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The absence of the absolutely continuous
spectrum for ¢/ Wannier—Stark ladders

P. Exner

Nuclear Physics Institute, Academy of Sciences, 25068 Rez near
Prague, Czech Republic

A modification of the Kronig—Penney model consisting of equidistantly
spaced d¢’-interactions is considered. We prove that absolutely continu-
ous spectrum of such a system disappears under influence of an external
electric field. The result extends to periodic lattices of non—identical ¢’
interactions and potentials whose behavior, up to a bounded term, is
powerlike with a power p <1 on the decreasing side.

1 Introduction

One—dimensional Schrodinger operators with potentials composed of a periodic and
an aperiodic, most often linear, part have been studied by many authors — see, ¢.g.,
[4, 7, 8, 10] and references therein — most attention being paid to the resonance
structure of such systems. A basic ingredient of the typical scattering picture is that
the spectrum of the corresponding Hamiltonian is absolutely continuous and covers
the whole real line provided the aperiodic part is below unbounded; this property
can be proven under rather weak differentiability requirements on the potential.

The aim of the present paper is to show that the spectral properties may change
substantially if a smooth periodic potential is replaced by an array of singular in-
teractions. The best known system of this type is the Kronig-Penney model, i.e., a
sequence of equally spaced d—interactions; its spectral properties in presence of an
external field remain an open problem.

However, in one-dimensional systems there are singular interactions different
from 6. Another important class is represented by the ¢—interactions specified
by the boundary conditions (1) below; a detailed discussion of their properties can
be found in [2]. In distinction to &, they cannot be approximated by families of
Schrodinger operators with scaled short-range potentials, instead one can use fami-
lies of rank-one operators [12] or velocity—dependent potentials [5, 6]. Moreover,
this does not exhaust all possible aspects of the §’—interaction; elsewhere we have
presented a heuristic argument showing that it can be regarded as a paradigm for
geometric scatterers [3].



An important distinction between the two types of contact interactions is mani-
fested in Kronig—Penney—type models (without an external force): if we replace ¢
by ¢ we obtain the spectrum in which the band widths are asymptotically constant
while the gaps are widening. The heuristic picture of tilted bands then suggests that
an unrestricted propagation in such a system under influence of an external force
may not be possible.

Our main result confirms this conjecture: using the stability of the absolutely
continuous spectrum with respect to trace—class perturbations in a way somewhat
analogous to [14], we demonstrate that the spectrum of § Wannier—Stark—ladder
Hamiltonian H(f3, F,a) is purely singular for any nonzero “coupling constant” [3
and external field strength F . Moreover, the validity of this result can be extended
to lattices of non—identical ¢’ interactions and a wide family of external potentials,
as we shall discuss in Section 4.

Let me add the following remark. The problem treated here was formulated
in collaboration with J.E. Avron and Y. Last. Together we devised the mentioned
strategy and wrote a proof for the ¢’ Kronig-Penney model with a linear potential.
The result was announced in Ref.[3]; recently the same conclusion has been reached
by a completely different method [9]. Our original proof had a flaw, however; in
attempt to rectify it we formulated separately two different arguments. The one
published here appeared to be applicable to a considerably wider class of operators,
and my coauthors insisted that I publish it in my name. While I respect their
decision and appreciate their scrupulous attitude, I want to state that the credit for
the main result of the paper is shared equally by all three of us.

2 The main result

Consider the free Stark Hamiltonian Hg := — % — Ex on L*(IR) with D(Hg) :=
{f € H**(IR): Hgf € L*}, and an equidistant lattice, £ := {na}>2__ with a

spacing a > 0. Suppose that at each point of £ we introduce the §—interaction of a
strength (3, , i.e., we define the operator H({0,}, F, a) in the following way: it acts
as Hg on the intervals .J, := (na,(n+1)a) and its domain differs from D(Hg) by
replacing the smoothness requirement at the points of £ by the boundary conditions

f(nat) = fna=) = f'(na),  flna+) - f(na=) = B, f'(na); (1)

the (3, are real numbers or +oo in which case (1) is replaced by the Neumann con-
dition, f'(na) = 0. If the interaction strength at each point is the same, 3, = 3, we
write H({#,}, E,a) =: H((, E,a); in particular, H(0, E,a) = Hg and H(co, E, a)
is the orthogonal sum of the single-interval operators obtained by imposing the Neu-
mann condition at each point of L.

Our main result is the following.

Theorem 2.1 Let E,( # 0 ; then the absolutely continuous spectrum of the ¢
Wannier—Stark Hamiltonian H((3,E,a) is empty.
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As mentioned above, we shall demonstrate this property by using known results
about the stability of the absolutely continuous spectrum. More specifically, the
proof will be based on comparing the resolvent of H(f, E,a) to that of a suitable
operator with a pure point spectrum.

3 The proof

To simplify the problem, one can cut the line into two halflines and to consider each
of them separately. Recall that changing the boundary conditions at a point of £
to the Neumann one means decoupling the Hamiltonian into an orthogonal sum; at
the same time it represents a rank—one perturbation in the resolvent which does not
change the essential spectrum.

3.1 The resolvent of H({3,},E,a)

We shall start with the more general operator H({(,}, F,a) introduced above and
compare it to an operator of the same type with the boundary condition changed
to the Neumann one at some points of £. First we have to introduce the notation.

Given z = k*, we have in each interval .J, just one solution u, = u,(-,k) of
the equation —u”(x) — [Fax + zJu(x) = 0 which satisfies the boundary conditions
un(na+) = 1, u/(na+) = 0. Similarly, there is exactly one solution v, with
vo((n+1)a—) =1, v/ ((n+1)a—) = 0; their Wronskian equals W,, := W (un,v,) =
vl (na+) = —u/ ((n + 1)a—). These solutions are of the form f(—El/?’(- + %)),
where f is a combination of Airy functions; we assume for definiteness that £ > 0.

More generally, let {n,}72, be an increasing sequence of integers which specifies

the sublattice £ :={nsa};2, C L. We denote

B ::{oo n = ny

B, e otherwise

and moreover, J;, := (nea,nop1a). Then to any z = k?, there is just one function
i1, which satisfies in .J, the equation —u"(z) — [Ex + z]u(x) = 0 together with the
b.c. (1) at the points (ny+ 1)a, ..., (nep1 — 1)a and y(nea+) =1, ap(na+)=0.
Similarly, there is a unique ¥, with oy(nep1a—) = 1, 0)(np1a—) = 0, and the
corresponding Wronskian equals

W, = Wiy, v0) = v)(nea+) = —ujp(nepra—).

The functions @, v, can be again written explicitly in terms of Airy functions but
we shall not need it.

Theorem 3.1 Assume that |3,| > 3 for all n and some § > 0. For any z from
the resolvent sets of the two operators, the difference C := (H({8,}, F,a) —z)™" —



(H({Bn}, E,a) —2)7" is an integral operator with the kernel

{ (2) (Me,m_lﬁm@) B Memam@))
m ﬁngwﬁ \/ ﬁnm—l \/@17

ﬁg(]i) i (Mg_Lmﬂm(y) . M[—l,m—lﬁm(y)) }
By Wi, By, NE ’

where M is a symmetric operator on (% which is the inverse to the tridiagonal T’

£,

(2)

given by

o ( Vrg1 (nepra+) ﬁz(nzﬂa—))
o0 . ﬁ?’b[+1 - T - T )
57%/3 Wiy Wi

Fipyr = Loy = . .
\/ ﬁn[ﬁnz+1 Wf-l—l

The series in (2) converges in the strong sense.

(3)

Proof: For notational simplicity, let us prove the theorem for the situation when
Hs := H({B,}, E,a) is compared to Hy := H(oo, E.,a), i.c., £L = L ; the argument
for a general L is obtained simply by replacing u,, v, by @,, 0, , etc. The operator
Hy has the following kernel:

Gn(z,y) = { 0

W, (x o )oa(2s) v,y € J,
x,y belong to different .J,

where z. := min(z,y), =s := max(x,y). Suppose first that {Bn} differs from
Neumann at a finite number N of points only; then the kernel of Hg can be
expressed by Krein’s formula in the form

Gsla,y) = Gul(z,y) + Z AL 0 ()1t () + A2, 0 ()0 ()

+ A n(@)um(y) + Nk va(@)on(y)] (4)

where A% are coefficients to be found; they fulfill the obvious symmetry require-
ments

)\%] — NI

)\12 — )\21 .
By definition, Hgz maps L*(IRT) into D(Hg) ; hence applying the rhs of (4) to an
arbitrary g € L?*(IRT), we obtain a vector which belongs to the domain of Hg, in

particular, it must satisfy the b.c. (1) at each point of £. This yields a system of
4N(N+1) linear equations; choosing

)\11 - _ Mnm )\21 — Mn—l,m
V ﬁnﬁmWnWm 7 o V ﬁn—lﬁmWnWm 7
)\12 Mn7m_1 22 Mn—l,m—l

) )‘nm - )
V ﬁnﬁm—anWm V ﬁn—lﬁm—IWnWm



we can reduce it by an elementary algebra to the system of N? equations

M1 m M, (ﬂ o Vng1((n + 1)a+) B un((n + l)a—))
VBB Wt VBB Wt W,
Mn—l,m

— 5nm7

- V ﬁn—lﬁmWn—l

which is solved by M =171, The limit N — oo then yields the result; the strong
convergence of the series can be verified first on functions of Cg°(IRT), and then
extending the result by density using the uniform boundedness of the resolvent away
of the spectrum. |

3.2 A trace—class estimate

As we have said, the proof of Theorem 2.1 can be split into two halfline problems.
The growing—potential case is easy. The Kronig—Penney operator without an electric
field is below bounded, H(3,0,a) > —c for some ¢ > 0. Changing the boundary
condition to Neumann at a point —na does not change the essential spectrum and
a finite interval does not contribute to it, so

infoss(H(B,E,a)) > —c+ Ena.

Since n can be chosen arbitrarily, the spectrum is pure point.

Let us turn to the more difficult case when the potential decreases along the
halfline. If the b.c. (1) are changed to the Neumann one at infinitely many points,
the corresponding operator H({Bn}, E,a) has certainly a pure point spectrum. Our
aim is to show that for a suitably chosen sequence {n,} and some z € @, the
resolvent difference of Theorem 3.1 is a trace—class operator, in which case the
sought result follows from the Birman—Kuroda theorem [11, Sec.XL.3].

We denote z = p + 1w, where both p, v will be chosen large positive. If p is
large, the asymptotic properties of the Airy functions [1, Chap.10] show that the
elementary solutions introduced above are in the intervals .J, of the form

U () = cos ky(x —na)Brryjo(ky),  va(z) = cosky,(x — (n+1)a) Erryjo(ky), (5)

where k, := /z + £z, for some T, € J,, and FErr,(y) stands as a shorthand for
1+ O(y=). The momentum values behave asymptotically as

k, = (An1/2 + Bn_l/Q) Err(n) (6)

with A := \/ea and B := % as n — oo. The Wronskian is then W, =

24
ky sin(kya) Erry4(n) ; since z is complex, it is never zero and one can estimate
it by
va
|Wn| Z 7 Err1/4(n). (7)



We also need an upper bound for

W1 _ (1 n sin k,_1a — sin kya

W ) Erry(n) ;

sin k,a

it is clear that one should pay attention only to the vicinity of the points where

Re (kna) ~ wl. There we have

sink,_ja —sink,a

A 1
<2 (— + —) Err(n),
v on

sin k,a
which yields the bound
VVﬁ_l d
— 1] < = -1
TR R ®)

with a constant independent of n.
The functions w,, 0, can be estimated using “transfer matrices” relating the
elementary solutions in neighboring intervals. A general solution of the equation

—f"(x)—=[Fx+z]f(x)=0 in J, has the form f,(2) = &, u,(x)+ n,v.(x) ; we look

for 7T,, such that
()-o(52)
Mn -1

Using the b.c. (1), one proves easily

— B Wt + B2=Lv, (nat) + wpo1(na—) 1

n

1 =B W + va(na+) + 52—u, 1 (na—)

Using now (5)—(8), we get

/

c
(Tl 2 1Bal [Waet] = Jun—1(na—) + va(na+)| = fvu(nat)| —

/
> (@1/—2— c_) Erryja(n),
2 v

so choosing v large enough, the rhs can be made positive and sufficiently large as
n — oo. At the same time,

/

(Tl < 14 4+ O,



n

Since the coefficients of ( ) corresponding to w.(x) start from ((1)) at * = nya,
the above bounds tell us that for all sufficiently large n there is a number d > 1

independent of n such that

&n| > dj|§n—j|7 &l = dna| . (9)

The norm of @, can be then estimated as follows,

UTEN} -1

lacl* < 2a >0 (16”4 [al®) < 2afén]* (1+d7 Zd o

n=ny

where N :=n, — 1 and N’ :=nyqy —ny — 1. Hence there is a positive d' inde-
pendent of ¢ such that ||| < d'|&,,,,-1|. The coefficients of ¥, behave similarly
if we change the direction and switch the roles of &,, n, ; this yields the inequality
10| < '[9 - )

For simplicity, we introduce U, := WJ&_) and V; := Wi(zz)-l—) The denomina-
tors depend clearly on the choice of the sequence {n,}. We pick its points roughly
in “the middle of the gaps” assuming, e.g.,

(204 1) T
g, — DT T 10
‘ 2a ‘ ~ 4a (10)
so that n, = a) Erry(£). Since vy, —1(nsp1a—) = 0 by assumption, we have in
view of (5) and (10)
~t 1
|u£(nf+1a_)| > ﬁknz+1—1|§nz+1—1| Errl/Q(g)‘

In the same way, |0j(nea+)| has a bound proportional to |n,,|; using the above
inequalities for the norms of these functions, we get
V2d V2d
L Errl/Q(E)v Vel < L

nz+1—1 e

10| <

Erry,(0). (11)

To estimate the difference of the resolvents, we need also a bound for the coef-
ficients My, in (2). Since all the 3, are the same by assumption, the operator (3)
can be written as I' =1 + N with

Ny = =37 (Us(nepra—=) + Vigr (nopra+)), Nisgr = Neyry = W

The above estimates then yield

2a V2
< — -
|Nu| ~ Wﬁﬁ (1—|— d ) Errl(ﬁ),

2
INeoyr] < ﬂad_N/ Errq(0) < f—a exp (— 20 (%) In d)




hence if {ns} starts with ¢ large enough (which is equivalent to choosing a suf-
ficiently large p), we have |[N|| < 1. The inverse is then easily computed as a
geometric series,

Mﬁm = 5€m - Nﬁm + Z(_l)s Z Nthhg ---Nrsm-

5=2 T yeeey Ts

Since the elements of the r—th side diagonal contain at least r off-diagonal elements
of N (recall that the latter is tridiagonal!), there are positive C, d” such that

|Mg7g_|_7«| S Ce_d”M. (12)

Putting the estimates (11) and (12) together in combination with (6) and (10), we
get

1
Tr|C] < gz{mmwwu Ul + | Maoa | U] Vi
Lm
Mot VAT |+ Mot Vel Vi ]}

C(2d'a)?

| 1 1 o
w203 Z{Z Z<£+r * £+1+r) ‘

l r>0

| 1 1 -
T ;(Hr +£—1+r) ‘ } = e

what we wanted to prove. |

IA

4 Generalizations

The presented proof of Theorem 2.1 extends easily at least in two directions:

(i) the background potential need not be linear: let Hy := — % + V(x) be the
“free” Schrodinger operator with a potential V' to be specified below; then we

can define H({3,},V,a) as in Section 2, i.e., through the b.c.(1).

(ii) one may consider a lattice of non—identical &' interactions, i.e., a general se-
quence {f,}.

For simplicity, let us consider again only the halfline problem with a decreasing po-
tential. The key observation is that the asymptotics (5) of the elementary solutions
comes in fact from the WKB expansion, and therefore it is valid for any any potential
V' which is decreasing and regular enough provided we define k, := (/2 — V(T,).
Assume, e.g., that

(a) V(z) = —c|z|* + W(x), where ¢ > 0, p € (0,1], and W is bounded and
piecewise C? smooth with max{|W'(x)|, |W"(z)|} < d|z]* for some d > 0.
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Then £, = (An“/2 + Bn‘“/z) Err,(n) as n — oo for appropriate A, B and the
argument of Section 3.2 modifies easily. In particular, we have

sink,_1a — sink,a

+0n™),

T S O N L
- Aa

sin k,a v v

so (8) holds again as long as ¢ < 1, and the “transfer-matrix” analysis may be
repeated. As for the “coupling constants”, we adopt the following assumptions:

(b) |Bn] =B >0 forall n,

2/
Wc(g—l—ég)] H

(c) there is a monotonic sequence {n/} C Z such that n, = * [a
with ¢ € ( and f3,,8,

e Z) , W+ remains bounded as n, — oo,

The matrix elements (3) of the operator I' can be now written as

1 1
Ui = ——=(B+ 9)im —,

VB Y/

where B = diag {...,Bn,ys-- -}, and Sy := =Up(nepra—)=Vigr(nogra+), Seupr =
Sey1e = W, If the sequence {n,} starts with ¢ large enough, |B~'N| < 1 and
the inverse is given by

= Bu, ”Zi-légm \/EﬁWHngﬁnmﬂ\/ﬁi
oo C oy \/57[57%15@2 nr2+1...5“m6;7}1+1\/@-

= T24e.03Ts

Since the numbers f3,,03; 1 remain bounded at the cutting points in view of (c),

the estimate (12) holds agam.
In this way, we arrive at the following result.

Theorem 4.1 Let H({8.},V,a) be the operator on L*(IR") defined above, with
V oand {B,.} C IR satisfying the assumptions (a)-(c). Then o..(H({B.},V,a)=10.

The result extends easily to operators on the whole real line with potentials growing
in the other direction, because for the other halfline we have used just the fact that
the spectrum is purely discrete when the potential tends to infinity. A more involved
argument is required, however, if the sequence {f,} may approach zero, since then
the point-interaction Hamiltonian without the presence of an external field need no

be below bounded.



5 Concluding remarks

The assumptions used here are clearly not optimal, but we are not going to push
the argument further. Let us remark instead that the mentioned splitting of the
problem on the line into two halflines together with Proposition 4.1 shows that the
absolutely continuous spectrum is void not only for ¢’ Wannier-ladder “slopes” but
for “hills” with the potential decreasing in both directions as well.

In addition to finding weaker restrictions on the potential decay, other general-
izations are possible. For instance, one can treat similarly arrays of §'—interactions,
where the spacing assumes a finite number of different values. Furthermore, § and
d" are extreme cases in the general four-parameter class of one-dimensional point
interactions [5, 6, 13]. The behavior of bands and gaps in the absence of the external
force suggests that the result will remain valid at least as long as there is a nonzero
0" component in such an interaction, i.e., a discontinuity of the wavefunction at the
lattice points which depends on the one-sided derivatives.

Having excluded the absolutely continuous spectrum, one asks naturally how
the other parts of the spectrum look like. Consider again our basic model, i.e., the
operator H((3, E,a) for nonzero E, 3. The above proof shows, in particular, that
the essential spectrum of H(3, E,a) does not change if the system is “chopped”
by imposing the Neumann condition at a properly chosen sequence {nsa}. The
discrete spectra of the corresponding “finite sections” of H(f3, F,a) can be found
numerically [15]; in this way we arrive at the following

Conjecture 5.1 For nonzero E, 3,

oess(H(B, E,a)) = {% + (%)2—E<n—|—%)a : m,nEZ}.

In other words, the essential-spectrum points are sums of three terms: the energy
step of the ladder, the eigenvalues of H(oo, F,a), anf the asymptotic halfwidth
of a band. Recall that o.s((H(8, F,a)) consists of all accumulation points of
the spectrum, since a second—order differential operator cannot have eigenvalues of
infinite multiplicity. If the conjecture is true, the spectrum exhibits an intriguing
dependence on the number-theoretic properties of the external field, namely

2
(a) for ~ := (%) Fa is rational, the spectrum is nowhere dense, and therefore

automatically pure point.
(b) on the other hand, if v is irrational, o((H(3, E,a)) = owss((H(B, F,a)) = IR.

In this way, 6" Wannier—Stark systems still represent a challenge.
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