of the references given in Remark 9.8.

11. Projective and Injective Objects

11.1. Definition. An object P of an exact category A is called projective if the
represented functor HomA (P,−) : A → Ab is exact. An object I of an exact
category is called injective if the corepresented functor HomA (−, I) : A

op → Ab

is exact.

11.2. Remark. The concepts of projectivity and injectivity are dual to each other
in the sense that P is projective in A if and only if P is injective in A

op. For our
purposes it is therefore sufficient to deal with projective objects.

11.3. Proposition. An object P of an exact category is projective if and only if
any one of the following conditions holds:

(i) For all admissible epics A։A′′ and all morphisms P → A′′ there exists a
solution to the lifting problem

P
∃

��   A
AA

AA
AA

A

A // // A′′

making the diagram above commutative.
(ii) For every admissible epic A։ A′′ the induced morphism of abelian groups

HomA (P, A) → HomA (P, A′′) is surjective.
(iii) Every admissible epic A։ P splits (has a right inverse).

Proof. Since HomA (P,−) transforms exact sequences to left exact sequences in
Ab for all objects P (see the proof of Corollary A.6), it is clear that conditions (i)
and (ii) are equivalent to the projectivity of P . If P is projective and A։ P is
an admissible epic then HomA (P, A)։ HomA (P, P ) is surjective, and every pre-
image of 1P is a splitting map of A։ P . Conversely, let us prove that condition (iii)
implies condition (i): given a lifting problem as in (i), form the following pull-back
diagram

D

f ′

��

a′

// //

PB

P

f

��

A
a

// // A′′.

By hypothesis, there exists a right inverse b′ of a′ and f ′b′ solves the lifting problem
because af ′b′ = fa′b′ = f . �
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11.4. Corollary. If P is projective and P → A has a right inverse then A is
projective.

Proof. This is a trivial consequence of condition (i) in Proposition 11.3. �

11.5. Remark. If A is weakly idempotent complete, the above corollary amounts
to the familiar “direct summands of projective objects are projective” in abelian
categories.

11.6. Corollary. A sum P = P ′ ⊕P ′′ is projective if and only if both P ′ and P ′′

are projective. �

More generally:

11.7. Corollary. Let {Pi}i∈I be a family of objects and assume that the coproduct
P =

∐
i∈I Pi exists in A . The object P is projective if and only if each Pi is

projective. �

11.8. Remark. The dual of the previous result is that a product (if it exists) is
injective if and only if each of its factors is injective.

12. Resolutions and Classical Derived Functors

12.1. Definition. An exact category A is said to have enough projectives if for
every object A ∈ A there exists a projective object P and an admissible epic
P ։ A.

12.2. Definition. A projective resolution of the object A is a positive complex with
projective components together with a morphism P0 → A such that the augmented
complex

· · · → Pn+1 → Pn → · · · → P1 → P0 → A

is exact.

12.3. Proposition (Resolution Lemma). If A has enough projectives then every
object A ∈ A has a projective resolution.

Proof. This is an easy induction. Because A has enough projectives, there ex-
ists a projective object P0 and an admissible epic P0 ։A. Choose an admissible
monic A0 P0 such that A0 P0 ։A is exact. Now choose a projective P1 and
an admissible epic P1 ։A0. Continue with an admissible monic A1 P1 such that
A1 P1 ։A0 is exact, and so on. One thus obtains a sequence

A1 ''

''OOOOO

· · · P2

77 77oooooo
// P1

'' ''OOOOOO
// P0

// // A

A0

77

77ooooo

which is exact by construction, so P• → A is a projective resolution. �

12.4. Remark. The defining concept of projectivity is not used in the previous
proof. That is, we have proved: If P is a class in A such that for each object
A ∈ A there is an admissible epic P ։A then each object of A has a P-resolution
P• ։A.

Consider a morphism f : A → B in A . Let P• be a complex of projectives with
Pn = 0 for n < 0 and let α : P0 → A be a morphism such that the composition

P1 → P0 → A is zero [e.g. P• → A is a projective resolution of A]. Let Q•

β
−→ B be

a resolution.
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12.5. Theorem (Comparison Theorem). Under the above hypotheses there exists
a chain map f• : P• → Q• such that the following diagram commutes:

· · · // P2
//

∃f2

��

P1
//

∃f1

��

P0
α

//

∃f0

��

A

f

��

· · · // Q2
// Q1

// Q0
β

// // B

Moreover, the lift f• of f is unique up to homotopy equivalence.

Proof. It is convenient to put P−1 = A, Q′
0 = Q−1 = B and f−1 = f .

Existence: The question of existence of f0 is the lifting problem given by the
map fα : P0 → B and the admissible epic β : Q0 ։ B. This problem has a solution
by projectivity of P0.

Let n ≥ 0 and suppose by induction that there are morphisms fn : Pn → Qn

and fn−1 : Pn−1 → Qn−1 such that dfn = fn−1d. Consider the following diagram:

Pn+1

∃fn+1

��

∃!f ′
n+1

''

d
// Pn

d
//

fn

��

Pn−1

fn−1

��

Q′
n+1

''

''NNNNN

Qn+1

77 77nnnnnn
d

// Qn

&& &&L
LLLLL

d
// Qn−1

Q′
n

77

77ppppp

By induction hypothesis, the right hand square is commutative, so the morphism
Pn+1 → Qn−1 is zero because the morphism Pn+1 → Pn−1 is zero. The morphism
Pn+1 → Q′

n is zero as well because Q′
n Qn−1 is a mono. Since Q′

n+1 Qn ։Q′
n

is exact, there exists a unique morphism f ′
n+1 : Pn+1 → Q′

n+1 making the upper
right triangle in the left hand square commute. Because Pn+1 is projective and
Qn+1 ։ Q′

n+1 is an admissible epi, there is a morphism fn+1 : Pn+1 → Qn+1 such
that the left hand square commutes. This settles the existence of f•.

Uniqueness: Let g• : P• → Q• be another lift of f and put h• = f• − g•. We
will construct by induction a chain contraction sn : Pn−1 → Qn for h. For n ≤ 0
we put sn = 0. For n ≥ 0 assume by induction that there are morphisms sn−1, sn

such that hn−1 = dsn + sn−1d. Because of this assumption and the fact that h is a
chain map, we have d(hn − snd) = hn−1d − (hn−1 − sn−1d)d = 0 so the following
diagram commutes

Pn

hn−snd

��

∃!s′
n+1

ww

∃sn+1

��

0

&&M
MMMMMMMMMMMMMMM

Q′
n+1

''

''NNNNN

Qn+1

77 77nnnnnn
d

// Qn
d

//

&& &&L
LLLLL Qn−1

Q′
n

77

77ppppp

and as in the existence proof we get a morphism sn+1 : Pn → Qn+1 such that
dsn+1 = hn − snd. �

12.6. Corollary. Any two projective resolutions of an object A are chain homo-
topy equivalent. �

12.7. Corollary. Let P• be a right bounded complex of projectives and let A• be
an acyclic complex. Then HomK (A ) (P•, A•) = 0. �



EXACT CATEGORIES 33

In order to deal with derived functors on the level of the derived category, one
needs to sharpen both the resolution lemma and the comparison theorem.

12.8. Theorem ([23, 4.1, Lemma, b)]). Let A be an exact category with enough
projectives. For every bounded above complex A ∈ Ch

− (A ) there exists a complex

with projective components P ∈ Ch
− (A ) and a quasi-isomorphism P

α
−→ A.

Proof. Renumbering if necessary, we may suppose An = 0 for n < 0. The complex
P will be constructed by induction. For the inductive formulation it is convenient to
define Pn = Bn = 0 for n < 0. Put B0 = A0, choose an admissible epi p′0 : P0 ։B0

from a projective P0 and define p′′0 = dA
0 . Let B1 be the pull-back over p′0 and p′′0 .

Consider the following commutative diagram:

P0

p′
0 �� ��?

??
??

??
?

0

??
??

??
??

?

??
??

??
??

?

B1

i′′0

�� ��
??

??
??

??

i′0

??��������

PB B0

??
??

??
??

??
??

??
??

??���������

PB 0

A3
dA
2

//

0

//

A2
dA
1

//

0

44

∃!p′′
1

??

A1
dA
0

//

p′′
0

??��������

A0

??���������

The morphism p′′1 exists by the universal property of the pull-back and moreover
p′′1dA

2 = 0 because dA
1 dA

2 = 0.
Suppose by induction that in the following diagram everything is constructed

except Bn+1 and the morphisms terminating or issuing from there. Assume further
that Pn is projective and that p′′ndA

n+1 = 0.

Pn

p′
n "" ""E

EE
EE

EE
E

Pn−1

p′
n−1 ## ##G

GG
GG

GG
G

Bn+1

i′′n

## ##H
HHH

HH
HH

i′n

;;vvvvvvvv

PB Bn

i′′n−1

"" ""E
EE

EEEE

i′n−1

<<yyyyyyy

PB Bn−1

An+3
dA

n+2

//An+2
dA

n+1

//

∃!p′′
n+1

;;

An+1
dA

n

//

p′′
n

<<yyyyyyy

An

p′′
n−1

;;wwwwwwww

As indicated in the diagram, we obtain Bn+1 by forming the pull-back over p′n and
p′′n. We complete the induction by choosing an admissible epi p′n+1 : Pn+1 ։Bn+1

from a projective Pn+1, constructing p′′n+1 as in the first paragraph and finally

noticing that p′′n+1d
A
n+2 = 0.

The projective complex is given by the Pn’s and the differential dP
n−1 = i′n−1p

′
n,

which satisfies (dP )2 = 0 by construction.
Let α be given by αn = i′′n−1p

′
n in degree n, manifestly a chain map. We claim

that α is a quasi-isomorphism. The mapping cone of α is seen to be exact using
Proposition 2.12: For each n there is an exact sequence

Bn+1

in=

»
−i′n
i′′n

–

−−−−−−−→ Pn ⊕ An+1

pn=[ p′
n p′′

n ]
−−−−−−−−→ Bn.

We thus obtain an exact complex C with Cn = Pn⊕An+1 in degree n and differential

dC
n−1 = in−1pn =

[
−i′n−1p′

n −i′n−1p′′
n

i′′n−1p′
n i′′n−1p′′

n

]
=

[
−dP

n−1 0

αn dA
n

]

which shows that C = cone (α). �
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12.9. Theorem (Horseshoe Lemma). A horseshoe can be filled in: Suppose we are
given a horseshoe diagram

· · · // P ′
2

// P ′
1

// P ′
0

// // A′

��

��

A

����

· · · // P ′′
2

// P ′′
1

// P ′′
0

// // A′′,

that is to say, the column is short exact and the horizontal rows are projective
resolutions of A′ and A′′. Then the direct sums Pn = P ′

n ⊕ P ′′
n assemble to a

projective resolution of A in such a way that the horseshoe can be embedded into a
commutative diagram with exact rows and columns

· · · // P ′
2

//

��

��

P ′
1

//

��

��

P ′
0
��

��

// // A′

��

��

· · · // P2
//

����

P1
//

����

P0
// //

����

A

����

· · · // P ′′
2

// P ′′
1

// P ′′
0

// // A′′.

12.10. Remark. All the columns except the rightmost one are split exact. However,
the morphisms Pn+1 → Pn are not the sums of the morphisms P ′

n+1 → P ′
n and

P ′′
n+1 → P ′′

n . This only happens in the trivial case that the sequence A′
 A։A′′

is already split exact.

Proof. This is an easy application of the five lemma 3.2 and the 3× 3-lemma 3.6.
By lifting the morphism ε′′ : P ′′

0 → A′′ over A։A′′ we obtain a morphism ε : P0 →
A and a commutative diagram

Ker ε′ // //

��

P ′
0

ε′

// //

��

[ 10 ]
��

A′

��

��

Ker ε // //

��

P0
ε

//

[ 0 1 ]
����

A

����

Ker ε′′ // // P ′′
0

ε′′

// // A′′.

It follows from the five lemma that ε is actually an admissible epic, so its kernel
exists. The two vertical dotted morphisms exist since the second and the third row
are short exact. Now the 3×3-lemma implies that the dotted column is short exact.
Finally note that P ′

1 → P ′
0 and P ′′

1 → P ′′
0 factor over admissible epics to Ker ε′ and

Ker ε′′ and proceed by induction. �

12.11. Remark. In concrete situations it may be useful to remember that only the
projectivity of P ′′

n is used in the proof.

12.12. Remark (Classical Derived Functors). Using the results of this section, the
theory of classical derived functors, see e.g. Cartan-Eilenberg [10], Mac Lane [26],
Hilton-Stammbach [20] or Weibel [39], is easily adapted to the following situation:

Let (A , E ) be an exact category with enough projectives and let F : A → B

be an additive functor to an abelian category. By the resolution lemma 12.3 a



EXACT CATEGORIES 35

projective resolution P• ։ A exists for every object A ∈ A and is well-defined up
to homotopy equivalence by the comparison theorem (Corollary 12.6). It follows
that for two projective resolutions P• ։A and Q• ։A the complexes F (P•) and
F (Q•) are chain homotopy equivalent. Therefore it makes sense to define the left
derived functors of F as

LiF (A) := Hi(F (P•)).

Let us indicate why LiF (A) is a functor. First observe that a morphism f : A → A′

extends uniquely up to chain homotopy equivalence to a chain map f• : P• → P ′
•

if P• ։ A and P ′
• ։A′ are projective resolutions of A and A′. From this unique-

ness it follows easily that LiF (fg) = LiF (f)LiF (g) and LiF (1A) = 1LiF (A) as
desired. Using the horseshoe lemma 12.9 one proves that a short exact sequence
A′

A։A′′ yields a long exact sequence

· · · → Li+1F (A′′) → LiF (A′) → LiF (A) → LiF (A′′) → Li−1F (A′) → · · ·

and that L0F sends exact sequences to right exact sequences in B so that the LiF
are a universal δ-functor. Moreover, L0F is characterized by being the best left
exact approximation to F and the LiF measure the failure of L0F to be exact. In
particular, if F sends exact sequences to right exact sequences then L0F ∼= F and
if F is exact, then in addition LiF = 0 if i > 0.

13. Examples

It is of course impossible to give an exhaustive list of examples. We simply list
some of the popular ones.

13.1. Additive Categories. Every additive category A is exact with respect to
the class E min of split exact sequences, i.e., the sequences isomorphic to

A
[ 10 ]
−−→ A ⊕ B

[ 0 1 ]
−−−→ B

for A, B ∈ A . Every object A ∈ A is both projective and injective with respect to
this exact structure.

13.2. Quasi-Abelian Categories. We have seen in Section 4 that quasi-abelian
categories are exact with respect to the class E max of all kernel-cokernel pairs. Ev-
idently, this class of examples includes in particular all abelian categories. There is
an abundance of non-abelian quasi-abelian categories arising in functional analysis:

13.1. Example. Let Ban be the category of Banach spaces and bounded linear
maps over the field k of real or complex numbers. It has kernels and cokernels—the
cokernel of a morphism f : A → B is given by B/im f . It is an easy consequence
of the open mapping theorem that Ban is quasi-abelian. Notice that the forgetful
functor Ban → Ab is exact and reflects exactness, it preserves monics but fails
to preserve epics (morphisms with dense image). The ground field k is projective
and by Hahn-Banach it is also is injective. More generally, it is easy to see that for
each set S the space ℓ1(S) is projective and ℓ∞(S) is injective. Since every Banach
space A isometrically isomorphic to a quotient of ℓ1(B≤1A) and to a subspace of
ℓ∞(B≤1A

∗) there are enough of both, projective and injective objects in Ban.

13.2. Example. Let Fre be the category of completely metrizable topological vec-
tor spaces (Fréchet spaces) and continuous linear maps. Again, Fre is quasi-abelian
by the open mapping theorem, and there are exact functors Ban → Fre and
Fre → Ab. It is still true that k is projective, but k fails to be injective (Hahn-
Banach breaks down). There are neither enough injectives nor enough projectives
in Fre.
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13.3. Example. The category Pol of polish abelian groups (i.e., second countable
and completely metrizable topological groups) and continuous homomorphisms.
Again by the open mapping theorem, Pol is quasi-abelian.

Further functional analytic examples are discussed in detail e.g. in Rump [31]
and Schneiders [35]. Rump [34] gives a rather long list of examples at the beginning
of the introduction.

13.3. Fully Exact Subcategories. The proof of the following lemma is an easy
exercise left to the reader:

13.4. Lemma. Let A be an exact category and suppose that B is a full additive
subcategory of A which is closed under extensions in the sense that the existence
of a short exact sequence B′

 A։B′′ with B′, B′′ ∈ B implies that A ∈ B. The
restriction of the exact structure of A to B is an exact structure on B. �

13.5. Definition. A fully exact subcategory of an exact category A is a full addi-
tive subcategory B which is closed under extensions and equipped with the exact
structure from the previous lemma.

13.6. Example. By the embedding theorem A.1, every small exact category is a
fully exact subcategory of an abelian category.

13.7. Example. The full subcategories of projective or injective objects of an ex-
act category A are fully exact. The induced exact structures are the split exact
structures.

13.8. Example. Let ⊗̂ be the projective tensor product of Banach spaces. A Banach
space F is flat if F ⊗̂ − is exact. It is well-known that the flat Banach spaces
are precisely the L 1-spaces of Lindenstrauss-Pelczyński. The full subcategory of
flat Banach spaces is fully exact. The exact structure is the pure exact structure
consisting of the short sequences whose Banach dual sequences are split exact,
see [8, Ch. IV.2] for further information and references.

13.4. Further Examples.

13.9. Example. Let X be a scheme. The category of algebraic vector bundles over
X, i.e., the category of locally free and coherent (sheaves of) OX -modules, is an
exact category with the usual notion of exact sequences.

13.10. Example. If (A , E ) is an exact category then the category of chain com-
plexes Ch (A ) is an exact category with respect to the exact structure Ch (E ) of
short sequences of complexes which are exact in each degree, see Lemma 9.1.

Appendix A. The Embedding Theorem

For abelian categories, one has the Freyd-Mitchell embedding theorem, see [13]
and [28], allowing one to prove diagram lemmas in abelian categories “by chasing
elements”. In order to prove diagram lemmas in exact categories, a similar technique
works. More precisely, one has:

A.1. Theorem ([37, A.7.1, A.7.16]). Let (A , E ) be a small exact category.

(i) There is an abelian category B and a fully faithful exact functor i : A → B

that reflects exactness. Moreover, A is closed under extensions in B.
(ii) The category B may canonically be chosen to be the category of left exact

functors A
op → Ab and i to be the Yoneda embedding i(A) = HomA (−, A).

(iii) Assume moreover that A is weakly idempotent complete. If f is a morphism
in A and i(f) is epic in B then f is an admissible epic.
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A.2. Remark. Quillen states in [32, p. “92/16/100”]:

Now suppose given an exact category M . Let A be the additive cat-
egory of additive contravariant functors from M to abelian groups
which are left exact, i.e. carry [an exact sequence M ′

M ։M ′′]
to an exact sequence

0 → F (M ′′) → F (M) → F (M ′).

(Precisely, choose a universe containing M , and let A be the cat-
egory of left exact functors whose values are abelian groups in the
universe.) Following well-known ideas (e.g. [16]), one can prove A

is an abelian category, that the Yoneda functor h embeds M as a
full subcategory of A closed under extensions, and finally that a
[short] sequence [. . . ] is in E if and only if h carries it into an exact
sequence in A . The details will be omitted, as they are not really
important for the sequel.

Freyd stated a similar theorem in [12], again without proof, and with the addi-
tional assumption that idempotents split, since he uses Heller’s axioms. The first
proof published is in Laumon [25, 1.0.3], relying on the Grothendieck-Verdier theory
of sheafification [36]. However, Laumon’s proof that the embedding reflects exact-
ness and its image is closed under extensions seems to be flawed by the confusion

of epics in B and epics in the Yoneda category Y = AbA
op

. The sheafification
approach was also used and further refined by Thomason [37, Appendix A]. A quite
detailed sketch of the proof alluded to by Quillen is given in Keller [23, A.3].

The proof given here is the one in Thomason [37, A.7] amalgamated with the
one given by Laumon [25, 1.0.3]. We also take the opportunity to fix a slight gap in
Thomason’s argument (our Lemma A.8, compare with the first sentence after [37,
(A.7.10)]). Since Thomason fails to spell out the nice sheaf-theoretic interpretations
of his construction and since referring to SGA 4 seems rather brutal, we use the
terminology of the more lightweight Mac Lane-Moerdijk [27, Chapter III]. Other
good introductions to the theory of sheaves may be found in Artin [1] or Borceux [5],
for example.

A.1. Separated Presheaves and Sheaves. Let (A , E ) be a small exact category.
For each object A ∈ A , let

C A = {(p′ : A′
։A) : A′ ∈ A }

be the set of admissible epics onto A. The elements of C A are the coverings of A.

A.3. Lemma. The family {C A}A∈A is a basis for a Grothendieck topology J on
A , that is:

(i) If f : A → B is an isomorphism then f ∈ C B .
(ii) If g : A → B is arbitrary and (q′ : B′

։B) ∈ C B then the pull-back

A′ //

p′

����

PB

B′

q′

����

A
g

// B

yields a morphism p′ ∈ C A. (“Stability under base-change”)
(iii) If (p : B ։A) ∈ C A and (q : C ։B) ∈ C B then pq ∈ C A. (“Transitivity”)

In particular, (A , J) is a site.

Proof. This is obvious from the definition, see [27, Definition 2, p. 111]. �



38 THEO BÜHLER

The Yoneda functor y : A → AbA
op

associates to each object A ∈ A the
presheaf (of abelian groups) y(A) = HomA (−, A). In general, a presheaf is just a
functor G : A

op → Ab, which we will assume to be additive except in the next
lemma. We will see shortly that y(A) is in fact a sheaf on the site (A , J).

A.4. Lemma. Consider the site (A , J) and let G : A
op → Ab be a functor.

(i) The presheaf G is separated if and only if for each admissible epic p the
morphism G(p) is monic.

(ii) The presheaf G is a sheaf if and only if for each admissible epic p : A։ B
the diagram

G(B)
G(p)

// G(A)
d0=G(p0)

//

d1=G(p1)
//
G(A ×B A)

is a difference kernel (equalizer), where p0, p1 : A ×B A։A denote the two
projections. In other words, the presheaf G is a sheaf if and only if for all
admissible epics p : A։ B the diagram

G(B)
G(p)

//

G(p)

��

G(A)

d1

��

G(A)
d0

// G(A ×B A)

is a pull-back.

Proof. Again, this is obtained by making the definitions explicit. Point (i) is the
definition, [27, p. 129], and point (ii) is [27, Proposition 1[bis], p. 123]. �

The following lemma shows that the sheaves on the site (A , J) are quite familiar
gadgets.

A.5. Lemma. Let G : A
op → Ab be an additive functor. The following are equiv-

alent:

(i) The presheaf G is a sheaf on the site (A , J).
(ii) For each admissible epic p : B ։ C the sequence

0 −→ G(C)
G(p)
−−−→ G(B)

d0
−d1

−−−−→ G(B ×C B)

is exact.
(iii) For each short exact sequence AB ։ C in A the sequence

0 −→ G(C) −→ G(B) −→ G(A)

is exact, i.e., G is left exact.

Proof. By Lemma A.4 (ii) we have that G is a sheaf if and only if the sequence

0 −→ G(C)

»
G(p)
G(p)

–

−−−−−→ G(B) ⊕ G(B)
[ G(p0) −G(p1) ]
−−−−−−−−−−−→ G(B ×C B)

is exact. Since p1 : B×C B ։ B is a split epic with kernel A, there is an isomorphism
B ×C B → A ⊕ B and it is easy to check that the above sequence is isomorphic to

0 −→ G(C) −→ G(B) ⊕ G(B) −→ G(A) ⊕ G(B).

Because left exact sequences are stable under taking direct sums and passing to
direct summands, (i) is equivalent to (iii). That (i) is equivalent to (ii) is obvious
by Lemma A.4 (ii). �

A.6. Corollary ([37, A.7.6]). For every object A ∈ A the represented functor
y(A) = HomA (−, A) is a sheaf.
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Proof. Given an exact sequence B′
B ։B′′ we need to prove that

0 −→ HomA (B′′, A) −→ HomA (B, A) −→ HomA (B′, A)

is exact. That the sequence is exact at HomA (B, A) follows from the fact that
B ։ B′′ is a cokernel of B′

B. That the sequence is exact at HomA (B′′, A)
follows from the fact that B ։ B′′ is epic. �

A.2. Outline of the Proof. Let now Y be the category of additive functors
A

op → Ab and let B be the category of (additive) sheaves on the site (A , J). Let
j∗ : B → A be the inclusion. By Corollary A.6, the Yoneda functor y factors as

A

y
  B

BB
BB

BB
B

i
// B

j∗

��

Y

via a functor i : A → B. We will prove that the category B = Sheaves (A, J)
is abelian and we will check that the functor i has the properties asserted in the
embedding theorem.

The category Y is a Grothendieck abelian category (small products and coprod-
ucts exist and filtered colimits are exact)—as a functor category, these properties
are inherited from Ab, as limits and colimits are taken pointwise. The crux of the
proof of the embedding theorem is to show that j∗ has a left adjoint j∗ such that
j∗j∗ = idB, namely sheafification. As soon as this is established, the rest will be
relatively painless.

A.3. Sheafification. The goal of this section is to construct the sheafification func-
tor on the site (A , J) and to prove its basic properties. We will construct an endo-
functor L : Y → Y which associates to each presheaf a separated presheaf and to
each separated presheaf a sheaf. The sheafification functor will then be given by
j∗ = LL.

We need one more concept from the theory of sites:

A.7. Lemma. Let A ∈ A . A covering p′′ : A′′
։A is a refinement of the covering

p′ : A′
։A if and only if there exists a morphism a : A′′ → A′ such that p′a = p′′.

Proof. This is just a translation of the definition of a matching family as given in
[27, p. 121] into the present setting. �

By definition, refinement gives the structure of a filtered category on C A for
each A ∈ A . More precisely, let DA be the following category: the objects are the
coverings (p′ : A′

։A) and there exists at most one morphism between any two
objects of DA: there exists a morphism (p′ : A′

։A) → (p′′ : A′′
։ A) in DA if and

only if there exists a : A′′ → A′ such that p′a = p′′. To see that DA is filtered, let
(p′ : A′

։A) and (p′′ : A′′
։ A) be two objects and put A′′′ = A′ ×A A′′, so there

is a pull-back diagram

A′′′

a

����

a′

// //

PB

A′′

p′′

����

A′
p′

// // A.

Put p′′′ = p′a = p′′a′, so the object (p′′′ : A′′′
։ A) of DA is a common refinement

of (p′ : A′
։ A) and (p′′ : A′′

։A).

A.8. Lemma. Let A1, A2 ∈ A be any two objects.

(i) There is a functor Q : DA1
×DA2

→ DA1⊕A2
, (p′1, p

′
2) 7→ (p′1 ⊕ p′2).
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(ii) Let (p′ : A′
։A1 ⊕ A2) be an object of DA1⊕A2

and for i = 1, 2 let

A′
i

//

PBp′
i

����

A′

p′

����

Ai
// A1 ⊕ A2

be a pull-back diagram in which the bottom arrow is the inclusion. This con-
struction defines a functor

P : DA1⊕A2
−→ DA1

×DA2
, p′ 7−→ (p′1, p

′
2).

(iii) There are a natural transformation idDA1⊕A2
⇒ PQ and a natural isomor-

phism QP ∼= idDA1
×DA2

. In particular, the images of P and Q are cofinal.

Proof. That P is a functor follows from its construction and the universal property
of pull-back diagrams in conjunction with axiom [E2op]. That Q is well-defined
follows from Proposition 2.9 and that PQ ∼= idDA1

×DA2
is easy to check. That there

is a natural transformation idDA1⊕A2
⇒ QP follows from the universal property of

products. �

Let (p′′ : A′′
։ A) be a refinement of (p′ : A′

։A), and let a : A′′ → A′ be such
that p′a = p′′. By the universal property of pull-backs, a yields a unique morphism
A′′×A A′′ → A′×A A′ which we denote by a×A a. Hence, for every additive functor
G : A

op → Ab, we obtain a commutative diagram in Ab:

Ker (d0 − d1)

∃!

��

// G(A′)
d0−d1

//

G(a)

��

G(A′ ×A A′)

G(a×Aa)

��

Ker (d0 − d1) // G(A′′)
d0

−d1

// G(A′′ ×A A′′).

The next thing to observe is that the dotted morphism does not depend on the
choice of a. Indeed, if ã is another morphism such that p′ã = p′′, consider the
diagram

A′′

a

''

ã

!!

∃!b

$$

A′ ×A A′
p′
1

//

p′
0

��

PB

A′

p′

��

A′
p′

// A

and b : A′′ → A′ ×A A′ is such that

G(b)(d0 − d1) = G(b)G(p′0) − G(b)G(p′1) = G(a) − G(ã),

so G(a) − G(ã) = 0 on Ker (d0 − d1).

For G : A
op → Ab, we put ℓG(p′ : A′

։A) := Ker (G(A′)
d0

−d1

−−−−→ G(A′ ×A A′))
and we have just seen that this defines a functor ℓG : DA → Ab.

A.9. Lemma. Define

LG(A) = lim
−→
DA

ℓG(p′ : A′
։ A).

(i) LG is an additive contravariant functor in A.
(ii) L is a covariant functor in G.
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Proof. This is immediate from going through the definitions:
To prove (i), let f : A → B be an arbitrary morphism. By taking pull-backs

(Lemma A.3 (ii)), we obtain a functor

DB
f∗

−→ DA

which, by passing to the colimit, induces a unique morphism LG(B)
LG(f)
−−−−→ LG(A)

compatible with f∗. From this uniqueness, we deduce LG(fg) = LG(g)LG(f). The
additivity of LG is a consequence of Lemma A.8.

To prove (ii), let α : F ⇒ G be a natural transformation between two (additive)
presheaves. Given an object A ∈ A , we obtain a morphism between the colimit
diagrams defining LF (A) and LG(A) and we denote the unique resulting map by
L(α)A. Given a morphism f : A → B, there is a commutative diagram

LF (B)

L(α)B

��

LF (f)
// LF (A)

L(α)A

��

LG(B)
LG(f)

// LG(A),

as is easily checked. The uniqueness in the definition of L(α)A implies that for each
A ∈ A the equation

L(α ◦ β)A = L(α)A ◦ L(β)A

holds. The reader in need of more details may consult [5, p. 206f]. �

A.10. Lemma ([37, A.7.8]). The functor L : Y → Y has the following properties:

(i) It is additive and preserves finite limits.
(ii) There is a natural transformation η : idY ⇒ L.

Proof. That L preserves finite limits follows from the fact that filtered colimits
and kernels in Ab commute with finite limits, as limits in Y are formed pointwise,
see also [5, Lemma 3.3.1]. Since L preserves finite limits, it preserves in particular
finite products, hence it is additive. This settles point (i).

For each (p′ : A′
։A) ∈ DA the morphism G(p′) : G(A) → G(A′) factors

uniquely over
η̃p′ : G(A) → Ker (G(A′) → G(A′ ×A A′)).

By passing to the colimit over DA, this induces a morphism η̃A : G(A) → LG(A)
which is clearly natural in A. In other words, the η̃A yield a natural transformation
ηG : G ⇒ LG, i.e., a morphism in Y . We leave it to the reader to check that
the construction of ηG is compatible with natural transformations α : G ⇒ F so
that the ηG assemble to yield a natural transformation η : idY ⇒ L, as claimed in
point (ii). �

A.11. Lemma ([37, A.7.11, (a), (b), (c)]). Let G ∈ Y and let A ∈ A .

(i) For all x ∈ LG(A) there exists an admissible epic p′ : A′
։ A and y ∈ G(A′)

such that η(y) = LG(p′)(x) in LG(A′).
(ii) For all x ∈ G(A), we have η(x) = 0 in LG(A) if and only if there exists an

admissible epic p′ : A′
։ A such that G(p′)(x) = 0 in G(A′).

(iii) We have LG = 0 if and only if for all A ∈ A and all x ∈ G(A) there exists
an admissible epic p′ : A′

։A such that G(p′)(x) = 0.

Proof. Points (i) and (ii) are immediate from the definitions. Point (iii) follows
from (i) and (ii). �

A.12. Lemma ([27, Lemma 2, p. 131], [37, A.7.11, (d), (e)]). Let G ∈ Y .

(i) The presheaf G is separated if and only if ηG : G → LG is monic.
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(ii) The presheaf G is a sheaf if and only if ηG : G → LG is an isomorphism.

Proof. Point (i) follows from Lemma A.11 (ii) and point (ii) follows from the
definitions. �

A.13. Proposition ([37, A.7.12]). Let G ∈ Y .

(i) The presheaf LG is separated.
(ii) If G is separated then LG is a sheaf.

Proof. Let us prove (i) by applying Lemma A.4 (i), so let x ∈ LG(A) and let
b : B ։ A be an admissible epic for which LG(b)(x) = 0. We have to prove
that then x = 0 in LG(A). By the definition of LG(A), we know that x is rep-

resented by some y ∈ Ker (G(A′)
d0

−d1

−−−−→ G(A′ ×A A′)) for some admissible epic
(p′ : A′

։ A) in DA. Since LG(b)(x) = 0 in LG(B), we know that the image of

y in Ker (G(A′ ×A B)
d0

−d1

−−−−→ G((A′ ×A B) ×B (A′ ×A B))) is equivalent to zero in
the filtered colimit over DB defining LG(B). Therefore there exists a morphism
D → A′ ×A B in E such that its composite with the projection onto B is an ad-
missible epic D ։B. By Lemma A.11 (ii), it follows that y maps to zero in G(D).
Now the composite D ։B ։A is in DA and hence y is equivalent to zero in the
filtered colimit over DA defining LG(A). Thus, x = 0 in LG(A) as required.

Let us prove (ii). If G is a separated presheaf, we have to check that for every
admissible epic B ։A the diagram

LG(A) // LG(B)
d0=G(p0)

//

d1=G(p1)
//
LG(B ×A B)

is a difference kernel. By (i) LG is separated, so LG(A) → LG(B) is monic, and
it remains to prove that every element x ∈ LG(B) with (d0 − d1)x = 0 is in the
image of LG(A). By Lemma A.11 (i) there is an admissible epic q : C ։B and
y ∈ G(C) such that η(y) = LG(q)(x). It follows that ηG(p0)(y) = ηG(p1)(y) in
LG(C ×A C). Now, G is separated, so η : G ⇒ LG is monic by Lemma A.12, and
we conclude from this that G(p0)(y) = G(p1)(y) in G(C ×A C). In other words,

y ∈ Ker (G(C)
d0

−d1

−−−−→ G(C ×A C)) yields a class in LG(A) representing x. �

The following observation is quite useful:

A.14. Corollary. For a presheaf G ∈ Y we have LG = 0 if and only if LLG = 0.

Proof. Obviously LG = 0 entails LLG = 0 as L is additive by Lemma A.10.
Conversely, as LG is separated by Lemma A.12 (i), the morphism ηLG : LG → LLG
is monic by Lemma A.12 (i), so if LLG = 0 we must have LG = 0. �

A.15. Definition. The sheafification functor is j∗ = LL : Y → B.

A.16. Lemma. The sheafification functor j∗ is left adjoint to the inclusion functor
j∗ : B → Y and satisfies j∗j∗ ∼= idB. Moreover, sheafification is exact.

Proof. Since ηG : G → LG is an isomorphism if and only if G is a sheaf by
Lemma A.12 (ii), it follows that j∗j∗ ∼= idB.

Let Y ∈ Y be a presheaf and let B ∈ B be a sheaf. The natural transformation
η : idY ⇒ L gives us on the one hand a natural transformation

̺Y = ηLY ηY : Y −→ LLY = j∗j
∗Y

and on the other hand a natural isomorphism

λB = (ηLBηB)−1 : j∗j∗B = LLB −→ B.
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Now the compositions

j∗B
̺j∗B

−−−→ j∗j
∗j∗B

j∗λB
−−−→ j∗B and j∗Y

j∗̺Y
−−−→ j∗j∗j

∗Y
λj∗Y

−−−→ j∗Y

are manifestly equal to idj∗B and idj∗Y so that j∗ is indeed left adjoint to j∗. In
particular j∗ preserves cokernels. That j∗ preserves kernels follows from the fact
that L : Y → Y has this property by Lemma A.10 (i) and the fact that B is a full
subcategory of Y . Therefore j∗ is exact. �

A.17. Remark. It is an illuminating exercise to prove exactness of j∗ directly by
going through the definitions.

A.18. Lemma. The category B is abelian.

Proof. It is clear that B is additive. The sheafification functor j∗ = LL preserves
kernels by Lemma A.10 (i) and as a left adjoint it preserves cokernels. To prove B

abelian, it suffices to check that every morphism f : A → B has an analysis

A
)) ))SSSSSS

f
// B

)) ))SSSSSS

Ker (f)
66

66lllll

Coim (f)
∼=

// Im (f)
66

66mmmmm

Coker (f).

Since j∗ preserves kernels and cokernels and j∗j∗ ∼= idB such an analysis can be
obtained by applying j∗ to an analysis of j∗f in Y . �

A.4. Proof of the Embedding Theorem. Let us recapitulate: one half of the
axioms of an exact structure yields that a small exact category A becomes a site
(A , J). We denoted the Yoneda category of contravariant functors A → Ab by
Y and the Yoneda embedding A 7→ Hom (−, A) by y : A → Y . We have shown
that the category B of sheaves on the site (A, J) is abelian, being a full reflective
subcategory of Y with sheafification j∗ : Y → B as reflector (left adjoint). Follow-
ing Thomason, we denoted the inclusion B → Y by j∗. Moreover, we have shown
that the Yoneda embedding takes its image in B, so we obtained a commutative
diagram of categories

A
i

//

y
  B

BB
BB

BB
B B

j∗

��

Y ,

in other words y = j∗i. By the Yoneda lemma, y is fully faithful and j∗ is fully
faithful, hence i is fully faithful as well. This settles the first part of the following
lemma:

A.19. Lemma. The functor i : A → B is fully faithful and exact.

Proof. By the above discussion, it remains to prove exactness.
Clearly, the Yoneda embedding sends exact sequences in A to left exact se-

quences in Y . Sheafification j∗ is exact and since j∗j∗ ∼= idB, we have that
j∗y = j∗j∗i ∼= i is left exact as well. It remains to prove that for each admissible epic
p : B ։C the morphism i(p) is epic. By Corollary A.14, it suffices to prove that
G = Coker y(p) satisfies LG = 0, because Coker i(p) = j∗ Coker y(p) = LLG = 0
then implies that i(p) is epic. To this end we use the criterion in Lemma A.11 (iii),
so let A ∈ A be any object and x ∈ G(A). We have an exact sequence of abelian
groups

Hom(A, B)
y(p)A
−−−−→ Hom(A, C)

qA
−−→ G(A) −→ 0
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so x = qA(f) for some morphism f : A → C. Now form the pull-back

A′
p′

// //

PBf ′

��

A

f

��

B
p

// // C

and observe that G(p′)(x) = G(p′)(qA(f)) = qA′(fp′) = qA′(pf ′) = 0. �

A.20. Lemma ([37, A.7.15]). Let A ∈ A and B ∈ B and suppose there is an epic
e : B ։ i(A). There exist A′ ∈ A and k : i(A′) → B such that ek : A′ → A is an
admissible epic.

Proof. Let G be the cokernel of j∗e in Y . Then 0 = j∗G = LLG because
j∗j∗e ∼= e is epic. By Proposition A.13 (i) we know that LG is separated, hence by
Lemma A.12 (i) the morphism ηLG : LG → LLG is monic. It follows that LG = 0.
Now G(A) ∼= Hom(A, A)/ Hom(i(A), B) and let x ∈ G(A) be the class of 1A. From
Lemma A.11 (iii) we conclude that there is an admissible epic p′ : A′

։A such
that G(p′)(x) = 0 in G(A′) ∼= Hom (A′, A)/ Hom(i(A′), B). But this means that
the admissible epic p′ factors as ek for some k ∈ Hom(i(A′), B) as claimed. �

A.21. Lemma. The functor i reflects exactness.

Proof. Suppose A
m
−→ B

e
−→ C is a sequence in A such that

i(A)
i(m)
−−−→ i(B)

i(e)
−−→ i(C)

is short exact in B. In particular, i(m) is a kernel of i(e). Since i is fully faithful, it
follows that m is a kernel of e in A , hence we are done as soon as we can show that
e is an admissible epic. Because i(e) is epic, Lemma A.20 allows us to find A′ ∈ A

and k : i(A′) → i(B) such that ek is an admissible epic and since e has a kernel we
conclude by the dual of Proposition 2.15. �

A.22. Lemma. The essential image of i : A → B is closed under extensions.

Proof. Consider a short exact sequence i(A) G ։ i(B) in B, where A, B ∈ A .
By Lemma A.20 we find an admissible epic p : C ։B such that i(p) factors over
G. Now consider the pull-back diagram

D

����

// //

PB

G

����

i(C)
i(p)

// // i(B)

and observe that D ։ i(C) is a split epic because i(p) factors over G. Therefore
D ∼= i(A) ⊕ i(C) ∼= i(A ⊕ C). If K is a kernel of p then i(K) is a kernel of D ։G,
so we obtain an exact sequence

i(K) //

»
i(a)
i(c)

–

// i(A) ⊕ i(C) // // G,

where c = ker p, which shows that G is the push-out

i(K) //
i(c)

//

i(a)

��

PO

i(C)

��

i(A) // // G.
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Now i is exact by Lemma A.19 and hence preserves push-outs along admissible
monics by Proposition 5.2, so i preserves the push-out G′ = A∪K C of a along the
admissible monic c and thus G is isomorphic to i(G′). �

Proof of the Embedding Theorem A.1. Let us summarize what we know:
the embedding i : A → B is fully faithful and exact by Lemma A.19. It re-
flects exactness by Lemma A.21 and its image is closed under extensions in B by
Lemma A.22. This settles point (i) of the theorem.

Point (ii) is taken care of by Lemma A.5 and Corollary A.6.
It remains to prove (iii). Assume that A has weakly split idempotents. We claim

that every morphism f : B → C such that i(f) is epic is in fact an admissible epic.
Indeed, by Lemma A.20 we find a morphism k : A → B such that fk : A։C is an
admissible epic and we conclude by Proposition 7.5. �

Appendix B. Heller’s Axioms

B.1. Proposition (Quillen). Let A be a weakly idempotent complete additive cat-
egory and let E be a class of kernel-cokernel pairs in A . The pair (A , E ) is an
exact category if and only if E satisfies Heller’s axioms:

(i) Identity morphisms are both admissible monics and admissible epics;
(ii) The class of admissible monics and the class of admissible epics are closed

under composition;
(iii) Let f and g be composable morphisms. If gf is an admissible monic then so

is f and if gf is an admissible epic then so is g;
(iv) Assume that all columns and the second two rows of the commutative diagram

A′ //
f ′

//

a

��

B′
g′

// //

��

b

��

C ′

��

c

��

A //
f

//

a′

��

B
g

// //

b′

����

C

c′

����

A′′ //
f ′′

// B′′
g′′

// // C ′′

are in E then the first row is also in E .

Proof. Note that (i) and (ii) are just axioms [E0], [E1] and their duals.
For an exact category (A , E ), point (iii) is proved in Proposition 7.5 and point (iv)

follows from the 3 × 3-lemma 3.6.
Conversely, assume that E has properties (i)-(iv) and let us check that E is an

exact structure.
By properties (i) and (iii) an isomorphism is both an admissible monic and an

admissible epic since by definition f−1f = 1 and ff−1 = 1. If the short sequence
σ = (A′ → A → A′′) is isomorphic to the short exact sequence B′

B ։ B′′ then
property (iv) tells us that σ is short exact. Thus, E is closed under isomorphisms.

Heller proves [19, Proposition 4.1] that (iv) implies its dual, that is: if the com-
mutative diagram in (iv) has exact rows and both (a, a′) and (b, b′) belong to E

then so does (c, c′).3 It follows that Heller’s axioms are self-dual.

3Indeed, by (iii) c′ is an admissible epic and so it has a kernel D. Because c′gb = 0, there is

a morphism B′
→ D and replacing C′ by D in the diagram of (iv) we see that A′

B′
։D is

short exact. Therefore C′ ∼= D and we conclude by the fact that E is closed under isomorphisms.
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Let us prove that [E2] holds—the remaining axiom [E2op] will follow from the
dual argument. Given the diagram

A′ //
f ′

//

a

��

B′

A

we want to construct its push-out B and prove that the morphism A → B is an
admissible monic. Observe that

[ a
f ′

]
: A′ → A ⊕ B′ is the composition

A′ //
[ 01 ]

// A ⊕ A′
∼=

[ 1 a
0 1 ]

// A ⊕ A′ //

h
1 0
0 f ′

i

// A ⊕ B′.

By (iii) split exact sequences belong to E , and the proof of Proposition 2.9 shows
that the direct sum of two sequences in E also belongs to E . Therefore

[ a
f ′

]
is an

admissible monic and it has a cokernel [−f b ] : A⊕ B′
։B. It follows that the left

hand square in the diagram

A′ //
f ′

//

a

��

BC

B′

b

��

g′

// // C ′

A
f

// B
g

// C ′

is bicartesian. Let g′ : B′
։C ′ be a cokernel of f ′ and let g be the morphism

B → C ′ such that gf = 0 and gb = g′. Now consider the commutative diagram

A′ //
[ 01 ]

// A ⊕ A′
[ 1 0 ]

// //

�� h
1 a
0 f ′

i

��

A

f

��

A′ //
[ a
f ]

// A ⊕ B′
[ f b ]

// //

[ 0 g′ ]
����

B

g

��

C ′ C ′

in which the rows are exact and the first two columns are exact. It follows that the
third column is exact and hence f is an admissible monic. �
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[3] A. A. Bĕılinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on
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