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LIMIT THEOREMS FOR LOCALLY PERTURBED PLANAR
LORENTZ PROCESSES

DMITRY DOLGOPYAT, DOMOKOS SZÁSZ, TAMÁS VARJÚ

ABSTRACT. Let us modify the scatterer configuration of a planar,
finite-horizon Lorentz process in a bounded domain. Sinai asked
in 1981 whether for the diffusively scaled variant of the modi-
fied process convergence to Brownian motion still holds. The
main result of the work answers Sinai’s question in the affirma-
tive. Other types of local perturbations are also investigated: fi-
nite horizon periodic Lorentz process in the half strip or in the
half plane (in these models the local perturbation is the bound-
ary condition) and finite horizon, periodic Lorentz process with
a small, compactly supported external field in the strip. The cor-
responding limiting processes are Brownian motions with suit-
able boundary conditions and the skew Brownian motion on the
line. The proofs combine Stroock-Varadhan’s martingale method
([SV 71]) with our recent work ([DSzV 07]).

1. INTRODUCTION.

In this paper we consider systems which look like the periodic
Lorentz process on a large part of the plane. Recall that the planar,
periodic Lorentz process is the dynamics of a point particle moving
in the plane with periodically situated, disjoint, convex scatterers re-
moved. The motion of the particle is uniformwith specular (i. e. op-
tical) collisions at the scatterers. Throughout the paper we assume
that the horizon is finite that is any ray intersects at least one scatterer
(and then, in fact, infinitely many of them). We shall use the abbre-
viation FHLP for the finite horizon Lorentz process. The statistical
properties of the periodic FHLP are well understood since it is noth-
ing but a Z

2-extension of a finite horizon Sinai billiard given on the
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two-torus. Therefore the study of statistical properties of the FHLP is
intertwined with those of Sinai billiards. Ergodicity of Sinai billiards
was established in [S 70], the Central Limit Theorem and stretched
exponential decay of correlations are proven in [BS 81, BSCh 91]. Ex-
ponential mixing was proven in [Y 98]. Other results include the
local limit Theorem ([SzV 04]) and the almost sure invariance prin-
ciple ([MN 07]). Finally, the fine recurrence properties of the FHLP
studied in a companion paper [DSzV 07] also play an important role
in our analysis.
In physics literature it is often taken for granted that the Central

Limit Theorem proven for the infinite system remains valid for large
finite systems once appropriate boundary conditions are imposed.
However, up to now there was no rigorous results in this direc-
tion, since the main technical tool: projection to a compact system
is not available. The goal of this paper is to develop new tools which
would allow to extend the results proved for periodic systems to sys-
tems which look periodic only locally on an appropriate mesoscale.
Of course it is impossible to describe the most general system of this
type. Our goal is to illustrate various difficulties appearing in treat-
ing various local perturbations and to introduce techniques to over-
come these difficulties. In this paper we give four examples of our
technique: finite modifications of the Lorentz process, Lorentz pro-
cess in a half strip, Lorentz process in external field, and Lorentz
process in a half plane. The methods developed in this paper have
already been used in [ChD 08b] to describe the motion of a particle
in a Galton board. Let us mention other possible applications of our
results refereeing the readers to our surveys [ChD 06, D 08, Sz 08] for
more details.
• Several recent works discuss the derivation of the Fourier Law

for heat transport from the local dynamics (see [EY 06] and refer-
ences wherein). Themethods of our paper could be useful for to treat
non-interacting particles with stochastic boundary conditions. How-
ever a more realistic model should allow the interaction between
particles. In the Boltzmann–Grad regime when the interactions are
rare the particles move independently most of the time so one could
hope that the methods of our paper can be useful to take care of the
interactions.
• Several papers study boundary induced transport (that is the

direction of the particle motion and shape of the boundary) in the
context of diffusion process [F 96, P 08]. For the mechanical sys-
tems much less is known (the first step in this direction was made
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in [ChD 08a]) and we hope that the methods of our paper can be
helpful here.
• Recently there was a significant progress in the study of random

walk in random environment ([Z 04, Z 06]). By contrast not much is
known about random Lorentz gas. While this problem still appears
to be out of reach of current techniques our paper which proves first
CLT for an aperiodic system could be helpful in attacking this prob-
lem.
Let us formulate our results. For didactic reasons we formulate

theorems in order of increasing difficulty of the proof. In particular
in the proofs of Theorems 1 and 2 we use some estimates which are
non-optimal andwhich are improved in the latter sections. However
we do it in order to, first, make the proofs of Theorems 1 and 2 more
accessible and, second, show what kind of estimates suffice for the
proof of each result.
For definiteness, denote by a) Q = ∪∞

i=1Oi the configuration space
of the Lorentz process, where the closed sets Oi are pairwise dis-
joint, strictly convex with C3−smooth boundaries; b) byΩ = Q× S+
its phase space (where S+ is the semicircle of outgoing unit veloc-
ities); c) by T : Ω → Ω its discrete time mapping (the Poincaré
section map) and finally d) by µ the T-invariant (infinite) Liouville-
measure on Ω (in fact, it is the projection of the Liouville measure
to the collision space). If the scatterer configuration {Oi}i is Z

2-
periodic, then the corresponding dynamical system will be denoted
by (Ωper = Qper × S+, Tper ,µper) and it makes sense to factorise it by
Z
2 to obtain a Sinai billiard (Ω0 = Q0 × S+, T0,µ0). (We note that
in theorems 2 and 3 we will factorise wrt Z.) The natural projection
Ω → Q (and analogously forΩper and forΩ0) will be denoted by πq.
In our first theorem Q = Qper outside a bounded domain. Select

an initial point x0 = (q0, v0) ∈ Ω according to a compactly sup-
ported probability measure µ(0) , absolutely continuous with respect

to the Liouville measure µ. Then {Tnx0 = (qn, vn)|n ∈ Z} is the
Lorentz trajectory and the resulting configuration process {qn|n ≥
0} will be called a finite modification of the FHLP. (For simplicity we
can assume that the unit is chosen so that µ(0) is supported inside
the unit torus and, moreover, Q = Qper outside the unit torus.)

Definition 1. Assume {qn ∈ R
d|n ≥ 0} is a random trajectory where

d = 2 or 1. Then its diffusively scaled variant ∈ C[0, 1] (or ∈ C[0,∞])

is defined as follows: for N ∈ Z+ denote WN( jN ) =
qj√
N

(0 ≤ j ≤
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FIGURE 1. A 305 collisions trajectory segment in the
finite modification of the FHLP (it is easily seen that,
outside a bounded domain, the dark scatterers form a
periodic configuration of scatterers)

N or j ∈ Z+) and define otherwise WN(t)(t ∈ [0, 1] or R+) as its
piecewise linear, continuous extension.

By general theory, having shown the validity of our results in C[0, 1]
(always weak convergence!) their truth in C[0,∞] is straightforward
[SV 06].

Theorem 1. For finite modifications of the FHLP, as N → ∞, WN(t) ⇒
Wσ2(t) (weak convergence in C[0,∞]), where Wσ2(t) is the Brownian Mo-
tion with the non-degenerate covariance matrix σ2. The limiting covariance
matrix coincides with that for the unmodified periodic Lorentz process.
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The result of the previous theorem was conjectured by Sinai in
1981 (oral communication). (It had been tested for random walks
with local impurities in [SzT 81].)
For the next two results we consider a FHLP in a horizontal strip

R × [0, 1] (or in the half strip R+ × [0, 1]). That is we study a peri-
odic configuration of the disjoint convex scatterers in the strip such
that any billiard trajectory intersects one of the obstacles. The nota-
tions we have introduced above have their natural analogues so for
simplicity we do not repeat them here. By introducing coordinates
(z1, z2) in the strip where z1 ∈ R and z2 ∈ [0, 1] , qn = (z1n, z2n) will
be the position of the particle after n reflections.
In the next theorem we consider the half strip R+ × [0, 1]. The

specular reflection at the vertical boundary piece z1 = 0 will play
the role of the local perturbation (the result is valid independently of
whether we permit some scatterers to intersect this piece or not only
if we exclude the tangency of boundary pieces; in any case, apart
from the 0-th cell the scatterer configuration is periodic).

Theorem 2. Consider a FHLP {z1,n}n≥0 in a half strip and let WN(t) ∈
R+ be its diffusively scaled variant. Then, as N → ∞, WN(t) converges
weakly to a non-degenerate Brownian motion reflected at 0.

Next we consider a particle in a whole strip in the presence of a
compactly supported thermostatted field. Namely we assume that
between the collisions the motion of the particle is given by

(1) v̇ = E(q)− (E(q), v)

(v, v)
v.

FIGURE 2. A 94 collisions trajectory segment of a
FHLP in the presence of a compactly supported exter-
nal field (whose strength is the function illustrated on
top of the figure; observe that, outside a bounded in-
terval, the orbits are linear)
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Theorem 3. Consider a FHLP {z1,n}n≥0 in the strip in the presence of a
small and compactly supported external field E and let WN(t) ∈ R be its
diffusively scaled variant. Then, as N → ∞, WN(t) converges weakly to a
skew Brownian motion.

Recall that the skew Brownian Motion is a process ξ(t) such that
|ξ(t)| has the same distribution as the absolute value of usual Brow-
nian Motion and its excursions are positive with probability p inde-
pendently of each other. (An excursion is a segment of the process,
which starts and ends at zero, but the process is never zero in be-
tween. Brownian, and also skew Brownian trajectories can be de-
composed to excursions.) Thus for p = 1 (p = 0) we get reflected
Brownian motion of R+ (respectively R−) and for p = 1/2 we have
the standard Brownian Motion. The formal definition of the skew
Brownian Motion is given in subsection 2.5 and its properties are
described in [HSh 81].
The object of our last result is a FHLP in the half plane {z1 ≥ 0}

with specular reflections at the vertical line z1 = 0. In this case we
delete all scatterers intersecting the vertical axis z1 = 0, so for the
resulting configuration space actually there are rays that do not in-
tersect any scatterer (they are situated close to the vertical axis). Nev-
ertheless, their existence— at least in the horizontal direction— only
means a local perturbation and, as we will show, the limit is again a
(reflected) Brownian motion.

Theorem 4. Consider the diffusively scaled variant WN(t) ∈ R+ ×R of a
FHLP {qn}n≥0 in a half plane z1 ≥ 0. Then, as N → ∞, WN(t) converges
weakly to a non-degenerate Brownian motion reflected at the z2-axis.

Theorem 5. Theorems 1–4 remain valid for continuous time.

2. PRELIMINARIES

In this section notions and theorems are collected, which later will
be used or referred to. We also note that we will throughout use
notions and results from our companion paper [DSzV 07]. For the
correspondence of the notations of that work and of the present one,

let us define the free flight vector κ : Ω → R
d as follows: for x ∈ Ω

let κ(x) = πqT(x))− πq(x). Then for x ∈ Ω we define

(2) Sn(x) =
n−1
∑
k=0

κ(Tk(x)).
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There is also a natural projection πΩper : (Ωper, Tper ,µper) → (Ω0, T0,µ0).

Consequently for x ∈ Ω0 we can also denote κ(x) = κ(π−1
Ωper

(x)) and

(3) Sn(x) =
n−1
∑
k=0

κ(Tk0(x)).

For later reference we denote

(4) K2 = max
x∈Ω

|κ(x)|.

2.1. Hyperbolicity of the billiard map. For definiteness, let Q0 =
∪pi=1Oi where the closed sets Oi are pairwise disjoint, strictly con-
vex with C3−smooth boundaries. In Ω0 it is convenient to use the
product coordinates. Recall that

Ω0 = {x = (q, v)|q ∈ Q0, 〈v, n〉 ≥ 0}

where 〈·, ·〉 denotes scalar product, and n is the outer normal in the
collision point. Traditionally for q one uses the arclength parame-
ter and for the velocity the angle φ = arccos 〈v, n〉 ∈ [−π/2,π/2].
In these coordinates the invariant measure is given by the density
1
2l cos φ dq dφ, where l is the overall perimeter of the scatterers. From
our assumptions it follows that 0 < min |κ| < max |κ| < ∞.
For our billiards there is a natural DT0-invariant field Cux of un-

stable cones (and dually also a field Csx of stable ones) of the form
c1 ≤ dφ

dq ≤ c2 (or −c2 ≤ dφ
dq ≤ −c1 respectively) where 0 < c1 < c2

are suitable constants.
A connected smooth curve γ ⊂ Ω0 is called an unstable curve (or a

stable curve) if at every point x ∈ γ the tangent space Txγ belongs to
the unstable cone Cux (or the stable cone Csx respectively).
For an unstable curve γ (or a stable one) and for any x ∈ γ denote

by JγTn0 (x) = ||DxTn0 (dx)||/||dx||, dx ∈ Txγ the Jacobian of the map
Tn0 at the point x. Then the hyperbolicity of the dynamics means that
there are constants Λ > 1 and C > 0 depending on the dynamics,
only, such that for any unstable (or stable) curve γ and every x ∈ γ
and every n ≥ 1 one has JγTn0 (x) ≥ CΛn (or JγT

−n
0 (x) ≥ CΛn

respectively).

2.2. Standard pairs. Let us startwith a heuristic introduction. Sinai’s
classical billiard philosophy [S 70] reacts to the fact that dispersing
billiards are hyperbolic (a nice property) but at the same time they
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are singular dynamical systems (an unpleasant property). Neverthe-
less smooth pieces of unstable (and of stable) invariant manifolds do
exist for expansion prevails partitioning by singularities.
Though dispersing billiards are manifestly hyperbolic, they are

not only singular but, added to that, close to the singularities the
derivative of the map also explodes. This circumstance is the most
unpleasant when one aims at proving the distortion estimates, basic
for the techniques. To cope with this difficulty [BSCh 91] introduced
the idea of surrounding the singularities with a countable number of
extremely narrow, so-called homogeneity strips, roughly parallel to the
singularities. In these strips the derivative of the map can be large,
but oscillates very little; this fact makes it possible to nevertheless
establish the necessary distortion estimates. The boundaries of these
homogeneity strips are handled as further singularities (causing fur-
ther partitioning). These artificial singularities are called secondary
ones in contrast to the primary singularities (in our case only tangen-
cies). The definition of homogeneity strips depends on a parameter
denoted usually k0. The larger k0 is, the smaller the neighbourhood
of (primary) singularities is where one introduces the homogeneity
strips. In certain bounds (e. g. in the growth lemmas) k0 should be
selected sufficiently large.
Let us now give precise definitions. For k ≥ k0 let

Hk = {(q,φ) :
π

2
− k−2 < φ <

π

2
− (k+ 1)−2},

H−k = {(q,φ) :
π

2
− k−2 < −φ <

π

2
− (k+ 1)−2},

H0 = {(q,φ) : −(
π

2
− k−20 ) < φ <

π

2
− k−20 }.

Take L1, L2 ≫ 1 and θ < 1 sufficiently close to 1.
An unstable curve is weakly homogeneous if it does not intersect any

singularity (i. e. neither primary nor secondary one).
A weakly homogeneous unstable curve γ is homogeneous if it sat-

isfies the distortion bound

log JγT0(x)

log JγT0(y)
≤ L1

d(x, y)

length2/3(γ)
x, y ∈ γ

and the curvature bound

∠(γ̇(x), γ̇(y)) ≤ L1
d(x, y)

length2/3(γ)
x, y ∈ γ

We observe that if the C2 norm of γ is bounded and γ is long in
the sense that either length(γ) > δ0 for some fixed constant δ0 or γ
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crosses a whole homogeneity strip, then γ satisfies both the distor-
tion and the curvature bounds.
Let s+(x, y) be the first positive time, such that Ts0(x) and T

s
0(y)

are separated by a singularity. We use this notion for points on a
curve, meaning that s+ is the largest positive number, such that for
any j < s+, the segment of the curve connecting x and y does not
intersect the jth preimage of the singularity set.
A probability density ρ on a homogeneous unstable curve γ is

called a homogeneous density if it satisfies the density bound

| log ρ(x)− log ρ(y)| ≤ L2θs
+(x,y) .

We will call the connected homogeneous components of an un-
stable (stable) curve the H-components of the curve. Given γ we let
γn(x) be the largest subcurve of Tn0 γ containing Tn0 x and such that

T−n0 γn(x) does not contain singularities of T
n
0 .

A standard pair is a pair ℓ = (γ, ρ)where γ is a homogeneous curve
and ρ is a homogeneous density on γ.
Given a standard pair and a measurable A : Ω0 → R and a subset

G ⊂ Ω0 we write

Eℓ(A) =
∫

γ
A(x)ρ(x)dx, Pℓ(G) = Eℓ(1G)

and length(ℓ) = length(γ). Lebesgue measure on ℓ is denoted by
mesℓ
In this work the precise definition of the standard pairs is not im-

portant but we shall take advantage of their invariance and equidis-
tribution properties listed below.

2.3. Properties of standard pairs. The fundamental tool used in our
work is the so-called growth lemma. While hyperbolicity of Sinai
billiards means that infinitesimal trajectories diverge exponentially
fast, the growth lemma says that the exponential divergence also
holds for most trajectories which are sufficiently close to each other.
We give two formulations of the growth lemma. The first and

more traditional one (statements (a) and (b) below) deals with curves
while the second formulation (statements (c) and (d) below) deals
with standard pairs. Let Ω denote the phase space of one of the sys-
tems appearing in Theorems 1-4.
Let γ be a homogeneous curve and for n ≥ 1 and x ∈ γ let rn(x)

denote the distance of the point Tn0 (x) from the nearest boundary
point of the H-component γn(x) containing Tn0 (x).

Proposition 1. (Growth lemma). If k0 is sufficiently large, then
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(a) there are constants β1 ∈ (0, 1) and β2 > 0 such that for any ε > 0
and any n ≥ 1
mesℓ(x : rn(x) < ε) ≤ (β1Λ)nmes(x : r0 < ε/Λn) + β2ε

(b) there are constants β3, β4 > 0, such that if n ≥ β3| log length(γ)|,
then for any ε > 0 and any n ≥ 1 one has

mesℓ(x : rn(x) < ε) ≤ β4ε

(c) If ℓ = (γ, ρ) is a standard pair, then

Eℓ(A ◦ Tn0 ) = ∑
α

cαnEℓαn
(A)

where cαn > 0, ∑α cαn = 1 and ℓαn = (γαn, ραn) are standard
pairs where γαn = γn(xα) for some xα ∈ γ and ραn is the pushfor-
ward of ρ up to a multiplicative factor.

(d) If n ≥ β3| log length(ℓ)|, then

∑
length(ℓαn )<ε

cαn ≤ β4ε.

(e) For any β3| log(length(ℓ)| ≤ n1 ≤ n2 we have
Pℓ( max

j∈[n1 ,n2]
rj(x) < δ0) ≤ Constβn2−n15

for some β5 ∈ (0, 1).

Parts (a), (b). The restatement in terms of the standard pairs is
taken from [ChD 07]. For part (e) see (e.g [ChD 07], Lemma 3.10).
In order to apply standard pairs to the problem at hand, observe

that the Liouville measure can be decomposed as follows

(5) µ0(A) =
∫

Eℓα
(A)dσ(α)

where σ is a factor measure such that

(6) σ(length(ℓα) < ε) < Const ε.

We shall call measures satisfying (5) and (6) admissible measures.
In the sequel we are still considering billiards (Ω0, T0,µ0) and func-

tions A : Ω0 → R
d, most frequently with d = 2. Let us introduce

the space of functions (over (Ω0, T0,µ0)) we are to consider. Take
θ < 1 close to 1. Let s(x, y) be the smallest n such that either Tn0 x
and Tn0 y or T

−n
0 x and T

−n
0 y are separated by a singularity. Define the

dynamical Hölder space of functions A : Ω0 → R

H = {A : |A(x)− A(y)| < Const θs(x,y)}.
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Let A(n)(x) = ∑
n−1
j=0 A(T

j
0x).

The next proposition is a slight variation on well known results
(cf. [BS 81, BSCh 91, Ch 06, ChD 07, Y 98]). See Appendix A.

Proposition 2. Let ℓ be a standard pair, A ∈ H and, for statements (a),
(b) and (d), take n such that | log length(ℓ)| < n1/2−δ. Then the following
statements hold true:
(a) There exist constants C1,C2 > 0 and θ < 1 such that if n >

C1 log length(ℓ) then
∣∣∣∣Eℓ(A ◦ Tn0 )−

∫
Adµ0

∣∣∣∣ ≤ C2 θn

(b) Let A, B ∈ H have zero mean. Then
Eℓ(A

(n)B(n)) = nDA,B +O(| log2 length(ℓ)|)
where

DA,B =
∞

∑
j=−∞

∫
A(x)B(T

j
0x)dµ0(x).

(c) Let x be distributed according to ℓ and wn(t) be defined by

wn

(
i

n

)
=
Si√
n

with linear interpolation in between. (Si is the notation for partial sums of
the free path from the beginning of Section 2). Then, as n → ∞, wn con-
verges weakly (in C([0, 1] → R

2) to the 2 dimensional Brownian Motion
with zero mean and covariance matrix σ2 given by

σ2ab = µ0(κ0aκ0b) + 2
∞

∑
j=1

µ0(κ0aκnb)

where κnb denote the b-th component of vector κn.
(d) There exists positive constants c1, c2 such that for every n and R

satisfying 1 < R < n1/6−δ we have

Pℓ(|A(n) − n
∫
Adµ0| ≥ R

√
n) ≤ c1e−c2R

2
.

(e) There exists positive constants c̄1, c̄2 such that for every n and R satis-

fying 1 < R < n1/6−δ we have

Pℓ(max
j≤n

|A(j) − j
∫
Adµ0| ≥ R

√
n) ≤ c̄1e−c̄2R

2
.
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2.4. Tail of return times. The study of the return time to a given
scatterer for FHLP plays an important role in our analysis. In this
subsection we present the estimates needed in our arguments. The
proofs which are slight extensions of the results of [DSzV 07] are
given in the Appendix B. Introduce the following notation: for a
standard pair ℓ = (γ, ρ) let [ℓ] denote an index m ∈ Z

2 such that
πqγ intersects the m-th cell of the configuration space. (If this defini-
tion is not unique, then choose any index with this property.) Fix a
small δ0 > 0.

Lemma 3. (a) Consider planar FHLP. Fix a scatterer S and let Γ be a finite
set of scatterers. Then there exist constants C = C(Card(Γ)) > 0, k0 =
k0(Card(Γ)), ξ such that for any standard pair ℓ such that πqγ ∩ S 6= ∅,
length(ℓ) ≥ δ0 we have

Pℓ

(
qj 6∈ (S

⋃
Γ) for j = k0 . . . n

)
≥ C

logξ n
.

(b) For a FHLP in a strip or half cylinder the following is true: for any
standard pair ℓ such that length(ℓ) ≥ δ0 we have

Pℓ

(
Card(j ≤ n : qj ∈ S) ≤ k0 and qj does not visit the vertical boundary for j ≤ n

)
≥ C√

n
.

(c) For a FHLP in a strip or half cylinder the following is true: for any
standard pair ℓ such that length(ℓ) ≥ δ0 we have

(7) Pℓ(Card(j ≤ n : qj ∈ S) ≤ k0, maxj≤n|qj| > K
√
n

and qj does not visit the vertical boundary forj ≤ n) ≤
C√
nK100

.

2.5. Martingale problems. All limiting processes considered in this
paper behave like the Brownian Motion with a specified boundary
condition. Therefore these limiting processes are characterised by
the fact that

(8) φ(W(t))− 1
2

∫ t

0
∑
ab=1,2

σ2abDabφ(W(s))ds

is a martingale for a set of the functions dense in the domain of the
generator of the corresponding process (here Dab denotes partial de-
rivative wrt coordinates a and b whereas σ2ab denotes the covariance
of the Brownian motion in question). Therefore, for showing the
convergence of a sequence of stochastic processes to such a Brow-
nian Motion, by general theory (cf. [SV 71], [SV 06]) it suffices to
show that the limiting processW(t) of any convergent subsequence



LIMIT THEOREMS FOR PERTURBED LORENTZ PROCESSES 13

of the processes in question (8) is a martingale for the suitable class
of functions. In fact, these classes of functions are the following:

• BM in R
2 : C2 functions of compact support (Theorem 1);

• BM in a half line: C2 functions of compact support satisfying
∂φ
φx (0) = 0 (Theorem 2);

• skew BM: continuous functions of compact support which
admit C2 extensions to (−∞, 0] and [0,∞) such that

φ′
+(0) = aφ′

−(0)

where a is the skewness parameter (Theorem 3). The mean-
ing of the constant a is the following: if we start the skew

Brownian Motion from 0 then P(W(t) > 0) = 1
a+1 ;

• reflected BM in a half plane x1 ≥ 0 : C2 functions of compact
support satisfying ∂φ

∂x1
(0, x2) = 0 (Theorem 4).

3. PROOF OF THEOREM 1. TIGHTNESS.

Since any probability measure, absolutely continuous with respect
to the Liouville measure is admissible in the sense of equations (5)
and (6), it suffices to prove Theorem 1 in case the initial conditions
are distributed according to some Pℓ.
We begin the proof with the following result.

Lemma 4. Let ℓ be a standard pair, and the initial point be distributed
according to ℓ. Then WN(t) is tight in C[0, 1].

Proof. It is sufficient to show that for any standard pair ℓ, for suitable
constants C1,C2 and for N ≥ N0 sufficiently large, for any n ≥ 1 one
has

(9)

max
0≤m≤2n−1

Pℓ

(∣∣∣∣WN
(m
2n

)
−WN

(
m+ 1

2n

)∣∣∣∣ ≥
1

2n/4

)
≤ C1 exp−(C22

n/4).

Indeed, for any given ε, η > 0, by selecting n0 to satisfy∑n≥n0 2
−n/4 <

ε and ∑n≥n0 C1 exp(−C22n/4) < η one can easily bound the modu-

lus of continuity ωWN (δ) for suitable δ ≤ 2∑n≥n0 2
−n by using the

convergence — uniform in N ≥ N0 — of the series

∑
n

Pℓ

(
max

0≤m≤2n−1

∣∣∣∣WN
(m
2n

)
−WN

(
m+ 1

2n

)∣∣∣∣ ≥
1

2n/4

)
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(cf. [B 68], Theorem 8.2). Further, the event in (9) can be rewritten as

(10) |qm2 − qm1 | ≥
√
m̄L

where m1 = mN
2n , m2 = (m+1)N

2n , m̄ = m2 − m1 = N
2n , L = 2n/4.

(Important note: in the whole paper we pretend as if variables like
m1,m2, m̄, etc. were integers, though typically they are not; it is easy
to see that the deviations are negligible whereas keeping track of the
precise error terms would hinder perspicuity of ideas.)
Since

|qm2 − qm1 | ≤ K2m̄,
(10) is only possible if

(11) m̄ >
1

K22
2n/2 or in other words N > K−22 2

3n/2.

(Observe that, by the last inequality, for any given N the event in
(9) can only hold for a finite number of n’s.) Let τ be the first time
m1 ≤ τ ≤ m2 such that

|qτ | ≥
L

4

√
m̄+ 1

(if there is no such time before m2 we put τ = m2). Based upon
our previous argument the very last inequality can only hold if τ ≥
1

4K22K3
2n/2. This inequality ensures that, however short the length of ℓ

be, τ is arbitrary large if n0 is large. Consequently, Propositions 1(d)
and 2(d) will be applicable.
By the definition of τ and by (10), the event in (9) implies that

(12) sup
0≤k≤m̄

|qτ+k − qτ | ≥
L

4

√
m̄.

Consider the Markov decomposition

Eℓ(A ◦ Tτ) = ∑
α

cαEℓα
(A).

Since τ −m1 ≤ m̄, Proposition 1(d) implies that for any δ̄ slightly
larger than δ

∑
log |length(ℓα )|>m̄1/2−δ

cα < Const.m̄ exp (−m̄1/2−δ) < Const. exp (−m̄1/2−δ̄).

Since (12) depends only on the unmodified part of the system, we

can apply Proposition 2(e) to each α with log |length(ℓα)| ≤ m̄1/2−δ
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to obtain

Pℓ

(
sup
0≤k≤m̄

|qτ+k − qτ| ≥
L

4

√
m2 −m1

)
≤ C1e−C22

n
4

as claimed. Indeed, the condition of Proposition 2(e) is not directly

applicable to the value L4 . However, for bounding

Pℓ

(
max
k≤m̄

|qτ+k − qτ| ≥
L

4

√
m̄

)

it is sufficient to estimate a larger expression by also using (11) as
follows

Pℓ

(
max
k≤m̄

|qτ+k − qτ | ≥ m̄
1
6−δ

√
m̄

)

≤ C1
[
exp

(
−m̄1/2−δ̄

)
+ exp

(
−c2

(
N

2n

) 1
3−2δ

)]
≤ C1 exp

(
−C22

n
4

)

where C2 > 0 is suitably small. The last inequality provides the
sufficient bound.

�

4. PROOF OF THEOREM 1. MARTINGALE PROBLEM.

Here we finish the proof of Theorem 1. Recall that we are assum-
ing that initial conditions are distributed according to some Pℓ .

Proof. Let φ be a smooth function of compact support. Denote n =
Nt and choose a small α > 0. Let L = Nα. Let mp = pL + z (p ∈
Z+)where z will be chosen later. Denote

∆j = qj+1 − qj.
We have

φ

(
qmp+1√
N

)
− φ

(
qmp√
N

)

=

mp+1

∑
j=mp+1

1√
N

〈
Dφ

(
qj√
N

)
,∆j

〉
+
1

2

mp+1

∑
j=mp+1

1

N

〈
D2φ

(
qj√
N

)
∆j,∆j

〉
+O(LN−3/2).

Next for mp < j ≤ mp+1

Dφ

(
qj√
N

)
= Dφ

(
qmp−1√
N

)
+
1√
N

j

∑
k=mp−1+1

D2φ

(
qmp−1√
N

)
∆k+O(L/N).
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Hence

(13) φ

(
qmp+1√
N

)
− φ

(
qmp√
N

)
=

mp+1

∑
j=mp+1

1√
N

〈
Dφ

(
qmp−1√
N

)
,∆j

〉

+
1

N


1
2

mp+1

∑
j=mp+1

〈
D2φ

(
qmp−1√
N

)
∆j,∆j

〉
+ ∑
mp−1<k<j

〈
D2φ

(
qmp−1√
N

)
∆k,∆j

〉


+O(L2N−3/2).

We now consider the Markov decomposition

Eℓ(A ◦ Tmp) = ∑
α

cαEℓα
(A ◦ Tmp−1+mp/2) = T1 + T2

where A = φ
(
qm1√
N

)
−φ

(
qm0√
N

)
, T1 is the sumover α such that |qmp−1 | ≥

KL and T2 is the sum over α such that |qmp−1 | < KL. To estimate T1
split it T ′

1 + T ′′
1 where T ′

1 contains αs with length(ℓα) > N−100. Since
in any case the LHS of (13) is O(L/

√
N)

T ′′
1 = O(L/N100.5)

by the Growth Lemma.

Decomposing T ′
1 = T1a+ T1b+O(L2N−3/2) according to the lines

in (13) we get

(14) T1a = O

(
LθL√
N

)
.

Indeed, Dφ(
qmp−1√
N

) varies little on each ℓα. Namely it can be approx-

imated by a constant with error O(θL). Since ∆0 has zero mean (14)
follows by Proposition 2(a) (the factor of L comes since there are L
terms).
To estimate T1b we first observe that by the argument used to

prove (14) we can bound for the contribution of each k, j to T1b by
O
(

θj−k
N

)
. This shows that the total contribution of termswith k < mp

is O( 1N). To estimate the contribution of the remaining terms we can
use Proposition 2(b) to obtain

T1b =
L

2N ∑
ab

D2abφ

(
qmp−1√
N

)
σ2ab.
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Finally, since the summand in T2 is O(L/
√
N), we have

|∑
p

T2(p)| ≤
Const L√
N

∑
p

Pℓ(|qmp−1 | ≤ KL).

The last sum can be rewritten as follows

Const L√
N

∑
S

Eℓ(Card(p : qmp−1 ∈ S))

where the sum is taken over all scatterers within distance KL from
the origin. Now we choose z so that the last sum is not more than its
average over z, thus

∑
S

Eℓ(Card(p : qmp−1 ∈ S))

≤ 1
L∑
S

Eℓ(Card(j : qj ∈ S)) ≤ Const Lmax
S

Eℓ(Card(j : qj ∈ S))

since there are O((KL)2) scatterers within distance O(L) from the
origin.

Lemma 5. There is a constant K̃ such that for all S

Eℓ(Card(j ≤ n : qj ∈ S)) ≤ K̃ log1+ξ N

where ξ is the constant from Lemma 3.

Lemma 5 implies that

|∑
p

Eℓ(T2(p))| ≤ Const
L2 log1+ξ N√

N
→ 0.

Thus if W(t) is a limit point of WN(t), then taking the limit in (13)
we get

(15) Eℓ

(
φ(W(t))− φ(W(0))− 1

2

∫ t

0
∑
ab

D2abφ(W(s))σ2abds

)
= 0.

A similar computation shows that if ψ1 . . .ψm are smooth functions,
then for any s1 < s2 . . . sm < t1 < t2 we have

Eℓ

([
φ(W(t))− φ(W(0))− 1

2

∫ t2
t1

∑
ab

D2abφ(W(s))σ2abds

]

∏
j

ψj(W(sj))

)
= 0

proving Theorem 1. �

It remains to establish Lemma 5.
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Proof of Lemma 5. Define two sequences m1 and n1 as follows. Let
m0 = 0 and let nk be the first time after mk−1 such that rnk (x) ≥ δ0.
Let mk be the first time after nk when qmk ∈ S. Then by the Growth
Lemma we can find K so large that

(16) Pℓ(max
k≤N

(nk −mk−1) ≥ K log N) ≤ 1

N100
.

Using Lemma 3(a) (with Γ being the modified part) we get induc-
tively

(17) Pℓ(max
k≤b

(mk − nk) ≤ N) ≤
(
1− C

logξ N

)b
.

Let τ be the first time when mτ − nτ > N. (not visit S for n steps in a
row). Then (17) implies that

Eℓ(τ) ≤ Const logξ N.

Since

Card(j ≤ n : qj ∈ S) ≤ Kτ log N+ N1maxk≤N (nk−mk−1 )≥K logN

the lemma follows from (16). �

5. PROOF OF THEOREM 2.

The proof of Theorem 2 is similar to the proof of Theorem 1 except
that now Lemma 3(b) has to be used instead of Lemma 3(a). Ac-
cordingly the claim of Lemma 3 the equation (5) has to be replaced
by

(18) Eℓ(Card(j ≤ n : qj ∈ S)) ≤ K
√
N logN

which is much worse than (5). However now we want to establish
(15) not for all functions but only for the functions in the domain
of the reflected Brownian Motion, that is for functions satisfying

φ′(0) = 0. Accordingly |φ′(
qj√
N

)| ≤ Const |qj |√
N
. Important conven-

tion: for simplicity of notation in what follows qj as an argument of
the function φ will always denote the horizontal component of the
vector qj. Thus if |qmp(j) | ≤ KL then
∣∣∣∣φ

′
(
qj√
N

)∣∣∣∣ ≤ Const
L√
N
and

∣∣∣∣φ
(
qmp+1√
N

)
− φ

(
qmp√
N

)∣∣∣∣ ≤ C
L2

N
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Therefore we can estimate

|∑
p

T2(p)| ≤ O
(
L2

N

)
min
z

∑
S:|q|≤KL

Eℓ(Card(p : qmp ∈ S)).

The last sum is less than its average over z, namely,

1

L ∑
S:|q|≤KL

Eℓ(Card(j : qj ∈ S)) ≤
1

L
O(L)O(

√
N log N)

where the second factor is due to the fact that there areO(L) scatter-
ers satisfying |q| ≤ KL. Thus

∣∣∣∣∣∑p
T2(p)

∣∣∣∣∣ = O
(
L2 logN

N

)

and the result follows.

6. FIRST RETURN MAPS. STATEMENTS

The difference between Theorems 1–2 and Theorems 3–4 is that for
the former ones the terms with |qmp | < KL can be estimated by their
absolute values whereas for the later theorems this is not the case.
For example, in Theorem 3 the skewness parameter a should be cho-
sen carefully to make ∑p T2(p) → 0. Therefore the rough estimates

like (18) are not enough for Theorems 3–4. Below we introduce some
improvements based on a careful study of the first return maps. The
proofs are given in Appendices C and D.
In the theorems below (Ω, f ,µ) will either be the Lorentz pro-

cess in the strip in the presence of an external field (Theorem 3) or
the Lorentz process in the half cylinder obtained by factorising the
Lorentz process in the half plane over its group of (vertical) transla-
tional symmetries (Theorem 4).
For a fixed scatterer S = ∂O let T(S) : S× S+ → S× S+ be the first

return map to the scatterer S. A different notation: T[L] be the first

return map to M[L] := π−1(Q ∩ {|x| ≤ L}).
Let Vn(L) denote the number of visits of the Lorentz dynamics to
M[L] up to time n.

Theorem 6. (a) T(S) satisfies the assumptions of [Y 98]. In particular, T(S)
is exponentially mixing.
(b) There are constants C, ᾱ such that for any S and for any δ > 0

Eℓ

(
Card(j ≤ n : qj ∈ S, rj(x) ≤ δ)

)
≤ C

(√
nδ1/3| log δ|ᾱ + log length(ℓ)

)
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Theorem 7. (a) T[L] has an SRB measure ν[L] (for the cylinder case ν[L] is

the Liouville measure but in the presence of the field the existence of the SRB
measure is a non-trivial statement). The mixing properties of (T[L], ν[L])
can be summarised as follows.
Let A be dynamical Holder function on M[L] such that

∫
Adν[L] = 0.

Then there are constants C, c, p such that for any standard pair ℓ and for
any n ≥ C| log length(ℓ)|we have

∣∣∣Eℓ(A ◦ Tn[L])
∣∣∣ ≤ C||A||H

(
1− c

Lp

)n
.

(b) The family
{
Vn(L)
L
√
n

}
is uniformly integrable (both in n and L).

(c) For any A such that ||A||∞ ≤ 1, for any n ≥ Const ||A||H and for
any fixed δ > 0 there exist positive constants C, c such that for arbitrary

R < n1/6−δ we have

Pℓ

(∣∣∣∣∣
n−1
∑
j=0

A(T
j
[L]
x)− nν[L](A)

∣∣∣∣∣ ≥ R
)

≤ Ce−c(R/Lp)2 .

7. PROOF OF THEOREM 3.

Now we describe the modifications needed to prove Theorem 3.
In this case the domain of the generator consists of functions such
that that φ is continuous, the one sided derivatives φ′

±(0) exist and

φ′
+(0) = aφ′

−(0)

where a is the constant to be determined. Namely wewant to choose
a so that ∑p T2(p) → 0. Choose a large constant K1 and denote K∗ =
K1K2. where K2 is defined by (4). Given j choose p so that mp ≤ j <
mp+1.
Let

∆̄j = φ

(
qj+1√
N

)
− φ

(
qj√
N

)
.

We need to bound

∑
j

Eℓ(1|qmp(j) |<KL
∆̄j).

We split this sum into two parts.
(I) j−mp(j) < 2K1 logN. There are two possibilities.

(a) |qmp | > 2K∗ logN. The contribution of these terms is small
which can be proved similarly to the treatment of T1 term in The-
orem 1.
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(b) |qmp | ≤ 2K∗ log N. The treatment of these terms can be done
similarly to the estimate of T2-terms in Theorem 2 yielding

O

(
logN × logN√

N
×

√
N

L

)

where the first factor appears because there are O(logN) scatterers
in {|q| < 2K1K2 log N)} the second factor appears since ∆̄j = O( 1√

N
)

and for every p there are log N terms. The third factor is an average
number of visits to each scatterer on the mp subsequence (here we
use Theorem 6 and choose z in the definition of p appropriately).
(II) j−mp ≥ 2K1 log N.
Let jk = K12

k. Define the following events

Āj = {|qj−K1 logN | > K∗ logN},
Ajk = {|qj−jk| > jkK2 and |qj−jk+1 | ≤ jk+1K2},

Aj = {|qj−K1 | ≤ K∗}.
Note, that K2 was chosen to be the maximal free-flight, which is an
obvious bound for the slope of q, therefore this is a complete system
of events for 0 ≤ k < log2 log N. Observe that since φ is not smooth
at 0 we cannot use the Taylor decomposition if |qj| ≤ L. However
we have

∆̄j = φ′
−(0)

ζ(qj+1, a)− ζ(qj, a)√
N

+O

(
1

N

)
if |qj| ≤ K∗,

where

ζ(q, a) =

{
aq if q ≥ 0
q if q < 0

Now we split

∑
j

Eℓ(1|qmp(j) |<KL
∆̄j) = ∑

j

Eℓ(1|qmp(j) |<KL
1Āj

∆̄j)+

∑
jk

Eℓ(1|qmp(j) |<KL
1Ajk ∆̄j) + ∑

j

Eℓ(1|qmp(j) |<KL
1Aj ∆̄j)

= ∑
j

Ēj + ∑
jk

Ejk + ∑
j

Ej.

On the event Āj we surely avoid the perturbation for the whole
K1 log N trajectory segment. Hence for the first term we can apply
the exponential mixing for Sinai billiards to get

∑
j

Ēj = ∑
j

O(θK1 logN) = O(N−100)
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provided that K1 is large enough.
Next we estimate ∑j Ejk for a given k. Consider a Markov decom-

position

Eℓ(A ◦ Tj−jk ) = ∑
α

cαEℓα
(A).

Let

E ′
jk = ∑

length(ℓα )>θjk

cαEℓα
(1Ajk ∆̄j),

E ′′
jk = ∑

length(ℓα )≤θjk

cαEℓα
(1Ajk ∆̄j),

For terms in E ′
jk we have

Eℓα
(∆j) = O(θjk)

so

|∑
j

E ′
jk| ≤ Const

[
θjk√
N

+
1

N

]
∑
j

Pℓ(|qj−jk+1 | ≤ K2 jk+1)

Now Theorem 6(b) tells us that the last sum is O(jk
√
N). It follows

that by choosing K1 large we can make ∑jk E ′
jk as small as we wish.

On the other hand

|∑
jk

E ′′
jk| ≤

Const√
N

∑
j

Pℓ(|qj−jk | ≤ K2 jk and rj−jk(x) ≤ θjk).

Therefore Theorem 6(b) implies that by choosing K1 large we can
make ∑jk E ′′

jk as small as we wish. Thus the main contribution to

∑p T2(p) comes from Ej. In other words we proved that

(19) Eℓ

(
φ

(
qn√
N

)
− φ

(
q0√
N

)
− 1

2N∑
j

φ′′
(
qn√
N

)
σ2

)

=
φ′
−(0)√
N

Eℓ

(

∑
j

1Aj

(
ζ(qj+1, a)− ζ(qj, a)

)
)

+ o(1), N → ∞,K1 → ∞.

To estimate the last sum we consider the first return map T[K∗ ] to

|q| ≤ K∗. After reindexing we get

1√
N

Vn(K∗)

∑
j=1

ζ̂(T
j
[K∗]
x, a)
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where ζ̂ = ζ ◦ TK1+1 − ζ ◦ TK1 . Observe that

1

Vn(K∗)

Vn(K∗ )

∑
j=1

ζ̂(T
j

[K∗]
x, a)

is uniformly bounded and it converges almost surely to
∫

ζ̂dν[K∗] (see

Theorem 7(c)).

Denote ν̂[K] =
ν[K]

ν[K] (M[1] )
(this normalisation is needed so that the re-

striction of ν̂[K̃] to M[K] equals ν̂[K] for K̃ ≥ K). Since {Vn(K)/
√
NK}

is uniformly integrable it follows that for large N
∣∣∣∣∣
1√
N

E

(
Vn(K∗)

∑
j=1

ζ̂(T
j

[K∗ ]
x, a)

)∣∣∣∣∣

≤ 2
∫

ζ̂dν[K∗]Eℓ

(
Vn(K∗)√
N

)
= 2

∫
ζ̂dν̂[K∗]Eℓ

(
Vn(K∗)

K∗
√
N

)
K∗ν[K∗ ](M[1]).

Lemma 6. (a) There exists a limit

γ(a) = lim
K∗→∞

∫
ζ̂(·, a)dν̂[K∗].

Moreover there is η > 0 such that γ(a)−
∫

ζ̂(·, a)dν̂[K∗] = O(θK
η
∗).

(b) There is a constant C such that

ν[K∗](M[1]) ≤
C

K∗
.

γ(a) is an affine function of a because ζ is an affine function of a.
Thus we can choose a so that γ(a) = 0. Then (19) gives

Eℓ

(
φ

(
qn√
N

)
− φ

(
q0√
N

)
− 1

2N ∑
j

φ′′
(
qn√
N

)
σ2

)
= o(1), N → ∞.

Hence any limit process will satisfy

E

(
φ(W(t))− φ(W(0))− 1

2

∫ t

0
φ′′(W(s))σ2ds

)
= 0

and we are done as before. It remains to establish Lemma 6.

Proof. It suffices to show that
∫

ζ(TK1x, a)dν̂[K∗]−

−
∫

ζ(TK1+1x, a)dν̂[K∗+1] = O
(

θK
η
∗
)
.
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We split the LHS into two parts

I =
∫

ζ(TK1x, a)dν̂[K∗] −
∫

ζ(TK1+1x, a)dν̂[K∗],

II =
∫

ζ(TK1+1x, a)dν̂[K∗] −
∫

ζ(TK1+1x, a)dν̂[K∗+1].

To estimate I we observe that since ν̂[K∗] is T[K∗ ] invariant we have

I =
∫ [

ζ(TK1T[K∗ ]x, a)− ζ(TK1+1x, a)
]
dν̂[K∗].

But the integrand is different from zero only for points where Tx 6∈
M[K∗ ]. Those points are near the boundary of M[K∗ ] and so by Propo-

sition 2(d).

ν[K∗](Tx 6∈ M[K∗ ] but ∃j ≤ K∗ + 1 such that Tjx or Tj(T[K∗ ]x) visit the modified part)

≤ Const θK
η
∗

For the other orbits we can use the exponential mixing of Sinai bil-
liards to show that∫

1T[K∗ ]x 6=Tx ζ(TK1T[K∗ ]x)dν[K∗](x) ≤ O
(

θK
η
∗
)

+O
(

θK∗
)

and ∫
1T[K∗ ]x 6=Tx ζ(TK1+1x)dν[K∗](x) ≤ O

(
θK

η
∗
)

+O
(

θK∗
)

Therefore

I = O
(

θK
η
∗
)

+O
(

θK∗
)

= O
(

θK
η
∗
)
.

Likewise

II =
∫

ζ(TK1+1x, a)1M[K∗+1]−M[K∗ ]
(x)dν̂[K∗+1] = O

(
θK

η
∗
)

proving (a).
To prove (b) letmk0 be the time of k0-th return to M[1] (under T[K∗ ])

where k0 is the constant of Lemma 3. By parts (b) and (c) of Lemma
3 there are constants c and ǫ such that

P(mk0 ≥ n) ≥
c√
n

for n ≤ ǫK2∗. Hence

ν[K∗](M[1]) =
k0

E(mk0)
=

k0

∑
∞
n=1 P(mk0 ≥ n)

≤ k0

∑
ǫK2∗
n=1 P(mk0 ≥ n)

≤ C

K∗
.

�
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8. PROOF OF THEOREM 4.

Herewe explain the changes needed to prove Theorem 4. First, the
proof of the tightness given in Section 3 has to be changed because
here wemodify the configuration along the line so the particle could

’slide’ along this line for a long time. Thuswhile the tightness of
z1[Nt]√
N

can be proven as before a different argument is needed for
z2[Nt]√
N
. We

divide the proof into two lemmas. (For simplicity, in this sequel,
notations of type qj will denote the first component of the vector qj,
and notations of type ∆2j will denote ∆2,j.)
Let

z̄k =
k−1
∑
j=0

∆2j1Mc
[KL]

(qj−L), ¯̄zk =
k−1
∑
j=0

∆2j1M[KL]
(qj−L),

W̄N(t) =
z̄[Nt]√
N
, ¯̄WN(t) =

¯̄z[Nt]√
N
.

Lemma 7. {W̄N(t)} is tight.
Proof. Consider the following function on Ω

A(x) = (q1− q0)1Mc[KL]
(q−L).

Taking the Markov decomposition

(20) Eℓ(A ◦ f n) = ∑
α

cαEℓα
(A ◦ f L)

applying Proposition 2(a) to the long components where A ◦ f L 6= 0
and using Proposition 1(b) to estimate the measure of short compo-
nents we get

(21) Eℓ(A ◦ f n) = O(θL).

Now arguing as in the proof of Proposition 6.1 of [ChD 07] we obtain

the following bounds for n2 − n1 > N3/7.

Eℓ(z̄n1 − z̄n2) = O(L),

Eℓ((z̄n1 − z̄n2)2) = O(|n1− n2|),
Eℓ((z̄n1 − z̄n2)4) = O((n2− n1)2).

Indeed the proof of Proposition 6.1 in [ChD 07] relied only on the
equidistribution lemma (Corollary 3.4 of [ChD 07]) and (21) is the
analogue of such lemma in our situation. Now tightness can be de-
rived from the last three estimates the same way Proposition 6.2 is
derived from Proposition 6.1 in [ChD 07]. �
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Lemma 8. maxk
| ¯̄zk|√
N
converges to 0 in probability.

Proof. Observe that

¯̄zk =
Vk(KL)

∑
j=1

∆2(T
LT
j

[KL]
x).

Hence Theorem 7(c) implies

¯̄zk = cLVk(KL) + oP(Lpk1/4+ε)

where

cL =
1

KL

∫

M[KL]

∆2 ◦ TLdµ,

µ is the Liouville measure and we write A = oP(B) if for any ε

P(|A| ≥ ε|B|)
tends to 0 faster than any power of N. Similarly to Lemma 6 we
obtain that there exists the limit

γ = lim
L→∞

cLKL and γ − cLKL = O(θL
η
).

Next

Vk(1) =
Vk(KL)

∑
j=1

1M[1]
(T
j
[KL]
x)

so using again Theorem 7(c) we get

Vk(KL) = KLVk(1) + oP(LpVk(1)
1/2+ε).

Therefore

max
k

∣∣∣∣
¯̄zk√
N

− γ
Vk(1)√
N

∣∣∣∣→ 0

so it remains to show that γ = 0. Let tN be the first time when
Vt(1) = N. Then the foregoing computation shows that

Eℓ( ¯̄ztN ) = N(γ + o(1)).

Next we claim that

(22) Pℓ(tN ≥ N202) = O
(
N−100

)
.

Indeed let t̄1 ≤ t̄2 ≤ · · · ≤ t̄k be the consecutive visits to M[1] such

that rt̄j(x) ≥ δ0. Applying Lemma 12 proven in Appendix C we

prove by induction that

(23) Pℓ

(
max
j≤k

(t̄j − t̄j−1) ≥ n
)

= O

(
k√
n
logαn

)
.



LIMIT THEOREMS FOR PERTURBED LORENTZ PROCESSES 27

(23) with k = N, n = N202 easily implies (22). Since ¯̄ztN is always
O(N)we get

Eℓ( ¯̄zN1tN≤N202 ) = N(γ + o(1)).

On the other hand using (20) and (21) we see that

Eℓ(z̄min(tN ,N202)) =
N202

∑
n=0

O
(

θL + Pℓ(n− L ≤ tN ≤ n)
)

= O
(

θLN202 + L
)

= O(L).

Combining this with (22) we get

Eℓ(z̄tN1tN≤N202 ) = O(L)

and so

γ = lim
m→∞

E(z2,tm1tm<m202 )

m
.

By the time reversal symmetry γ = 0. �

The second change comes in the estimate for the expectation of

∑
j

D2φ(qj/
√
N)√

N
∆2j1|qmp(j) |≤L

.

Indeed we have

D2φ(qj/
√
N) ∼ D2φ(0, z2j/

√
N)

but as z2j/
√
N is not constant we can not factor it out like in the proof

of Theorem 1. However we can divide the interval [0, n] into inter-
vals of length δN with small δ and use the tightness proven above

to conclude that D2φ(qj/
√
N) changes little on each interval so it

can be factored out. The rest of the proof is similar to the proof of
Theorem 3.

9. CONTINUOUS TIME.

Proof of Theorem 5. We shall show how to extend Theorem 1, other
results are extended in a similar way. Let tj be the time between j-th

and (j+ 1)-st collisions and L = µ0(t1) be the mean free path. Let

Tn = ∑
n−1
j=0 tj be the time of the n-th collision. Arguing as in the proof

of Theorem 1 we show that the diffusively scaled version of Tn − nL
converges to a Brownian Motion. In particular for any ε > 0 there
exists R > 0 such that

Pℓ(max
0≤k≤n

|Tk − kL| ≥ R
√
n) ≤ ε.

Thus the continuous time process is obtained from the discrete time
process by the time change s = tL. The result follows. �
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APPENDIX A. PROOF OF PROPOSITION 2.

Proof. Fix a small δ0. If length(ℓ) > δ0 then part (a) follows from
[ChM 06], Theorem 7.31. To obtain the result in general case we com-
bine [ChM 06], Theorem 7.31 with Proposition 1. Likewise [ChM 06],
Theorem 7.33 implies that for n > C1 log length(ℓ)

∣∣Eℓ((A ◦ Tn0 )(B ◦ Tn+m0 ))− µ0(A(B ◦ Tm0 ))
∣∣ = O (θn) .

Part (b) follows by summing this estimate over an appropriate range
of n and m.
Part (c) is proven in [ChM 06], Theorem 7.43 in case the initial

points are distributed according to the invariant measure. The proof
in our case is the same exceptwe need to use Theorem7.33 of [ChM 06]
instead of Theorem 7.41 used in [ChM 06].
Part (d) is proven in [ChD 07], Section A.4 for a particular A but

the proof in the general case is exactly the same.
To prove part (e) we adopt the Reflection Principle (cf. the Lemma

to Theorem 10.1 of [B 68]) to our situation. If the event of part (e)
holds, then let j̄ be the first time j ≤ n such that

∣∣∣∣A
(j) − j

∫
Adµ0

∣∣∣∣ ≥ R
√
n.

Then Proposition 1 gives the decomposition

Eℓ(A ◦ T j̄) = ∑
α

cαEℓα
(A)

where

∑
length(ℓα )≤ε

cα ≤ Const.ε n.

Applying Proposition 2(d) to each α with | log length(ℓα)| < n1/2−δ

we conclude that there are constants C̄1, C̄2, C̄3 and δ̄ > δ such that

Pℓ

(∣∣∣∣A
(n) − n

∫
Adµ0

∣∣∣∣ ≥ (R− C̄3)
√
n

)
≥

≥ C̄1Pℓ

(
max
j≤n

∣∣∣∣A
(j) − j

∫
Adµ0

∣∣∣∣ ≥ R
√
n

)
− C̄2 exp(−n

1
2−δ̄).

Therefore part (e) of Proposition 2 follows from part (d). �
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APPENDIX B. RETURN TIMES.

Proof of Lemma 3. (a) Without loss of generality we can assume that
S is in the 0-th cell. Take a standard pair ℓ with length(ℓ) ≥ δ0. It
suffices to show that if R is sufficiently large and d([ℓ], (S

⋃
Γ)) ≥ R,

then

(24) Pℓ

(
qj 6∈ (S

⋃
Γ) for j = 1 . . . n

)
≥ Const
logα n

.

We establish (24) in case Card(Γ) = 1, the general case is similar. For
fixing our ideas we also assume that d([ℓ], S) ≪ d([ℓ], Γ), the other
cases are easier. Take a sufficiently small ε0 > 0. Let τ1 be the first

time τ such that either |qτ | ≥ R1+ε0 or |qτ| ≤ Rε0 . It is proven in
Sections 6 and 7 of [DSzV 07] that for any standard pair ℓ satisfying
length(ℓ) ≥ δ0 and [ℓ] = Rwe have

(25) Pℓ

(
|qτ1 | ≥ R1+ε0 and rτ1(x) ≥ R−100

)
≥ ζ

where 1− ζ ≍ ε0, and thus ζ can be made as close to 1 as needed by
choosing ε0 small. Define τk as a first time τ after τk−1 when either

|qτ| ≥ R(1+ε0)
k
or |qτ| ≤ Rε0(1+ε0)

k−1
.

Iterating (25) we get

(26) Pℓ

(
|qτk | ≥ R(1+ε0)

k
and rτk (x) ≥ R−100(1+ε0)

k−1) ≥ ζk.

Let k̄ be the largest number such that

R(1+ε0)
k̄
<
d(Γ, 0)

2
.

Applying (26) with k = k̄we see that the probability that the particle

moves ( d(Γ,0)
2 )1/(1+ε0) away from the origin without visiting S is at

least c1/ log(d(Γ, 0)).
For crossing the regionwhere the particle can hit Γweneed amore

delicate argument. To do sowe define τ̄1 as a first time τ after τk̄ such
that

|qτ̄| ≥ d1+ε0(Γ, 0)1+ε0 or |qτ̄| ≤ d1/(1+ε0)
3(Γ,0) .

Then by the argument of Lemma 6.1(a) of Section 6 of [DSzV 07]
there exists a constant c2 > 0 such that for any standard pair ℓ satis-
fying

(27) |[l]| ≥
(
d(Γ, 0)

2

)1/(1+ε0)

and length(ℓ) ≥ d−100(Γ, 0)
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we have

Pℓ

(
|qτ̄1 | ≥ d1+ε0 (Γ, 0), rτ̄1(x) ≥ δ0 and τ̄1− τk̄ ≤ d3(1+ε0)(Γ, 0)

)
≥ c2.

On the other hand, by Theorem 4 of [DSzV 07], for any standard pair
satisfying (27)

Pℓ

(
qj visits Γ before time d3(1+ε0)(Γ, 0)

)
→ 0 as ε0 → 0, d(Γ, 0) → ∞.

Hence if ε0 is sufficiently small, then we can arrange that for a suit-
able c3 > 0

Pℓ

(
|qτ̄1 | ≥ d1+ε0 (Γ, 0), rτ̄1(x) ≥ δ0 and qj does not visit Γ before τ̄1

)
≥ c3

Next let τ̄k be the first time τ after τ̄k−1 such that either

|qτ | ≥ d(1+ε0)
k
(Γ, 0) or |qτ | ≤ d(Γ, 0).

The argument used to prove (26) shows that for any ℓ such that

|[l]| ≥ d(1+ε0)(Γ, 0), length(ℓ) > δ0

we have

Pℓ(|qτ̄k| ≥ R(1+ε0)
k
) ≥ ζk.

Taking k̂ such that

d(1+ε0)
k̂
(Γ, 0) = n

we get part (a).
Part (b) is proven in [DSzV 07] in case [ℓ] ∈ S. To get the result in

general, let τ∗ be the first time the particle visits S and observe that
by Theorem 11 of [DSzV 07] Pℓ(rτ∗(x) ≥ δ0) is uniformly bounded
from below so we can apply the result for [ℓ] ∈ S.
The proof of part (c) is similar to the Proof of Lemma 11.1(c) of

[DSzV 07]. �

APPENDIX C. FIRST RETURN TO ONE SCATTERER.

Here we prove Theorem 6.
Let δ0 be sufficiently small . Let τ1 < τ2 < . . . τk . . . be consecutive

visits to S.

Lemma 9. There are positive constants c1, c2 such that if ℓ is a standard
pair, length(ℓ) ≥ δ0 then

Pℓ(τ1 < c2d
2(ℓ, S), rj(x) ≥ min(δ0, d

−100(qj, S)) for j ≤ τ1) ≥ c1.
Proof. This follows from the proof of Theorem 10 of [DSzV 07]. �
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Lemma 10. There is a constant c3 such that if ℓ is a standard pair such
that length(ℓ) ≥ d−101(ℓ, S) then

Pℓ(τ1 > n) ≤ c3
d(ℓ, S) + 1√

n
.

Proof. This follows from the proof of Theorem 8 of [DSzV 07]. �

Lemma 11. There are constants c4, c5 > 0, θ1 < 1 such that for any
standard pair the following holds. Let n̄ be the first positive time when
rτn̄(x) ≥ δ0 then

Pℓ(n̄− c4| log(length(ℓ)| ≥ n) ≤ c5θn1 .
Proof. We begin with the case when length(ℓ) ≥ δ0, and assume δ0 <

d−100(x, S). Let k1 be the smallest among the following numbers

• c2d2(ℓ, S)
• τ1(x)
• the first time k when rk(x) < min(δ0, d

−100(qk, S)).
If k1 = τ1(x) we stop otherwise let m1 be the first number after k1
such that rm1(x) ≥ δ0. Let k2 be the smallest among the following
numbers

• m1 + c2d
2(xm1, S)

• m1 + τ1(xm1)
• the first time k after m1 when rk(x) < min(δ0, d

−100(qk, S)).
Continue this procedure until qkp ∈ S.
Observe that if δ0 is small enough then our construction implies

that rkp(x) ≥ δ0. Also by Lemma 9

Pℓ(p > n) < (1− c1)n.
Next we claim that there are constants c6 > 0, θ2 < 1 such that

(28) Pℓ(Card(i : kj ≤ i ≤ mj, qi ∈ S) > n | p > j) ≤ c6θn2
To derive (28) we distinguish two cases:

• rkj ≥ exp(−ε|qkj|)where ε is sufficiently small. Since the orbit

can not hit S during next
|qkj |
K2
iterations if

Card(i : kj ≤ i ≤ mj, qi ∈ S) > n

then mj > n+
|qkj |
K2
so the result follows from Proposition 1(e).

• rkj < exp(−ε|qkj|).
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– If n > C̄| log rkj(x)|, the result follows from Proposition
1(e).
– If the opposite inequality

(29) n ≤ C̄| log rkj(x)|
holds, then for any δ > 0 we have

Pℓ(δ ≤ rkj < 2δ, rkj < exp(−ε|qkj|) | p > j) ≤

≤ Pℓ(δ ≤ rkj < 2δ, |qkj| <
1

ε
| log δ| | p > j)

Let t be the first time after mj−1 when |qt| ≤ 2
ε | log δ| (it

can be mj−1 itself). By the definition of kj on the event
{|qkj| <

1
ε | log δ|}wehave rt > ( 2ε | log δ|)−100. Now Lemma

10 implies that for any standard pair ℓ such that d(ℓ, S) <
2
ε | log δ| and length(ℓ) > ( 2ε | log δ|)−100 we have

Pℓ(τ1 > n) ≤ Const | log δ|
ε
√
n

and so by Growth Lemma for any n

Pℓ(min
j≤τ1
rj(x) < δ) ≤ Const | log δ|

ε
√
n

+ nδ.

Choosing n = (| log δ|/εδ)2/3we obtain:

Pℓ(δ ≤ rkj < 2δ, rkj < exp(−ε|qkj|) | p > j) = O(δ1/3| log δ|2/3).

This can be summed over δi = 1/2
i. The desired bound

follows from the fact that the largest possible δ satisfies
δ ≤ rkj ≤ exp(−n/C̄)

Next denote φj(z) = Eℓ(z
Nj )where

Nj = Card(i : ∃ j̄ ≤ j, k j̄ ≤ i ≤ m j̄ and qi ∈ S).

We claim that there is a constant c̄ such that for |z| ≤ 1
2

[
1+ θ−12

]
we

have

(30) |φ1(z)| ≤ 1+ c̄(|z| − 1)
uniformly in ℓ. Indeed (28) shows that φ1 is analytic and uniformly

bounded in any disc of radius less than θ−12 . In particular |φ′| ≤ c̄
for |z| ≤ 1

2

[
1+ θ−12

]
. Combining this with the fact that |φ1(z)| ≤ 1
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if |z| ≤ 1 we obtain the result. Now it is easy to show by induction
that

φj(z) ≤
j

∑
m=1

(1− c1)m (1+ c̄(|z| − 1))m .

Hence φ(z) = limj→∞ φj(z) converges in some neighbourhood of
1 proving Lemma 11 if length(ℓ) ≥ δ0. In general case we define
k0 = 0 and m0 to be the first time then rm(x) ≥ δ0 and argue as
before. �

Lemma 11 implies the exponential mixing via the coupling algo-
rithm of [Ch 06]. This proves Theorem 6(a).
Next we use this lemma to control the returns of short compo-

nents. We need a preliminary result.

Lemma 12. For any standard pair ℓ such that [ℓ] ∈ S and length(ℓ) ≥ δ0
we have

Pℓ(τn̄ ≥ n) ≤
c7 log

α n√
n
.

Proof. We use an idea of [M 04]. By Lemma 11 we can choose a con-

stant C such that Pℓ(n̄ ≥ C log n) ≤ 1
n . Denote τ0 = 0. We need to

show that

Pℓ

(
max

1≤j≤C logn
(τj − τj−1) ≥

n

C log n

)
≤ Const log

α n√
n

.

To this end we show that for any 1 ≤ j ≤ C log n

Pℓ

(
τj − τj−1 ≥

n

C log n
, and max

1≤l<j
(τl − τl−1) <

n

C log n

)

≤ Const log
α−1 n√
n

.

The Growth Lemma (Proposition 1) implies that

Pℓ

(
max
1≤l<j

(τl − τl−1) <
n

C log n
but min

0≤i≤τj−1
ri(x) ≤

1

n100

)
≤ Const
n99

.

Hence if m̄j is the first time m after τj−1 such that rm(x) ≥ δ0, then
there is a large constant c8 such that

Pℓ

(
max
1≤l<j

(τl − τl−1) <
n

C log n
but m̄j − τj−1 > c8 log n

)
≤ Const
n99

.
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(Here we were using that rτj−1(x) > 1
n100
.) On the other hand

Pℓ

(
m̄j − τj−1 ≤ c8 log n but τj − m̄j >

n

C log n
− c8 log n

)
≤ Const (log n)

3/2

√
n

by Lemma 10. The result follows. �

Lemma 13.

(a) Pℓ(∃i ≤ n̄ : rτi(x) ≤ δ) ≤ c9δ1/3| log δ|α.

(b) Eℓ(Card(i ≤ n̄ : rτi(x) ≤ δ)) ≤ c10δ1/3| log δ|ᾱ
where ᾱ = α + 1.

Proof. (a) Let β be a parameter to be chosen later. We have

Pℓ(∃i ≤ n̄ : rτi(x) ≤ δ) ≤ Pℓ(τn̄ > δ−β) + Pℓ(τn̄ ≤ δ−β but ∃m ≤ τn̄ : rm(x) ≤ δ)

≤ Const
[

δβ/2| log δ|α + δ1−β
]

where the first term is estimated by Lemma 12 and the second term
is estimated by the Growth Lemma. Choose β = 2/3. This proves
(a).
Now observe that by Lemma 11 it follows that

Eℓ(n̄1Ω) ≤ Const q| log q|
for any set Ω such that Pℓ(Ω) ≤ q. Hence (b) follows from (a). �

We now prove Theorem 6(b). By Lemma 11 we can assume that
[ℓ] ∈ S and that length(ℓ) > δ0. Let 0 = n̄0, n̄1, n̄2 . . . n̄k . . . be consec-
utive numbers such that rτn̄k (x) ≥ δ0.

Using Lemma 3(b) it follows by induction that

Pℓ(max
j≤k

τn̄j − τn̄j−1 ≤ n) ≤
(
1− c11/

√
n
)k
.

Observe that if m(n) is the first number such that τn̄m − τn̄m−1 ≥ n
then Vn −Vδ0

n ≤ m
In particular there is a constant c12 such that

Pℓ(Vn −Vδ0
n ≥ c12

√
n) ≤ 1

2
.

On the other hand if Xj = Card{n̄j−1 < i ≤ n̄j, rτi < δ}, then by
Lemma 13

Eℓ

(
c12

√
n

∑
j=1

Xj

)
≤ c13

√
nδ1/3| log δ|ᾱ.
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Next let

φn(δ) = max
[ℓ]∈S,length(ℓ)≥δ0

Eℓ(V
δ
n ).

Then the last two inequalities imply that

φn(δ) ≤ c13
√
nδ1/3| log δ|ᾱ +

1

2
φn(δ).

The result follows. �

APPENDIX D. SPECTRAL GAP FOR THE LARGE STRIP.

Proof of Theorem 7. Our proof is a generalisation of the proof of the
exponential mixing for Sinai billiards presented in [ChM 06]. The
key technical tool is a so called coupling lemma. Let us present the
statement of that result.

Lemma 14. Given δ0 > 0 there exist C > 0, θ < 1, q > 0 and n ≥ 1 such
that for any pair of standard pairs ℓ1 = (γ1, ρ1), ℓ2 = (γ2, ρ2) supported
on the same scatterer and such that length(ℓj) ≥ δ0, there exist probability
measures ν1 and ν2 and a constant c ≥ q, and there exist families of stan-
dard pairs {ℓβj}β and of positive constants {cβj}β : j = 1, 2, satisfying
(i)

Eℓj
(A ◦ f n) = cνj(A) + ∑

βj

cβjEℓβj
(A) j = 1, 2

with c ≥ q;
(ii) Let λ denote the Lebesgue measure on [0,1]. There exist a measure
preserving map π : (γ1 × [0, 1], ν1 × λ) → (γ2 × [0, 1], ν2 × λ) and
constants C > 0 and θ < 1 such that if π(x1, s1) = (x2, s2) then

(31) d( f nx1, f
nx2) ≤ Cθn

(iii) For each ℓβj we can define functions nβj so that

Eℓβj
(A ◦ f nβ j) = ∑

α

cαβjEℓαβj
(A),

where length(ℓαβj) ≥ δ0 and for each m > 0

∑
β

cβjPℓβj
(nβj ≥ m)) ≤ Cθm j = 1, 2.

In [DSzV 07] this lemma was formulated with (iii) replaced by

(̃iii) ∑
β:length(ℓβj )≤ρ

cβj ≤ Const (δ0)ρ.
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For the Poincare map (iii) follows from (̃iii) and the Growth Lemma

(Proposition 1 (b)). In our case (iii) follows from (̃iii) by combining
Proposition 1 (b) and Lemma 11.
As in [ChM 06] we can deduce the exponential mixing by a re-

peated application of Lemma 14. More precisely we have the fol-
lowing statement.

Lemma 15. Suppose that there are constants θ̂, nL, cL such that for any
standard pairs ℓ1 and ℓ2 with length(ℓj) ≥ δ0 we have

Eℓj
(A ◦ f nL ) = ∑

α

cαEℓαj
(A) + ∑

β

cβjEℓβj
(A)

where ∑α cα ≥ cL and (ℓα1, ℓα2) satisfy the conditions of Lemma 14, then
for any A ∈ H such that ν[L](A) = 0, for any standard pair ℓ and for any

n ≥ C| log length(ℓ)|we have

|Eℓ(A ◦ Tn[L])| ≤ C(A)

[(
1− c cL

nL

)n
+ θ̂n

]
.

Our goal is to verify the conditions of Lemma 15 with nL = c1L
p1 ,

cL = c2L
−p2 (we do not pursue the optimal values of pjs).

Let ǫ be a small constant. We claim that the conditions of Lemma
15 are verified if γ1,γ2 belong to {|q− L/2| ≤ ǫL}with ñL = Const (ǫL)2,
c̃L = c̄ (the tildes mean that this values are only valid not for all
curves but only for curves close to the middle of M[L]). Indeed in the
case of the non-modified Lorentz process this is proven in [DSzV 07].
However if ǫ is sufficiently small then we can make

Pℓj
(qk visits the modified part before Const (ǫL)2)

as small as we wish due to Proposition 2(d). In particular we can
make this probability smaller than c̄/4 where c̄ is the correspond-
ing constant for the non-modified Lorentz process. This implies our
claim.
Next we prove that there are constants c3, c4 such that for any stan-

dard pairs ℓ1, ℓ2 with length(ℓj) ≥ δ0 we have

Pℓj
(|qc3L2 − L/2| ≤ ǫL, rc3L2(x) ≥ δ0) ≥

c4
L
.

This is achieved in three steps. Let τ̃ be the first time when

|qτ̃ − L/2| ≤
ǫL

3
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then by Lemma 3(b) there exists c5 such that

Pℓj
(τ̃ ≤ c3L2 and qk does not visit the modification for k = 1 . . . τ̃) ≤ c5/L.

Observe that τ̃ can be significantly less than c3L
2 but by Proposition

2(c) there exists a constant c6 such that

Pℓj
(|qk − L/2| ≤

2ǫL

3
for k = τ̃ . . . c3L

2) ≥ c6.

Finally we claim that there is a constant c7 such that

(32) Pℓj
(|qk− L/2| ≤ ǫL for k = τ̃ . . . c3L

2 and rc3L2 (x) ≥ δ0)

≥ Pℓj
(|qk − L/2| ≤

2ǫL

3
for k = τ̃ . . . c3L

2)(1− c7δ0).
Indeed if |qc3L2−

√
L−L/2 | ≤ 2ǫL/3 then |qc3L2 − L/2| ≤ ǫL so the

result follows from the Growth Lemma (Proposition 1 (b)). Now
part (a) of Theorem 7 follows from Lemma 15.
Part (b) of Theorem 7 follows from Theorem 6(b) while part (c) can

be deduced from the exponential mixing by the method of [ChD 07],
Section A4. �
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[SzV 04] D. Szász and T. Varjú. Local limit theorem for the Lorentz process and its
recurrence in the plane Ergodic Theory and Dynamical Systems 24 257–278,
2004.

[Y 98] Young L.–S. Statistical properties of dynamical systems with some hyperbolicity,
Ann. Math. 147 (1998) 585–650.

[Y 99] Young L.–S. Recurrence times and rates of mixing, Israel J. Math. 110 (1999)
153–188.

[Z 04] O. Zeitouni, Random walks in random environment, Lectures on probability
theory and statistics, 189–312, Lecture Notes in Math., 1837, Springer, Berlin
(2004).

[Z 06] O. Zeitouni,Randomwalks in random environments, J. Phys. A 39 (2006)R433–
R464.

DMITRY DOLGOPYAT: DEPARTMENT OFMATHEMATICS, UNIVERSITY OFMARY-
LAND, COLLEGE PARK, MD 20742, USA,,
DOMOKOS SZÁSZ, TAMÁS VARJÚ: BUDAPEST UNIVERSITY OF TECHNOLOGY, MATH-
EMATICAL INSTITUTE, BUDAPEST, EGRY J. U. 1 HUNGARY H-1111,
E-mail address: dmitry@math.umd.edu, szasz@math.bme.hu, kanya@math.bme.hu


