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POINTWISE HYPERBOLICITY IMPLIES UNIFORM

HYPERBOLICITY

BORIS HASSELBLATT, YAKOV PESIN, AND JÖRG SCHMELING

Abstract. We provide a general mechanism for obtaining uni-
form information from pointwise data. A sample result is that if a
diffeomorphism of a compact Riemannian manifold has pointwise
expanding and contracting continuous invariant cone families, then
the diffeomorphism is an Anosov diffeomorphism, i.e., the entire
manifold is uniformly hyperbolic.

1. Introduction

We present a novel combination of ideas (from descriptive set theory
and hyperbolic dynamical systems) that provides a way of obtaining
uniform information from nonuniform assuptions.

To give a flavor of the immediate application to hyperbolic dynamics,
consider a diffeomorphism f of a compact smooth Riemannian manifold
M . In the hyperbolic theory one studies the exponential growth rates
of the size of vectors under repeated application of the differential Df
and often obtains estimates on a subset X ⊂ M to the effect that

‖Dxf
n(v)‖ ≥ A(x)λn(x)‖v‖ for every n ∈ N and x ∈ X,

whenever v belongs to a certain subspace Ex of TxM . Here A : X →
R+ is a Borel function and λ : X → (1,∞) is an f -invariant Borel
function. Note that this is equivalent to

lim
n→∞

1

n
min

v∈Ex,‖v‖=1
log ‖Dxf

n(v)‖ > 0

for all x ∈ X . This condition can also be characterized by the existence
of an invariant cone family C such that vectors in C(x) expand in the
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same way as above. In general, C , E , A and λ are not continuous.
Remarkably, we can nevertheless show that if X is compact and A and
λ − 1 are positive and C is continuous (i.e., the system is pointwise
hyperbolic in the cones), then there is a positive lower bound for both A
and λ−1 (i.e., the system is uniformly expanding in the E -direction).
We do allow the degenerate cones, so as a special case this includes
a theorem about continuous E implying uniform expansion. This is
similar to results of Cao [3] and Mañé [7].

There are two principal ingredients to our method, and the com-
bination of these is new. One ingredient is the application of ideas in
descriptive set theory to the exhaustion of a compact space by compact
proper subsets. The other is a careful analysis of the consequences for
smooth dynamical systems. Descriptive set theory has been used for the
study of topological dynamical systems, but we have not seen it applied
to smooth dynamics. We believe that the analysis from descriptive set
theory is of interest beyond the theory of dynamical systems, and we
keep it in a separate section (Section 3) in a form that is ready to “plug
in.”

The applications presented here are meant to illustrate the practical-
ity of our method, but they are not new, and stronger results have been
known, a few of them for some time. A selection of pertinent references
is [1, 3, 4, 5, 7].

2. Statement of results

In this section we state results that illustrate our method, begin-
ning in a somewhat generic context and then stating dynamical conse-
quences.

Let (V, π) be a continuous finite-dimensional normed linear bundle
over a compact metric space X , f : X → X continuous and f∗ a linear
extension, i.e., π ◦ f∗ = f ◦ π .

Definition 1. In a linear space L, a cone CE,θ of angle θ ≥ 0 around a
subspace E is defined as the set of vectors v ∈ L such that ∡(v, E) ≤ θ .
The distance between cones CEi,θi

is given by max(∡(E1, E2), |θ1−θ2|).
CE1,θ1 and CE2,θ2 are said to be transverse if ∡(E1, E2) > θ1 + θ2). For
any cone C in a normed linear space we write C1 :={v ∈ C | ‖v‖ = 1} .

A family of cones Cx ⊂ Vx is said to be continuous if the defining
subspaces and angles are continuous in x and f -invariant if f∗(Cx) ⊆
Cf(x) .

We call attention to the fact that it is convenient, albeit not essential,
for us to consider “circular” cones defined by a direction and an angle.
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Note also that an f -invariant subbundle of V can be viewed as an
invariant cone family by taking θ = 0.

Consider a continuous function a : V → R+ . It is said to be homo-
geneous if a(αv) = |α|a(v) for v ∈ V . Let

ϕn(x) :=
1

n
min
v∈C1

x

log a(fn
∗ v).

In our results the case of a being a norm is of obvious interest, but we
retain this generality to emphasize that we mainly use homogeneity of
a . However, we will need to make a nondegeneracy assumption on a
that is automatic in the case of norms (and ensures that (5) on page
9 gives a positive number.) Since such an assumption can take various
forms, we decribe these before stating the results themselves. The most
straightforward condition is

(1) min
z∈X, v∈Cz

a(v) > 0,

where Cx is the cone family in the statement of Theorem 2. This in
turn can be seen to be a consequence of the following assumption:

(2) a(f∗v) < Ma(v) for some uniform M and all v ∈ Cx

combined with the assumption ϕ > 0 of the theorem. This is similar to
a corresponding fact for norms that is often used for diffeomorphisms.

A different assumption that serves equally well in the proof is that

(3) min
z∈X, v∈Cz

a(f∗v) > 0.

At face value, this assumption is slightly weaker than (1), but its main
interest lies in the observation that positivity of ϕ and continuity can be
combined to observe that there is an iterate of f for which this condition
holds. This means that without any of the preceding assumptions one
obtains the conclusion of Theorem 2 for an iterate of f .

Theorem 2. Assume that a is homogeneous and that there is a con-
tinuous invariant cone family {Cx}x∈X on X such that (1) or (2) or
(3) holds. If ϕ(x) := limn→∞ ϕn(x) > 0 for all x ∈ X , then there exist
χ > 0 and N ∈ N such that ϕn ≥ χ for all n ≥ N . In particular,
there is a C > 0 such that a(fn

∗ v) ≥ C · eχn for all n ∈ N and v ∈ C1
x .

Applying Theorem 2 with the function a(x, v) := ‖v‖ we obtain

Theorem 3. Let f be a C1 diffeomorphism of a compact smooth man-
ifold M with a compact invariant set K on which there is a continuous
invariant cone family Cx ⊂ TxM and

(4) lim
n→∞

1

n
min
v∈C1

x

log(‖Dxf
n(v)‖) > 0
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for all x ∈ K . Then there exist c, χ > 0 such that

‖Dxf
n(v)‖ ≥ c · eχn for every x ∈ K, v ∈ C1

x and n ∈ N.

Furthermore, for every x ∈ K there is a subspace Ex ⊂ TxM such that
Df(Ex) = Ef(x) and ‖Dxf

n(v)‖ ≥ c · eχn for every v ∈ Ex , ‖v‖ = 1
and n ∈ N.

Theorem 4. Let K ⊂ M be a compact f -invariant set that admits
two continuous transverse cone families Cx and Dx on TM↾K

such

that for all x ∈ K each v ∈ Cx has positive Lyapunov exponent, and
each v ∈ Dx has negative Lyapunov exponent. Then K is a uniformly
hyperbolic set for f . In particular, if K = M , then f is an Anosov
diffeomorphism.

Remark 5. This result in proved in [7], and a continuous-time version
is due to Sacker and Sell [8]

Proof. Theorem 3 provides two continuous cone fields with uniform 1-
step estimates of contraction and expansion, respectively, for an iterate.
This implies hyperbolicity by the Alekseev cone criterion: An invariant
set X for a diffeomorphism f is uniformly hyperbolic if and only if it
supports continuous cone families C and D that are strictly invariant
for f and f−1 , respectively, and such that vectors in Cx are expanded
and vectors in Dx are contracted by factors that are bounded away
from 1. �

Although this is not made explicit in [3], Theorem 3 can be obtained
from the arguments of Cao even under the weaker hypothesis that (4)
holds only on a set of total measure, i.e., off a set that is a null set
with respect to every f -invariant Borel probability measure. [5] shows
that the continuity assumption is essential for this by studying an ex-
ample with a homoclinic tangency. In such examples consideration of
the images of the tangency points shows that the invariant subbundles
cannot be uniformly continuous and are hence discontinuous.

This leads to a natural question: Under what conditions is it possible
to prove our main result when the cone family is only assumed to be a
Baire family, i.e., a pointwise limit of continuous cone families? (More
properly, this should be called a cone family in the first Baire class.)

3. Transfinite hierarchy of set filtrations

This sections presents the core of our method, which is a set-theoretic
construction that consists of a detailed study of representations of a
compact space as a nested union of compact sets. This could easily be
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presented in even greater generality, but we instead carry it out in a
context that is sufficient for our purposes.

What we do in this section is not difficult, but it might nevertheless
help to motivate the idea. It is modeled on the proof that a positive
continuous function ϕ on a compact space has a positive minimum:
The open cover by sets ϕ−1((1/n,∞)) has a finite subcover. If one
wanted to extend this proof to Baire functions (under suitable addi-
tional conditions, of course) one might try to cover the space with the
interiors of the sets ϕ−1([1/n,∞)). If this does not succeed, one could
pass to the set that remains after deleting all these interiors, with the
subspace topology, and then repeat the process. The object of this
section is to describe a transfinite process of this sort and to show how
this provides information of the desired kind. (The main item is Pro-
position 12(1).) In particular, it provides a handle for showing that
the process does indeed terminate in one step which, in the example
of a positive Baire function, would then establish that the minimum is
positive. Our applications rest on using specific information to show
that the process terminates immediately.

3.1. Filtrations. Let (X, d) be a compact separable metric space.

Definition 6. A set filtration or simply filtration of X is a collection
of compact sets Xn ⊂ X such that

⋃

n∈N
Xn = X and Xn ⊆ Xn+1 for

n ∈ N with Xn $ Xn+1 if Xn+1 6= X . We say that X is uniform with
respect to this filtration if X = Xn for some n ∈ N.

Lemma 7. If X is compact, {Xn}n∈N a filtration, then X = Cl
⋃

n∈N

Int(Xn),

where Cl denotes closure.

Proof. Let x ∈ X and n ∈ N. Let B be the closed 1/k -ball around x .
To produce an xk ∈ B ∩

⋃

n∈N
Int(Xn) note that

B = B ∩ X = B ∩
⋃

n∈N

Xn =
⋃

n∈N

B ∩ Xn

is a complete metric space and hence not a countable union of sets of
first category. Thus, there exists an N ∈ N such that XN ∩ B is of
second category and hence not nowhere dense. This means that

∅ 6= IntB(Cl XN ) = IntB(XN ) ⊂ B ∩ Int(XN ),

where IntB denotes the interior in the subspace topology of B . This
means that there is an xk ∈ B ∩

⋃

n∈N
Int(Xn). �

The set Γ := X r
⋃

n∈N
Int(Xn) is clearly compact.

Lemma 8. Γ = {x ∈ X | ∃xn → x : xn /∈ Xn}.
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Proof. If x ∈ Γ = X r
⋃

n∈N
Int(Xn) there exist yn → x such that

yn /∈ Int(Xn), and by definition of interior we can find xn /∈ Xn such
that d(xn, yn) < 1/n . Thus Γ ⊂ {x ∈ X | ∃xn → x : xn /∈ Xn} . The
reverse inclusion is clear because xn /∈ Xn ⇒ xn /∈ Int(Xn). �

3.2. The hierarchy. In view of Lemma 7 we wish to exhaust the set X
with the interiors of sets Xn from the filtration. This leaves uncovered
the compact set Γ, and we now describe how to continue this process
recursively in a transfinite way.

Let X
(0)
n := Xn , F (0) := X and Γ(0) := Γ. Given an ordinal β such

that we already have sets Γ(α) for all α < β we inductively define

• F (β) :=
⋂

α<β Γ(α) ,

• X
(β)
n := F (β) ∩ Xn ,

• Γ(β) := ClF (β)

(
⋃

n∈N
IntF (β)(X

(β)
n )

)

r
⋃

n∈N
IntF (β)(X

(β)
n ) ⊂ F (β) ,

where ClF (β) denotes the closure in the subspace topology of F (β) . Our
next lemma implies that taking the ambient closure gives the same set.

Lemma 9 (Compactness). Γ(β) , F (β) and X
(β)
n are compact.

Proof. For β = 0 this is compactness of Γ, X and Xn . We now proceed
by induction assuming that Γ(α) is compact for all α < β . Then F (β) is
compact because it is defined by an intersection of compact sets. Since

Xn is compact, this implies compactness of X
(β)
n . Finally, Γ(β) is a

closed subset of F (β) , hence also compact. �

Proposition 10. The sets F (β), X
(β)
n and Γ(β) have the following

properties:

(1) (Nesting) If α < β , then F (β) ⊆ F (α) , X
(β)
n ⊆ X

(α)
n , and Γ(β) ⊆

Γ(α) .
(2) (Filtration)

⋃

n∈N
X

(β)
n = F (β) and X

(β)
n ⊆ X

(β)
n+1 .

(3) F (β) = Cl
⋃

n∈N
IntF (β)(X

(β)
n ). Thus Γ(β) = F (β)r

⋃

n∈N
IntF (β)(X

(β)
n ).

(4) (Stabilization only at ∅) If α < β and F (α) 6= ∅ then F (β) $
F (α) .

(5) F (α+1) = Γ(α) and hence X
(α+1)
n = Γ(α) ∩ Xn .

Proof. (1) This is clear for F (β) from the definition and then immedi-

ately follows for X
(β)
n as well. Γ(β) ⊆ F (β) =

⋂

τ<β Γ(τ ) ⊆ Γ(α) .

(2) F (β) = F (β)∩X = F (β)∩
⋃

n∈N
Xn =

⋃

n∈N
F (β)∩Xn =

⋃

n∈N
X

(β)
n

and X
(β)
n = F (β) ∩ Xn ⊂ F (β) ∩ Xn+1 = X

(β)
n+1 .

(3) By (2) and Lemma 9 we can apply Lemma 7 to F (β) =
⋃

n∈N
X

(β)
n .
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(4) ∅ 6= F (α) =
⋃

n∈N
X

(α)
n is compact hence complete, so there is an

n0 ∈ N such that X
(α)
n0 is of second category in the induced topology

of F (α) . Then IntX
(α)
n0 6= ∅ because X

(α)
n0 is compact and nonempty.

It follows that

F (β) =
⋂

γ<β

Γ(γ) =⊂
⋂

α≤γ<β

Γ(γ) ⊂ Γ(α) = F (α)r
⋃

n∈N

IntX(α)
n ⊂ F (α)rIntX(α)

n0
$ F (α).

(5) The Γ(τ ) are nested by (1), so F (α+1) =
⋂

τ<α+1

Γ(τ ) =
⋂

τ≤α

Γ(τ ) =

Γ(α) . �

3.3. Termination of the process.

Proposition 11. There is a countable ordinal ξ such that F (ξ) 6= ∅ =
F (ξ+1) .

This statement reflects the tacit assumption that F (0) = X 6= ∅ .

Proof. X is second countable, so it has a countable base U . If F (α) 6= ∅
then F (α) r F (α+1) 6= ∅ by Proposition 10(4). Since this is open in the
subspace topology of F (α) , there is an Oα ∈ U such that Oα∩F (α) 6= ∅
and Oα ∩ F (α+1) = ∅ . These Oα are pairwise distinct, so there are
only countably many α for which F (α) 6= ∅ . Thus, F (α0) = ∅ for a
countable ordinal.

The set {α < ω1 | F (α) = ∅} , where ω1 is the first uncountable
ordinal, contains α0 and is hence a nonempty subset of the well-ordered
set of countable ordinals. Therefore, it contains a minimal element η .

If η is a limit ordinal, i.e., it is not of the form ξ + 1 for any ordinal
ξ then there is an increasing sequence (αn)n∈N of ordinals such that for
all τ < η there is an n ∈ N for which τ < αn < η . Hence

F (η) =
⋂

τ<η

Γ(τ ) =
⋂

τ<η

F (τ+1) =
⋂

τ<η

F (τ ) =
⋂

n∈N

F (αn) 6= ∅,

since ∅ 6= F (αn+1) ⊂ F (αn) , a contradiction. So we can write η =
ξ + 1. �

Proposition 12. If ξ is as in Proposition 11, i.e., F (ξ) 6= ∅ = F (ξ+1) ,
then

(1) F (ξ) ⊂ XR for some R ∈ N. In particular, if ξ = 0 then X is
uniform with respect to the filtration (Xn)n∈N .

(2) If τ < ξ then
⋃∞

n=1 Int(X
(τ )
n ) $ F (τ ).
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(3) If ξ > 0 then for every ǫ > 0 there exist a τ < ξ and an N ∈ N
such that

F (τ ) r Uǫ(F
(ξ)) ⊂

N
⋃

n=1

Int(X(τ )
n ) ⊂ X

(τ )
N ⊂ XN .

Proof. (1) Proposition 10(3)–(5) give

∅ = F (ξ+1) = Γ(ξ) = F (ξ) r
⋃

n∈N

IntF (ξ)(X(ξ)
n ),

so F (ξ) ⊂
⋃

n∈N
IntF (ξ)(X

(ξ)
n ). This open cover has a finite subcover.

(2) If F (τ ) =
⋃∞

n=1 IntF (τ) X
(τ )
n then ∅ = Γ(τ ) = F (τ+1) by Proposi-

tion 10(3)–(5), and τ ≥ ξ .
(3)

⋂

α<ξ

Γ(α) = F (ξ) 6= ∅.

The Γ(α) are nested compact sets, so infα<ξ dH(F (ξ), Γ(α)) = 0, where
dH is the Hausdorff distance. That is, there is a τ < ξ such that
Γ(α) ⊆ Uǫ(F

(ξ)) whenever τ ≤ α < ξ . In particular, for α = τ we have

F (τ ) r
⋃

n∈N

Int(X(τ )
n ) = Γ(τ ) ⊆ Uǫ(F

(ξ)),

and hence
F (τ ) r Uǫ(F

(ξ)) ⊆
⋃

n∈N

Int(X(τ )
n ).

This is an open cover of a compact set. The claim then follows. �

Remark 13. This transfinite induction does not use the Continuum
Hypothesis. It can easily be extended to more general topological
spaces.

We close this section with a description of how this method can be
used in applications. To that end suppose that K1 ⊂ K2 ⊂ X are
compact and that K1 is uniform. Assume also that K2 r O is known
to be uniform whenever O is open and K1 ⊂ O . If there is a uniform
neighborhood U of K1 then we can conclude that K2 ⊂ U ∪ K2 r U
is uniform as well.

In our applications we use this idea to show that X is uniform, and
we argue by contradiction. We first establish that K1 := F (ξ) , which is
uniform by Proposition 12(1), has a uniform ǫ-neighborhood Uǫ (see
Lemma 14). This is the main step in the proof. Now we observe that if
ξ > 0 in Proposition 11 then we can take τ < ξ as in Proposition 12(3)
and conclude from the above that K2 := F (τ ) is uniform. Since this
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implies that F (τ+1) = ∅ , we conclude that τ + 1 > ξ after all, a
contradiction. Consequently, ξ = 0, and X = F (0) is uniform by
Proposition 12(1), as claimed.

4. Proof of Theorem 2

With the assumptions of Theorem 2 consider the filtration of X by

Xn := {x ∈ X | ϕk(x) ≥ 1/n for k ≥ n} ⊂ {x ∈ X | ϕ(x) ≥ 1/n}.

We will show that the number ξ in Proposition 11 is equal to 0, which by
Proposition 12(1) implies that X is uniform with respect to {Xn}n∈N .

Lemma 14. There exist C, ǫ > 0 and λ > 1 such that if fn(x) ∈
Uǫ(F

(ξ)) whenever 0 ≤ n ≤ K for some K ∈ N then

min
v∈C1

x

a(fn
∗ (v)) ≥ Cλn whenever 0 ≤ n ≤ K.

Proof. By Proposition 12(1) there is an R ∈ N (which depends on ξ )
such that F (ξ) ⊂ XR . Thus for all n ≥ R and y ∈ F (ξ) we have

1

R
≤ ϕn(y) =

1

n
min
v∈C1

y

log a(fn
∗ (v)),

hence minv∈C1
y
a(fn

∗ (v)) ≥ en/R .

Now take L ∈ N such that if y ∈ F (ξ) , then

min
v∈C1

y

a(fL
∗ (v)) ≥ 3 max

x∈X,v∈C1
x

a(v)

and write g = fL
∗ . Note that L depends only on R and hence only on

ξ . If v ∈ C1
y , then

a(gnv) =
a
(

g
(

gn−1v
‖gn−1v‖

)

)

a
(

gn−1v
‖gn−1v‖

)
a(gn−1v) ≥ 3a(gn−1v) ≥ . . .

≥ 3n−1a(gv) ≥ 3n−1(3 max
x∈X,v∈C1

x

a(v))

Thus, for n ∈ N and y ∈ F (ξ) we have

min
v∈C1

y

a(gn(v)) ≥ 3n max
x∈X,v∈C1

x

a(v).

If K ≤ L the conclusion of Lemma 14 is obtained by taking

(5) C ≤ min
1≤n≤L

min
v∈C1

x

a(fn
∗ (v))λ−n,

where λ > 1 can be chosen arbitrarily, e.g., as below. This is positive
by our nondegeneracy assumption (1) or (2) or (3) on a (see page 3).
For K > L we continue as follows.
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Recall that the choice of L gives

min
v∈C1

y

a(g(v)) ≥ 3 max
x∈X,v∈C1

x

a(v).

For any x ∈ Uǫ(F
(ξ)) we can choose y ∈ F (ξ) such that d(x, y) < ǫ .

Then

min
v∈C1

x

a(g(v)) = min
v∈C1

y

a(g(v))

min
v∈C1

x

a(g(v))

min
v∈C1

y

a(g(v))
,

and by continuity of a and of the cone family Cx we can choose ǫ so
small that the last fraction is bounded below by 2/3 . (Thus, ǫ depends
on L and R and hence ultimately only on ξ . Note also that this is the
only place where we use continuity of a and the cone family Cx instead
of mere boundedness conditions.) This gives

(6) min
v∈C1

x

a(g(v)) ≥
2

3
min
w∈Cy

a(g(w)) ≥ 2 max
z∈X,w∈C1

z

a(w)

≥ 2 max
z∈Uǫ(F (ξ)),w∈C1

z

a(w) ≥ 2max
v∈C1

x

a(v),

which implies that a(g(v)) ≥ 2a(v) whenever ‖v‖ = 1. Thus, for any
n ∈ N such that nL ≤ K we find that

min
v∈C1

x

a(gn(v)) = min
v∈C1

x

a(g(gn−1(v))) ≥ 2 min
v∈C1

x

a(gn−1(v)) ≥ . . .

≥ 2n−1 min
v∈C1

x

a(g(v)) ≥ 2n max
z∈X,w∈C1

z

a(w)

by (6).
Writing n = kL + r we then see that for every v ∈ C1

x we have

a(fn
∗ (v)) = a(fkL+r

∗ (v)) =
a(fn

∗ (v))

a(fn−1
∗ (v))

. . .
a(fn−r+1

∗ (v))

a(fn−r
∗ (v))

a(gk(v))

≥ C ′ · 2k max
z∈X,w∈C1

z

a(w) = C ′(2k/n)n max
z∈X,w∈C1

z

a(w) ≥ C · λn

for suitable λ > 1 and C > 0. �

We now conclude the proof of Theorem 2. Recall that we chose ξ as
in Proposition 11 which determines R via Proposition 12(1), and these
parameters in turn determine the choice of ǫ in Lemma 14.

Suppose that ξ > 0 and choose τ < ξ and N as in Proposition 12(3).
Consider any x ∈ F (τ ) . If there is a k0 ∈ N0 such that fk(x) ∈

Uǫ(F
(ξ)) for k < k0 and fk0(x) /∈ Uǫ(F

(ξ)) then fk0(x) ∈ X
(τ )
N . Thus
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for any v ∈ C1
x we have

a(fn
∗ (v)) = a(fmax(0,n−k0)/N

∗ (fmin(n,k0)
∗ (v)))

≥ emax(0,n−k0)/Na(fmin(n,k0)
∗ (v)) ≥ Cλmin(n,k0)emax(0,n−k0)/N ≥ Cγn

for all n ∈ N, where γ :=min(λ, e1/N) > 1. Note that the same estimate
holds if fn(x) ∈ Uǫ(F

(ξ)) for all n ∈ N, so it holds for all x ∈ F (τ ) .
It is easy to check that this implies that F (τ ) ⊂ X2 max(1,− log C)/ log γ .

By Proposition 10(3) we conclude that F (τ+1) = ∅ , and hence τ ≥ ξ ,
which is contrary to our choice of τ .
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