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Abstract

We systematically analyse globally consistent SU(5) GUT models on inter-
secting D7-branes in genuine Calabi-Yau orientifolds with O3- and O7-planes.

Beyond the well-known tadpole and K-theory cancellation conditions there
exist a number of additional subtle but quite restrictive constraints. For the

realisation of SU(5) GUTs with gauge symmetry breaking via U(1)Y flux we
present two classes of suitable Calabi-Yau manifolds defined via del Pezzo

transitions of the elliptically fibred hypersurface P1,1,1,6,9[18] and of the Quin-
tic P1,1,1,1,1[5], respectively. To define an orientifold projection we classify all
involutions on del Pezzo surfaces. We work out the model building prospects

of these geometries and present five globally consistent string GUT models in
detail, including a 3-generation SU(5) model with no exotics whatsoever. We

also realise other phenomenological features such as the 10 10 5H Yukawa cou-
pling and comment on the possibility of moduli stabilisation, where we find

an entire new set of so-called swiss-cheese type Calabi-Yau manifolds. It is
expected that both the general constrained structure and the concrete models

lift to F-theory vacua on compact Calabi-Yau fourfolds.
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1 Introduction

The LHC experiment is widely expected not only to confirm the existence of the Higgs
particle as the last missing ingredient of the Standard Model of Particle Physics, but
also to reveal new structures going far beyond. As experiments are proceeding into

this hitherto unexplored energy regime, string theory, with its claim to represent the
unified theory of all interactions, will have to render an account of its predictions
for physics beyond the Standard Model. Clearly, these depend largely on the value
of the string scale Ms, the most dramatic outcome corresponding to Ms close to the

TeV scale. While this is indeed a fascinating possibility, in concrete string models it
often leads to severe cosmological issues such as the cosmological moduli problem.
In this light it might be fair to say that a more natural (but also more conservative)

scenario involves a value of Ms at the GUT, Planck or intermediate scale.

During the last years, various classes of four-dimensional string compactifications

with N = 1 spacetime supersymmetry have been studied in quite some detail (see
the reviews [1, 2, 3, 4, 5] for references). From the viewpoint of realising the Mini-
mal Supersymmetric Standard Model (MSSM) and some extension thereof the best
understood such constructions are certainly the perturbative heterotic string and

Type IIA orientifolds with intersecting D6-branes. On the contrary, as far as moduli
stabilisation is concerned Type IIB orientifolds with O7- and O3-planes look very
promising. The combination of three-form fluxes and D3-brane instantons can sta-
bilise all closed string moduli [6] even within the solid framework of (conformal)

Calabi-Yau manifolds where reliable computations can be performed. Moreover, su-
persymmetry breaking via Kähler moduli mediation and the resulting structure of
soft terms bear some attractive features and have been studied both for the LARGE
volume scenario [7,8] with an intermediate string scale and for a GUT scenario with

the string scale at the GUT scale [9, 10].

These considerations are reason enough to seriously pursue model building within

type IIB orientifolds. The observation that the MSSM gauge couplings appear to
meet at the GUT scale furthermore suggests the existence of some GUT theory at
high energies. GUT gauge groups such as SU(5) and SO(10) appear naturally in

string theories based on gauge group E8 like the heterotic string. On the other hand,
it has become clear that for perturbative orientifolds with D-branes, exceptional
gauge groups and features like the spinor representations of SO(10) do not emerge.
For SU(5) D-brane models, by contrast, the gauge symmetry and the desired chiral

matter spectrum can be realised, a fact welcome in view of the described progress in
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Type IIB moduli stabilisation. Still, at first sight there appears a serious problem in
the Yukawa coupling sector. The 10105H Yukawa coupling violates global pertur-
bative U(1) symmetries which are the remnants of former U(1) symmetries rendered

massive by the Stückelberg mechanism [11]. As a consequence of these considerations
it is sometimes argued that the natural context for Type II GUT model building is
the strong coupling limit, where the crucial couplings in question are not “perturba-
tively” forbidden. The strongly coupled duals of type IIA and Type IIB orientifolds

are given by singular M-theory compactifications on G2 manifolds and, respectively,
by F-theory compactifications on elliptically fibred Calabi-Yau fourfolds [12]. The
local model building rules for such F-theory compactifications have been worked out
recently in [13, 14, 15, 16, 17, 18, 19]; For recent studies of 7-branes from the F-theory

perspective see [20, 21, 22, 23, 24].

On the other hand, investigations of non-perturbative corrections for Type II

orientifold models [25, 26, 27] have revealed that the 10105H Yukawa coupling can
be generated by Euclidean D-brane instantons wrapping suitable cycles Γ in the
internal manifold with the right zero mode structure [28]. Of course these couplings

are suppressed1 by the exponential of the instanton action ℜ(Tinst) = g−1
s Vol(Γ). It is

crucial to appreciate that this suppression is not tied to the inverse gauge coupling of
the Standard Model, as would be the case for effects related to gauge (as opposed to
“stringy”) instantons, but can in principle take any value, depending on the geometric

details of our compactification manifold. This feature, which holds both for Type
IIA and Type IIB orientifolds, opens up the prospect of SU(5) GUT model building
already in the limit Tinst → 0 of perturbative Type II orientifolds. Once we also
take the nice features of moduli stabilisation in Type IIB into account, one might

seriously hope that the strong coupling limit of Type IIB orientifolds, either in their
genuinely F-theoretic disguise or in their perturbative description as D-brane models
with O7- and O3- planes and Tinst → 0, may indeed provide a promising starting
point to construct realistic GUT models.

In the recent work [14,16], the authors draw the first conclusion (see also [13,17]).
Taking into account that F-theory models on elliptically fibred fourfolds can admit

degenerations of the elliptic fibre such that exceptional gauge groups appear natu-
rally, these references pursue the program of studying GUT type F-theory compacti-
fications. As a physical input, the authors of [14,16] propose the working hypothesis

1Note that for a Georgi-Glashow SU(5) GUT the 10105H Yukawa gives masses to up-type
quarks, whereas for flipped SU(5) it provides the down-type quark masses. In the latter case, the
exponential suppression might explain the little hierarchy between up and down quarks [28].
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that the Planck scale ought to be decouple-able from the GUT scale, even if only in
principle. From the Type IIB perspective, these F-theoretic models do not only con-
tain usual D-branes, but also so-called (p, q) seven-branes which carry charge under

both the R-R and the NS-NS eight-forms. The new non-perturbative states, such as
the gauge bosons of exceptional groups or the spinor representations of SO(10), are
given by (p, q) string junctions starting and ending on these branes. Unlike funda-
mental strings, these string junctions can have more than two ends thus providing

extra states.

From the guiding principle of decoupled gravity it is further argued in [16] that

the (p, q) 7-branes should wrap shrinkable four-cycles in the internal geometry. These
are given by del Pezzo surfaces2. Lacking a global description of Calabi-Yau fourfolds
with the desirable degeneration, the authors provide a local set-up of singularities or
(p, q) 7-branes and line bundles so that the GUT particle spectrum is realised. At

a technical level there arises a challenge with GUT symmetry breaking because a
theory on a del Pezzo surface has neither adjoints of SU(5) nor discrete Wilson lines
at its disposal to break SU(5) to SU(3) × SU(2) × U(1)Y . One option would be to

adopt the philosophy of heterotic compactifications and embed a further non-trivial
U(1) line bundle, as discussed for the heterotic string originally in [31] and more
recently in [32,33,34,35]. For line bundles non-trivial on the Calabi-Yau manifold, the
associated U(1) generically becomes massive due to the Stückelberg mechanism, but

in presence of several line bundles special linear U(1) combinations remain massless.
In the heterotic context of [34], in order to maintain gauge coupling unification
without relying on large threshold corrections it is necessary to consider the large gs

limit of heterotic M-theory [36].

As a new and very central ingredient the authors of [16] propose to break the GUT
gauge group instead by a line bundle embedded into U(1)Y such that it circumvents

the sort of no-go theorem mentioned above (see also [17]). The idea is to support the
bundle on a non-trivial two-cycle inside the del Pezzo surface which is trivial on the
ambient four-fold base. It was argued in [16] that with this mechanism some of the
notorious problems of GUTs such as the doublet-triplet splitting problem, dangerous

dimension five proton decay operators and even neutrino masses can be addressed
and actually solved by appropriate choices of matter localisations and line bundles
on the del Pezzo divisors. Studies of supersymmetry breaking mechanisms for this

class of local models have appeared in [37, 38, 39].

The Planck-scale decoupling principle might be a justification for a local approach

2Local quiver type models on del Pezzo singularities have been studied, for example, in [29, 30].
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to string model building (and indeed a quite constraining one), but in absence of a
realisation of the described mechanisms in globally consistent string compactifica-
tions it remains an open question if these local GUT models do really consistently

couple to gravity. In fact, it is the global consistency conditions of string theory
which decide whether a given construction is actually part of the string landscape or
merely of the “swampland” of gauge theories. At a technical level, it is therefore no
wonder that they constitute some of the biggest challenges in string model building,

and many interesting local constructions fail to possess a compact embedding sat-
isfying each of these stringy consistency conditions. For example, whether or not a
given U(1)Y flux actually leads to a massless hypercharge depends on the global em-
bedding of the divisor supporting the 7-brane into the ambient geometry and cannot

be decided within a local context.

In F-theory the global consistency conditions, in particular the D7-brane tad-

pole cancellation condition, are geometrised: They are contained in the statement
that indeed a compact elliptically fibred fourfold exists such that the degenerations
of the fibre realise the GUT model. This is a very top-down condition and given

the complexity and sheer number of fourfolds it is extremely hard to implement in
practise.

It is the aim of this paper to address these global consistency conditions by
taking a different route. As described above Georgi-Glashow SU(5) GUT models
can naturally be realised on two-stacks of D7-branes in a perturbative Type IIB
orientifold. Here we have quite good control over the global consistency conditions

as they are very similar to the well-studied Type I or Type IIA orientifolds. Therefore,
our approach is to first construct a GUT model on a Type IIB orientifold, satisfy all
consistency conditions, check whether the top quark Yukawa is really generated by
an appropriate D3-instanton and then take the local Tinst. → 0 limit3.

To follow this path, we start by partly newly deriving, partly summarising the
model building rules for Type IIB orientifolds. We then study how much of the

appealing structure proposed in the F-theoretic context, such as the U(1)Y GUT
gauge breaking, can already be realised in perturbative Type IIB orientifolds on
Calabi-Yau threefolds with intersecting D7-branes wrapping holomorphic surfaces
with non-trivial vector- or line-bundles.

In order for the U(N) gauge factors on the D7-banes not to exhibit chiral mul-

3Here we make the working assumption that a Type IIB vacuum satisfying all K-theory and
supersymmetry constraints has an uplift to F-theory on a Calabi-Yau fourfold. We are aware that
this may not be so straightforward to show [40].
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tiplets transforming in the adjoint representation, the four-cycle wrapped by the
7-brane should be rigid. A natural class of such complex four-manifolds is again
given by del Pezzo surfaces, which therefore remain important ingredients from a

phenomenological point of view4. This leads us to the study of a class of suitable
Calabi-Yau threefolds admitting complex divisors of del Pezzo type whose non-trivial
two-cycles are partially trivial when considered as two-cycles of Y . A large class of
such Calabi-Yau threefolds is given by del Pezzo transitions, as have been recently

discussed in a slightly different context in [41]. The idea is to start for instance with
the well-studied “swiss cheese” type Calabi-Yau hypersurface P1,1,1,6,9[18], which is
elliptically fibred over P2, and blow up points on the base. As a second starting
point for such del Pezzo transitions we consider the quintic P4[5]. As we will see such

Calabi-Yau manifolds are natural candidates for GUT model building.

More concretely, in Section 2 we collect the string model building rules for Type

IIB orientifolds with O7- and O3-planes. Since these involve intersecting D7-branes
supporting non-trivial gauge bundles, the relevant structure is a combination of Type
I and Type IIA orientifold features and as such is slightly more complicated and

subtle. In particular, since the del Pezzo surfaces wrapped by the D7-branes are
not Spin, one has to take into account the Freed-Witten anomaly [42] shifting the
proper quantisation for the gauge fluxes5. Moreover, for involutions with h2

− > 0 one
encounters dynamical B-field moduli, which have to be appropriately dealt with.

In Section 3 we discuss how we can realise a D-brane sector supporting a Georgi-
Glashow SU(5) GUT model. In many respects this is very analogous to SU(5) GUTs

in intersecting D6-brane scenarios (for concrete examples see, for example, [43, 11,
44,45,46,47,48]). We show that the GUT symmetry breaking via U(1)Y flux can be
realised in the perturbative Type IIB orientifold framework and provide the condi-
tions under which this flux can solve the doublet-triplet splitting problem and the

suppression of dimension five proton decay operators. By studying which quantities
are affected by this flux we find that not only the gauge group is broken but also
the non-chiral spectrum and the D3-brane tadpole generically changes. Very anal-
ogous features are expected to arise also in F-theory compactifications on compact

Calabi-Yau fourfolds equipped with non-vanishing four-form flux.

The slightly more mathematical Section 4 defines a class of compact Calabi-Yau

4Note, however, that the class of rigid surfaces is larger than that of shrinkable, that is, del Pezzo,
surfaces. For example, the surface dP9, which is rigid, but not contractible, is still an interesting
candidate for a GUT D7-brane in this respect.

5An analogous quantisation condition is expected to also arise for the four-form flux in F-theory
compactifications on compact as well as on non-compact Calabi-Yau fourfolds.
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manifolds naturally containing del Pezzo surfaces. These compact manifolds have
recently been considered in [41] and contain the kind of holomorphic surfaces allow-
ing for the realisation of many of the GUT features we are interested in. They can

be described as elliptic fibrations over del Pezzo surfaces dPn, n = 1, . . . , 8 and their
various connected phases related via flop transitions. In the elliptic fibration itself,
besides the dPn basis, we find various dP9 surfaces, which via the flop transitions be-
come dP8 surfaces or P2 surfaces with more than nine points blown up. In the course

of this section, to define the orientifold actions we have to investigate the existence of
appropriate involutions. In order not to interrupt the physics elaborations too much
this rather technical though central discussion has mainly been shifted to appendix
A. The mathematically interested reader is encouraged to consult this appendix for

more details on the classification of involutions and the determination of the fixed
point loci. As an important part of our analysis we will prove the “swiss cheese”
structure of those del Pezzo transitions where the dP9 surfaces have all been flopped

to dP8 surfaces. We will show that as a consequence of this structure the D-term
supersymmetry conditions force the cycles supporting D-branes to take a vanishing
volume, that is, they are dynamically driven to the quiver locus.

In Sections 5 and 6 we present some first concrete SU(5) GUT models. These are
the outcome of an essentially manual search which has succeeded in implementing
all known global consistency conditions. As a warm-up, Section 5 discusses at length

an SU(5) model on the Weierstraß model over dP2 with two chiral families of SU(5)
GUT matter, one vector-like pair of Standard Model Higgs and no chiral exotics.
The GUT matter transforming in the 10 is localised in the bulk of the GUT branes,
while the 5 and the Higgs pair arise at matter curves. Upon breaking SU(5) by

means of U(1)Y flux there arise extra vector-like pairs of Standard Model matter.
As one of its phenomenologically appealing features, this model contains a 10105H

Yukawa coupling of order one induced by a Euclidean D3-brane instanton in the limit
Tinst. → 0, but the global consistency conditions do not allow for the construction

of a three-generation model on this particular geometry. To remedy this we present,
in Section 6, a string vacuum of a similar type on the del Pezzo transition of this
Weierstraß model, but featuring three chiral families of Standard Model matter, no

chiral exotics and only two pairs of extra vector-like states. As a consequence of
the swiss cheese structure of the manifold, the D-term supersymmetry conditions
drive the vacuum to the boundary of the Kähler cone. This can be avoided in a
three-generation GUT model on the Weierstraß model over dP3 as discussed in the

remainder of this section. The key phenomenological achievements and drawbacks
of these three examples are summarised in Tables 9, 13, and 15.
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In Section 7 we analyse yet another class of geometries based on the quintic
hypersurface which also contain del Pezzo surfaces suitable for GUT model building
by extending the examples of [41]. In this type of geometries it is possible to localise

all GUT matter at matter curves, thus avoiding the appearance of extra vector-
like pairs in the bulk. The D-term supersymmetry conditions can be realised for
non-zero cycle volume. Once again due to subtle global consistency constraints we
only present a two-generation GUT model exhibiting these features realised on dP8

surfaces, but remarkably we do find an interesting model with just three generations
of Standard Model matter and no exotics whatsoever on a related geometry featuring
dP9 surfaces. The detailed properties of these two examples are summarised in
Tables 17 and 19, respectively.

In Section 8 we comment on the possibilities of moduli stabilisation in our class of
models. Taking our findings for GUT model building into account, the most natural

realisation of the LARGE volume scenario of moduli stabilisation seems to place the
GUT branes and the instantons contributing to the superpotential on different, non-
intersecting dPn surfaces. This is expected to lead to a new pattern of soft terms

at the GUT scale and consequently to different collider signatures compared to the
studies which have appeared in the literature so far. Furthermore, we clearly need to
stabilise the string scale not at an intermediate, but at the GUT scale, for example
along the lines of [10]. The explicit elaboration of such aspects is, however, beyond

the scope of the present article.

2 Orientifolds with Intersecting D7-Branes

In this section we will introduce some preliminaries on Type IIB Calabi-Yau ori-

entifold compactifications with space-time filling D7 branes. In order for such a
scenario to be globally consistent and to preserve N = 1 supersymmetry in the four
flat dimensions we consider an orientifold projection which allows for O3 and O7

planes and takes the form O = (−1)FLΩpσ. Here σ is a holomorphic and isometric
involution of the internal Calabi-Yau manifold Y . The action of σ on the Kähler
form J of Y is σ∗J = J , while the holomorphic (3, 0) form transforms as σ∗Ω = −Ω.
Similarly, for the other string fields to remain in the spectrum they have to transform

with the appropriate parity under σ.

To determine the four-dimensional effective theory one first needs to examine the

surviving bulk and brane fields. At least locally, each such field can be identified with
an element of an appropriate bundle valued cohomology group on the internal mani-
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fold and the cycles wrapped by the D-branes. The involution σ splits the cohomology
groups into eigenspaces, and allows one to identify the spectrum preserved by the
orientifold. Focusing on the bulk fields corresponding to closed string excitations,

one notes that Hp,q(Y, C) splits as Hp,q
+ ⊕Hp,q

− with dimensions hp,q
± respectively. One

thus obtains the complex dilaton τ = C0 + ie−φ, h1,1
+ complexified Kähler moduli TI

and h1,1
− B-field moduli Gi given by [49, 50]

TI =

∫

Γ+
I

Π , Gi =

∫

γi
−

Π , Π = e−B
(
e−φRe

[
eiJ
]
+ iCRR

)
(1)

where CRR = C0 + C2 + C4. The cycles Γ+
I and γi

− form a basis of the homology
groups H+

2,2 and H−
1,1, respectively. We will call the continuous moduli Gi simply B−

moduli, since they encode the variations of the NS-NS and R-R two-forms. While no

dynamical moduli are associated with the reduction of the B-field along the positive
2-cycles ΓI

+ ∈ H+
1,1 there can still be discrete non-zero B-flux 1

2π

∫
ΓI

+
B = 1

2
. This

survives the orientifold action due to the axionic shift symmetry
∫

ΓI
+

B →
∫
ΓI

+
B+2π

and will sometimes be referred to as B+ flux. In the following we will determine

which quantities in the four-dimensional action depend on which of these closed
string moduli.

2.1 Intersecting D7-Branes With Gauge Bundles

We first discuss the inclusion of space-time filling D7-branes in more detail. Consider
wrapping a stack of Na D7-branes around a four-cycle Da in Y . The calibration con-
dition for the D7-branes requires Da to be a holomorphic divisor [51]. The orientifold
symmetry σ maps Da to its orientifold image D′

a so that in the upstairs geometry

each brane is accompanied by its image brane. There are three different cases to be
distinguished:

1. [Da] 6= [D′
a],

2. [Da] = [D′
a] but Da 6= D′

a point-wise, and

3. Da = D′
a point-wise, that is, D7-branes coincide with an O-plane.

In the first two situations, the D7-brane may or may not intersect an O7-plane. For
vanishing gauge flux, branes of the first type carry unitary gauge groups, while those
of the other two types yield symplectic or orthogonal gauge groups. In absence of
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CFT methods to uniquely distinguish SO vs. SP Chan-Paton factors the rule of
thumb is that a stack of Na branes plus their Na image branes on top of an O7−/+-
plane6 gives rise to a gauge group SO(2Na)/SP (2Na). The same configuration along

a cycle of type 2 with locally four Dirichlet-Neumann boundary conditions to the
O7−/+-plane yields gauge group SP (2Na)/SO(2Na).

Gauge fluxes on D7-branes

Each stack of D7-branes can carry non-vanishing background flux for the Yang-
Mills field strength Fa. Recall that the field strength Fa appears in the Chern-
Simons and DBI action only in the gauge invariant combination Fa = Fa + ι∗B1,

where ι : Da → Y denotes the embedding of the divisor Da into the ambient space.
Therefore all physical quantities depend a priori only on Fa. However, as we will
describe in detail below, with the exception of the D-term supersymmetry condition
only the discrete B+-flux effectively enters the consistency conditions.

A consistent configuration of internal gauge flux is mathematically described in
terms of a stable holomorphic vector bundle7 by identifying the curvature of its

connection with the Yang-Mills field strength. For all concrete applications in this
article it will be sufficient to restrict ourselves to the simplest case of line bundles
La, corresponding to Abelian gauge flux. For a single D-brane wrapping a simply
connected divisor these are determined uniquely by their first Chern class c1(La)

as an element of H2(Da) or equivalently by a two-cycle la with class in H2(Da) as
La = O(la). For stacks of several coincident branes wrapping the divisor Da we also
have to specify the embedding of the U(1) structure group of the line bundle into

the original gauge group on the branes.

Let us start with a stack of Na branes of type 1 and decompose the background

value of the physical Yang-Mills field strength F as

Fa = T0 (F (0)
a + ι∗B) +

∑

i

Ti F
(i)
a . (2)

Here T0 = 1Na×Na refers to the diagonal U(1)a ⊂ U(Na) while Ti are the traceless

Abelian8 elements of SU(Na). This defines the line bundles L
(i)
a as

c1(L
(0)
a ) =

1

2π
(F (0)

a + ι∗B) ∈ H2(Da), c1(L
(i)
a ) =

1

2π
F (i)

a ∈ H2(Da). (3)

6A O7−/+-plane carries −8/ + 8 times the charge of a D7-brane in the upstairs geometry.
7More generally, gauge flux is described by coherent sheaves, but for our purposes it suffices to

consider vector bundles on the divisors.
8This can be generalised to non-Abelian vector bundles. For example, on a stack of Na coincident
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Note that in view of the appearance of Fa in all physical equations the B-field is to
be included in c1(L

0
a).

While the effect of L
(0)
a is merely to split U(Na) → SU(Na) × U(1)a, the other

L
(i)
a will break SU(Na) further. The relevant example we will be studying in detail is

the breaking of U(5)a → SU(5)×U(1)a → SU(3)×SU(2)×U(1)Y ×U(1)a by means
of diagonal flux and another line bundle corresponding to the hypercharge generator
TY . Note that the Abelian gauge factors may become massive via the Stückelberg

mechanism [54].

For a stack of 2Na invariant branes of type 2 and 3 a non-trivial bundle L
(0)
a

breaks SO(2Na)/SP (2Na) → SU(Na) × U(1)a and the embedding of L
(i)
a works in

an analogous manner. We will be more specific in the context of the concrete setup
described in Subsection 3.1.

In general it is possible for some components of9 c1(La) along H2(Da) to be trivial

as elements of H2(Y ). Recall that the inclusion ι : Da → Y defines the pushforward
ι∗ : H2(Da)→ H2(Y ) and pullback ι∗ : H2(Y )→ H2(Da). Then one can split La as

La = ι∗La ⊗ Ra, (4)

with La = O(ℓa) defined as a line bundle on the Calabi-Yau Y . The part of La trivial
in Y , denoted as Ra = O(ra), corresponds to a two-cycle ra which is non-trivial on

Da but a boundary in Y , that is, [ra] ∈ ker(ι∗). The possibility of considering such
gauge flux in the relative cohomology of Da in Y was first pointed out in [55,56] and
its relevance for model building was stressed in [30, 41].

We need to understand which quantities are affected by a relative flux R. In this
context, we will make heavy use of the following integrals

∫

Da

c1(ι
∗Lb) ∧ c1(ι

∗Lc) =

∫

Y

[Da] ∧ c1(O(ℓb)) ∧ c1(O(ℓc)) = κabc,

∫

Da

c1(ι
∗Lb) ∧ c1(Rc) =

∫

Da∩ℓb

c1(Rc) = 0, (5)

∫

Da

c1(Rb) ∧ c1(Rc) = ηabc ,

branes one can define a holomorphic rank na bundle (with na dividing Na) and embed its structure
group U(na) into the original U(Na) theory. This breaks the four-dimensional gauge group down
to the commutant U(Na/na) of U(na) in U(Na). See [52, 53] for a general discussion in terms of
D9-branes on Calabi-Yau manifolds.

9In the sequel we will sometimes omit the superscripts in L
(i)
a to avoid cluttering of notation.
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where κabc and ηabc are not necessarily zero. We conclude that the integral over a
divisor of a pull-back two form wedge a two-form which is trivial in Y vanishes. As
will be detailed below, this implies that a bundle in the cohomology which is trivial

in Y but non-trivial on Da does not affect the chiral spectrum, the D-term supersym-
metry conditions and the D5-brane tadpole of the brane configuration. However, it
does affect the gauge symmetry, the D3-brane tadpole and the non-chiral spectrum
of the model.

Quantisation condition

Essential both for consistency of the theory and for concrete applications is to ap-
preciate the correct quantisation conditions on the gauge flux. Following [42] they
are determined by requiring that the worldsheet path integral for an open string
wrapping the two-surface Σ with boundary ∂Σ along Da be single-valued. Consider

first a single brane wrapping the divisor Da and carrying Abelian gauge flux Fa. The
quantity to be well-defined is given by

Pfaff(D) exp (i

∫

∂Σ

Aa) exp (i

∫

Σ

B) (6)

in terms of the Pfaffian of the Dirac operator, the connection A of the Abelian gauge
bundle and the B-field. If Da is not Spin, that is, if c1(KDa) 6= 0 mod 2, the Pfaffian

picks up a holonomy upon transporting ∂Σ around a loop on Da [42]. This holonomy
must be cancelled by the second factor in eq. (6). For internal line bundles this is
guaranteed if the gauge flux obeys the condition

∫

ω

Fa +
1

2

∫

ω

KDa ∈ Z ∀ω ∈ H2(Da, Z), (7)

or equivalently, using our convention eq. (3),

c1(La)− ι∗B +
1

2
c1(KDa) ∈ H2(Da, Z). (8)

Note in particular that for trivial B flux along Da, ι∗B = 0, the Abelian gauge
bundle on the single brane Da has to be half-integer10 quantised if the divisor Da is
not Spin.

10The quantisation condition eq. (8) with non-trivial B-field is related to the concept of vector
bundles without vector structure [57] in Type I theory as studied recently, for example, in [58, 59].

14



This condition is readily generalised to line bundles on stacks of D-branes. The
probe argument of [42] now implies that the path integral has to be well-defined for
every disk worldsheet Σ with boundary on each of the branes in the stack of Na

D-branes wrapping Da. This requires

T0 (c1(L
(0)
a )− ι∗B) +

∑

i

Ti c1(L
(i)
a ) +

1

2
T0 c1(KDa) ∈ H2(Da, Z)Na×Na . (9)

where the notation on the right hand side means that all elements of the Na × Na

matrix on the left hand side are in H2(Da, Z). One concludes that depending on the

precise from of Ti the bundles L
(i)
a can in general be fractionally quantised, a fact

that will be very important for our applications.

A second constraint arises for the continuous B− moduli in H2
−: the restriction

to Da of the characteristic class ζ of the B−-field, introduced in [42], has to equal the
third Stiefel-Whitney class of Da. Recall from [42] that modulo torsion, ζ is given by
the field strength H = dB− and that for complex divisors the third Stiefel-Whitney
class is always zero. Moreover, for all surfaces considered in this paper, we have

H3(Da, Z) = 0 so that H = dB− always restricts to zero on the divisor. Therefore
no further condition on the B-field moduli Gi introduced in (1) arises from these
considerations.

Orientifold action

Let us now describe the orientifold action on the gauge flux. To this end note that
the orientifold action σ : D → D′ induces a map on cohomology, σ∗ : H2(Da, Z) →
H2(D′

a, Z). The full orientifold action on a vector bundle on Da is given by the
composition σ∗Ωp. Here Ωp acts as dualisation, La → L∨

a . In particular, the Chern

character of the image bundle is

chk(L
′
a) = (−1)kσ∗chk(La) = σ∗chk(L

∨
a ). (10)

We now discuss the three cases introduced at the beginning of Subsection 2.1
in turn. In the first situation, where not even the homology class of the brane is

preserved, one can define two divisors D±
a and two vector bundles L±

a by setting

D±
a = Da ∪ (±D′

a) , L±
a |Da = La , L±

a |D′
a

= ±L′
a, (11)

where −D′
a is the cycle D′

a with reversed orientation. Upon setting H2(D+
a ) =

H2(Da)⊕H2(D′
a) and decomposing the latter into positive and negative eigenspaces

under σ∗, H2(D+
a ) = H2

+(D+
a )⊕H2

−(D+
a ) [55], it follows that c1(L

+
a ) ∈ H2

−(D+
a ).
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In the second case the homology class is preserved but the brane is not point-wise
fixed. Hence, the homology class of D−

a in eq. (11) is trivial and we can use [Da] =
1
2
[D+

a ]. The degree-2 cohomology group of Da thus splits again as H2(Da, Z) =

H2
+(Da) ⊕ H2

−(Da). On the covering space of the orientifold one requires an even
number of branes in the homology class of Da which are pairwise identified under the
involution σ. Clearly, this corresponds to an integer number of branes on D+

a . The
Chern class c1(La) on Da is in the full H2(Da) and (Da, La) is mapped to (Da, L

′
a)

as in eq. (10).

In the third case, for Da on top of the orientifold, H2(Da) = H2
+(Da) and (Da, La)

is mapped to (Da, L
∨
a ). This case directly parallels the situation for D9-branes in

Type I compactifications. An odd number of branes stuck on top of the orientifold
plane is not possible, as discussed recently in [23]. Formally we therefore work
upstairs with the system 2Na Da carrying the invariant bundle La ⊕ L∨

a .

2.2 Tadpole Cancellation for Intersecting D7-Branes

In consistent compactifications it is crucial to cancel the tadpoles of the space-time
filling intersecting D7-branes. Satisfying the tadpole cancellation condition ensures

that the spectrum is free of non-Abelian gauge anomalies. In general, D7-branes carry
also induced D3- and D5- charges arising due to a non-trivial gauge-field configuration
on the seven branes and through curvature corrections. All induced tadpoles for a
compactification have to be cancelled.

Throughout this article we will be working upstairs on the ambient Calabi-Yau
manifold before taking the quotient by σ. Recall that the K-theoretic charges Γ of

a D7-brane and the O7-plane along divisors Da and DO7 are encoded in the Chern-
Simons coupling to the closed RR-forms 2π

∫
R1,3×Da

∑
2p C2pΓ. Concretely these are

given by

SD7 = 2π

∫

R1,3×Da

∑

2p

C2p tr
[
e

1
2π

Fa

] √ Â(TD)

Â(ND)
,

SO7 = −16π

∫

R1,3×DO7

∑

2p

C2p

√
L(1

4
TDO7)

L(1
4
NDO7)

(12)

in terms of the Â-roof and the Hirzebruch genus associated with the tangent and

normal bundles to the respective divisors. The D7-, D5-, and D3-brane charges
follow upon straightforward decomposition of eq. (12).
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Let us start by discussing cancellation of the D7-charge. In a consistent orientifold
compactification the D7-brane charge has to equal the charge carried by the O7-
planes, ∑

a

Na ([Da] + [D′
a]) = 8 [DO7], (13)

where the sum is over all D7a-branes. Since supersymmetric D7-branes together with
their orientifold images wrap cycles Da + D′

a in the homology classes of H+
4 (Y ), the

orientifold invariant charges are captured by the Poincaré dual cohomology H2
+(Y )

on the ambient Calabi-Yau manifold Y .

A net D5-brane charge can be induced by a gauge-field configuration Fa on Da

(and the respective orientifold images) if there exist non-trivial elements in H2
−(Y ).

The D5-brane charge along the element ωb ∈ H2(Y, Z) of a stack of Na branes
carrying Abelian gauge flux as in eq. (3) reads

ΓD5
ω =

1

2π

∫

Y

ω ∧ [Da] ∧ trFa , (14)

where
1

2π
trFa =

∑

I

tr [TI ] c1(L
(I)
a ), I = 0, i . (15)

The condition for cancellation of D5-brane charge therefore takes the form

∑

a

∫

Y

ω ∧
(
[Da] ∧ trFa + [D′

a] ∧ trFa′

)
= 0 , (16)

and has to be satisfied for all elements ω ∈ H2
−(Y ). Clearly this condition is vacuous

if all branes are of the type [Da] = [D′
a] and c1(L

(I)
a′ ) = c1

(
(L

(I)
a )∨

)
, but it may be

quite restrictive in more general situations.

The general condition for cancellation of the D3-brane tadpole takes the form

(ND3 + ND3′) + Nflux −
∑

a

(Qa
D7 + Q′a

D7) =
NO3

2
+ QO7 . (17)

Here ND3 counts the number of D3-branes, each of which is accompanied by its

orientifold image11. Nflux denotes the possible contributions from G3 = F3 + τ H3

11In particular, if nD3 D3-branes lie inside an O7-plane they come together with their images
and yield gauge group Sp(2nD3).
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form flux, which is in particular important for complex structure moduli stabilisation.
The induced D3-charge on the O7-planes is given by

QO7 =
χ(DO7)

6
=

1

6

∫

Y

c2(DO7) ∧ [DO7]

=
1

6

∫

Y

[DO7]
3 + c2(TY ) ∧ [DO7] . (18)

If a stack of Na D7-branes wraps a smooth divisor of type 1 or 3, as defined on
page 11, their D3-charge reads

Qa
D7 = Na

χ(Da)

24
+

1

8π2

∫

Da

trF2
a (19)

with

1

8π2
trF2

a =
1

2

∑

I,J

tr[TI TJ ] c1

(
L(I)

a

)
c1

(
L(J)

a

)
. (20)

More subtle is the case 2, since eq. (17) will be modified as discussed in [21,23]. One
replaces the Euler characteristic by

Qa
D7 = Na

χo(Da)

24
+

1

8π2

∫

Da

trF2
a , χo(Da) = χ(Σa)− npp, (21)

where Σa is an auxiliary surfaces Σa obtained by blowing up the singular points in
Da, while npp counts the number of pinch points in Da.

The relation to the F-theory D3-brane tadpole condition becomes obvious if one
slightly reorders the terms in eq. (17) and divides by two,

ND3 +
Nflux

2
+ Ngauge =

NO3

4
+

χ(DO7)

12
+
∑

a

Na
χo(Da)

24
(22)

with

Ngauge = −
∑

a

1

8π2

∫

Da

trF2
a = −1

2

∑

a

Na

∫

Da

∑

I,J

tr[TI TJ ] c1

(
L(I)

a

)
c1

(
L(J)

a

)
. (23)

The right-hand side of equation (22) is precisely χ(Y4)/24 in the F-theory lift of this

Type IIB orientifold, where Y4 denotes the Calabi-Yau fourfold. This implies that
generically each topologically different arrangement of D7-branes cancelling the RR
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eight-form tadpole constraints lifts to a different Calabi-Yau fourfold with different
Euler characteristic. For the trivial solution with eight D7-branes placed right on top
of the smooth orientifold plane with npp = 0 the right hand side of (22) simplifies to
NO3

4
+ χ(DO7)

4
. It is a consistency check that this number is indeed an integer.

Let us emphasise that for the cancellation of anomalies only the D7 and D5-
tadpole constraints are important. The D3-brane tadpole is in some sense only
related to the non-chiral sector of the D-brane theory. This is related to the fact

that a D3-brane can never carry any chiral modes, as it can in principle be moved to
a position away from the D7-branes. The expectation is that a globally consistent
Type IIB orientifold model with a supersymmetric D7- and D5-brane sector lifts up
to F-theory on a compact Calabi-Yau fourfold. The cancellation of the D3-brane

tadpole is an additional attribute both in Type IIB orientfolds and in F-theory
models. Taking also into account that for moduli stabilisation and the realisation
of inflation, the presence of (a small number of) anti-D3-branes is very welcome, in
this paper we take all the D7- and D5-brane supersymmetry constraints very serious

but are a bit more relaxed about the existence of anti- D3-branes in the system. In
fact, we will find that in our semi-realistic GUT examples the D3-brane tadpole can
easily be saturated by already modest addition of gauge fluxes on the D7-branes.

Role of B−-moduli

Before proceeding we would like to comment on the role of the continuous B−-moduli
appearing in F and thus in the D-brane charges. It is natural to wonder how to

reconcile their contribution with the discrete nature of a quantity such as the D5- or
D3-brane charge.

In fact the B− moduli decouple from the tadpole equations by means of the D7-
brane tadpole cancellation condition (13) and the simple observation that the B−
field restricts trivially to the O7-plane,

∫

DO7

ω ∧B− = 0 , ∀ω ∈ H2
−(Y ) . (24)

Concretely, the B−-contribution to the D5-brane tadpole condition (16)

∑

a

Na

∫

Y

ω ∧
(
[Da] ∧ B− + [D′

a] ∧B−
)

= 8

∫

Y

ω ∧ [DO7] ∧B− = 0 (25)

indeed vanishes due to (13) and (24).
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To isolate the B−-moduli in the D3-brane tadpole let us introduce the quantity

c1(L̃a) = c1(La)− B− (26)

and rewrite the induced D3-brane tadpole as

−
∑

a

Na

[ ∫

Da

(
c1(L̃a) + B−

)2

+

∫

D′
a

(
c1(L̃

′
a) + B−

)2
]

. (27)

For simplicity we are sticking to gauge flux 1
2π
F = T0c1(La). For the mixed term we

find that

−
∑

a

Na

∫

Y

(
[Da] ∧ c1(L̃a) + [D′

a] ∧ c1(L̃
′
a)
)
∧B− = 0 , (28)

where we have used the D5-brane tadpole cancellation condition (16). Finally, we
evaluate

−
∑

a

Na

∫

Y

(
[Da] ∧B2

− + [D′
a] ∧B2

−

)
= −8

∫

DO7

B2
− = 0 (29)

so that as anticipated the continuous B−-moduli do not appear in the tadpole can-
cellation conditions.

K-Theory charge cancellation

Apart from cancellation of these homological charges, also all K-theoretic torsion

charges have to sum up to zero. In general it is a very non-trivial task to compute
all in particular torsional K-theory constraints. However, according to the probe
brane argument of [60] cancellation of torsion charges is equivalent to absence of a

global SU(2) Witten anomaly on the worldvolume of every probe brane supporting
symplectic Chan-Paton factors. In concrete compactifications this amounts to re-
quiring an even number of fundamental representations in the sector between the
physical D7-branes and each symplectic probe brane. Note that in a concrete model

determining all symplectic four-cycles is also far from trivial.

2.3 The Massless Spectrum

For applications to phenomenology it is essential to understand the massless matter
arising from open strings stretching between two stacks of D7-branes.

Non-chiral matter transforming in the adjoint representation emerges from strings
with both endpoints on the same D-brane along Da. It consists of the vector multiplet
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together with h1,0(Da) and h2,0(Da) chiral multiplets describing the Wilson line and
deformation moduli of the D7-branes. Matter in the bifundamental representation12

(Na, Nb) and (Na, Nb) arises from open strings stretching between two different D7-

branes in the (a, b) and (a′, b) sector, respectively. Intersections between a brane and
its image, that is, of type (a′, a), yield matter in the (anti)symmetric representation.
For example, if all branes are on top of a O7(−)-plane, then all states in the (a′, a)
sector are anti-symmetrised. On an invariant brane with four Dirichlet-Neumann

boundary conditions with an O7(−)-plane, the (a′, a) states are symmetrised. The
chiral spectrum is summarised in Table 1, see also [61]. For the concrete computation

sector U(Na) U(Nb) chirality

(ab) (−1) (1) Iab

(a′b) (1) (1) Ia′b

(a′a) (2) 1 1
2
(Ia′a + 2IO7a)

(a′a) (2) 1 1
2
(Ia′a − 2IO7a)

Table 1: Chiral spectrum for intersecting D7-branes. The subscripts denote
U(1) charges.

of the chiral index Iab and to determine the vector-like spectrum we have to distin-
guish two situations according to the localisation of matter on sub-loci of different
dimensions. For simplicity we again only discuss the case where all D7-branes carry

holomorphic line bundles.

2.3.1 Matter Divisors

For two D7-branes wrapping the same divisor Da = Db = D and carrying line
bundles La and Lb, matter in the bifundamental representation (N a, Nb) is counted
by the extension groups [62]

Extn(ι∗La, ι∗Lb), n = 0, . . . 3, (30)

12For the general overview we only consider diagonal embeddings and postpone a discussion of
more general line bundles to the applications in Section 5.
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where i : D→ Y defines the embedding of D in the Calabi-Yau Y . The value n = 1
refers to anti-chiral multiplets transforming as (Na, Nb), while n = 2 corresponds
to chiral multiplets in the same representation. For consistency, the states counted

by the groups corresponding to n = 0 and n = 3 have to absent. These states
do not correspond to matter fields but rather gauge fields and have been named
ghosts in [13]. We show in Subsection 2.4 that for supersymmetric configurations
with the Kähler form inside the Kähler cone these ghosts are automatically absent.

By running through the spectral sequence, one can show that the sheaf extension
groups eq. (30) are given by appropriate cohomology groups for line bundles on the
divisor D, concretely

Ext0(ι∗La, ι∗Lb) = H0(D, La ⊗ L∨
b ),

Ext1(ι∗La, ι∗Lb) = H1(D, La ⊗ L∨
b ) + H0(D, La ⊗ L∨

b ⊗ND),

Ext2(ι∗La, ι∗Lb) = H2(D, La ⊗ L∨
b ) + H1(D, La ⊗ L∨

b ⊗ND),

Ext3(ι∗La, ι∗Lb) = H2(D, La ⊗ L∨
b ⊗ND). (31)

By Serre duality and ND = KD we can relate H i(D, La⊗L∨
b ⊗ND) = H2−i(D, L∨

a ⊗
Lb). It straightforwardly follows that for the chiral index Iab counting bifundamental
matter transforming as (Na, Nb) one obtains

Ibulk
ab =

3∑

n=0

(−1)n dim Extn(ι∗La, ι∗Lb)

= χ(D, La ⊗ L∨
b )− χ(D, La ⊗ L∨

b ⊗ND)

= −
∫

Y

[D] ∧ [D] ∧ ( c1(La)− c1(Lb) ) .

(32)

In these conventions Iab > 0 if there is an excess of chiral states in the representation

(Na, Nb). Note that this expression only depends on the components of c1(Li) which
are non-trivial on the ambient Calabi-Yau manifold, cf. eq. (5).

We have the additional freedom to twist the line bundle La on D by a line bundle
Ra with ι∗Ra = O. This does not change the chiral spectrum, though it can change
the vector-like one and will in general contribute to the D3-tadpole.

2.3.2 Matter Curves

If the two D7-branes wrap different divisors Da and Db intersecting over a curve C
of genus g and carrying line bundles La and Lb, the cohomology groups counting
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matter in (N a, Nb) are

Hi
(
C, L∨

a ⊗ Lb ⊗K
1
2
C

)
. (33)

Here i = 0 and i = 1 refer to chiral and anti-chiral states in the representation
(Na, Nb), respectively13. The chiral index Iab counting the excess of chiral over anti-
chiral states transforming as (Na, Nb) follows from the Riemann-Roch-Hirzebruch

theorem as

I loc.
ab = χ(C, L∨

a ⊗ Lb ⊗K
1
2
C ) = −

∫

Y

[Da] ∧ [Db] ∧ ( c1(La)− c1(Lb) ) . (34)

In terms of extension groups we therefore get

Exti(ι∗La, ι∗Lb) =





0 i = 0

H1(C, L∨
a ⊗ Lb ⊗K

1
2
C ) i = 1

H0(C, L∨
a ⊗ Lb ⊗K

1
2
C ) i = 2

0 i = 3.

(35)

Finally, the index IO7a in Table 1 is

IO7a =

∫

Y

[DO7] ∧ [Da] ∧ c1(La), (36)

reflecting the absence of a gauge bundle on top of the orientifold plane.

We leave it to the readers to convince themselves that, as in the context of the

tadpole cancellation conditions, the B−-moduli also drop out automatically from all
cohomology groups describing the massless spectrum.

2.4 F- and D-Term Supersymmetry Constraints

Let us discuss the constraints which need to be imposed in order for the brane
configuration to be supersymmetric. In the four-dimensional effective action these
constraints manifest themselves through the vanishing of F- and D-terms in the
vacuum. In the following we will discuss both sets of constraints in turn.

We first turn to the supersymmetry constraints imposed by the vanishing of
the D-terms. Recall that the D-term induced by a gauging of a field-independent

13Note the different assignment of chiral and anti-chiral multiplets with the extension groups of
even and odd degree for bulk and localised matter. This can be derived, for example, by T-duality
from the analogous phenomenon in D9-D5 systems [52, 53].
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symmetry with Killing vector XL
a is of the form Da = X̄L

a ∂M̄LK, where K is the
Kähler potential. Let us recall the induced gauging for the complex scalars TI and
Gi defined in (1). A gauging of TI can be induced for a non-trivial line bundle on a D7-

brane (Da, La), while Gi can be gauged if there exists a D′
a which is not homologous

to Da, that is, if we are in the case 1 defined at the beginning of Subsection 2.1,
page 11. The Killing vectors for these gaugings are of the form

Xa I =

∫

Da

[Γ+
I ] ∧ c1(L̃a) , Xi

a =

∫

Da

[γi
−] ∧B− , (37)

where Γ+
I , γi

− are the four- and two-cycles introduced in eq. (1) to define TI, G
i. Note

that there is no continuous moduli dependence in Xa I since we have explicitly split
off the B− field as in eq. (26). One next notes that [49, 63]

∂TI
K ∼ rI , ∂GiK ∼ si, (38)

where rI , si arise in the expansions J = rI [Γ+
I ] and J∧B− = si[γ

i
−]. It is important to

note that the expression for ∂TI
K in eq. (38) is also valid away from the large volume

limit. For example, one of the rI can become small while ∂GiK will receive additional
corrections, for example, due to world-sheet instantons. We thus encounter a moduli
dependent Fayet-Iliopoulos term for the configuration of the form [51,55]

ξa ∼
∫

Da

ι∗J ∧ (c1(L̃a) + B−) =

∫

Da

ι∗J ∧ c1(La) . (39)

Note that ξa depends on the pullback of the Kähler form J of Y to the D7-brane and
as a consequence of eq. (5) only on the components of c1(La) which are non-trivial on
Y . Furthermore the B−-moduli, encoded in c1(La), do not drop out of the D-terms.

For vanishing VEVs of the chiral fields charged under the U(1) supported on the D7-
branes, the D-term supersymmetry condition requires these FI-terms to vanish. This
imposes conditions on the combined Kähler and B− moduli space. As long as the
Kähler moduli are chosen such that J is indeed invariant under the orientifold action,

the Fayet-Iliopoulos term for (Da, La) and (D′
a, L

′
a) coincide. We will encounter that

in a concrete example in Subsection 6.2.

For line bundles La 6= O satisfying the D-term constraint eq. (39), we will now
derive two important consequences:

No ghosts

First, we realise that the FI-term is nothing else than the slope µ(La) of the line
bundle La. Now to come back to the question of ghosts in the massless spectrum in
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eq. (31), it is important to recall the general fact that

• For two vector bundles Va, Vb of equal slope and rank, µ(Va) = µ(Vb) and

rk(Va) = rk(Vb), the existence of a map 0→ Va → Vb implies that Va = Vb.

We thus conclude for the extension groups between two supersymmetric line bundles
La 6= Lb that Ext0(ι∗La, ι∗Lb) = Ext3(ι∗La, ι∗Lb) = 0. Indeed, if H0(D, La ⊗ L∨

b )

were non-vanishing, we could define a map 0 → O → La ⊗ L∨
b where both O and,

by hypothesis, La ⊗ L∨
b have vanishing slope. Therefore, La = Lb in contradiction

to our assumption. The same reasoning for the dual bundle L∨
a ⊗ Lb shows that

Ext3(ι∗La, ι∗Lb) = 0.

D3-tadpole contribution

Second we note that for line bundles with vanishing slope for a Kähler form inside

the Kähler cone, the contribution of the gauge flux to the D3-brane tadpole always
has the same sign

− Na

2

∫

Da

c2
1(La) ≥ 0. (40)

Indeed, on a surface Da the set of c1(La) with vanishing slope is given by H2(Da)−
{M ∪ −M}, where M denotes the Mori cone of Da. However, the Mori cone contains

all classes C with C2 > 0 and C ·K > 0. Therefore, c2
1(La) ≤ 0. This result implies

that for supersymmetric brane configurations the possible choices of line bundles are
rather limited if we do not want to introduce anti–D3-branes in the system.

Finally, let us mention that the other supersymmetry conditions, namely the
holomorphy of the divisor and the bundle, arise from a superpotential

WD7 =

∫

C(La,L′
a)

Ω, (41)

where C(La, L
′
a) is a chain ending on the two-cycle Poincaré dual to c1(L

+
a ) on the

divisor Da + D′
a.

3 SU(5) GUTs and Their Breaking

After this discussion of the general model building rules for Type IIB orientifolds
with O7- and O3- planes we can now become more specific about the realisation of
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SU(5) Georgi-Glashow GUTs. Parts of the logic are very similar to the implemen-
tation of GUT models in Type IIA intersecting D-branes [43,11,45] as described, for
example, in [11, 28]. Let us first transfer these rules to our Type IIB setting. Then

we move forward to describe how the mechanism of GUT symmetry breaking via
U(1)Y flux, exploited by [16] in the local F-theory context, can also be realised in
this perturbative orientifold limit.

3.1 Georgi-Glashow SU(5) GUT

The starting point is the construction of a U(5) × U(1) gauge theory from a stack
of five D7-branes wrapping a four-cycle Da and one additional brane wrapping Db.
These brane stacks carry holomorphic bundles La and Lb, respectively.

The orientifold action maps (Da, La)→ (Da′, L′
a) (and similarly for (Db, Lb)). As

previously discussed, this includes the case that Da is invariant under σ. First we

diagonally embed two line bundles La and Lb by identifying their structure group
with the diagonal U(1)a and U(1)b, respectively. Each of the two Abelian factors
U(1)a and U(1)b separately acquires a mass by the Stückelberg mechanism as long

as Da and Db are non-trivial homology cycles [54].

A more group theoretic way of describing the gauge group and its matter content
is to start with an SO(12) gauge group. The embedding of two line bundles with

structure groups U(1)a,b can break this to U(5)× U(1), where the generators of the
two U(1)s are embedded into SO(12) as

U(1)a ∈ diag ( 15×5, 0 | 0,−15×5 ) ,

U(1)b ∈ diag ( 05×5, 1 | − 1, 05×5 ) . (42)

The adjoint of SO(12) decomposes into SU(5)× U(1)a × U(1)b representations as

[66] = [24](0,0) + [1](0,0) + [10](2,0) + [10](−2,0) + [5](1,−1) + [5](−1,1)

+[5](1,1) + [5](−1,−1). (43)

To ensure absence of a massless combination of U(1) factors we require that [Da]
and [Db] be linearly independent in H4(Y, Z). Note that in the presence of further
tadpole cancelling D7-branes it has to be ensured that the full mass matrix is of

maximal rank.
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The MSSM spectrum

The massless states transforming in the adjoint representation are given by the de-
formations of the four-cycles, which are counted by H1(D,O) (Wilson lines) and
H2(D,O) (transversal deformations). In principle we could allow for precisely one

such adjoint of SU(5), which might break the SU(5) symmetry to the Standard
model by the Higgs mechanism. An example of such a surface with h(2,0) = 1 is K3.
However, a complete GUT model relying on this mechanism would have to address
the generation of a suitable potential for the GUT Higgs field from string dynamics

such that SU(5) is broken dynamically to the Standard Model. Since we will rather
be breaking the GUT symmetry by embedding U(1)Y flux, we insist that the SU(5)
stack wraps a rigid four-cycle. This is satisfied for del Pezzo surfaces, which have
h1,0(D) = h2,0(D) = 0. In view of the rules of Table 1 the charged GUT spectrum

requires the chiral intersection pattern listed in Table 2.

state number sector U(5) U(1)

10 3 (a′a) (2) 1

5 3 (ab′) (−1) (−1)

1N 3 (b′b) 1 (2)

5H + 5H 1 + 1 (ab) (−1) (1)

Table 2: Chiral spectrum for intersecting D7-brane model. The indices denote
the U(1) charges. The last line gives the Higgs particles.

The first two lines contain the antisymmetric representation 10 of SU(5) and the
fundamental 5. The states from the b′b sector are necessary to satisfy the “formal”

U(Nb) anomaly (3 × (4 + 1) − 3 × 5 = 0) and carry the charges of right-handed
neutrinos. States from the (a′b) carry the right quantum numbers to be identified
with the pair of Higgs fields 5H + 5H. However, one can also realise the Higgs fields
from intersections (ac) between the SU(5) brane stack and a third one. In contrast

to SO(10) GUTs, here all massless fields are perturbatively realised by open string
stretched between stacks of D7-branes.

The various fields are localised on the intersection of the various divisors. As
mentioned already in Subsection 2.1, these are either curves or divisors. In the latter
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case one has to compute cohomology classes over a del Pezzo surface, which in general
gives also vector-like matter. On the contrary, if two divisors intersect over a curve
vector-like states are much easier to suppress. We will exemplify this feature in the

concrete examples to be discussed later.

Yukawa couplings

The Yukawa couplings which give masses to the MSSM fields after GUT and elec-

troweak symmetry breaking are

10(2,0) 10(2,0) 5H
(1,−1), 10(2,0) 5

(−1,−1)
5H

(−1,1)
1

(0,2)
N 5

(−1,−1)
5H

(1,−1) , (44)

where the upper indices denote the Abelian U(1)a × U(1)b charges. If as indicated
we realise the matter and Higgs fields as in Table 2, the last two Yukawa couplings,
i.e. the ones generating masses for the d-quarks and leptons, are allowed already at
the perturbative level. For them to be present the wave functions of the massless

modes have to overlap. If all states are localised on curves, this means that the three
divisors have to meet at a point. On a Calabi-Yau threefold, this is generically the
case. Note that to first order the wavefunctions of the fields localise strictly along
the matter curves and these perturbative Yukawa couplings are of rank one. Only

higher order corrections to the wavefunction profile are responsible for a non-trivial
family structure. If on the other hand the 10 and the 1N arise from the bulk of the
GUT brane and the U(1)b brane while the 5 and the Higgs are localised on curves,
the perturbative Yukawa couplings involve the triple-product of the restriction of

corresponding powers of La and Lb to the matter curve.

By contrast, it is obvious from their U(1) charges in eq. (44) that the u-quark

Yukawa couplings 10105H are perturbatively forbidden. For quite some time this
was considered the main obstacle to the construction of open string SU(5) GUT
models. This no-go was bypassed in [28] where it was pointed out that an isolated,

rigid Euclidean D3-brane instanton wrapping a four-cycle Dinst of O(1) type (that is,
in particular invariant under orientifold action) can generate these missing Yukawa
couplings. This requires extra fermionic charged matter zero modes localised at
the intersection of the instanton with the two stacks of D7-branes. Concretely, a

necessary condition is that the chiral intersection numbers are

Ia,inst = 1, Ib,inst = −1 . (45)

The resulting six chiral zero modes λi
a, λb, i = 1, . . . 5, can then be absorbed by the
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disc diagrams

10(2,0) λi
aλ

j
a, 10(2,0) λk

aλ
l
a, 5

(1,−1)
H λm

a λb . (46)

As detailed [28] this results in non-perturbative couplings proportional to

Y α Y β ǫijklm 10ij
α 10kl

β 5m
H (47)

with i, j, . . . denoting SU(5) group indices and α, β labelling families. Note that the

coupling eq. (47) is of unit rank in family space so that a single instanton gives rise
to masses only for one particular generation of u-quarks. This is a consequence of the
fact that the multiplicities of the λi-modes are only due to their SU(5) Chan-Paton
factors. As stated above, this is a similar situation to the one for the perturbative

couplings, which to first order are also of rank one. For non-perturbative couplings of
the form (47) the resolution has to involve several distinct instantons whose combined
effect may be to give rise to higher rank couplings.

Of course the amplitude is suppressed by the instanton action

exp

(
− 1

2gs

∫

Dinst

J ∧ J

)
. (48)

As such the scale of the coupling is independent of the GUT coupling, which is
controlled by the cycle volume of the GUT brane. The instanton cycle entering the
above suppression, however, is a priori unrelated to the GUT cycle. Still in the
perturbative regime gs ≪ 1 there is the danger that the coupling tends to be too

small. In our approach we will eventually take the small Tinst limit of the orientifold
model and, besides imposing the tadpole constraints, will require that at least for the
third family this Yukawa coupling is generated by a Euclidean D3-brane instanton.

Of course we have to ensure that when Tinst→ 0 not the whole manifold degenerates.
In principle the large hierarchy in the u-quark masses between the third and the first
two families can be engineered by different instantons with suitable suppression.

Very similarly, if the Higgs fields originate from the intersection of the SU(5)
branes with a third stack then the bottom Yukawa couplings carry U(1)3 charges

10(2,0,0) 5
(−1,−1,0)

5H

(−1,0,1)
(49)

and are therefore not gauge invariant any more. In this case, also these couplings can

only be generated non-perturbatively by an appropriate D3-brane instanton, which
intersects the U(1) stacks b and c just once.
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Dim=4 proton decay

In GUT theories there is the danger of generating dimension-four operators violating
baryon or lepton number

U D D, Q D L, LLE . (50)

Clearly if present they generate unacceptably fast proton decay. In Georgi-Glashow
SU(5) all these operators descend from the

10(2,0) 5
(−1,−1)

5
(−1,−1)

, (51)

coupling, which is perturbatively forbidden due to U(1)b violation. However, as just
described, even perturbatively absent couplings can be generated non-perturbatively
by D3-brane instantons. In certain domains of the Kaähler moduli space such

instanton-induced dimension-four operators would be dangerous. For an instanton
to generate such a coupling three situations are in principle conceivable in view of the

U(1)a and U(1)b charges: it either carries the six charged matter zero modes λi
a, λ

j

a,

λ
k

b with i, j, k = 1, 2 or alternatively the four zero modes λa, λa, λ
k

b with k = 1, 2.

The third possibility is that it carries just the two zero modes λ
k

b with k = 1, 2. On
the other hand, charged matter zero modes from intersections of the instanton with

the SU(5) stack always appear in multiples of five. We thus conclude that in absence
of any known mechanism to absorb the extra zero modes without pulling down more
charged matter fields, in the two first cases no such dangerous dimension-four oper-

ators are generated. However, the third option is not a priori excluded. Of course, if
such an instanton exists the coupling is exponentially suppressed, but we just learnt
in the context of the 10105H Yukawa coupling that this need not be the case in the
Tinst → 0 limit. Therefore, to be on the safe side we require that such an instanton

does not exist.

Neutrino masses

We have already seen that the Yukawa coupling 1N
(0,2) 5

(−1,−1)
5H

(1,−1) generates

Dirac type masses for the neutrinos. In order to realise for instance the see-saw
mechanism one also needs Majorana type masses of the order 1012−1015GeV. These
can be either generated by higher dimensional couplings involving some additional
SU(5) singlet fields or by D3-brane instantons [25, 26, 64, 65]. Higher dimensional

couplings are of course suppressed by the string scale, so that one needs to explain
the high scale of these terms.
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For directly generating a mass term

Smass = MN 1
(0,2)
N 1

(0,2)
N (52)

via an instanton, it has to carry the four charged matter zero modes λi
b, i = 1, . . . , 4.

In this case the Majorana mass scale is Ms exp(−Sinst) which, that is, depending on

the size of the four-cycle, can still give a suppression by a few orders of magnitude.

3.2 Breaking SU(5) to SU(3) × SU(2) × U(1)

Let us describe how one can break the SU(5) GUT via a line bundle LY whose

structure group is embedded into U(1)Y . This method was used in the context
of local F-theory GUT models in [16]. Here we will discuss its implementation
within the perturbative orientifold and find important quantisation constraints on
the bundle LY . Clearly these have to be taken into account in a string theoretically

consistent framework.

Suppose we have designed the model such that the SU(5) gauge symmetry is

supported on a D7-brane wrapping a rigid divisor, which is a del Pezzo surface
dPr ⊂ Y containing r + 1 homological 2-cycles. Therefore, even though we cannot
turn on (discrete) Wilson lines (as π1(D) is vanishing), we have the chance to break
the SU(5) gauge symmetry to the Standard Model by turning on non-vanishing flux

in U(1)Y . This Abelian flux FY is embedded into the fundamental representation of
SU(5) as FY TY ⊂ SU(5) with

TY =




−2
−2

−2
3

3




. (53)

Such gauge flux through a non-trivial 2-cycle in Y would lead, via the Green-Schwarz
mechanism, to a mass term by mixing with an axion. However for flux supported on a

two-cycle of the dPr trivial in Y , there is no axion to pair with and the U(1)Y remains
massless after gauge symmetry breaking [30,16]. As discussed in Subsection 2.1, this
means that for U(1)Y to remain massless we have to choose U(1)Y such that its first
Chern class c1(LY ) ∈ H2(Da, Q) is trivial on the ambient Calabi-Yau space Y , that

is, the element dY ∈ H2(Da, Q) specifying LY = ODa(dY ) must lie in the kernel of
the pushforward ι∗H2(Da) → H2(Y ). From the relations eq. (5) it is immediately

31



clear that this flux does not change the chiral spectrum, the D7- and D5-tadpole
constraints and the Fayet-Iliopoulos terms.

Cancellation of the Freed-Witten anomaly again constrains the quantisation of
the bundles La and LY . In view of the diagonal embedding of La into U(5) condition
eq. (9) becomes

T0 (c1(La)− ι∗B) + TY c1(LY ) +
1

2
T0 c1(KDa) ∈ H2(Da, Z)5×5 (54)

with T0 = 15×5. This equation has two important consequences: First, c1(La)− ι∗B
and c1(LY ) can take fractional values. For example, for a Spin divisor the choice

c1(La) − ι∗B = 2
5
, c1(LY ) = 1

5
would be consistent. Second, the two independent

conditions encoded in the matrix valued equation (54) cannot be satisfied simulta-
neously for non-spin divisors without turning on non-trivial flux Fa as well14.

The breaking of SU(5) by means of LY flux induces the standard splitting of the
GUT multiplets into MSSM representations,

24→ (8, 1)0Y
+ (1, 3)0Y

+ (1, 1)0Y
+ (3, 2)5Y

+ (3, 2)−5Y
,

5 → (3, 1)2Y
+ (1, 2)−3Y

, (55)

10→ (3, 2)1Y
+ (3, 1)−4Y

+ (1, 1)6Y
,

5H → (3, 1)−2Y
+ (1, 2)3Y

, 5H → (3, 1)2Y
+ (1, 2)−3Y

.

As is familiar from the analogous embedding of U(1) bundles in heterotic compactifi-

cations [32] the number of massless states after GUT symmetry breaking is computed
by dressing the bundles appearing in the cohomology groups by a factor of Lq

Y . Here
q denotes the hypercharge of the MSSM fields.

From the decomposition of the adjoint of SU(5) one deduces that H∗(Da, L
±5
Y )

gives rise to extra massless states. Clearly, these vector-like exotics are phenomeno-
logically unappealing, so we require that these cohomology groups vanish. This is

a very strong requirement and for fifth powers of integer quantised line-bundles on
dPr impossible to satisfy.

However, as discussed above, c1(LY ) can really take values in Z/5. To illustrate
this further one can modify the embedding as follows. Instead of embedding the
line bundle La entirely into the diagonal U(1)a of U(5) as in eq. (42), one defines

14Note that this conclusion holds also in the context of F-theory compactifications. In a globally
consistent setup, non-trivial LY cannot be switched on at will, but only in combination with non-
trivial and suitably quantised 4-form flux that takes the role of La.
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two line bundles La and LY and identifies their field strengths with the following
combinations of generators Ta and TY of the diagonal U(1)a and hypercharge U(1)Y ,

La ↔ Ta, (56)

LY ↔
2

5
Ta +

1

5
TY .

The analogue of condition eq. (54),

c1(La)− ι∗B +
1

2
KDa ∈ Z, (57)

c1(La) + c1(LY )− ι∗B +
1

2
KDa ∈ Z,

leads to c1(LY ) ∈ Z and in general half-integer quantised La bundles. This agrees
with the fact that all cohomology groups involve integer powers of La and LY . It is
important to realise that the gauge flux U(1)Y , though being trivial in the cohomol-
ogy on Y nevertheless does contribute to the D3-tadpole condition. The contribution

of the fluxes La and LY reads

Ngauge = −5

2

∫

Da

c2
1(La)− 15

∫

Da

c2
1(LY ), (58)

where we have taken into account tr(T 2
Y ) = 30. Redefining as above La = La ⊗ L

2
5
Y

and LY = L
1
5
Y yields

Ngauge = −5

2

∫

Da

c2
1(La)−

∫

Da

c2
1(LY ) − 2

∫

Da

c1(La) c1(LY ) . (59)

LY being trivial on the Calabi-Yau, the mixed term
∫

c1(La) c1(LY ) may be non-
vanishing only if also La has components trivial on Y .

Let us discuss the effect of LY in more detail:

Massless U(1)Y

Since we have now embedded the line bundle LY into a combination of T0 and TY ,
one might be worried that due to the Green-Schwarz mechanism it is not directly
U(1)Y which remains massless. To find the massive Abelian gauge symmetry, we
have to evaluate the relevant axion coupling

∫

R1,3×Y

C4 ∧ Tr(F 2
GUT), (60)
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where FGUT is the total U(5) field strength supported on the GUT brane stack.
Splitting this into the four-dimensional parts F 4D and the internal background values
given by the first Chern classes, we can write

FGUT = T0

(
F 4D

0 +c1(La)−ι∗B+
1

2
c1(KDa)+

2

5
c1(LY )

)
+TY

(
F 4D

Y +
1

5
c1(LY )

)
. (61)

Inserting this into (60) and extracting the relevant term with two legs of Tr(F 2
GUT)

in the four-dimensional Minkowski space and two legs on the GUT D7-brane, one
immediately realises that it is still the diagonal F 4D

0 which mixes with the axions.

Exotics

As already described the decomposition of the adjoint of SU(5) yields massless states

counted by the cohomology groups H∗(Da,LY ). For phenomenological reasons we
require that these cohomology groups vanish. This gives already a very strong con-
straint on the possible line bundles.

MSSM matter fields

Using the bundles La and LY , we now express the relevant cohomology groups count-

ing the number quarks and lepton fields. As mentioned these modes localise either
on surfaces or on curves. To treat both cases simultaneously we express the number
of modes in terms of sheaf extension groups. It is understood that for the actual
computation one uses the formulae collected in Subsection 2.3.

The anti-fundamental matter representation of SU(5) splits as

(3, 1)2Y
: Ext∗(La,L−1

b ), (62)

(1, 2)−3Y
: Ext∗(La ⊗ LY ,L−1

b )

with Lb = Lb. Similarly, for the anti-symmetric representation, we have to compute

the three cohomology classes

(3, 2)1Y
: Ext∗(L−1

a ⊗ L−1
Y ,La),

(3, 1)−4Y
: Ext∗(L−1

a ,La), (63)

(1, 1)6Y
: Ext∗(L−1

a ⊗ L−2
Y ,La).

Since LY is trivial in Y it is guaranteed that the chiral index of these representations
does not change. However, in general the vector-like matter will change and will
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be different for MSSM states descending from the same GUT multiplet. This is
avoidable if all matter is localised on curves (and not on surfaces) and that the
restriction of LY to this matter curve vanishes.

Higgs field and 3-2 splitting

The fundamental representation for the Higgs field of SU(5) splits as

(3, 1)−2Y
: Ext∗(L−1

a ,L−1
b ), (64)

(1, 2)3Y
: Ext∗(L−1

a ⊗ L−1
Y ,L−1

b ).

Note that all these states are vector-like. We need that the SU(2) doublets remain

massless and that the SU(3) triplets get a mass of the GUT scale. This translates into
requiring that Ext∗(L−1

a ,L−1
b ) = (0, 0, 0, 0) and Ext∗(L−1

a ⊗ L−1
Y ,L−1

b ) = (0, 1, 1, 0).
For the Higgs fields localised on the intersection curve Cab of the U(5) divisor Da

and the U(1) divisor Db, two possibilities can occur.

The first option is that the intersection locus is a single elliptic curve, that is,
Cab = T 2. In this case the restriction of the line bundles to Cab have to be of degree

zero so that indeed no chiral matter is localised on Cab. Recall that a degree zero line
bundle on the elliptic curve Cab can be written as O(p− q), where p, q denote points
different from the origin 0 of the elliptic curve. The trivial bundle O corresponds

to p − q = 0 and has cohomology H∗(Cab,O) = (1, 1). If p − q 6= 0 the line bundle
has a non-trivial Wilson line and the cohomology groups vanish. It is therefore clear
that for an appropriate choice of the line bundles appearing in eq. (64) it can be
arranged that only the doublet remains massless while the triplets acquire string

scale masses. According to what we just said this happens provided the restriction
of the line bundles appearing in eq. (64) to the genus one matter curve Cab take the
form

L−1
a ⊗ Lb|Cab

= O(p− q), p− q 6= 0,

L−1
a ⊗ L−1

Y ⊗ Lb|Cab
= O. (65)

To see how to arrange for this, suppose one has found a model where the line bundles
La and Lb can both be written as the pullback of line bundles from the Calabi-Yau,

La = ι∗a La, Lb = ι∗b Lb. (66)

Since L−1
a ⊗Lb|Cab

is of degree zero in this case L−1
a ⊗Lb|Cab

= O with trivial Wilson
lines. The relations eq. (65) can now simply be met by twisting La by a line bundle
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Ra on Da which is trivial on the ambient manifold and satisfies

Ra = L−1
Y . (67)

As with everything desirable in life this surgery is not for free, as the new contribution
of the GUT brane to the D3-brane tadpole is increased from eq. (59) to15

Na
gauge = −5

2

∫

Da

c2
1(La)−

3

2

∫

Da

c2
1(LY ). (68)

We will however also encounter cases16 in which eq. (66) is not the situation to
begin with. In particular it may be inconsistent to define the final GUT bundle
as ι∗aLa ⊗ L−1

Y because this bundle might exhibit ghosts in its spectrum. For the
line bundle appearing in (64), in this case we have, supposing for definiteness that

Lb = ι∗bLb,

L−1
a ⊗ L−1

Y ⊗ Lb|Cab
= O(p1 − q1). (69)

We then need to twist Lb by a line bundle Rb trivial on the ambient space, and every
such bundle satisfies Rb|Cab

= O(p2 − q2)|Cab
. To ensure p1 + p2 − (q1 + q2) = 0,

as desired, might require adjusting some of the complex structure moduli of the
manifold.

On the other hand, it was argued in [16] that in case Hu and Hd are localised
on a single curve, dimension five proton decay operators Q Q Q L can be generated

by exchanging Kaluza-Klein modes of the Higgs-triplet. To avoid such operators,
it was suggested that the intersection locus Da ∩ Db consists of two components
C1 ∪ C2, such that the 5H originates from H∗(C1,L−1

a ⊗ Lb ⊗
√

KC1) = (1, 0) and

5H from H∗(C2,L−1
a ⊗ Lb ⊗

√
KC1) = (0, 1). This is the second option we have for

the localisation of the Higgs field.

The top Yukawa couplings

We have seen that in the SU(5) GUT model the top quark Yukawa coupling 10105H

can be generated by a single rigid O(1) instanton with the right charged matter zero

mode structure. We need to check whether this is compatible with the breaking of
the SU(5) GUT group by the U(1)Y flux.

15Here we are using that La = ι∗a La prior to twisting by Ra so that the cross-term in eq. (59)
vanishes.

16This discussion is only relevant for the models proposed in Section 5 and Subsection 6.1.
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Recall that the five zero modes λi
a transform in the 5 representation of the SU(5)

and the single zero mode λb in the singlet representation of SU(5) with U(1)b charge
qb = +1. The U(1)Y flux splits the 5 representation according to (55), that is,

the (3, 1)2Y
zero modes are counted by Ext∗(La,O) and the (1, 2)−3Y

modes by
Ext∗(La ⊗ LY ,O). As long as the SU(5) stack of branes and the instanton brane
intersect over a 2-cycle non-trivial in the Calabi-Yau manifold, the restriction of LY

to the intersection locus vanishes and we get precisely three instanton zero modes

λi
a transforming in the (3, 1)2Y

representation and two zero modes λ̃j
a transforming

in the (1, 2)−3Y
representation. Since LY is supported on the SU(5) stack, the

single zero mode λb also still exists. Then the Standard Model top-Yukawa couplings
(3, 2) (3, 1) (1, 2)H are generated by the instanton via the following absorption of the

six charged instanton zero modes

(3, 2)1Y

∣∣ (3, 1)λa

2Y
(1, 2)λ̃a

−3Y

(3, 1)−4Y

∣∣ (3, 1)λa

2Y
(3, 1)λa

2Y
(70)

(1, 2)3Y

∣∣ (1, 2)λ̃a

−3Y
(1, 1)λb

0Y
.

The µ-term

The supersymmetric µ term clearly vanishes at tree-level. For having it directly
generated non-perturbatively, the rigid O(1) instanton must carry the four charged
matter zero modes λa, λa and λb, λb. However, due to the SU(2) Chan-Paton factor
the λ always come in multiples of two, so that these simple non-perturbative µ-

terms are absent. However, they can be generated by higher dimensional operators
involving SU(5) gauge singlets, which have to receive some non-vanishing vacuum
expectation value.

3.3 Summary of GUT Model Building Constraints

In this section we have collected a number of perturbative and non-perturbative
stringy mechanisms to first realise Georgi-Glashow SU(5) GUTs and second to solve
some of their inherent problems. The perfect string model, besides being globally

consistent would of course satisfy all these constraints. Eventually, one also has to
address the issue of moduli stabilisation by fluxes and instantons, some aspects of
which we discuss in Section 8. A more thorough and complete analysis is beyond the
main scope of this paper but truly on the agenda.
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Let us summarise in Table 3 the main properties a realistic string GUT model
should have

property mechanism status

globally consistent tadpoles + K-theory X

D-term susy vanishing FI-terms inside Kähler cone X

gauge group SU(5) U(5)× U(1) stacks X

3 chiral generations choice of line bundles La,b X

no vector-like matter localisation on curves X

1 vector-like of Higgs choice of line bundles X

no adjoints rigid 4-cycles← del Pezzo X

GUT breaking U(1)Y flux LY on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p+-decay local. of Hu, Hd on disjoint comp. X

1055H Yukawa perturb. or D3-instanton X

10105H Yukawa presence of appropriate D3-instanton X

Majorana neutrino masses presence of appropriate D3-instanton X

Table 3: Summary of SU(5) properties and their realisations by different

Type IIB orientifold mechanisms. The mark X in the last column
indicates that all features can in principle be realised.

4 Del Pezzo Transitions on P1,1,1,6,9[18]

In this section we discuss a first class of Calabi-Yau orientifold backgrounds which
will later support our GUT models. The underlying geometries are compact Calabi-
Yau manifolds Mn which can be either constructed as elliptic fibrations over del Pezzo
surfaces dPn, or by performing del Pezzo transitions. To set the stage for our analysis

of the Calabi-Yau orientifolds we will first recall some basic geometric facts about
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the surfaces dPn in Subsection 4.1 and classify all involutions on these surfaces. In
Subsection 4.2 we argue that the elliptically fibred Calabi-Yau threefolds over dPn

can also be obtained by del Pezzo transitions starting from the degree 18 hypersurface

in P1,1,1,6,9 after flop transitions. Simple examples are obtained if the base is one
of the toric del Pezzo surfaces dP2 or dP3. In Sections 4.3 and 4.4 we construct
the corresponding Calabi-Yau threefolds and study their different topological phases
using toric geometry. In a second step we introduce viable orientifold involutions σ

on these compact Calabi-Yau manifolds and derive the induced tadpoles from O7
and O3 planes.

In the second part of this section we will have a closer look at the topological
phases of Mn with n dP8 surfaces. We show in Subsection 4.5 that these are examples
of so-called swiss-cheese Calabi-Yau manifolds which can support large volume vacua
with one large and n + 1 small four-cycles [7, 8, 66]. In Subsection 4.6 we discuss the

D-term conditions arising from wrapping a D7-brane on the small del Pezzo surfaces
with orientifold invariant homology class.

4.1 Del Pezzo Surfaces and Their Involutions

The compact orientifold geometries for our GUT models will be obtained from elliptic
fibrations over del Pezzo surfaces dPn. In order to study these threefolds it will be
necessary to review some basic facts about del Pezzo surfaces first. We will also

discuss involutions on these dPn. We will determine their fix-point locus and action
on the exceptional curves of the del Pezzo surface. Since these involutions on the
base will descend to involutions on the entire Calabi-Yau manifold, this will enable
us to identify viable brane configurations later on.

On the geometry of del Pezzo surfaces

By definition, del Pezzo surfaces are the Fano surfaces, that is, the algebraic surfaces
with ample canonical bundle. These are either the surfaces Bn = dPn, which are
obtained by blowing up P2 on 0 ≤ n ≤ 8 points17, or P1× P1. Their Hodge numbers

17The points must be general in the sense that no two points are infinitesimally close, no three
are on one line, no six on a conic, no eight on a cubic with a node at one of them. In other words,
one is not allowed to blow up points sitting on a (−1)-curve. If one were to blow up a point on a
(−1)-curve, then the proper transform would be a (−2)-curve. So yet another characterisation of
the allowed points is that there be no curves of self-intersection −2 or less. Moreover, note that
different sets of points can correspond to the same (complex structure on the) del Pezzo surface.
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are h0,0 = h2,2 = 1, h1,1
(
Bn

)
= n + 1 and h1,1

(
P1 × P1

)
= 2, while all other hp,q

vanish. A basis of homologically nontrivial two-cycles in Bn consists of the class of
a line l in P2, and the n exceptional curves ei, one for each blown-up point. Their

intersection numbers are l2 = 1, ei · ej = −δij, ei · l = 0. Written in this basis, the
first Chern class is

c1

(
TBn

)
= −K = 3l −

n∑

i=1

ei . (71)

The square of the canonical class

K2 =

∫

Bn

c2
1 = 9− n (72)

is also called the degree18 of the del Pezzo surface. The second (top) Chern class is
the Euler density, hence

χ
(
Bn

)
=

∫

Bn

c2 = 3 + n . (73)

Let C be a curve in the del Pezzo surface. Then its degree deg(C) and its arithmetic

genus g read

deg(C) = −K · C , g = 1
2
(C · C + K · C) + 1 . (74)

Of particular interest are the rigid genus-0 instantons, that is rational curves of self-
intersection (−1). For convenience of the reader we reproduce the classification of
such (−1)-curves, see [67], in Table 4.

The del Pezzo surfaces P2 = B0, P1 × P1, B1, B2, and B3 (that is, those of
degree K2 ≥ 6) are toric varieties. The remaining surfaces B4, . . . , B8 are not toric

varieties, but can of course be embedded into toric varieties. In particular, the del
Pezzo surfaces B5, . . . , B8 are hypersurfaces or complete intersections in weighted
projective spaces. For this, let us denote by P(d1, . . . , dr|w0, . . . , wm) the complete
intersection of r equations of homogeneous degree d1, . . . , dr in weighted projective

space with weights w0, . . . , wm. These del Pezzo surfaces are listed in Table 5. One
infers that the dimension of the complex deformation spaces for del Pezzo surfaces
Bn with n ≥ 5 is dim H1(TBn) = 2n − 8.

18To understand this notation, note that a degree d = K2 del Pezzo surface with d ≥ 3 can be
realised as a degree-d hypersurface in Pd.
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class ∈ H2(Bn, Z) B1 B2 B3 B4 B5 B6 B7 B8

(0; 1) 1 2 3 4 5 6 7 8

(1;−12) 1 3 6 10 15 21 28

(2;−15) 1 6 21 56

(3;−2,−16) 7 56

(4;−23,−15) 56

(5;−26,−12) 28

(6;−3,−27) 8

Total no. 1 3 6 10 16 27 56 240

Table 4: Number of (−1)-curves on the Bn del Pezzo surfaces. The

coefficients (a; b1, . . . bn) are with respect to the standard basis
(l; e1, . . . , en). For example, (1,−12) denotes all

(
n
2

)
homology

classes of the form l − ei − ej, 1 ≤ i < j ≤ n. Note that there
are no (−1)-curves on B0 = P2 and P1 × P1, which are omitted.

del Pezzo K2 hypersurface coordinates

B5 4 P(2, 2|1, 1, 1, 1, 1) (x1, x2, x3, x4, x5)

B6 3 P(3|1, 1, 1, 1) (x1, x2, x3, x4)

B7 2 P(4|2, 1, 1, 1) (y, x1, x2, x3)

B8 1 P(6|3, 2, 1, 1) (y, z, x1, x2)

Table 5: The del Pezzo surfaces of degree K2 ≤ 4.
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Classification of involutions on del Pezzo surfaces

In order to systematically study GUT models on elliptically fibred Calabi-Yau mani-
folds with del Pezzo base, one needs to classify all different, non-trivial, holomorphic
involutions on del Pezzo surfaces. In the following we intend to discuss the final

classification in Table 6 and give a first impression of the necessary steps needed for
this derivation. Most of the technical details and geometric constructions are shifted
into Section A. The classification in Table 6 completes the list obtained in ref. [41].

For a systematic classification of involutions we will look at the pattern of rigid
P1 instantons, that is, the (−1)-curves. Clearly, every involution induces a Z2 auto-
morphism of the (−1)-curves. Conversely, up to degree 6, the automorphism of the

(−1)-curves determines the involution. In the remaining degrees ≥ 7 there either
are no (−1)-curves, or they lie over a line or point of the blown-up P2. Hence, in
the latter case they do not “fill out” the space to uniquely determine the involution.
Technically, the (−1)-curves generate all of H2(S, Z) if and only if the degree is 6

or less. In a next step, one has to find all conjugacy classes of involutions acting
on the (−1) curves and check that these descend to actual geometric involutions on
the corresponding del Pezzo surface. The details of this analysis can be found in
Section A. Here we will discuss the final classification summarised in Table 6.

In Table 6 the complete list of del Pezzo surfaces Bn with involutions σi is shown.
For each pair (Bn, σi) it also includes detailed information about the fix-point set.

We use the following notation:

• Σ(σ) is the homology class of the genus-g curve with g ≥ 1 in the fixed point
set of σ. As discussed in Section A, there is at most one such curve.

• R(σ) are the homology classes of the rational genus 0 curves in the fixed point
set.

• B(σ) is the number of isolated fixed points that do not lie on (−1)-curves.

• P (σ) is the number of isolated fixed points that do lie on (−1)-curves, and
hence may not be blown up further.

• (b+
2 , b−2 ) are the dimensions of the ± eigenspaces of σi in H2(Bn).

In the last column we also displayed the explicit action of the involution on the basis

(l, e1, . . . , en) of H2(Bn) and basis (l1, l2) of H2(P
1× P1). The k-dimensional identity

matrix is simply denoted by 1k, while H exchanges two elements ei ↔ ej or l1 ↔ l2.
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In addition there are also five involutions (I
(2)
B3

, I
(3)
B3

, I
(5)
B5

, I
(9)
B7

, I
(9)
B8

) which should be

viewed as the additional building blocks for all non-trivial involutions on del Pezzo
surfaces. We will introduce the explicit form of these involutions in turn.

To define the special involutions we will specify their action on the basis elements
(l, e1, . . . , en). On the third del Pezzo surface we define the two involutions

I
(2)
B3

=

(
2 1 1 1
−1 −1 0 −1
−1 0 −1 −1
−1 −1 −1 0

)
, I

(3)
B3

=

(
2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

)
. (75)

The remaining three involutions we need to introduce are well-known classical in-
volutions. They are minimal since they satisfy σ(E) 6= E and σ(E) ∩ E 6= ∅ for

each (−1)-curve E. This implies that such an involution cannot be obtained by
blowing up a higher degree del Pezzo and extending an involution defined on the del
Pezzo surface before blow-up. On B5 there is a minimal involution known as the de
Jonquières involution which acts as

I
(5)
B5

=




3 2 1 1 1 1
−2 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0
−1 −1 0 −1 0 0
−1 −1 0 0 −1 0
−1 −1 0 0 0 −1



 . (76)

There is one minimal involution for the del Pezzo surfaces of degree 1 and 2, respec-
tively. The del Pezzo surface B7 admits the Geiser involution

I
(9)
B7

: l 7→ −l − 3K , ei 7→ −K − ei . (77)

while on B8 one has the Bertini involution acting as

I
(9)
B8

: l 7→ −l − 6K , ei 7→ −2K − ei . (78)

Note that one can explicitly check that each involution on each del Pezzo surface

preserves its canonical class K defined in eq. (71).

With these definitions at hand, the involutions in Table 6 can be used for ex-

plicit computations. This will be particularly useful for the elliptically fibred three-
folds over a del Pezzo base, since all involutions can be lifted to the corresponding
Calabi-Yau threefold. We are then in the position to construct explicit Calabi-Yau
orientifolds and compute the tadpoles induced by the O3- and O7-planes.

4.2 The Geometry of Del Pezzo Transitions of P1,1,1,6,9[18]

We are now in the position to construct compact Calabi-Yau threefolds Mn associated

to a del Pezzo base. The first construction is via an elliptic fibration over a del Pezzo
base Bn, while the second construction is by employing del Pezzo transitions.
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Involution g Σ = [Σg] R B P (b+
2 , b−2 ) action on H2

(P2, σ) l 1 (1, 0) 11

(P1 × P1, σ1) (l1) ∪ (l2) (2, 0) 12

(P1 × P1, σ2) 4 (2, 0) 12

(P1 × P1, σ3) l1 + l2 (1, 1) H

(B1, σ1) (l) ∪ (e1) (2, 0) 12

(B1, σ2) l − e1 1 1 (2, 0) 12

(B2, σ1) (l− e1) ∪ (e2) 1 (3, 0) 13

(B2, σ2) l − e1 − e2 1 2 (3, 0) 13

(B2, σ3) l 1 (2, 1) 11 ⊕H

(B3, σ1) (l− e1 − e2) ∪ (e3) 2 (4, 0) 14

(B3, σ2) l − e1 2 (3, 1) 12 ⊕H

(B3, σ3) 2l− e1 − e2 (2, 2) I
(2)
B3

(B3, σ4) 4 (3, 1) I
(3)
B3

(B4, σ1) l − e1 − e2 3 (4, 1) 13 ⊕H
(B4, σ2) l 1 (3, 2) 11 ⊕ 2H

(B5, σ1) l − e1 2 (4, 2) 12 ⊕ 2H

(B5, σ2) 2l− e1 − e2 (3, 3) I
(2)
B3
⊕H

(B5, σ3) 4 (4, 2) I
(3)
B3
⊕H

(B5, σdJ) 1 3l −∑5
i=1 ei (2, 4) I

(5)
B5

(B6, σ1) l − e1 − e2 3 (5, 2) 13 ⊕ 2H

(B6, σ2) 1 3l −∑6
i=1 ei 1 (3, 4) I

(5)
B5
⊕ 11

(B7, σ1) 4 (5, 3) I
(3)
B3
⊕ 2H

(B7, σ2) 1 3l −∑7
i=1 ei 2 (4, 4) I

(5)
B5
⊕ 12

(B7, σ3) 1 3l −∑5
i=1 ei (3, 5) I

(5)
B5
⊕H

(B7, σG) 3 6l− 2
∑7

i=1 ei (1, 7) I
(9)
B7

(B8, σ1) 1 3l −∑8
i=1 ei 3 (5, 4) I

(5)
B5
⊕ 13

(B8, σ2) 1 3l −∑6
i=1 ei 1 (4, 5) I

(5)
B5
⊕ 11 ⊕H

(B8, σB) 4 9l− 3
∑7

i=1 ei 1 (1, 8) I
(9)
B8

Table 6: All involutions on del Pezzo surfaces. See page 42 for the definition

of Σ, R, B, and P .
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Elliptically fibred Calabi-Yau threefolds with del Pezzo base

Let us construct Calabi-Yau threefolds Mn as elliptic fibrations over the del Pezzo
base dPn. We consider elliptic fibrations which are generically smooth with the worst
degeneration of the fibre of Kodaira type I1 [68, 69]. In the following we will restrict

further to elliptic fibrations with generic elliptic fibres of type E8 such that the
generic elliptic fibres can be represented by a degree 6 hypersurface in P1,2,3 denoted
by P1,2,3[6]. As shown, for example, in [70], one then finds that the Euler number of
the elliptic fibration Mn is given by

χ(Mn) = −C(8)

∫

Bn

c2
1 = 60(n − 9), (79)

where C(8) = 30 is the dual Coxeter number of E8 and we have used (72) for the del
Pezzo base Bn. One can also count the number of Kähler classes for these geometries.

One finds that there are n + 1 classes corresponding to the non-trivial two-cycles of
the del Pezzo base as well as the fibre class of the elliptic fibration. This implies that
Mn has Hodge numbers

h1,1(Mn) = n + 2 , h2,1(Mn) = 272 − 29n, (80)

where we have used that χ = 2(h1,1 − h2,1).

The specification of Mn as an elliptic fibration over the base dPn will turn out to
be particularly useful in the study of orientifold involutions and brane configurations
on Mn. Let us introduce the map

π : Mn → Bn , (81)

which is the projection from the threefold Mn to the base. Note that every (−1)
curve class E in Bn can be pulled back to a divisor in Mn using π∗ : E 7→ π∗(E) ∈
H4(Mn, Z). In fact, each such divisor is a dP9 surface. This surface is defined as blow
up of P2 at nine points which arise at the intersections of two cubic curves. Thus, dP9

is an elliptic fibration over P1 which has 12 singular fibres19. The dP9 is not strictly

a del Pezzo surface, but the equations (72) and (73) remain to be valid. Recall that
the (−1) curve in the base have been listed in Table 4. It it thus straightforward to
determine the intersections of these curves. In case two curves E1, E2 intersect at
a point the corresponding two dP9 divisors π∗(E1) and π∗(E2) in Mn will intersect

19Roughly speaking, the dP9 is half a K3 surface which is an elliptic fibration over P1 with 24
singular fibres.
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over a Riemann surface of genus 1. Clearly each π∗(E) intersects the base Bn in a
P1. Already this simple analysis allows us to infer the necessary information on the
triple intersections of the threefoldMn in the elliptically fibred phase.

We want to apply a similar logic also for the extension of an involution on the
del Pezzo base to an involution σ on the threefold Mn. In fact, by appropriately

defining σ the action on the (−1) curves of Bn lifts to an action of their π∗ pull-backs.
The fixed divisors wrapped by the O7-planes can then be determined using Table 6.
Determining the number of O3-planes in the full set-up also depends on the precise
form of the involution on Mn. In particular, it is not generally the case that each

isolated fix-point in the base lifts to a single fix-point in Mn. Let us consider the case
where the torus fibre over the fix-point is smooth, which will turn out to be the case
in our explicit examples. In this simple situation, we have to distinguish three cases.
Firstly, the fibre over the isolated fix-point can be fixed itself. This extension of the

involution should be omitted, since this would imply the presence of O5-planes and
violate the condition σ∗Ω = −Ω. Secondly, the involution can act as shift on the
torus fibre and hence have no fix-points in Mn. Thirdly, σ can act as the inversion

of the torus fibre. Such an involution has 4 fix-points, one on the zero section and
three on the tri-section

DT = 3Bn − 3π∗(K) , (82)

where K is the canonical class of the del Pezzo base. To define viable involutions on

Mn one needs to extend this analysis to the singular Kodaira fibres.

Del Pezzo transitions of P1,1,1,6,9[18]

An alternative way to construct the threefolds Mn is to perform del Pezzo transitions
starting with the degree 18 hypersurface in weighted projective space P1,1,1,6,9. This
Calabi-Yau manifold M0 = P1,1,1,6,9[18] is an elliptic P1,2,3[6] fibration over the base

B = P2 and has h1,1 = 2. In order to perform the del Pezzo transition M0 → M1

one generates a dP8 singularity by fixing 29 complex structure deformations [71,41].
This singularity is then resolved by blowing up a del Pezzo surface dP8. Clearly,
in this process the Hodge numbers precisely change as required in eq. (80). This

process can be repeated to obtain the manifolds Mn. However, it is important to
note that the manifold constructed via the elliptic fibration only coincide with the
one obtained by del Pezzo transitions after performing appropriate flop transitions.
In order to obtain del Pezzo surfaces dP8 out of the dP9 surfaces of the elliptic fibred

phase, one has to perform a flop transition for the P1 intersecting the base.
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4.3 Orientifold of An Elliptic Fibration Over dP2

The first Calabi-Yau threefold which we investigate in detail is the manifold M2

which corresponds to the elliptic fibration over dP2. The geometry of M2 and its
topological phases has been studied from a different point of view in [72]. Note that,

using eqns. (80) and (79), one finds the Hodge numbers h1,1(M2) = 4, h2,1(M2) = 214
and the Euler number χ(M2) = −420. It will be important that the manifold M2 has
actually 5 distinct topological phases which are connected by flop transitions. They
correspond to the five triangulations of the toric dP2 base. dP2 can be represented

torically by the points (1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1) in two dimensions.
The five triangulations of this polyhedron are depicted in Figure 1.

Figure 1: The five different triangulations of the toric dP2 base.

To study the Calabi-Yau space M2 in detail, we will also invoke the methods of
toric geometry. Note that P1,1,1,6,9 is described by the six points v∗

1 = (1, 0, 0, 0),

v∗
2 = (0, 1, 0, 0), v∗

3 = (0, 0, 1, 0), v∗
4 = (0, 0, 0, 1), v∗

5 = (−9,−6,−1,−1), v∗
6 =

(−3,−2, 0, 0). Each of these points corresponds to a divisor Di and the hypersurface
P1,1,1,6,9[18] is defined to admit the anti-canonical class −∑6

i=1 Di. To obtain the
manifold M2 one introduces two blowing-up divisors D7, D8 corresponding to the

points v∗
7 = (−6,−4,−1, 0) and v∗

8 = (−6,−4, 0,−1). The compact hypersurface
with anti-canonical class −∑8

i=1 Di is the manifold M2. It admits five triangulations
just as the dP2 base itself. In the following we will investigate two of them in more

detail. The corresponding Calabi-Yau space will be denoted by M
(dP9)

2

2 and M
(dP8)

2

2 .

Here we indicate the type of the divisors D7, D8 as we will check below20.

20We are grateful to Albrecht Klemm for help with the programs to perform the toric computa-
tions. The analysis of the divisors and their intersection ring was carried out by using the Maple
code Schubert.
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The geometry of M
(dP9)2

2

Let us first discuss the Calabi-Yau manifold M
(dP9)

2

2 . The data of the associated

linear sigma model is the following. We have eight complex coordinates xi. The
divisors Di are defined by the constraints xi = 0. In addition there are four U(1)
symmetries. The corresponding charges are shown in (83). Note that we have chosen

the charge vectors to correspond to the Mori cone generators for this triangulation.

x1 x2 x3 x4 x5 x6 x7 x8 p

ℓ(1) 3 2 0 0 0 1 0 0 6

ℓ(2) 0 0 1 0 1 −1 0 −1 0

ℓ(3) 0 0 0 1 1 −1 −1 0 0

ℓ(4) 0 0 0 0 −1 −1 1 1 0

(83)

The Mori cone for this triangulation is generated by four holomorphic curves Ca

which intersect the divisors Di as Di ·Ca = ℓ
(a)
i . Hence, the ℓ(a) are the coordinates of

the Ca in the two-cycle basis dual to Di. Since there are as much Mori generators as
Kähler parameters h1,1 = 4, this Mori cone is simplicial. Using the Mori generators it
is also straightforward to determine a basis Ki of four-cycles generating the Kähler

cone. Expanding the Kähler form as J = ri [Ki] the condition that all physical
volumes are positive translates into

∫

Ca

J = ri Ca ·Ki > 0. (84)

This requires ri > 0 for

K1 = 3D5 + D6 + 2D7 + 2D8 , K2 = D5 + D7 , (85)

K3 = D5 + D8 , K4 = D5 + D7 + D8 .

In this basis all triple intersections are positive, ensuring positivity of the divisor
volumes and the total volume of Y . However, for our applications it is more useful
to display the triple intersection numbers in the basis {D5, D6, D7, D8} as

I3 = D6

(
7D2

6 −D2
5 −D2

7 −D2
8 −D5 D6 −D6 D7 −D6 D8 + D5 D7 + D5 D8

)
. (86)

Not surprisingly, there are both negative and positive intersections in this basis.

To determine the geometry of the different divisors Di we now compute the Euler

characteristic χ =
∫

D
c2(TD), as well as

∫
D

c2
1(TD) for each divisor in M

(dP9)
2

2 . We
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exemplify this for the divisor D8 and restrict the intersection form (86) to this surface

ID8 = −D2
6 −D6 D8 + D5 D6 . (87)

Using this intersection form one computes

χ(D8) = 12,

∫

D8

c2
1(TD8) = 0 . (88)

From this we conclude that D8 = π∗(E2) is a dP9 surface. Analogously, we proceed
for the remaining divisors Di. We identify

D3 = π∗(l− E2) K3 , D4 = π∗(l − E1) K3 ,
D5 = π∗(l− E1 − E2) dP9 , D6 = B dP2 ,
D7 = π∗(E1) dP9 , D8 = π∗(E2) dP9 .

(89)

Let us note that indeed the exceptional divisors D7 and D8 are dP9 surfaces which

justifies our notation M
(dP9)

2

2 . Finally, using (83) the divisor D1 can be identified
with

D1 = 3B + 9π∗(l− E1 − E2) + 6π∗(E1) + 6π∗(E2) = DT , (90)

that is, the tri-section DT defined in (82) of the elliptic fibration over B = dP2. With
these identifications one can check that the triple intersection form (86) is indeed the
one generated by {B, π∗(Ei), π

∗(l − E1 − E2)}. All terms in (86) contain the base

D6 and the expression in the brackets corresponds to the intersection form of Ei and
l− E1 − E2 as well as the self-intersection 7 of the anti-canonical class on dP2.

Let us now specify an orientifold projection Ωpσ(−1)FL. As a simple example

consider the involution
σ : x3 → −x3 (91)

and analyse the fixed point set. In order to do that we first note that the coordinates
obey some scaling relations dictated by the U(1) weights ℓ(k) displayed in (83). This

implies that in order to determine the fix-point set of (91), the coordinates xi need
only to agree up to scaling such that

xj = ±
4∏

k=1

λ
ℓ
(k)
j

k xj , (92)

where λk ∈ C∗, and the minus sign should be used for x3 while the plus sign holds
for all other coordinates. The value of the complex scalars λk is restricted by the

49



Stanley-Reisner ideal of the toric ambient space. More precisely, this ideal contains
the information which coordinates xi are not allowed to vanish simultaneously. For
the case at hand it reads

SR = {x3 x5, x3 x7, x4 x5, x4 x8, x7 x8, x1 x2 x6} . (93)

For example, since x1x5 is in the Stanley-Reisner ideal, the subspace x1 = x5 = 0 is

not in the toric variety. Combining these conditions with the scalings eq. (92) fixes
the λi to specific values and allows us to determine the fix-point locus21.

Let us apply this strategy explicitly to our example. The divisors D3 = {x3 = 0}
and D7 = {x7 = 0} are fixed under σ consistent with the scalings (83). As mentioned,
D3 is a K3 surface with χ = 24 and D7 is a dP9 with χ = 12. However, this is not the
end of the story, as there exist also fixed points which give the location of O3-planes.

Using the projective identifications, we first get the two candidate fixed points

p1 = {x4 = x5 = x6 = 0}, p2 = {x5 = x6 = x8 = 0}, (94)

where however, the first one p1 is part of the Stanley-Reisner ideal and therefore

discarded. In addition there exist two fixed loci

p3 = {x1 = x4 = x5 = 0}, p4 = {x1 = x5 = x8 = 0}, (95)

where again the first is discarded and the second actually consists of 3 fixed points,
which is essentially the space P1,2[6]. Note that this is precisely the situation discussed
in Subsection 4.2. From eq. (94) one infers that the involution eq. (91) admits one
isolated fix-point in the base D6. σ acts on the smooth torus fibre over this point as

inversion, such that three fix-points eq. (95) arise in the tri-section D1.

To summarise, the fixed points locus consists of two non-intersecting O7 planes

and four O3 planes. Therefore, the right-hand side of the D7-brane tadpole cancel-
lation condition (13) reads

8[DO7] = 8π∗(l −E2) + 8π∗(E1) (96)

and the right-hand side of the D3 brane tadpole condition (17) takes the form

χ(K3) + χ(dP9)

6
+

NO3

2
= 8. (97)

21Note that in general, the determination of the fix-point set in the Calabi-Yau hypersurface can
be more tricky. This is due to fact that it will in general be non-generic hypersurface to admit the
involution σ. In our examples, this will not introduce any new subtleties.
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Note that indeed we get a non-negative integer. In order to cancel the D7 brane
tadpole we can only introduce branes wrapping entirely the fibre. Candidates are
of course D3 and D7 which are point-wise invariant under the orientifold projection

and therefore belong to class 3.) introduced in Subsection 2.1. A natural candidate
of class 2.) is D5 = π∗(l − E1 − E2). This dP9 is not point-wise invariant. In fact,
using that D5 intersects the O7-plane in a genus 1 curve and that all four O3 planes
are inside D5 one uses the Lefschetz fix-point formula [73] to compute for D5 that

b2
+ = 6 and b2

− = 4. This involution indeed corresponds to a viable involution of dP9.

Let us also consider the involution x1 → −x1, which is nothing else than the

reflection of the torus fibre. The fixed point locus can be determined as DO7 =
D1 ∪D6, such that the right hand side of (13) reads

8[DO7] = 32B + 24π∗c1(B) (98)

and no fixed points. For the Euler characteristics we find χ(D1) = 435 and χ(D6) =
χ(dP2) = 5, such that the right hand side of (17) takes the form

χ(DO7)

6
+

NO3

2
=

220

3
. (99)

Finally, let us determine how this involution acts on π∗(E1) = dP9. The divisor B
intersects π∗(E1) of course over a sphere and from χ(D1∩D7) = D1 ·D7·(−D1−D7) =

−6 we conclude that the Euler characteristic of the fix-point set in dP9 is χ = −4.
This implies b2

+ = 2 and b2
− = 8 and corresponds to the blow-up of the Bertini

involution (B8, σB) of Table 6 at one invariant point.

The geometry of M
(dP8)2

2

Let us now consider the triangulation which corresponds to a Calabi-Yau manifold
with two exceptional dP8 divisors D7 and D8. Again we specify the data for the linear

sigma-model such that the charge vectors correspond to the Mori cone generators
for this triangulation.

x1 x2 x3 x4 x5 x6 x7 x8 p

ℓ(1) 3 2 0 1 1 0 −1 0 6

ℓ(2) 3 2 1 0 1 0 0 −1 0

ℓ(3) 0 0 0 −1 −1 1 1 0 0

ℓ(4) 0 0 1 1 1 −3 0 0 0

ℓ(5) 0 0 −1 0 −1 1 0 1 0

(100)
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Note that the Mori cone eq. (100) is generated by five holomorphic curves Ca in
this triangulation. Since this is more than the h1,1 = 4 Kähler deformations the Mori
cone is non-simplicial. Also for this case we have to determine the dual Kähler cone

spanned by four-cycles. By definition the Kähler cone is generated by four-cycles D
which satisfy D · Ca ≥ 0. For our purposes it will be convenient to determine the
Kähler cone in coordinates ri. We therefore chose to discard one of the 5 Mori vectors
(100), namely, the last one ℓ(5). As in the M

(dP9)
2

2 phase it is then straightforward

to determine the Kähler cone generators

K1 = 3D5 + D6 + 2D7 + 3D8 , K2 = −D8,

K3 = 3D5 + D6 + 3D7 + 3D8 , K4 = D5 + D7 + D8 . (101)

Note that for J = ri[Ki], the positivity of the curves C i, i = 1, ..., 4 is ensured when
ri > 0. In order that the last curve is positive we have to additionally impose∫

C5 J = riKi · C5 = r1 − r2 + r3 > 0. Clearly, a similar analysis can be carried
out when discarding one of the other ℓ(a) which allows to define coordinates for the

complete non-simplicial Kähler cone.

For convenience we again display the triple intersection numbers for M
(dP8)

2

2 in

the basis {D5, D6, D7, D8},

I3 = 9D3
6 +D3

7 +D3
8 +D5

(
D5 D6 +D5 D7 +D5 D8−2D2

5 −3D2
6−D2

7−D2
8) . (102)

In particular, for the intersection form on the surface D8 we get

ID8 = D2
5 + D2

8 −D5 D8 (103)

so that

χ(D8) = 11,

∫

D8

c2
1(TD8) = 1 , (104)

which we identify with the correct values for dP8. For D7 we find the same result.
Comparing this result with (88) we note that in this cone of the complexified Kähler

moduli space, one P1 in each π∗(Ei) of M
(dP9)

2

2 has been flopped away so that dP9 →
dP8. Indeed the two exceptional divisors Ei of the dP2 base in M

(dP9)2

2 are absent in

M
(dP8)2

2 since χ(D6) = 3, and
∫

c2(TD6) = 9.

Having performed the flop transitions, the exceptional P1s have to reappear in
other divisors. In fact, we compute

χ(D3) = 25 , χ(D5) = 14,

∫
c2
1(TD3) = −1 ,

∫
c2
1(TD5) = −2 . (105)
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Again, the divisor D4 has the same topology as D3. This implies that the divisor

D3, D4 corresponding to the pull-back divisors π∗(l − Ei) in M
(dP9)2

2 now contain
each one additional P1. The divisor D5 corresponding to π∗(l − E1 − E2) contains
two additional P1s.

Let us now investigate the involutions on M
(dP8)

2

2 . A simple involution exchanging
the two dP8 surfaces has been employed in [74]. However, since these two del Pezzo

surfaces do not intersect, this involution will not be useful in constructing GUT
models. We therefore consider again the involution σ : x3 → −x3, which still has
the non-intersecting O7 planes D3 and D7. There exist 4 fixed points so that the
tadpole contribution is

χ(DO7)

6
+

NO3

2
= 8 . (106)

This condition is identical to the condition eq. (97) on M
(dP9)2

2 since the topology
change of the two O7 divisors precisely cancels. One checks that 3 fix-points are
located on the del Pezzo 8 defined by x8 = 0 which intersects the orientifold locus

D3 on a genus 1 curve. This implies using Table 6 that b2
+ = 5, b2

− = 4 for the del
Pezzo 8.

The involution defined by the reflection x1 → −x1, again has the fixed point

divisors DO7 = D1 ∪ D6. For the Euler characteristics we find χ(D1) = 435 and
χ(D6) = 3. However, this time the involution also has the two fixed points p1 =
{x4 = x5 = x7 = 0} and p2 = {x3 = x5 = x8 = 0}. For the D3-tadpole contribution

we therefore obtain

χ(DO7)

6
+

NO3

2
=

222

3
. (107)

Finally, let us determine how this involution acts on D7 = dP8. The base B = D6

does not intersect D7 after the flop transition, while D1 intersects D7 over curve
with χ = −6. Moreover, only the fixed point p1 lies on D7 , while p2 lies on D8.
Therefore, the Euler-characteristic of the fixed point set in D7 is χ = −5 and we

obtain b+
2 = 1, b−2 = 8. Comparing this result with Table 6 we conclude that the

involution x1 →−x1 acts on the dP8 as the Bertini involution (B8, σB).

4.4 Orientifold of An Elliptic Fibration Over dP3

We can repeat the procedure just described also for the del Pezzo base dP3. This
remains to be rather simple, since this del Pezzo is still toric and represented by the
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Figure 2: The points of the polyhedron of the dP3 base.

points (1, 0), (0, 1), (−1, 0), (0,−1), (−1,−1) and (1, 1) as shown in Figure 2. In
this case there are in fact 18 triangulations of the dP3 base. The toric ambient space
for the corresponding Calabi-Yau hypersurface M3 is obtained by adding the point
v∗

9 = (3, 2, 1, 1) to the polyhedron of M2 above. This polyhedron has 18 triangulations

which yield different phases of the Calabi-Yau hypersurface M3. As determined by
eqns. (80) and (79), each M3 has the topological data h1,1(M3) = 5, h2,1(M3) = 185,
and χ(M3) = −360. In the following we discuss one out of the 18 phases in more

detail. Namely, the Weierstraß phases M
(dP9)

3

3 where the divisors D7, D8, D9 are dP9

surfaces. A second phase, M
(dP8)3

3 will be of importance in Subsection 4.6 where we
discuss the issue of moduli stabilisation for compactifications on Mn. On M3 we will
also be able to introduce interesting orientifold projections with a non-trivial split
h1,1 = h1,1

+ + h1,1
− .

The geometry of M
(dP9)3

3

Let us discuss the Weierstraß phase where all (−1)-curves lead to dP9 surfaces. Using
Table 4 we infer that dP3 has six (−1)-curves which yield six dP9 surfaces. The Mori

cone associated to this phase is shown in eq. (108).

x1 x2 x3 x4 x5 x6 x7 x8 x9 p

ℓ(1) 3 2 0 0 0 1 0 0 0 6

ℓ(2) 0 0 0 1 1 −1 −1 0 0 0

ℓ(3) 0 0 0 0 −1 −1 1 1 0 0

ℓ(4) 0 0 1 1 0 −1 0 0 −1 0

ℓ(5) 0 0 0 −1 0 −1 1 0 1 0

ℓ(6) 0 0 1 0 1 −1 0 −1 0 0

ℓ(7) 0 0 −1 0 0 −1 0 1 1 0

(108)

Using the data for the Mori cone, it is straightforward to evaluate the associated
Kähler cone. However, we again display the triple intersection numbers in the basis
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D6, . . . , D9

I3 = D6

(
6D2

6−D2
5−D2

7−D2
8−D2

9−D6(D5 +D7 +D8 +D9)+D5D8+D7D5

)
. (109)

In a similar spirit as in the previous section we can also check that the divisors

D3 = π∗(l− E1 − E3) , D4 = π∗(l − E2 − E3) , D5 = π∗(l − E1 − E2) ,

D7 = π∗(E2) , D8 = π∗(E1) , D9 = π∗(E3) . (110)

are the six dP9 surfaces, while the dP3 base is the divisor D6.

Let us now turn to the definition of the involution on M
(dP9)

3

3 . Using Table 6,
we find four candidate involutions on the dP3 base. Our prime focus will be on the

exchange involution (B3, σ3), which admits the rational curve 2l−E1−E2 as fix-point
divisor. Lifted to the elliptically fibred threefold, this involution descends to

σ : x7 ↔ x3 , x8 ↔ x4 , x9 ↔ x5 . (111)

We can thus evaluate the action of σ∗ on the cohomology H2(M3) spanned by
[D5, D6, D7, D8, D9] to show that

h1,1
+ = 3 , h1,1

− = 2 . (112)

This implies that by using (1) this orientifold compactification will admit three
Kähler moduli TI and two B-field moduli Gi.

Again, we can determine the fixpoint set of σ using toric geometry. Taking
into account the scaling relations (108) and the corresponding constraints from the

Stanley-Reisner ideal, one finds the fix-point divisor

x5x8x3x9 − x4x9x5x7 = 0 , (113)

and no isolated fix-points meeting the hypersurface. The isolated fix-points and
hence O3-planes can also be directly inferred from the fact that there are no fix-
points on the dP3 base for this involution. In accord with the general arguments
presented in Subsection 4.2, the locus eq. (113) corresponds to an O7-plane on the

divisor class DO7 = D4 + D9 + D5 + D7 = π∗(2l − E1 − E2) and induces a tadpole

8[DO7] = 8π∗(2l − E1 − E2) . (114)

For this O7-plane one computes χ(DO7) = 48, such that the induced D3-tadpole is
χ(DO7)/6 = 8.
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4.5 The Swiss-Cheese Property

Though we will deliver some more comments in Section 8, in this paper we do not yet
intend to combine the GUT model search with a complete analysis of moduli stabil-
isation. However, we would like to point out that some of the manifolds discussed so

far provide new examples of so-called swiss-cheese type Calabi-Yau manifolds. Here
we understand this term in the strong sense that the volume V of the Calabi-Yau
can be expressed as22

V =

√
8

6

[
1√
35

(τ0)
3
2 − 1

3
(τB)

3
2 −

h1,1−2∑

i=1

(τi)
3
2

]
, (115)

where the numerical coefficients are chosen for later convenience and τB, τi are vol-
umes of a basis of four-cycles Γ0, ΓB, Γi given by

τ0 =
1

2

∫

ΓB

J ∧ J , τB =
1

2

∫

ΓB

J ∧ J , τi =
1

2

∫

Γi

J ∧ J . (116)

Our aim is to show that for the manifolds M
(dP8)

n

n one can always find such a basis
Γ0, ΓB, Γi such that V is of the form (115).

Swiss-Cheese property of M
(dP8)2

2
and M

(dP8)3

3

We first consider the manifold M
(dP8)

2

2 . Recall that this Calabi-Yau is connected via
a flop transition to the corresponding Weierstraß model, which is an elliptic fibration

over the dP2 base. In fact, the two exceptional two cycles E1,2 in the base dP2 have
been flopped away. We will use the same notation as in Sections 4.3 and 4.4. The

triple intersection form on M
(dP8)2

2 in the basis Di was given in eq. (102). Expanding
the Kähler form as J = r5 D5 + r6 D6 + r7 D7 + r8 D8 and defining

ΓB = D6 , Γ1 = D7 , Γ2 = D8 , (117)

we compute the τi in (116) as

τB = 1
2
(r5 − 3 r6)

2 , τ1 = 1
2
(r5 − r7)

2 , τ2 = 1
2
(r5 − r8)

2 . (118)

22It has been shown [66] that a much weaker condition is already sufficient to make the LARGE
volume scenario work.
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Now, let us define the following divisor, which obviously is related to the former
tri-section D1 in the Weierstraß phase

Γ0 = D1 + 3D7 + 3D8 = 3 (3D5 + D6 + 3D7 + 3D8) . (119)

The volume of this divisor is given by τ0 = 3
2
r2
5 . We have found four divisors whose

volumes can be written as perfect squares and it is now a simple calculation to show
that the total volume of the Calabi-Yau can be written as in (115), showing the swiss
cheese structure. Note that indeed the three small cycles are of the type ΓB = P2,

Γ1,2 = dP8 and therefore all are shrinkable to a point.

Along the same lines also the swiss cheese structure of the Calabi-Yau M
(dP8)

3

3

can be shown. This manifold is related to the Weierstraß model over dP3. For
completeness, let us list the relevant data. The intersection form reads

I3 = −2D3
5 + 9D3

6 + D3
7 + D3

8 + D3
9 + D2

5 D6 − 3D5 D2
6 + D2

5 D7 −D5 D2
7

+D2
5 D8 −D5 D2

8 . (120)

For the volumes of the del Pezzo type divisors ΓB = D6, Γi = Di+6 we get

τB = 1
2
(r5 − 3 r6)

2 , τ1 = 1
2
(r5 − r7)

2 , τ2 = 1
2
(r5 − r8)

2 , τ3 = 1
2
r2
9 , (121)

and with

Γ0 = D1 + 3D7 + 3D8 + 3D9 = 3 (3D5 + D6 + 3D7 + 3D8) . (122)

and τ0 = 3
2
r2
5 the total volume of the Calabi-Yau can again be written as eq. (115).

Proof of Swiss-Cheese property for M
(dP8)n

n

What we have concretely confirmed for the latter two examples of Calabi-Yau three-

folds is, in fact, more generally true. Starting with the Weierstraß phase of an elliptic
fibration over a dPn, n = 0, . . . , 8 base, the phase related to this one by flopping away
all n P1-cycles in the base, is of the swiss-cheese type. To prove this, we show that
we can define n + 2 divisors such that the triple intersection form is diagonal. Be-

fore the flop transition we have the pull-back divisors π∗(Ei) = dP9. After the flop
transition, these lose the P1 given by B ∩ π∗(Ei) and we get Γi := π∗(Ei)flop = dP8

for i = 1, . . . , n. Clearly, these divisors satisfy

Γ3
i = 1, Γi ∩ Γj = 0 for i 6= j . (123)
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The former base B = dPn is now just P2 so that we define ΓB := Bflop = P2. Since
we have flopped away the intersection locus with the π∗(Ei), we can write

Γ3
B = B3

flop = c2
1(P

2)Bflop = 9, ΓB ∩ Γi = 0 . (124)

For the remaining divisor we start with the former tri-section 3(B+3π∗(l)−∑i π
∗(Ei))

and realise that, after the flop transition, this divisors gains an extra of 3n P1s. There-

fore, this divisor cannot be diagonal to the ones introduced so far. However, we can
define the new divisor

Γ0 = 3(B + 3π∗(l)−
∑

i

π∗(Ei))flop + 3
∑

i

π∗(Ei)flop

= 3(Bflop + 3π∗(l)), (125)

which satisfies
Γ3

0 = 243, Γ0 ∩ Γi = 0, Γ0 ∩ ΓB = 0 . (126)

Therefore, we have found a basis of (n + 2) divisors which diagonalise the triple
intersection form. Taking into account that except Γ0 all four-cycles are shrinkable

to a point, we expect that inside the Kähler cone, we can write the volume of the
Calabi-Yau in the swiss cheese form eq. (115). Apparently, the two former toric
Calabi-Yau manifolds are only two specific examples.

For realising the LARGE volume scenario it is not necessary to have a Calabi-Yau
having the strong swiss-cheese type property [66] as in (115). Therefore, one can also
discuss the case that from the n initial π∗(Ei) divisors of the type dP9 only r have

been flopped to the dP8 phase. Since dP9 is not shrinkable to a point, one does not
expect a swiss-cheese type structure for them, but along the same lines as above one
can still write the volume as

V = V
(
M

(dP9)n−r

n−r

)
−

r∑

i=1

(τi)
3
2 . (127)

where M
(dP9)

n−r

n−r denotes the Weierstraß phase of the elliptic fibration over dPn−r .

4.6 D-Term Conditions For D7-Branes on Del Pezzo Sur-

faces

In this section we have introduced a specific class of manifolds which admit shrinkable
del Pezzo surfaces as divisors. In the following we like to address the question
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whether we can wrap D7-branes on these surfaces and stabilise their volume at sizes
significantly larger than the string scale by demanding a vanishing D-term, eq. (39).

Let us denote the del Pezzo surface with a wrapped D7-brane by (DdP , LdP ) and
its orientifold image by (D′

dP , L′
dP ). In the following discussion it is crucial to again

distinguish the three cases defined at the beginning of Subsection 2.1, page 11. We

will focus on the cases 2 and 3 where DdP and D′
dP are in the same homology class.

This implies that DdP cannot support B− moduli and the D-term arises entirely from
the gauging Xa I given in (37). The precise form of Xa I depends on the choice of
four-cycles to define the coordinates TI . Let us focus on the swiss-cheese examples of

Subsection 4.5. We have argued in eqns. (123)–(126) that one can choose a four-cycle
basis Γ0, ΓB, Γi of H4(Y ) such that the triple intersection form reads

I3 = 243 Γ3
0 + 9 Γ3

B +
∑

i

Γ3
i . (128)

The ΓB and Γi are del Pezzo surfaces, and hence are the candidate DdP for an
appropriate orientifold projection. We use this basis in the expansion of the Kähler

form J = −rdP [DdP ] + . . ., where rdP > 0 in the Kähler cone. The coordinate TdP

associated to DdP is then given by

Re TdP =
1

2
e−φ

∫

DdP

J ∧ J ∼ r2
dP , (129)

and the Kähler potential for the fields Gi, TI takes the form

K = −2 ln(Vred− (TdP + T̄dP )
3
2 ) , (130)

where we have used eq. (115). The important point is that Vred is independent of
the moduli TdP and only depends on the remaining Gi, TI . We can also evaluate the

Killing vector in the basis Γ0, ΓB, Γi and find that it diagonalises in the TdP direction
with the only non-trivial contribution

XdP =

∫

DdP

[DdP ] ∧ c1(L̃dP ) . (131)

Using these equations it is straightforward to evaluate the D-term

ξdP ∼ rdP , (132)

which thus has to vanish for a supersymmetric vacuum ξdP = 0. This implies that

we are taken to the point rdP → 0, where the size of the del Pezzo surface becomes
of order string scale.
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Entering a small volume regime implies that our classical analysis is no longer
valid and additional corrections need to be included. In particular, as in the under-
lying N = 2 theory, world-sheet instantons will correct the expressions. However,

these corrections will not alter the fact that ∂TdP
K ∼ rdP but rather correct the

definition of the N = 1 coordinate TdP [63]. Thus, if one still uses the eq. (131) for
the Killing vector one is unavoidably driven to the point where rdP is small. This
is precisely the regime, where for the local building the techniques of quiver gauge

theories on dPr singularities are relevant [75, 76, 29, 30, 77]. Thus, the global models
we presented provide a concrete embedding of these local constructions.

The question now is how general our findings are. One might naively think that
whenever one has shrinkable dPr, r ≤ 8 surfaces the triple intersection form has the
swiss-cheese form eq. (127) so that for GUT branes on these cycles, one is driven to
the quiver locus. In Section 7 we will present another class of del Pezzo transitions,

based on the Quintic, in which we will instead find mutually intersecting dPr surfaces,
which therefore do not diagonalise the triple intersection form. Therefore, it is not
the shrink-ability of the del Pezzo surfaces but rather the swiss-cheese form of the

triple intersection form which is responsible for the D-term minimisation at the quiver
locus.

5 A GUT Model on M
(dP9)2

2

In this section we investigate whether the simple geometries with orientifold invo-
lutions introduced in the last section are already sufficient to construct realistic,
globally consistent intersecting D7-brane GUT models. We work out one toy exam-
ple in some detail which exemplifies the necessary steps to build a realistic model.

This will illustrate the important role played by the structure of the manifold to
satisfy the constraints from Table 3. The discussion of this section also serves as a
preparation for the construction of two three-generation GUT models in Section 6

on related geometries.

Concretely, we consider the Calabi-Yau manifold M
(dP9)

2

2 of Subsection 4.3 and
choose as the orientifold involution Ωσ(−1)FL with σ : x3 → −x3. As discussed

previously, the fixed point locus consists of the disjoint divisors π∗(E1) and π∗(l −
E2) and four additional fixed points. To cancel the D7-brane tadpole eq. (13), we
introduce D7-branes on the divisors

Da = π∗(E1), Db = π∗(l − E1 − E2), Dc = π∗(l − E2), (133)
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and denote the corresponding embeddings ιj : Dj →֒ Y . Recall from Subsection 4.3
that Da, Db are dP9 surfaces while Dc is a K3 surface. The O7-tadpole 8

(
π∗(l −

E2) + π∗(E1)
)

is cancelled by three stacks of D7-branes with multiplicities

N ×Da + (N − 4)×Db + (8−N)×Dc, N = 4, 5, 6, 7, 8 (134)

together with their orientifold images wrapping the same divisors. The resulting
gauge group is SO(2N)× SP (2N − 8)× SO(16− 2N). Note that the last stack has

vanishing intersection with the first two stacks, and will be hidden from the visible
sector. The next step is to break the first two gauge groups by turning on non-trivial
line-bundles in U(N)× U(N − 4).

5.1 The Chiral Model

For now, let us first focus on the chiral sector of the theory and solely compute

chiral indices. The computation of the entire cohomology classes is postponed to
Subsection 5.4. As our initial Ansatz for the line bundles on the divisors, we will
pick all three to be restrictions of global line bundles,

La = ι∗a OY

(
kB + π∗(η̃a)

)
,

Lb = ι∗b OY

(
kB + π∗(η̃b)

)
,

Lc = ι∗c OY

(
mB + π∗(ηc)

)
.

(135)

In the following, we will be forced to modify this Ansatz by line bundles that are

trivial in H2(Y, Z). However, this changes only the vector-like pairs but not the
chiral spectrum.

Since Da and Db are not Spin, it is convenient to explicitly split off a factor
√

K
from η̃a,b. Note that one can rewrite

√
KDa =

√
ODa(−f) = ι∗a

√
OY (−Da) = ι∗a OY

(
− 1

2
π∗(E1)

)
(136)

and similarly for Db. Hence, let us set

η̃a = ηa −
1

2
E1, η̃b = ηb −

1

2
(l −E1 − E2). (137)

With these definitions, we have parametrised the line bundles by

k, l, m ∈ 1
2
Z, ηa ∈ H2

(
Da,

1
2
Z
)
, ηb ∈ H2

(
Db,

1
2
Z
)
, ηc ∈ H2

(
Dc,

1
2
Z
)
. (138)
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Moreover, for vanishing B+-field all have to be integral. For non-zero discrete B+-
flux, they have to satisfy the quantisation condition eq. (8).

In view of the rules form Table 1 it is straightforward to compute the resulting
chiral spectrum, and we list it in Table 7. Let us make a couple of remarks concerning

number U(N) U(N − 4) U(8−N)

−2k (2) 1 1

−2k 1 (2) 1

−2k (−1) (−1) 1

Table 7: Chiral spectrum for intersecting D7-brane model. The indices denote
the U(1) charges.

this spectrum: The third stack does not carry any chiral modes and is completely
hidden from the first two. Moreover, the cubic SU(N) and SU(N −4) anomalies are
indeed cancelled. Analysing the Abelian and mixed Abelian–non-Abelian anomalies,

we find that the linear combination U(1)X = 1
N

U(1)a + 1
N−4

U(1)b is anomaly-free.
However, due to the Green-Schwarz mass terms, it can nevertheless receive a mass by
mixing with an axionic mode. In fact, this is the case as long as the first Chern classes
of the line bundles are independent as elements in H2(Y ) [54], and there is no massless

U(1) prior to breaking SU(5) to the Standard Model. Intriguingly, for N = 5 we
get an SU(5) model with Ngen = −2k generations of Standard Model particles. The
2k states in the symmetric representation of U(1)b carry the quantum numbers of

right-handed neutrinos. So far we have not required D-term supersymmetry of the
configuration. For this, one has to ensure that one can choose the Kähler moduli
inside the Kähler cone. We will come to this in Subsection 5.3.

5.2 D3-Brane Tadpole and K-Theory Constraints

In this subsection, we now investigate the D3-brane tadpole cancellation condition in
some more detail. As we have seen, this condition plays no role for the cancellation

of the non-Abelian anomalies. In absence of three-form flux the general equation
(22) is evaluated to be

ND3 + Ngauge = 10, (139)
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where the contribution from the U(1) fluxes on the D7-branes

Ngauge = −1

2

∑

i

Ni

∫

Di

c2
1(Li)

= k
[
(N − 2) k −N E1 · η̃a − (N − 4) (l − E1 − E2) · η̃b

]
(140)

+m
[
(8−N)m− (8−N) (l − E2) · ηc

]

Clearly, for half-integer k, m and pull-back classes π∗(ηa,b,c), this is not always an
integer. In this case we simply cannot cancel this tadpole by introducing an integer
number of filler D3-branes. Only models with Ngauge ∈ Z can be tad-pole free.

Let us now turn to the K-theory constraints. As discussed, these can be deter-
mined by the SP-probe brane argument and cancellation of the Witten anomaly.
In general, the identification of all potential SP-branes is not an easy task and it

is often hard to decide if one has not missed a Z2 constraint. As pointed out pre-
viously, since we do not have a CFT description, it not straightforward to decide
whether a invariant four-cycle supports SO or SP Chan-Paton factors. Our strategy
is to start from the branes on the O-planes, that is, π∗(E1) and π∗(l − E2), from

which we know that they carry SO Chan-Paton factors. A four-cycle with locally
four Neumann-Dirichlet boundary conditions relative to the O-planes is expected to
carry SP Chan-Paton factors. Consider the divisor π∗(l−E1−E2), which wraps the
toroidal fibre and intersects π∗(E1) in a point in the four-dimensional base B. There,

we expect that a brane wrapped on π∗(l−E1 −E2) carries SP Chan-Paton factors.
This identification is further supported by the chiral spectrum in Table 7, where the
a′a sector leads to fields in the anti-symmetric representation, whereas the b′b sector

leads to symmetric ones.

This line of reasoning identifies three 4-cycles supporting symplectic Chan-Paton

factors, namely
B, π∗(E2), π∗(l − E1 −E2). (141)

All of these divisors are not Spin and, therefore, they have to carry a half-integral
bundle to comply with the Freed-Witten quantisation condition. As usual, under the

action of Ω the field strength gets reflected, in which case the candidates in eq. (141)
actually carry U(N) Chan-Paton factors. However, by turning on quantised B-flux
through some cycles in H2(Y, Z), the quantisation conditions on the divisors can
change, in which case vanishing gauge flux is allowed resulting in a non-trivial Z2

K-theory constraint.
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5.3 D-Flatness

According to the general discussion in Subsection 2.4, the FI-terms for U(1)a and
U(1)b are given by

ξa ∼ k(r1 − rB) + rB E1 · η̃a,

ξb ∼ k(rl − r1 − r2 − rB) + rB (l − E1 −E2) · η̃b, (142)

ξc ∼ m(rl − r2 − 2 rB) + rB (l −E2) · ηc,

where we have expanded

J = rB B + rl π
∗(l)− r1 π∗(E1)− r2 π∗(E2). (143)

Since we do not want to give VEVs to Standard Model fields charged under U(1)a

respectively U(1)b, we have to require that the two FI-terms eq. (142) vanish. We

have to make sure that the resulting constraints define a plane inside the Kähler cone
of this triangulation

rB > 0, r1 − rB > 0, r2 − rB > 0, rl − r1 − r2 − rB > 0. (144)

However, we are actually interested in a slightly weaker condition. Since the top
Yukawa coupling 10105H is of order one, the coupling-generating instanton neces-
sarily has to be in the non-perturbative regime. In fact, we would like to achieve

vanishing (classical) volume of the 4-cycle wrapped by the instanton, correspond-
ing to a particular boundary of the Kähler cone. Note that world-sheet instanton
corrections are expected to eventually fix the size at the order of the string scale.
Of course, for the model to make sense the gauge couplings of all space-time filling

D7-branes should stay finite, which can be achieved in presence of non-trivial gauge
flux.

Note that, even if one has satisfied the D7- and D5-brane tadpole cancellation
conditions guaranteeing already cancellation of non-Abelian anomalies, the extra
conditions of

• integer D3-brane tadpole contribution of the gauge fluxes on the D7-branes,

• a number of Z2 K-theory constraints, and

• satisfying the D-flatness conditions inside or at most on the boundary of the
Kähler cone
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provide further strong constraints. On the Calabi-Yau threefold M
(dP9)

2

2 , we have not

succeeded in realising a SU(5) GUT model with an odd number of generations. One
either does not satisfy the first condition above or lands on an unacceptable boundary
of the Kähler cone in the sense that the volume of the Calabi-Yau manifold vanishes.
The best example we have found by our manual search on M

(dP9)2

2 will be detailed

in the next section. Having said this, we will resolve the described problems for

concrete examples on the related manifold M
(dP8)

2

2 in Section 6.

5.4 Globally Consistent Model

We now fix23 N = 5, leading to a gauge group U(5) × U(1) × SO(6). For an

odd number of generations we would have to consider an orientifold without vector
structure but with discrete NS-NS two-form flux

∫
F

B = 1
2
. As mentioned, in this

case we did not succeed in satisfying integer D3-brane tadpole contribution of the
gauge flux and D-flatness inside the Kähler cone. Therefore, we will settle for a

model with an even number of generations and choose

c1(B) =
1

2
π∗(E1). (145)

In particular, this satisfies
∫

F
B = 0 and, therefore, k ∈ Z must be integral.

Now we choose the line bundles on the three stacks of D7-branes to be

La = ι∗a OY

(
−B − π∗(E1)

)
,

Lb = ι∗b OY

(
− B

)
,

Lc = ι∗c OY .

(146)

For explicitness, let us check the quantisation eq. (8). On the dP9 surfaces, we will

use the standard basis

H2

(
dP9, Z

)
= span

Z

{
l, e1, . . . , e9

}
. (147)

Each such surface Da, Db is elliptically fibred with fibre class f = 3l −∑ ei and

zero-section

B ∩Da = e9 ∈ H2

(
Da, Z

)
, B ∩Db = e9 ∈ H2

(
Db, Z

)
. (148)

23That is, Na = 5, Nb = 1, and Nc = 3.
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Noting that the B-flux eq. (145) restricts trivially on the four-cycle Dc, one finds
that

Dj : c1(Lj) − B|Dj
+ 1

2
c1

(
KDj

)
∈ H2

(
Dj , Z

)

Da = π∗(E1): −e9 + f − (−1
2
f) + 1

2
(−f) ∈ H2

(
Da, Z

)

Db = π∗(l− E1 − E2): −e9 − 1
2
f + 1

2
(−f) ∈ H2

(
Db, Z

)

Dc = π∗(l − E2): 0 − 0 + 0 ∈ H2

(
Dc, Z

)
,

(149)
and the bundles are, indeed, correctly quantised. For this choice, the contribution
to the D3-brane tadpole is

Ngauge = −1

2

∑

i

Ni

∫

Di

c2
1

(
Li

)
= 8 (150)

and we can cancel this tadpole, for example, by two dynamical D3-brane carrying

SP (4) gauge group. However, according to eq. (59), this cannot be the final answer
as we will get an additional contribution from the U(1)Y flux.

A D7-brane wrapping the divisor π∗(l − E1 − E2) now carries integer quantised
gauge flux. Therefore, the gauge bundle can be chosen to be trivial leading to an
SP -brane. For such a probe brane we get a Witten anomaly respectively expect
a K-theory constraint. It is easy to see that the above choice of branes and line

bundles gives indeed a even number of fundamental SP -representations. The B-flux
eq. (145) does not restrict to the other candidate SP cycles, B and π∗(E2) so that a
trivial line bundle does not exist. Consequently no further conditions arise.

The supersymmetry conditions become

ξa = r1 − 2 rσ = 0, ξb = rl − r1 − r2 − rσ = 0. (151)

The first condition can be satisfied inside the Kähler cone whereas the second con-
dition lies on the boundary of the Kähler cone where the 2-cycle C = l − E1 − E2

inside dP2 has zero size. As we will explain in detail in the following, this is exactly
as desired, and there exists a D3-instanton wrapping π∗(l−E1−E2) and generating

the top-Yukawa couplings. Due to the non-trivial line bundle on the brane Db, we
find for the U(1) gauge coupling on this brane

1

g2
b

∼ −
∫

Db

c2
1(Lb) = O(1), (152)

which stays finite but, thankfully, leaves the perturbative regime.
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Non-chiral SU(5) spectrum

We now move forward and compute the vector-like matter spectrum as well. First,
we turn to the GUT brane. To compute the relevant bundle cohomology groups,
we first evaluate the pull-back in the definition of the line bundles eq. (146). One

obtains

La = ι∗a OY

(
− B − π∗(E1)

)
= ODa

((
− B − π∗(E1)

)
∩Da

)

= ODa

(
− e9 + f

)
,

Lb = ODb

(
− e9

)
,

Lc = ODc.

(153)

For the SU(5) matter, we now have to compute the cohomology of powers of La.
Using Section C, we easily find

H∗
(

dP9, L
∨
a ⊗ L∨

a

)
= (0, 4, 0), H∗

(
dP9, La ⊗ La

)
= (0, 6, 0). (154)

Thus we get two chiral and four vector-like pairs of matter fields in the anti-symmetric
representation 10 of SU(5).

Next, let us consider the states in the symmetric representation 1 of U(1), that is,
the right-handed neutrinos. Since the bundle (L∨

b )2 has sections, we get unwelcome
non-trivial elements in Ext0(ι∗L

∨
b , ι∗Lb) which would render the theory inconsistent.

In order to get rid of these, we now use the freedom to twist this pull-back bundle

by a bundle Rb whose push-forward is trivial in Y . In particular, we pick

Ra = ODa , Rb = ODb
(−e1 + e2

)
, Rc = ODc (155)

and replace the bundle on Di, i = {a, b, c}, with the tensor product

Li −→ L̃i = Li ⊗ Ri. (156)

As explained previously, this modification does not change the chiral matter con-

tent. However, the twisting with Rb yields an extra contribution to the D3-tadpole
eq. (150), which is now

Ngauge = −
∑

i

Ni

∫

Di

ch2

(
Li ⊗ Ri

)
= 9. (157)

The spectrum is, now,

H∗
(

dP9, (L
∨
b )2 ⊗ (R∨

b )2
)

= (0, 4, 0), H∗
(

dP9, (La)
2 ⊗ (Rb)

2
)

= (0, 6, 0), (158)
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yielding two chiral and two vector-like pairs.

Finally, consider the matter fields in the 5 representation, which are localised on
the curve

Da ∩Db = F, (159)

that is, on an elliptic fibre P1,2,3[6] ⊂ Y . We first need to pull-back the bundles via
the inclusion ιF : F → Da and Db, respectively. Note that the specific fibre F is,

viewed as a curve in Da or Db, in the fibre class f . In order to label its intersection
points with the sections e1, . . . , e9, let us define

p1 = ιa(e1) ∩ F, p2 = ιa(e2) ∩ F, . . . , p8 = ιa(e8) ∩ F,

p′1 = ιb(e1) ∩ F, p′2 = ιb(e2) ∩ F, . . . , p′8 = ιb(e8) ∩ F,

0 = ιa(e9) ∩ F = ιb(e9) ∩ F = B ∩ F.

(160)

Here we have implicitly fixed some of the complex structure moduli of the manifold
such that indeed the sections of Da and Db intersect F in the same points. Using
this notation, we obtain

La|F = ι∗F La = OF

((
− e9 + f

)
∩ F

)
= OF

(
− 0
)
,

(
Lb ⊗ Rb

)
|F = OF (−0− p′1 + p′2

)
.

(161)

With KF = OF we can easily compute the 5-spectrum, and obtain

H∗
(
F, ι∗F

(
L∨

a ⊗ (Lb ⊗ Rb)
∨)) = H∗

(
F,OF (0 + 0 + p′1 − p′2)

)

= H∗
(
F,OF (2pts.)

)
= (2, 0).

(162)

Hence, we get precisely 2 chiral fields in the anti-fundamental representation. The

Higgs 5H + 5H-spectrum, on the other hand, is determined by

H∗
(
F, ι∗F

(
L∨

a ⊗ (Lb ⊗ Rb)
))

= H∗
(
F,OF (−p′1 + p′2)

)
= (0, 0). (163)

One might worry that there is no candidate 5H−5H pair giving rise to the Higgs after
symmetry breaking; However, as we will see in the following, turning on a suitable

LY flux will generate one vector-like pair as desired.

Instanton effects

A Euclidean D3-brane wrapping the divisor π∗(l−E1 −E2) with trivial line bundle
is of O(1) type and clearly rigid. Therefore, this instanton is a candidate to generate
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the 10105H Yukawa couplings. For the chiral charged matter zero modes, we indeed
get Ia,inst = 1 and Ib,inst = −1. Therefore, the necessary condition eq. (45) for the
generation of the top Yukawa coupling is satisfied. Moreover, the line bundle on the

divisor Db = π∗(l− E1 − E2) has first Chern class c1(Lb ⊗Rb) = −e9 − e1 + e2, and
therefore

H∗(Db, Lb ⊗ Rb

)
= (0, 1, 0), H∗(Db, L

∨
b ⊗ R∨

b

)
= (0, 0, 0). (164)

This implies Ext∗(Lb ⊗ Rb,ODb
) = (0, 1, 0, 0) and shows that there exists precisely

one chiral zero mode λb without any additional vector-like pairs. Since the instanton

intersects the brane Da over the fibre curve, we find exactly one chiral zero mode
λa. Moreover, the D-term constraint for the brane Db has fixed the Kähler moduli
such that the instanton action goes to zero; it follows that leaving (locally) the
perturbative regime, the top Yukawa couplings are really of order one.

To generate Majorana neutrino masses, one needs an O(1) instanton intersecting
only the brane stack Db. A candidate would be a Euclidean D3-brane wrapping the

divisor π∗(E2). However, since this divisor is not Spin, it is not of O(1) but U(1)
type.

Non-chiral SU(3)× SU(2)×U(1)Y spectrum

Finally, let us break the SU(5) gauge symmetry to the Standard Model. To do so, we
will turn on U(1)Y gauge flux supported on a curve in H2(Da, Z) which is a boundary

on Y . In particular, we pick

La = La, LY = ODa(−e1 + e2). (165)

The LY bundle has vanishing cohomology classes on Da = dP9, and, therefore, no
exotics are introduced. The contribution to the D3-tadpole from this flux is

NY
gauge = −

∫

Da

c2
1(LY ) = 2. (166)

The combined gauge flux contribution to the D3 tadpole is Ngauge = 9 + 2 = 11,
overshooting by one unit. Therefore, to cancel this tadpole, one needs to introduce

one dynamical anti–D3-brane.

The relevant cohomology classes for the descendants of the antisymmetric repre-

sentation 10 of SU(5) are listed in Table 8. Note that, of course, the chiral matter
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GUT SM Field Cohomology chiral vector

10

(3, 1)−4Y

H∗(Da, (L∨
a )2) = (0, 4, 0)

2 4+4
H∗(Da,L2

a) = (0, 6, 0)

(3, 2)1Y

H∗(Da, (L∨
a )2 ⊗ L−1

Y )= (0, 5, 0)
2 5+5

H∗(Da,L2
a ⊗LY ) = (0, 7, 0)

(1, 1)6Y

H∗(Da, (L∨
a )2 ⊗ L−2

Y )= (0, 8, 0)
2 8+8

H∗(Da,L2
a ⊗L2

Y ) =(0, 10, 0)

1 (1, 1)0Y

H∗(Db, (L
∨
b ⊗R∨

b )2) = (0, 4, 0)
2 4+4

H∗(Db, L
2
b ⊗ R2

b) = (0, 6, 0)

5
(3, 1)2Y

eq. (168a) = (2, 0) 2 0

(1, 2)−3Y
eq. (168b) = (2, 0) 2 0

5H + 5H

(3, 1)−2Y
H∗(F,OF(−p′1 + p′2))= (0, 0) 0 0

(1, 2)3Y
H∗(F,OF ) = (1, 1) 0 1+1

Table 8: Spectrum for the orientifold model in Section 5. The indices denote
the U(1) charges.
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does not change; only extra vector-like pairs of matter fields appear. We now turn to-
ward the matter fields in the anti-fundamental representation 5 as well as the Higgs,
both of which are localised on the intersection curve F . In addition to eq. (161), we

have
ι∗FLY = LY |F = OF

(
− p1 + p2

)
. (167)

First, note that the 5-spectrum is unchanged since

H∗
(
F, ι∗F

(
L∨

a ⊗ L∨
b ⊗R∨

b

))
=H∗

(
OF (0 + 0 + p′1 − p′2)

)
= (2, 0), (168a)

H∗
(
F, ι∗F

(
L∨

a ⊗ L∨
b ⊗ R∨

b ⊗ L∨
Y

))
=H∗

(
OF (2 · 0 + p1 + p′1 − p2 − p′2)

)
= (2, 0).

(168b)

More interesting is the Higgs spectrum, which is determined by

ι∗F
(
L∨

a ⊗ (Lb ⊗ Rb)⊗ L∨
Y

)
= OF (p1 − p′1 + p2 − p′2) = OF (0− q) (169)

for some point q ∈ F . The precise point can be computed using the group law on the

elliptic curve F , and will depend on the complex structure of Da, Db (and, therefore,
Y ). We assume that q = 0, which happens on a locus of codimension one in the
complex structure moduli space; See also the discussion around eq. (160). In this
case,

H∗
(
F, ι∗F

(
L∨

a ⊗ (Lb ⊗Rb)⊗ L∨
Y

))
= H∗

(
F,OF

)
= (1, 1). (170)

As desired, we then obtain one pair of Higgs-conjugate Higgs fields. Moreover, the
Higgs doublet is, in fact, split from the dangerous colour triplet. The latter is still
absent, thanks to

H∗
(
F, ι∗F

(
L∨

a ⊗ (Lb ⊗ Rb)
))

= H∗
(
F,OF (−p′1 + p′2)

)
= (0, 0). (171)

To summarise, we have defined a simple involution on M
(dP9)2

2 which allows for the
introduction of a three-stack intersecting D7-brane configuration cancelling the D7-,
D5- and D3-brane tadpoles, the latter at the cost of introducing one anti D3-brane,

as well as the K-theory tadpoles. We have found an SU(5) GUT-like model with two
chiral generations of Standard Model particles and one Higgs-conjugate Higgs pair.
Moreover, we have been able to realise the U(1)Y flux gauge symmetry breaking
and computed the resulting chiral and non-chiral matter spectrum. The inevitable

appearance of the latter is one of the shortcomings of this example. It can be traced
back to the fact that our involution acts trivially on the cohomology H2(Y, Z). As a
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consequence, antisymmetric matter is localised not on a curve but on a whole divisor,
widening the sources of contributions to the cohomology. By contrast, matter and
Higgs are localised on the elliptic fibre of Y . Since the Higgs Hu and Hd are localised

on the same curve, we cannot suppress dimension-five proton decay operators. The
D-term supersymmetry conditions can be satisfied on the boundary of Kähler moduli
space such that a D3-brane instanton realises 10105 Yukawa couplings of order 1.
In Table 9 we summarise phenomenologically desirable features of this simple model.

property mechanism status

globally consistent tadpoles + K-theory X
∗,∗∗

D-term susy vanishing FI-terms inside Kähler cone X
∗∗∗

gauge group SU(5) U(5)× U(1) stacks X

3 chiral generations choice of line bundles −
no vector-like matter localisation on curves −
1 vector-like of Higgs choice of line bundles X

∗∗∗∗

no adjoints rigid 4-cycles, del Pezzo X

GUT breaking U(1)Y flux on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p-decay local. of Hu, Hd on disjoint comp. −
105 5H Yukawa perturbative X

10105H Yukawa presence of appropriate D3-instanton X

Majorana neutrino masses presence of appropriate D3-instanton −∗∗∗∗∗

Table 9: Summary of SU(5) properties realised in the model of Section 5.
∗ overshooting in D3-tadpole → 1 D3 brane
∗∗ K-theory to the best of our ability to detect SP cycles
∗∗∗ realised on acceptable boundary of Kähler moduli space
∗∗∗∗ for special choice of complex structure moduli
∗∗∗∗∗ at least not with O(1) instantons
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6 GUT Model Search

The model presented in the previous section does not exhibit all properties desirable
for a nice string GUT model. However, as for each single shortcoming it is quite
clear how to improve on this. The non-trivial task is to achieve this in a globally

consistent framework and without loosing the good features already realised. To this
end a more systematic search is necessary and beyond the scope of this paper. In
this section we provide a couple of manually found models which incorporate some
other desirable properties from Table 3, but come short on already realised ones.

The two features we focus on in this section are 3 chiral families and the absence of
vector-like matter fields.

6.1 A 3-Generation GUT Model on M
(dP8)2

2

We now present an example of a GUT model of the type described previously which

indeed gives rise to 3 chiral families of Standard Model matter. To this end we

consider the manifold M
(dP8)

2

2 introduced in Subsection 4.3. Since the intersection
form eq. (102) differs considerably from the one of the un-flopped Weierstraß phase,
eq. (86), it seems plausible that the no-go result for an odd number of generations
can be evaded.

We closely follow the philosophy spelt out in Section 5 so that we can be brief.
Concretely, consider again a 3-stack model based on the divisors Da = D7, Db = D5

and Dc = D5 + D7, wrapped by D7-branes with multiplicities

N ×D7, (N − 4) ×D5, (8−N) × (D5 + D7), (172)

plus their orientifold images, with N = 5 corresponding to the GUT model we are
interested in. The above configuration satisfies the D7-brane tadpole constraint for

any N .

Let us first define the chiral SU(5) GUT model by parametrising the part of line

bundles La, Lb and Lc descending from the Calabi-Yau Y as

La = ι∗aOY

(
a1D5 + a3D7

)
, Lb = ι∗bOY

( 4∑

i=1

biDi+4

)
, (173)

Lc = ι∗cOY

(
c1D1 + c2D2 + c4D4

)
.

For the correct definition of the bundles it is essential to take into account that
this time all three divisors are not Spin. According to the quantisation condition
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eq. (7) for vanishing B-field the parameters b1, a3, c1 are therefore half-integer while
a1, b2, b3, b4, c2, c4 are integer.

As can be computed from the intersection form eq. (102), the divisors Da and Db

still intersect along a genus 1 curve where the 5 and the 5H +5H are localised. Note
also that the divisor Dc now intersects Da and Db along a genus 0 and a genus 1

curve, respectively. Still there exists no massless exotic matter in the Da−Dc sector,
even at the vector-like level, while there might appear truly hidden sector matter
fields from the Db − Dc intersection. This chiral matter is displayed in Table 10.
Clearly all non-Abelian anomalies vanish due to cancellation of D7- and absence of

D5-brane tadpoles. Note that for general bundles there exist both symmetric and
anti-symmetric states under U(N − 4). In what follows we specialise to the case
N = 5 corresponding to a GUT model with the first four lines representing the 10,
5, 5H + 5H and N c

R.

chirality U(N) U(N − 4) U(8−N)

−2a1 + 2a3 (2) 1 1

−(a1 + b1) + a3 + b3 (−1) (−1) 1

−(a1 − b1) + (a3 − b3) (−1) (1) 1

2 (−b1 + b3) 1 (2) 1

2 (−b1 + b2 + b4) 1 (2) 1

(b1 − c1)− (b2 − c2)− (b4 − c4) 1 (−1) (1)

(b1 + c1)− (b2 + c2)− (b4 + c4) 1 (−1) (−1)

2(−c1 + c2 + c4) 1 1 (2)

Table 10: Chiral spectrum for intersecting D7-brane model. The indices de-

note the U(1) charges.

Global consistency conditions

The D3-brane tadpole condition is

ND3 + Ngauge = 10, (174)
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with Ngauge given by

− 1

2

∑

a

Na c2
1(La) = −5

2

(
a2

1 + a2
3 − 2a1 a3

)
− 3

2

(
−c2

1 + 2c1c2 − 3c2
2 + 2c1c4 − c2

4

)

− 1

2

(
−2b2

1 + 2b1b2 − 3b2
2 + 2b1b3 − b2

3 + 2b1b4 − b2
4

)
. (175)

Note, however, that there will be additional contributions later on from the part of
the line bundles trivial on the ambient space Y . As in the previous section, due to the

simple structure of the orientifold action, the D5-brane tadpoles cancel automatically
between the branes and their image.

On the other hand, there can arise K-theory constraints from the 3 invariant
divisors D6, D8 and D5 which may carry symplectic Chan-Paton factors. The divisor

D6 is the former basis dP2 of the Weierstraß model M
(dP9)2

2 with the two P1s removed.
As such it is the surface P2 with KD6 = OD6(3) and obviously not Spin. This means
that, according to eq. (7), the chiral part of a line bundle on D6

LD6 = ι∗OY

(
x1D5 + x2D6

)
(176)

can be trivial only for B = 0×D5 + 1
2
D6 + . . .. Otherwise the cycle does not carry

symplectic gauge factors and therefore no K-theory constraint arises from D6.

The K-theory constraint from D6 therefore reads

b1 + 3c1 − 3(b2 + 3c2) ∈ 2Z if B = 0×D5 +
1

2
D6. (177)

A similar analysis for D8 and D5 yields the two additional constraints

b1 + 3c1 − (b4 + 3c4) ∈ 2Z if B = 0×D5 +
1

2
D8,

5a1 − 5a3 − 2(b1 + 3c1) + (b2 + 3c2) + b3 + (b4 + 3c4) + 3c1 ∈ 2Z (178)

if B =
1

2
D5 + 0× (D6 + D7 + D8).

In all other cases the K-theory constraints from these three divisors are trivial.

D-term supersymmetry constraints

To determine the D-term supersymmetry conditions we have to expand the Kähler

form J in terms of the generators of the full Kähler cone and evaluate the Fayet-
Iliopoulos terms. For our purposes it will be sufficient to restrict our attention to
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the Kähler subcone corresponding to the vectors Ki displayed in eq. (101) and take

J =
∑

i

riKi, ri ∈ R+. (179)

As discussed around eq. (101), it suffices to check if the associated FI-terms

ξa ≃ (a1 − a3)r1,

ξb ≃ b2r4 + b3r1 − b1r2 + b4r2 + b1r3, (180)

ξc ≃ c2r4 + c4r2 + c1(r1 − r2 + r3)

vanish for some values of ri > 0 for which in addition r1 − r2 + r3 > 0.

A 3-generation GUT model

As a quick search reveals it is indeed possible to find globally consistent supersym-

metric models with 3 chiral generations of SU(5) GUT matter. As one example
out of the O(100) models we found we present the configuration with non-vanishing
B-field

B =
1

2
D5 +

1

2
D7 (181)

and line bundles

La = ι∗aOY

(
− 7

2
D5 − 2D7

)
,

Lb = ι∗bOY

(
−D5 −D6 +

1

2
D7

)
, (182)

Lc = ι∗cOY

(
−D5

)
.

According to Table 10 this choice yields precisely 3 chiral GUT families of 10, 5 and

N c
R with no chiral exotics. In addition there is chiral hidden matter as summarised

in Table 11.

The contributions to the D3-brane tadpole of this GUT model is

Ngauge = −5

2
· 9
4

+
1

2
· 17

4
+

3

2
· 4
4

= −2 (183)

so that at this stage we would need to add ND3 = 12 dynamical D3-branes. Note
that it is suspicious that the contribution of the gauge flux on the SU(5) brane to
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chirality U(5) U(1) U(3)

3 (2) 1 1

3 (−1) (−1) 1

3 1 (2) 1

1 1 (−1) (1)

1 1 (1) (1)

2 1 1 (2)

Table 11: Chiral spectrum for intersecting D7-brane model with indices de-
noting the U(1) charges. The last three lines are completely hidden

chiral matter.

the D3-brane tadpole is negative. Indeed, we will see in a moment that this bundle

leads to ghosts. We will avoid this conclusion by twisting it by an additional bundle
Ra which is trivial on Y .

For the above choice of B-field the K-theory constraints from D5, D6, D8 are
vacuous. As expected from the general consideration in Subsection 4.6, the D-term
constraint for Da drives us to the boundary of Kähler moduli space in that it requires
r1 = 0. The general solution of the three D-term equations for the Kähler moduli is

r1 = 0, r2 = x, r3 = x, r4 = 0. (184)

For positive x this solution lies on the boundary of Kähler moduli space in that
besides r1 = 0 and r4 = 0 also the volume of the generator C5 of the Mori cone
vanishes. In this regime the classical volume of the divisor D7 vanishes, while all
other brane volumes and the total volume of the Calabi-Yau are positive. Note that

for this model the classical value of the GUT gauge coupling is α−1
GUT ≃ −c2

1(La) < 0,
which we have just seen to be negative. This is another indication that the model
is pathological in its present form and will be rectified momentarily by twisting La

further.
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GUT breaking and SU(3)× SU(2) ×U(1) spectrum

To break the GUT symmetry to SU(3)×SU(2)×U(1)Y and to compute the vector-
like MSSM spectrum we need the explicit pushforward and pullback maps ι∗ and
ι∗ between the second (co)homology of D7 and the ambient space Y . Recall that

D7 is a dP8 surface with H2(D7, Z) spanned by h, e1, . . . e8. The pushforward ι∗ :
H2(D7, Z)→ H2(Y, Z) follows immediately once one takes into account that relative
to π∗(E1) = dP9 the curve BE1 is flopped away in the present phase. Explicitly,

ι∗(ei) = f, i = 1, . . . 8, ι∗(h) = 3f, (185)

where −f ∈ H2(Y, Z) now denotes the class of the curve D7 ∩D7 in Y . This in turn
follows from ι∗D7 = KD7 = −3h +

∑
ei together with the identity ι∗ι

∗ = 1. Finally

one completes the pullback map to

ι∗D7 = −3h +
8∑

i=1

ei, ι∗D5 = 3h−
8∑

i=1

ei (186)

and all others vanishing. Therefore, one finds for the pullback of c1(La) to D7

c1(La) = −3

2

(
3h−

8∑

i=1

ei

)
. (187)

For this bundle we can now compute

H∗(dP8, L
∨
a ⊗ L∨

a

)
= (7, 0, 0), H∗(dP8, La ⊗ La

)
= (0, 0, 4) , (188)

which implies Ext∗(ι∗L
∨
a , ι∗La) = (7, 4, 0, 0). Therefore, this line bundle on the SU(5)

stack leads to ghosts in the spectrum. Since the Kähler form is on the bound-

ary of the Kähler cone this is not in contradiction with the no-ghost theorem from
Subsection 2.4. However, we still have the freedom to tensor La with a line bundle
Ra which is trivial on the ambient space Y . This does not change the chiral spectrum

but the non-chiral one.

This freedom can be used to choose the bundles La = La ⊗ Ra and LY as

c1(La) =
1

2

(
−h +

4∑

i=1

ei −
8∑

i=5

ei

)
, c1(LY ) = −e1 + e5. (189)

This configuration leads to the multiplicities displayed in Table 12 for the decom-

position of the 10 into MSSM states. For its computation see Section B. Note the
appearance of only two extra vector-like states.
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repr. extension spectrum

(3, 1)−4Y
Ext∗(L∨

a ,La) (0, 1, 4, 0)

(3, 2)1Y
Ext∗(L∨

a ⊗L−1
Y ,La) (0, 0, 3, 0)

(1, 1)6Y
Ext∗(L∨

a ⊗L−2
Y ,La) (0, 1, 4, 0)

Table 12: Multiplicities of MSSM descendants from the SU(5) 10.

To compute the MSSM descendants of the 5 we recall that the divisors D7 and
D5 intersect again along a genus 1 curve F with c1(LY |F ) = 0. We will make use of

our freedom to twist also Lb by a line bundle Rb which is trivial on the Calabi-Yau
Y and define

Lb = Lb ⊗ Rb. (190)

Since Rb is trivial on Y this does not change the chiral spectrum. Irrespective of its

form we find c1

(
L∨

a ⊗ L∨
b |D5∩D7

)
= 3, leading to precisely 3 multiplets of (3, 1)2Y

and (1, 2)−3Y and no extra vector-like states.

On the other hand we will choose Rb such that the Wilson lines for the bundles

L∨
a⊗Lb|D5∩D7 and L∨

a⊗L∨
Y ⊗Lb|D5∩D7 give rise to precisely one pair of Higgs doublets

and no Higgs triplet. To this end we recall that D5 is a P2 surface with 11 points
blown up to a P1, and in analogy with the notation for del Pezzo surfaces H2(D5, Z)
is spanned by h, e1, . . . e9, E10, E11. Here E10 and E11 denote the extra two P1 which

have been flopped into D5 in the present phase. For a special choice of complex
structure moduli the elliptic curve D5 ∩D7 intersects h, e1, . . . e8 in the same points
as the classes24 h, e1, . . . e8 in H2(D7). It is then clear that, given the choice eq. (189)
for La and LY , we have to pick

Rb = O(4h − 2e1 − e2 − e3 − e4 − e5 − 2e6 − 2e7 − 2e8) (191)

on D5 to comply with the requirement stated in equation (65).

The twist with the bundles Ra, Rb and the addition of the bundle LY change the
overall contributions of the gauge fluxes to the D3-brane tadpole. These now read

Ngauge =
5

2
· 7
4

+
1

2
·
(17

4
+ 4
)

+
3

2
= 10. (192)

24This is actually more than we need since we only have to ensure that the sum of the Wilson
lines add up to zero to engineer one Higgs pair.
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This time Ngauge precisely equals the D3-brane charge of the orientifold planes, and
cancellation of the full D3-brane tadpole is possible in a supersymmetric manner
without introducing further D3-branes. Moreover, note that despite the vanishing

volume of the GUT divisor D7 = dP8, the gauge coupling now comes out positive.

Finally, one might wonder about the existence of ghosts on the U(1) and U(3)

branes since we have not been able to satisfy all three D-term supersymmetry con-
ditions inside the Kähler cone. On the other hand, one can convince oneself that it
is possible to satisfy the supersymmetry conditions inside the Kähler cone for each
of the line bundles Lb and Lc separately. This is already enough for our lemma in

Subsection 2.4 to guarantee absence of states in Ext0 and Ext3.

Instanton effects

The existence of a model with three chiral generations of MSSM matter rested upon
the choice eq. (181) for the B-field. The downside of this choice is that none of the
invariant divisors D5, D6, D8 allows for trivial line bundles. As a consequence there

exist no divisors that would give rise to symplectic gauge groups for spacetime-filling
branes, and thus no O(1) instantons. To decide if neutrino Majorana masses or
the 10105H coupling are generated non-perturbatively we would therefore have to

study the effects of D3-brane instantons wrapping non-invariant cycles, for example
along the lines of [78]. This, however, is beyond the scope of the present work.

We conclude this section by summarising the key phenomenological properties of

our model in Table 13.

6.2 A GUT Model on M
(dP9)3

3

In this section we investigate whether we can build a GUT model, where the 10
representation is also localised on a curve. This is expected to avoid the appearance
of extra vector-like states.

Concretely, we consider the elliptic fibration over the dP3 base in the Weierstraß
phase with the section B = dP3 and the six dP9 pull-back divisors π∗(E1), π∗(E2),
π∗(E3), π∗(l−E1 − E2), π∗(l−E1 − E3) and π∗(l−E2 −E3). Moreover, we choose
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property mechanism status

globally consistent tadpoles + K-theory X
∗

D-term susy vanishing FI-terms inside Kähler cone X
∗∗

gauge group SU(5) U(5) × U(1) stacks X

3 chiral generations choice of line bundles X

no vector-like matter localisation on P1 curves −
1 vector-like of Higgs choice of line bundles X

∗∗∗

no adjoints rigid 4-cycles, del Pezzo X

GUT breaking U(1)Y flux on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p-decay local. of Hu, Hd on disjoint comp. −
1055H Yukawa perturbative X

10105H Yukawa presence of appropriate D3-instanton −∗∗∗∗

Majorana neutrino masses presence of appropriate D3-instanton −∗∗∗∗

Table 13: Summary of SU(5) properties realised in the model of
Subsection 6.1.
∗ K-theory to the best of our ability to detect SP cycles
∗∗ realised on acceptable boundary of Kähler cone
∗∗∗ for special choice of complex structure moduli
∗∗∗∗ at least not with O(1) instantons

81



the involution acting as




l
E1

E2

E3


 7→




2l − E1 − E2 − E3

l −E1 − E3

l −E2 − E3

l −E1 − E2


 (193)

on the dP3. The orientifold O7-plane wraps the divisor

DO7 = π∗(2l − E1 − E2) (194)

which has χ(DO7) = 48. Since there are no fixed points for this involution, there
are no O3-planes. and the contribution of the curvature terms to the D3 tadpole
condition is ND3 + Nflux = 12.

Kähler cone

Expanding the Kähler form as

J = rB B + rl π
∗(l)− r1 π∗(E1)− r2 π∗(E2)− r3 π∗(E3) . (195)

the Kähler cone is simply

rB > 0, ri − rB > 0, rl − ri − rj − rB > 0, i < j ∈ {1, 2, 3} . (196)

However, the involution σ has h1,1
− = 2, so that we expect that two of these five

Kähler moduli are fixed. Indeed, requiring that J is invariant under σ yields the two

relations

r1 = r2, rl = 2 r2 + r3 . (197)

We are only left with three dynamical Kähler moduli.

In addition, in this case we have two B− moduli. With the general Ansatz

B− = bB B + bl π
∗(l)− b1 π∗(E1) − b2 π∗(E2)− b3 π∗(E3) (198)

subject to σ(B−) = −B− we obtain the three constraints

bB = 0, bl = b3 b1 = 2 b3 − b2 . (199)
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Tadpole cancellation

To cancel the D7-brane tadpole eq. (13) we introduce three stacks of D7-branes on
the divisors

Da = π∗(E2) , D′
a = π∗(l −E2 − E3),

Db = π∗(l− E1) , D′
b = π∗(l − E2), (200)

Dc = π∗(E3) , D′
c = π∗(l −E1 − E2).

As for the line bundles it is convenient to split off the continuous B−-moduli by
writing c1(L̃) = c1(L) − B−. Choosing the B part of the line bundles on these
divisors as

c1(L̃a) = 3kB + π∗(ηa), c1(L̃b) = −5kB + π∗(ηb), c1(L̃c) = −3kB + π∗(ηc), (201)

cancels also the D5-brane tadpole. The resulting chiral spectrum is listed in Table 14.

number U(5) U(3) U(5)

6k (2) 1 1

2k (−1) (−1) 1

10k 1 (−2) 1

Table 14: Chiral spectrum for intersecting D7-brane model. The indices de-
note the U(1) charges.

Some remarks are in order concerning this spectrum: One gets precisely 6k genera-

tions of 10 and, taking into account the extra multiplicities due to the U(3) stack,
2k × 3 generations of 5, but without right-handed neutrinos. In fact we found that
none of the pull-back divisors carries symplectic Chan-Paton factors. In this model

the flavour group is gauged. Moreover, since E2 and l − E1 do not intersect there
are no massless Higgs fields in the (ab) sector. However in the (ac′) sector, vanish-
ing Wilson-lines along the elliptic fibre imply that we obtain one vector-like matter
field in the (5, 1, 5) + (5, 1, 5) representation. These carry the GUT quantum num-

bers to be identified with five pairs of Higgs fields. As mentioned in Subsection 3.1,
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since the Higgs and 5 matter fields are charged under different U(1) groups also the
bottom-type Yukawa couplings need to be realised by D3-brane instantons. Clearly,
this is not a completely realistic model, but some rough features are realised and in

particular the massless matter states in the anti-symmetric representation of SU(5)
are localised on the fibre F of the elliptic fibration. The minimal choice k = 1

2
gives

already three generations.

Three generation model

Taking now the quantisation conditions for the gauge fluxes into account and turning

on half-integer B-field flux through the fibre, that is, c1(B) = 1
2
B, we choose

c1(L̃a) =
3

2
B +

3

2
π∗(E2), c1(L̃b) = −5

2
B + 5π∗(E1),

c1(L̃c) = −3

2
B − 3

2
π∗(E3) (202)

for the line bundles.

The D-term constraints
∫

Da

J ∧
(
c1(L̃a) + B−

)
= 0 (203)

for all three brane stacks give three constraints which can all be solved inside the
Kähler cone provided

rB > 0 − 3

2
< b2 <

3

2
. (204)

The contributions of each of the three stacks to the D3-tadpole condition are
positive and add up as

Ngauge =
3 · 45

8
+

3 · 75
4

+
3 · 45

8
= 90≫ 12 . (205)

Here we see explicitly that eventually the B− field drops out so that one ends up really

with an integer contribution. Clearly this is a massive overshooting and requires the
introduction of anti D3-branes. Finally, for c1(B) = 1

2
B the divisor B can carry a

trivial line bundle and is expected to have SP Chan-Paton factors. The resulting
global Witten anomaly (K-theory) constraint is satisfied.
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Non-chiral spectrum and GUT breaking

Nevertheless, the purpose was to demonstrate that by choosing non-diagonal invo-
lutions, it is (in principle) possible to have also the matter in the antisymmetric
representation of SU(5) localised on a curve. In fact here all matter is localised

in the fibre elliptic curve C = F with trivial canonical line-bundle. From that it
immediately follows that there is no vector-like matter in the 10 + 5 representa-
tion. Since the U(5) stack is a rigid dP9 surface, we can break the SU(5) GUT
gauge symmetry to the Standard Model gauge group by turning on U(1)Y flux of

the form LY = O(e1 − e2). In contrast to the first two examples we presented, this
does not give any new vector-like matter. As for the Higgs sector, we are now in the
favourable situation that the bundles L̃a and L̃b are both pullbacks from the ambient
space. According to the discussion around eq. (66) it therefore suffices to twist L̃a

by Ra = L−1
Y to arrange for precisely one Higgs doublet and no Higgs triplet without

further adjusting any complex structure moduli. Adding LY and Ra results in an
additional 3 units of D3-brane charge in the D3-tadpole equation.

Summary of features

Let us summarise in Table 15 which of the desired features we were able to realise

in this simple model.

7 GUTs on Del Pezzo Transitions of the Quintic

So far we have studied GUT models on descendants of the elliptic fibration Calabi-
Yau P1,1,1,6,9[18]. We have gone a long way to eventually arrive at GUT like examples
featuring many of the desired properties. One of the general aspects of these mod-
els was that for the SU(5) GUT stack localised on a shrinkable dP8 surface the

D-term conditions in conjunction with the swiss-cheese property of the triple inter-
section form force the GUT four-cycle to collapse to string scale size, that is, to the
quiver locus. If this were a generic feature of all Calabi-Yau orientifolds containing
shrinkable surfaces, it would clearly have strong implications for model building.

The clarification of this point is one of our motivations for studying another class
of Calabi-Yau manifolds containing del Pezzo surfaces. Instead of starting with the

elliptic fibration P1,1,1,6,9[18], we take the simple Quintic P1,1,1,1,1[5] and perform del
Pezzo transitions. The mathematics of this construction is collected in Subsection 7.1
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property mechanism status

globally consistent tadpoles + K-theory X
∗,∗∗

D-term susy vanishing FI-terms inside Kähler cone X

gauge group SU(5) U(5) × U(3) stacks X

3 chiral generations choice of line bundles X

no vector-like matter localisation on g=1 curves X

5 vector-like Higgs choice of line bundles X

no adjoints rigid 4-cycles, del Pezzo X

GUT breaking U(1)Y flux on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p-decay local. of Hu, Hd on disjoint comp. −
1055H Yukawa presence of appropriate D3-instanton −∗∗∗

10105H Yukawa presence of appropriate D3-instanton −∗∗∗

Majorana neutrino masses presence of appropriate D3-instanton −∗∗∗

Table 15: Summary of SU(5) properties realised in the model of
Subsection 6.2.
∗ overshooting in D3-tadpole → D3-branes
∗∗ K-theory to the best of our ability to detect SP cycles
∗∗∗ at least not with O(1) instantons
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with the result that here we can get intersecting dPr, r ≤ 8 surfaces, so that the
triple intersection forms do not have the diagonal swiss-cheese type structure. In
Subsection 7.2 we provide one more example of a GUT model, for which all Standard

Model matter is really localised on curves of genus zero and one, respectively.

7.1 Del Pezzo Transitions of the Quintic

In this section we introduce a class of compact Calabi-Yau manifolds which can be

obtained from the quintic hypersurface by performing del Pezzo transitions. Again
these spaces will be realised as hypersurfaces in an ambient toric manifold. It will
turn out that the del Pezzo surfaces arising after the transitions can intersect and
thus are ideal candidates for supporting intersecting D7-branes.

The toric data and intersection forms

Let us first give the points in the polyhedron for the toric ambient spaces. The
hypersurface is then determined to have the anti-canonical class given by the sum
of all toric divisors as in Subsection 4.2. The quintic hypersurface has the points
v∗

1 = (−1, 0, 0, 0), v∗
2 = (0,−1, 0, 0) v∗

3 = (0, 0,−1, 0), v∗
4 = (0, 0, 0,−1) and v∗

5 =

(1, 1, 1, 1). Its Hodge numbers are h1,1 = 1 and h2,1 = 101. By arranging some of the
h2,1 complex structure deformations in the hypersurface constraint one can generate
del Pezzo singularities and blow up del Pezzo surfaces. This process increases h1,1 by

the number of Kähler moduli of the del Pezzo four-cycles and lowers h2,1 since one
has to fix a certain number of the complex structure moduli to generate a singularity.

As a first transition we can blow up a dP6 surface by adding the point v∗
6 =

(1, 0, 0, 0) to the polyhedron and consider the resulting hypersurface QdP6. In fact, the
new Calabi-Yau manifold has h1,1 = 2 and h2,1 = 90. There is only one triangulation
for the ambient toric space. Using the same methods as in Subsection 4.2 one can

explicitly check that the divisor D6 is a dP6 del Pezzo surface. The intersection form
is simply

I3 = 3D3
6 + 3D2

5D6 − 3D2
6D5 + 2D3

5 . (206)

This Calabi-Yau is also of the strong swiss-cheese type, since the intersection form

diagonalises for the transformation (D̃5 = D6−D5, D̃6 = D6). This is also consistent
with the fact that the dP6 surface in this manifold is generic which can be inferred
from the fact that in this transition ∆χ = 24. For generic transitions, as the ones in
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Subsection 4.2 with Euler numbers eq. (79), one has ∆χ = 2C(n), where C(n) is the
dual Coxeter number of the exceptional groups associated to dPn.

To generate a second del Pezzo surface we add the point v∗
7 = (0, 1, 0, 0) to

the polyhedron. This blows up a point on the dP6 surface D6 to a P1 such that
dP6 → dP7

∼= D6 and generates a second dP7 surface D7. The ambient toric space

has one Calabi-Yau triangulation and the hypersurface, denoted by Q(dP7)2, has
Hodge numbers h1,1 = 3 and h2,1 = 79. One can then check that the two dP7

surfaces D6, D7 intersect on a P1. To do that one computes the triple intersection
form

I3 = 2D3
7 +2D3

6 +2D2
5(D7 +D6)−D2

7(2D5 +D6)−D2
6(2D5 +D7)+D5D6D7 . (207)

This intersection form cannot be diagonalised due to the intersection of D6 and D7.

In other words, the two dP7 surfaces are not generic, but share a common P1. This
can be also inferred from the fact that ∆χ = 2 × 24 with respect to the quintic
hypersurface. This change is expected for a transition with two generic dP6 surfaces

and corresponds to the fact that the E6 sublattices on the two dP7 surfaces are
still trivial in the Calabi-Yau threefold. For two generic dP7 surfaces one would
find ∆χ = 2 × 36. That only an E6 sublattice is trivial in the Calabi-Yau can also
be inferred by computing the BPS-instantons as suggested in [41]. One finds that

the representations of E7 appearing for a generic dP7 transition are split into E6

representations for our intersecting divisors D6 and D7.

We can perform a third transition by adding the point v∗
8 = (0, 0, 1, 0) to the

polyhedron and denote the corresponding hypersurface by Q(dP8)
3
. In this case one

additional P1 is blown up on each dP7 surface D6, D7 such that dP7 → dP8. The two
dP8 surfaces D6, D7 intersect a new dP8 surface D8 in the blown-up P1 curves. The

new toric ambient space has one triangulation, and the corresponding Calabi-Yau
hypersurface has Hodge numbers h1,1 = 4 and h2,1 = 68. The intersection form is
given by

I3 = D3
6 + D3

7 + D3
8 −D3

5 + D2
5(D6 + D7 + D8)

−D2
6(D5 + D7 + D8)−D2

7(D5 + D6 + D8)−D2
8(D5 + D6 + D7)

+ D5(D6D8 + D7D8 + D7D6). (208)

Once again we note that the dP8 surfaces are non-generic, since they intersect over
P1 curve. This is an accord with the fact that ∆χ = 3 × 24 with respect to the

quintic. In fact, one concludes that in each del Pezzo 8 surface and E6 sublattice is
trivial in the Calabi-Yau space.
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Finally, we can add the point v∗
9 = (0, 0, 0, 1) to the polyhedron and denote

the corresponding hypersurface by Q(dP9)
4
. In fact, the new Calabi-Yau space has

h1,1 = 5 and h2,1 = 57 and one checks that the toric divisors D6, D7, D8, D9 are dP9

surfaces. Clearly, this space cannot be obtained by resolving a del Pezzo singularity,
since dP9 can be only shrunk to a curve and not to a point. Nevertheless it is a
viable Calabi-Yau background with intersection form

I3 = D5(D6D8 + D8D9 + D6D9 + D6D7 + D7D8 + D7D9)

−D2
6(D7 + D8 + D9)−D2

7(D6 + D8 + D9)−D2
8(D6 + D7 + D8)

−D2
9(D6 + D7 + D8)−D3

5. (209)

One can check that each of the dP9 divisors intersects the other three in a P1.
Schematically the intersecting del Pezzo surfaces in the four manifolds QdP6 , Q(dP7)2,

Q(dP8)3 and Q(dP4
9) are shown in Figure 3. The Euler number has changed again by

24, such that ∆χ = 4 × 24 with respect to the quintic hypersurface. Again, this
corresponds to the fact that there are four E6 lattices on the dP9 surfaces which are

trivial in Q(dP9)4.

QdP6 Q(dP7)
2

Q(dP8)
3

Q(dP9)
4

Figure 3: Schematics of the intersecting del Pezzo surfaces on transitions of

the quintic. Each intersection is a P1.

Kähler cone and orientifold involution

In Sections 7.2 and 7.3 we will construct GUT models on Q(dP8)
3

and Q(dP9)
4

with
matter and Higgs localised on curves. However, in order to determine the spectrum

and check the supersymmetry conditions, we first need to calculate the Kähler cone
and the orientifold involution acting on it.

Let us begin by analysing the hypersurface Q(dP8)3. The Mori cone is simplicial
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for this Calabi-Yau phase, and generated by the vectors

x1 x2 x3 x4 x5 x6 x7 x8 p

ℓ(1) 1 0 0 1 1 0 −1 −1 −1

ℓ(2) 0 0 0 −1 −1 1 1 1 −1

ℓ(3) 0 0 1 1 1 −1 −1 0 −1

ℓ(4) 0 1 0 1 1 −1 0 −1 −1

(210)

Its dual, the Kähler cone, is therefore again simplicial and generated by

K1 = 2D5 + D6 + D7 + D8, K2 = D5 + D6,

K3 = D5 + D7, K4 = D5 + D8.
(211)

As before, the Kähler cone is needed in order to evaluate the D-terms in the physical

region of the moduli space.

We next specify a orientifold involution σ on Q(dP8)3. Explicitly, σ is given by the

exchange of coordinates

σ : x2 ↔ x3, x7 ↔ x8. (212)

This leads to a split h1,1
+ = 3 and h1,1

− = 1, yielding a four-dimensional theory with
3 Kähler moduli TI and one B−-modulus G as defined in eq. (1). The fixed point
locus of this involution contains one O7-plane wrapping the four-cycle

DO7 = D5 + D7 + D8 (213)

and one fixed point, NO3 = 1. Note that χ(DO7) = 47, and, therefore, χ(DO7)+NO3

is indeed divisible by four.

Turning to the other Calabi-Yau phase Q(dP9)4 , the Mori cone is now non-simplicial
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and generated by the vectors

x1 x2 x3 x4 x5 x6 x7 x8 x9 p

ℓ(1) 0 0 −1 0 −1 1 1 0 1 −1

ℓ(2) 0 1 0 1 1 −1 0 −1 0 −1

ℓ(3) 1 0 0 1 1 0 −1 −1 0 −1

ℓ(4) −1 0 0 0 −1 0 1 1 1 −1

ℓ(5) 0 1 1 0 1 −1 0 0 −1 −1

ℓ(6) 0 0 0 −1 −1 1 1 1 0 −1

ℓ(7) 0 0 1 1 1 −1 −1 0 0 −1

ℓ(8) 1 1 0 0 1 0 0 −1 −1 −1

ℓ(9) 1 0 1 0 1 0 −1 0 −1 −1

ℓ(10) 0 −1 0 0 −1 1 0 1 1 −1

(214)

In order to define coordinates for the Kähler cone, we first discard the ℓ(κ), κ =
3, 4, 6, 7, 8 and determine the dual basis of four-cycles

K1 = D5 + D6 + D7, K2 = D5 + D8 + D9,

K3 = D5 + D6, K4 = D5 + D7 + D8,

K5 = D5 + D9.

(215)

Expanding J =
∑

i riKi we have to take ri ≥ 0 in the Kähler cone. However, we
note that the discarded ℓ(κ) impose the additional conditions

r3 − r4 + r5 ≥ 0, r2 − r3 + r4 ≥ 0, r1 + r4 − r5 ≥ 0,

r2 − r1 + r5 ≥ 0, r1 − r2 + r3 ≥ 0.
(216)

We have to ensure that these conditions are satisfied when evaluating the D-terms

in coordinates ri.

Let us finally specify the involution on Q(dP9)
4
. It is simply given by the exchange

of x2 ↔ x3 and x7 ↔ x8, the same as in eq. (212). This leads to a split h1,1
+ = 4 and

h1,1
− = 1 and, hence, four TI Kähler moduli and one B−-modulus G. The fixed point

locus of this involution contains one O7-plane, wrapping the same linear combination
as in eq. (213) and three fixed points, NO3 = 3. Note that now χ(DO7) = 37, and,

therefore, χ(DO7) + NO3 is again divisible by four.
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7.2 A GUT Model Without Vector-Like Matter

In this section we present a SU(5) GUT model with all matter realised on curves.
One of our motivations to discuss this example is to illustrate that the GUT brane
can indeed wrap a shrinkable dPr, r ≤ 8 without being driven to the quiver locus

by the D-terms. Our starting point is the Calabi-Yau Q(dP8)3, which contains three
intersecting dP8 surfaces. Using the notation from the previous section, we choose
the involution eq. (212), which leads to an O7-plane eq. (213) and one O3-plane.
In the following we will specify the D7-branes which define a GUT model with two

chiral generations.

Two generation model

To cancel the D7-brane tadpole (13) we introduce three stacks of D7-branes on the
divisors

U(5) : Da = D7, D′
a = D8, χ(Da) = 11,

U(1) : Db = D5, D′
b = D5, χ(Db) = 25,

SO(6) : Dc = D5 + D7, D′
c = D5 + D8, χ(Dc) = 36.

(217)

Here we note that D2 = D5 + D7 and D3 = D5 + D8 are toric divisors. Then the
contribution of the curvature terms to the D3-brane tadpole cancellation condition
reads

NO3

4
+

χ(DO7)

12
+
∑

a

Na
χo(Da)

24
=

1

4
+

47

12
+

5 · 11 + 1 · 25 + 3 · 36
24

= 12 . (218)

Next, we choose c1(B) = 1
2
D5 and split off the continuous B−-moduli by writing

c1(L̃) = c1(L)− B−. Taking into account the Freed-Witten quantisation conditions,

the following choice of line bundles

c1(L̃a) =
1

2
D5 +

1

2
D7 −D8, c1(L̃b) = D5, c1(L̃c) = 0 (219)

cancels the D5-brane tadpole as well. Here we used the fact that D7 restricts trivially
to Dc = D5 + D7. The resulting chiral spectrum is listed in Table 16.

Let us make a couple of remarks concerning this spectrum: One obtains precisely
two generations of MSSM particles including the right-handed neutrinos. Moreover,
the states transforming in the 10 representation of SU(5) are localised on the curve

D7 ∩ D8 = P1, so that there are no additional vector-like states. Similarly, the
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number U(5) U(1) SO(6)

2 (2) 1 1

2 (−1) (1) 1

2 1 (−2) 1

Table 16: Chiral spectrum for intersecting D7-brane model. The indices de-

note the U(1) charges.

matter states in the 5 representation are localised on the curve D7 ∩ D5 = T 2 so
that there are no vector-like states either. Moreover, as in the examples before from
the (a′b) sector we will get one vector-like pair of Higgs fields 5H + 5H by twisting

Lb appropriately, see discussion at the end of this subsection. Only the right-handed
neutrinos are localised on a surface, namely on D5.

A D7-brane wrapped upon D5 can carry a trivial line bundle so that this brane is
expected to carry symplectic Chan-Paton factors. The resulting K-theory constraint

∫

Y

[D5] ∧ [D7] ∧ c1(La) +

∫

Y

[D7] ∧ [D5] ∧ c1(Lb) ∈ 2Z (220)

is indeed satisfied for our model. The D3-tadpoles induced by each single brane stack
are positive and add up as

Ngauge =
5 · 1
2

+
1 · 1
2

= 3 . (221)

Let us next evaluate the D-term constraints. The generators Ki of the Kähler cone

are given in (211). We use these to expand the Kähler form as J =
∑

i riKi with
ri > 0. Note that due to the orientifold action for the last two Kähler cone generators
we have r3 = r4. In addition there exists one B− modulus

B− = b (D7 −D8) . (222)

The D-term constraints
∫

Di

J ∧
(
c1(L̃i) + B−

)
= 0 (223)
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for all three brane stacks i = a, b, c yield three conditions, which are solved on the
boundary of the Kähler cone by

r1 = 0, r2 = 0, b = 0. (224)

However, the volumes of the three branes involved and the overall volume are finite

τ7 =
1

2

∫

D7

J ∧ J = r2
3, τ5 =

1

2

∫

D5

J ∧ J = 2 r2
3 ,

Vol(Y ) =
1

6

∫

Y

J ∧ J ∧ J = 2 r3
3 , (225)

so that we still have parametric control over the α′ expansion in the brane sector.

Finally, to break the SU(5) GUT group to the MSSM, we turn on the trivial line
bundle LY . On Da = D7 = dP8 there are now three non-trivial two-cycles. They
include the two genus zero curves P1s from the intersection D7 ∩ D6 and D7 ∩ D8.

In addition there exists the genus one curve D7 ∩D5 which is identical to −D7 ∩D7.
Identifying D7 ∩D6 = e7 and D7 ∩D6 = e8 and D7 ∩D5 = 3h−∑8

i=1 ei , we realise
that the two-cycles on dP8 trivial in Y are the ones from dP6 orthogonal to K. By
definition this is the E6 sublattice of H2(dP6, Z). Therefore, choosing for instance

c1(LY ) = e1− e2 breaks the SU(5) gauge group to the Standard Model gauge group
and contributes additional two units to the D3-brane tadpole. To generate one pair of
Higgs doublets and project out the triplet on the elliptic curve C = D5∩D7 we twist

L̃a by the bundle Ra = L−1
Y on D7. In essence this yields yet another unit of D3-brane

charge in the D3-tadpole equation and we need six dynamical D3-branes to saturate
it. Since LY restricts trivially to e7 and e8, there are precisely two generations of
charged quark and leptons without any vector like states.

As already mentioned a D7-brane on D5 carries SP Chan-Paton factors, so that
an Euclidean D3-brane instanton on the same cycle is of type O(1). Indeed, such an

instanton carries the right chiral zero modes Ia,inst = 1 and25 Ib,inst = 1 to generate
the top-Yukawa couplings. However, since the surface D5 has h(2,0)(D5) = 1, it is
not rigid and there can be additional vector-like zero modes from the intersection of
the instanton with the D7-brane wrapping Db = D5.

We summarise in Table 17 which of the desired features we were able to realise
in this simple model.

25There is a change of sign compared to (45) as here the Higgs originates from the sector (a′b)
instead of (ab).
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property mechanism status

globally consistent tadpoles + K-theory X
∗

D-term susy vanishing FI-terms inside Kähler cone X
∗∗

gauge group SU(5) U(5) × U(1) stacks X

3 chiral generations choice of line bundles −
no vector-like matter localisation on g = 0, 1 curves X

5 vector-like Higgs choice of line bundles X

no adjoints rigid 4-cycles, del Pezzo X

GUT breaking U(1)Y flux on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p-decay local. of Hu, Hd on disjoint comp. −
1055H Yukawa perturbative X

10105H Yukawa presence of appropriate D3-instanton X
∗∗∗

Majorana neutrino masses presence of appropriate D3-instanton −∗∗∗∗

Table 17: SU(5) properties realised in the model of Subsection 7.2.
∗ K-theory to the best of our ability to detect SP-cycles
∗∗ realised on acceptable boundary of Kähler moduli space
∗∗∗ up to absorption of additional vector-like zero modes
∗∗∗∗ at least not with O(1) instantons
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7.3 A Three-Generation Model With Localised Matter on

Q(dP9)4

While in on Q(dP8)3 global consistency conditions are in conflict with the construction

of three-generation models, on its cousin Q(dP9)
4

it turns out possible to find GUT
models with three generations and all GUT matter realised on matter curves, but
without running into half-integer D3 tadpoles. The construction of these models is
almost identical to the two-generation example of the previous subsection, and we

can be quite brief.

We again cancel the D7-brane tadpole (13) by introducing three stacks of D7-

branes on the divisors

U(5) : Da = D7, D′
a = D8, χ(D7) = 12,

U(1) : Db = D5, D′
b = D5, χ(D5) = 13,

U(3) : Dc, = D5 + D7, D′
c = D5 + D8 χ(D5 + D7) = 25.

We consider the non-trivial B+-flux

c1(B) =
1

2
(D7 + D8 + D9), (226)

which allows us to introduce the well-defined bundles

c1(L̃a) = 3D5 + 2D7 −
1

2
D8 +

1

2
D9,

c1(L̃b) =
5

2
D5 + D6 −

1

2
D7 +

5

2
D8 −

1

2
D9, (227)

c1(L̃c) =
1

2
D5 +

3

2
D8 −

1

2
D9.

This configuration cancels the D5-tadpole and achieves a pure three-generation spec-

trum as summarised in Table 18. All phenomenological considerations detailed in
the previous section regarding the spectrum of this model apply also for the present
three-generation model since the intersection pattern of the divisors Da, Db and Dc

is unchanged.

The only differences occur when analysing the global consistency and supersym-
metry conditions, as we next discuss. Prior to breaking SU(5) via U(1)Y flux the

D3-brane tadpole

ND3 + Ngauge = 10 (228)
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number U(5) U(1) U(3)

3 (2) 1 1

3 (−1) (1) 1

3 1 (−2) 1

2 1 1
(−2)

2 1 (−1) (−1)

Table 18: Chiral spectrum for intersecting D7-brane model. The indices de-

note the U(1) charges.

is just satisfied without room for extra D3-branes, as we verify by computing

Ngauge =
5

2
· 1
2

+
1

2
· 31

4
+

3

2
· 13

4
= 10. (229)

Next we parametrise the Kähler form J =
∑5

i=1 Ki in terms of the five generators
of the Kähler cone introduced previously, where compatibility with the orientifold

action fixes r1 = r2. One easily finds that the general solution to the D-term super-
symmetry conditions relates the so-defined Kähler r1, r2 as well as the B−-modulus
B− = b (D7 −D8) to r4, r5 as

r1 =
2

3
r4 − r5, r3 =

13

6
r4 − 2r5, B− =

34r4 − 27r5

38r4 − 30r5

. (230)

Remarkably any such choice of Kähler form lies inside the Kähler cone as long as
r5 > 0 and 3

2
r5 ≤ r4 ≤ 2 r5. The existence of solutions inside the Kähler cone is,

together with the appearance of exactly three generations of Standard Model matter,

one of the motivations to present this example.

However, two caveats require further attention. As the reader is by now very

familiar with, we break SU(5) further to the Standard Model gauge group by turn-
ing on the line bundle LY on Da that is trivial on the ambient Calabi-Yau space.
As before the E6 sublattice within H2(Da) of the dP9 surface Da is trivial on the
Calabi-Yau, and the minimal choice for LY that avoids extra vector-like states is,

for example, LY = O(e1 − e2). This, however, leads to an extra contribution of
+2 in Ngauge appearing in the D3-brane tadpole equation (228). In addition, the by
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now familiar twist of La by Ra = L−1
Y requires to engineer one Higgs doublet and to

project out the triplet contributes with +1 on the left-hand side of equation (228).
In conclusion, there is a total overshooting by three units in the D3-brane tadpole

equation, which requires the introduction of three anti-D3 branes.

A second subtlety is associated with cancellation of K-theory charge. Applying

our probe argument we note that the only invariant candidate cycles for SP Chan-
Paton factors are D1, D4, D5, D6 and D9, each of which is non-Spin. In view of the
B+-flux eq. (226) none of them can carry an invariant line bundle in agreement with
the Freed-Witten quantisation condition except D9. In fact, any line bundle of the

form L
(n)
9 = n

2
(D7−D8) with n odd is a liable and invariant gauge field configuration.

As stressed several times by now, in absence of unambiguous CFT techniques to
establish the orientifold action in the invariant sector it is hard to decide if (D9, L

(n)
9 )

carries SP or rather SO Chan-Paton factors. In the first case, its worldvolume

theory would suffer from a global Witten anomaly in our three-generation model,
as can be verified by computing that the number of fundamental representations
under the symplectic gauge group is odd. In this case, the probe argument would

suggest that model would not be globally consistent due to the non-cancellation of
K-theory charge. We do not attempt to settle this issue at this stage but rather
leave this model in the limbo of phenomenologically highly appealing configurations
whose liability as a genuine string vacuum hinges upon as subtle and innocent a

condition as the cancellation of torsion K-theory charge. With this warning in mind
we conclude our model building adventures with a summary of the phenomenological
properties of this model in Table 19.

8 Comments on Moduli Stabilisation

So far we have focused our attention on the construction of realistic SU(5) GUT
models on intersecting D7-branes in Type IIB orientifold models. Eventually, to

obtain a truly predictive framework we have to address the central question of moduli
stabilisation. Luckily, just for this kind of models very powerful techniques for moduli
stabilisation have been developed during the last years. First to mention is the
possibility of freezing the complex structure moduli and the dilaton via three-form

fluxes inducing a Gukov-Vafa-Witten type superpotential. Combining this with D3-
instanton induced contributions depending on the Kähler moduli very predictive
scenarios with in principle all moduli stabilised have been proposed. These include
in particular the original KKLT scenario [6] with supersymmetry breaking via an
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property mechanism status

globally consistent tadpoles + K-theory X
∗.∗∗

D-term susy vanishing FI-terms inside Kähler cone X

gauge group SU(5) U(5) × U(1) stacks X

3 chiral generations choice of line bundles X

no vector-like matter localisation on g = 0, 1 curves X

5 vector-like Higgs choice of line bundles X

no adjoints rigid 4-cycles, del Pezzo X

GUT breaking U(1)Y flux on trivial 2-cycles X

3-2 splitting Wilson lines on g = 1 curve X

3-2 split + no dim=5 p-decay local. of Hu, Hd on disjoint comp. −
1055H Yukawa perturbative X

10105H Yukawa presence of appropriate D3-instanton −∗∗∗

Majorana neutrino masses presence of appropriate D3-instanton −∗∗∗

Table 19: Summary of SU(5) properties realised in the model of
Subsection 7.3.
∗ overshooting in D3-tadpole → 3 D3-branes
∗∗ K-theory to the best of our ability to detect SP-cycles and

modulo the possible issue of (D9, L
(n)
9 )

∗∗∗ at least not with O(1) instantons
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uplift potential26. In some respects even better controlled is the LARGE volume
scenario with Kähler moduli dominated supersymmetry breaking [7, 8].

In this latter scenario it is essential to have a Calabi-Yau with negative Euler
characteristic (that is, h2,1 > h1,1) and shrinkable, rigid four-cycles supporting D3-
brane instantons contributing to the superpotential. Such cycles are given by del

Pezzo surfaces dPn with n ≤ 8. Therefore, gauge coupling unification with SU(5)
breaking via U(1)Y fluxes and controllable moduli stabilisation with natural super-
symmetry breaking both lead us to the class of Type IIB orientifolds (with some
four-cycles TY uk → 0 ) on Calabi-Yau manifolds which contain dPn surfaces sup-

porting two-cycles which are trivial in the Calabi-Yau manifold.

We have already discussed in Subsection 4.5 that the M
(dP8)

n

n manifolds exhibit

the swiss-cheese structure of the volume form. Thus, the class of Calabi-Yau mani-
folds studied in Sections 4, 5, and 6 as promising candidates for GUT model building
likewise exhibits some attractive features for LARGE volume moduli stabilisation.
For the M

(dP8)
n

n manifolds we have also shown that placing the SU(5) GUT on a

shrinkable dP8 cycle, the D-terms force this cycle to shrink to string scale size. If
one is not deterred by the appearance of quantum corrections, one can consider this
either as a global embedding of local quiver theories27. If one tries to avoid such

corrections the above observation can alternatively serve as a motivation to place
the GUT branes on del Pezzo dP9 or other non-shrinkable rigid surfaces instead.
In this latter case, the D-term constraints can be solved in the large radius regime.
This results in a scenario where the GUT branes are localised on dP9 surfaces while

instantons on dP8 or lower del Pezzo surfaces can generate the superpotential con-
tributions realising the LARGE volume scenario. At this stage we also point out
that for consistency in a GUT model the string scale must be fixed not below the
GUT scale, of course. Thus in our context the original LARGE volume scenario, if

applied, has to be modified anyway as to stabilise the volume of the manifold at not
too LARGE values V ≃ 104. For a scenario leading to Ms = MGUT along these lines
see [10].

The arrangement just described also resolves the constraints pointed out in [61]
for the coexistence of a chiral MSSM or GUT like intersecting D7-brane sector on
the one hand and of a D3-brane instanton sector contributing to the uncharged

superpotential on the other. Since here the phenomenologically relevant sizes of

26In this sense the presence of anti-D3 branes in some of our models might turn out to be some
use.

27While this work was in its final stages the authors of [77] proposed a very similar scenario.
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the D7-brane cycles are fixed by the D-term constraints instead of the F-terms, the
resulting soft-terms and low-energy signatures are expected to be different from the
ones computed so far in the literature for the LARGE volume scenario [8, 79, 9, 10].

There, it was mostly assumed that the string scale is in the intermediate regime
and that the MSSM supporting D7-branes wrap the same cycle as the D3-brane
instanton.

Very similar conclusions follow from the analysis of the quintic descendants. In
contrast to the models derived from P1,1,1,6,9[18], here we have found intersecting dPn,
n ≤ 8 surfaces, which therefore do not show a swiss cheese structure and allow the D-

terms to freeze the Kähler moduli such that the volumes of these del Pezzo remain
finite. To arrange for the LARGE or rather GUT volume scenario for this class
of models additional points at generic positions have to be blown up, presumably
resulting in additional del Pezzo divisors, which are orthogonal to ones supporting

D7-branes.

The next logical step is to combine fluxes, instanton effects and GUT D7-brane

sectors such that a completely realistic and predictive model arises. For this pur-
pose, one first needs to study the coexistence of three-form fluxes and D7-branes
on the same Calabi-Yau, for which additional consistency conditions arise. Here to

mention is both the Freed-Witten condition H3|D = 0 and a possible change for the
quantisation of the gauge fluxes due to the presence of F3 form flux [80]. Moreover,
also the coexistence of Euclidean D3-brane instanton contributions to the superpo-
tential and the desired presence of a chiral GUT D7-brane sector implies additional

constraints [61]. All this to be evaluated and taken into account carefully to claim
to have realised the MSSM or a variation therefore, from a string compactification.

This is a formidable task, but not out of reach in the not too far future. We
think the results reported in this paper on GUT realisations in Type IIB orientifolds
provide an encouraging step towards achieving this goal.

9 Conclusions

In this paper we have started to systematically analyse the construction of Georgi-
Glashow like SU(5) GUTs from Type IIB orientifolds with D7- and D3-branes. First,

we formulated the quite restrictive global model building rules. Beyond the common
tadpole and K-theory constraints, there arise a couple of additional subtle but quite
restrictive constraints. These include the delicate quantisation rules for the gauge
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flux on the D7-branes wrapping rigid del Pezzo surfaces, which derive from the
fact that del Pezzo surfaces are not Spin. In addition these gauge fluxes have to be
chosen such that the D-term constraints can be satisfied inside the Kähler cone of the

Calabi-Yau threefold. Applied to SU(5) GUT models, in particular the quantisation
conditions cannot be satisfied with only the GUT breaking line bundle LY supported
on the SU(5) stack. The presence of a second bundle La embedded into the diagonal
U(1) ⊂ U(5) is essential. It would be interesting to study the precise lift of the

consistency conditions to the F-theory description of these models. While some
details are known, we think it is fair to say that the general picture is still not fully
understood.

After outlining the general structure, we have provided a class of concrete Calabi-
Yau threefolds containing del Pezzo surfaces. Though the construction is more gen-
eral, we first considered examples descending from the Calabi-Yau manifold P1,1,1,6,9[18]

via del Pezzo transitions. The resulting Calabi-Yau threefolds feature various phases
(triangulations) related via flop-transitions of curves in the del Pezzo base. To define
orientifolds of Type IIB on these manifolds, we have classified all their involutions

resulting from involutions of the del Pezzo base. This provides already a large set of
models, which deserves a more systematic (statistical) investigation than we could
provide in this paper. Clearly, there exist more general involutions which also act
on the elliptic fibre. The prototype example is just the y → −y involution of the

elliptic fibre. It would be interesting to study these more general orientifolds, as well.
Another natural route to pursue is to start with the related torus fibred Calabi-Yau
manifolds P1,1,1,3,6[12] and P1,1,1,3,3[9]. More generally, one could study systematically
which Calabi-Yau manifolds in the known class of hypersurfaces in toric varieties al-

low for similar del Pezzo transitions.

Equipped with the general structure and appropriate concrete Calabi-Yau mani-

folds, we have manually searched for globally consistent examples. We have presented
three models in detail, each realising around 60-70% of the desired GUT features,
with almost every property being realised in at least one example. Therefore, we do
not see any conceptual obstacle to finding GUT models exhibiting all features in a

single configuration.

We have also introduced a second class of suitable Calabi-Yau manifolds defined

via del Pezzo transitions of the simple quintic hypersurface in P4. In particular,
these manifolds contain intersecting shrinkable del Pezzo surfaces, a property the
first class based on P1,1,1,6,9[18] was lacking due to the swiss-cheese structure of the

triple intersection form. Finally, we have presented two GUT models with all matter
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fields localised on curves and therefore without any additional vector-like matter, the
second of which realises just three families of Standard Model matter plus a Higgs
pair. Clearly, it would be interesting to generalise the here presented techniques for

constructing (toric) Calabi-Yau manifolds containing del Pezzo surfaces.

Our emphasis has been on the global string consistency conditions, which in a

first attempt seem to be easier to analyse in the IIB orientifold framework than for
F-theory compactifications on compact elliptically fibred Calabi-Yau fourfolds. The
price one has to pay for working in the orientifold phase is that some couplings
such as top-Yukawa couplings and Majorana neutrino masses are non-perturbatively

generated by D3-brane instantons. With the recent understanding of such instanton
effects we have however been able to formulate a criterion respectively constraint for
their presence in concrete set-ups. The realistic corner in the moduli space of these
models is clearly where the 4-cycles wrapped by these instantons go to zero size.

In this respect it would be very important to better understand the relation of the
orientifold construction to the F-theory uplift on Calabi-Yau fourfolds.

Eventually, we have briefly discussed the issue of moduli stabilisation for these
models. We have shown that the manifolds M

(dP8)
n

n indeed feature a swiss-cheese
structure, which is a prerequisite for realising the LARGE volume scenario. We

think it is striking that both from the viewpoint of realising GUTs and from the
viewpoint of phenomenologically acceptable moduli stabilisation one is led to the
same class of string constructions, namely Type IIB orientifolds (F-theory) on Calabi-
Yau threefolds with shrinkable four-cycles, that is, del Pezzo surfaces.
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Appendices

A Involutions on Del Pezzo Surfaces

A.1 Del Pezzo Surfaces of High Degree

This appendix is the completion and continuation of Subsection 4.1. We start with
a more detailed examination of the del Pezzo surfaces of high degree ≥ 6. In the
Subsections A.2–A.6 we will consider each such del Pezzo surface individually and

classify their involutions28. However, before we go into the details of the different
involutions let us recall Table 20

A.2 Involutions on the Projective Plane

Let us start with the simplest del Pezzo surface, P2. There are no (−1)-curves.

Up to coordinate transformations, the unique involution acts on the homogeneous
coordinates as

σ : P2 → P2, [z0 : z1 : z2] 7→ [−z0 : z1 : z2]. (231)

The fixed point set of the involution σ is

(
P2
)σ

=
{

[0 : ∗ : ∗]
}
∪
{

[1 : 0 : 0]
}
≃ P1 ∪ {pt}, (232)

and its homology class is l ∈ H2(P
2, Z).

The projective plane is a toric variety, determined by the 2-dimensional polytope
shown in Figure 4 as follows. Associate one complex-valued variable to each point
of the polytope. Here, we label them x0, x1, and x2. Whenever there are two

points that are not connected by a line, the two variables are not allowed to vanish
simultaneously. This does not happen here, but will be important later on. Finally,
for each linear relation amongst the points we impose the an equivalence under
“homogeneous” rescaling. For example, the single linear relation

x1︷ ︸︸ ︷(
0, 1
)
+

x0︷ ︸︸ ︷(
− 1,−1

)
+

x2︷ ︸︸ ︷(
1, 0
)

= 0

⇒ [x0 : x1 : x2] = [λx0 : λx1 : λx2] ∀λ ∈ C× (233)

28That is, the different connected components of the moduli space of involutions.
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S deg(S) case action fixed point set Sσ [Sσ] ∈ H2 action on H2(S, Z)

P2 9 1 eq. (231) [0 : ∗ : ∗] ∪ [1 : 0 : 0] ≃ P1 ∪ {pt.} l
(
1
)

P1 × P1 8 1 eq. (237a) [1 : 1|∗ : ∗] ∪ [−1 : 1|∗ : ∗] (l2) + (l2)

(
1 0

0 1

)

P1 × P1 8 2 eq. (237b) [±1 : 1| ± 1 : 1] ≃ 4 points 0

(
1 0

0 1

)

P1 × P1 8 3 eq. (237c) diagonal P1 l1 + l2

(
0 1

1 0

)

B1 8 1 eq. (241a) π−1([0 : ∗ : ∗]) ∪ e1 ≃ 2P1 (l) + (e1)

(
1 0

0 1

)

B1 8 2 eq. (241b) P1 ∪
{
2 pts.

}
l− e1

(
1 0

0 1

)

B2 7 1 eq. (248) 2P1 ∪
{
pt.
}

(l− e1) + (e2)
(

1 0 0
0 1 0
0 0 1

)

B2 7 2 eq. (251) P1 ∪
{
3 pts.

}
l − e1 − e2

(
1 0 0
0 1 0
0 0 1

)

B2 7 3 eq. (252) P1 ∪
{
pt.
}

l
(

1 0 0
0 0 1
0 1 0

)

B3 6 1 eq. (255) 2P1 ∪ {2 pts.} (e1) + (l− e2 − e3)

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)

B3 6 2 eq. (258) P1 ∪
{
2 pts.

}
l− e3

(
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

)

B3 6 3 eq. (259) P1 2l− e1 − e2

(
2 1 1 1
−1 −1 0 −1
−1 0 −1 −1
−1 −1 −1 0

)

B3 6 4 eq. (261) 4 points 0

( 2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

)

Table 20: Involutions on del Pezzo surfaces of degree ≥ 6.
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corresponds to the usual rescaling of the homogeneous coordinates. Hence, the toric
description of the projective plane is

C3 − {}
C× = P2. (234)

By construction, the “algebraic torus”
(
C×)3 acts29 multiplicatively on the 3 homo-

geneous variables of P2, hence the name toric variety. Any subgroup of this action

is called a toric group action. In particular, the involution eq. (231) is a toric Z2

action.

Alternatively, the involution can be seen as a symmetry of the polytope. The
reflection symmetry shown in Figure 4 generates the involution

x0

x1

x20

Figure 4: Symmetry of the toric polytope defining P2.

σ :
C3

C× →
C3

C× , [x0 : x1 : x2] 7→ [x0 : x2 : x1]. (235)

This is the same group action as in eq. (231), only written in different coordinates30.

A.3 Involutions on the Product of Lines

There is only one non-trivial involution on P1 acting as [z0 : z1] 7→ [−z0 : z1], which
can act on each factor of P1×P1. Together with the exchange of the two factors, this

29Clearly, the diagonal C∗ is already modded out and acts trivially.
30For future reference, we note that the fixed point set in the coordinates eq. (235) is

(
P2
)σ

=
{
[t0 : t1 : t1]

∣∣∣[t0 : t1] ∈ P1
}
∪
{
[0 : 1 : −1]

}
≃ P1 ∪ {pt}. (236)

106



generates all possible holomorphic involutions on P1 × P1. All of these involutions
arise from symmetries of the toric polytope, see Figure 5. The symmetry group of

x0 x1

y1

y0

0

Figure 5: The toric polytope defining P1 × P1.

the toric polytope is D8, the dihedral group with 8 elements. It has three conjugacy
classes of Z2 subgroups, namely:

1. Mirroring at vertical axis. In homogeneous coordinates, the induced action on
P1 × P1 is

σ1 : P1 × P1 → P1 × P1, [x0 : x1|y0 : y1] 7→ [x1 : x0|y0 : y1]. (237a)

2. Rotating by π, with induced action

σ2 : P1 × P1 → P1 × P1, [x0 : x1|y0 : y1] 7→ [x1 : x0|y1 : y0]. (237b)

3. Mirroring at diagonal axis = Rotate by π
2

and mirror at vertical axis. The
induced action is

σ3 : P1 × P1 → P1 × P1, [x0 : x1|y0 : y1] 7→ [y0 : y1|x0 : x1]. (237c)

According to the Künneth theorem, the homology group H2(P
1× P1) = Z2 is gener-

ated by the classes of the two factors, which we call l1 and l2. The fixed point sets
and their homology classes are straightforward and listed in Table 20.

A.4 Blow-up of the Projective Plane

We now come to the first case with a (−1)-curve, namely the blow-up B1 of P2 at
one point. One possible realisation is the hypersurface

B1 =
{
x0 · 0 + x1t0 + x2t1 = 0

}
⊂ P2

[x0:x1:x2]
× P1

[t0:t1]
. (238)
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The obvious projection π : B1 → P2, [x0 : x1 : x2|t0 : t1] 7→ [x0 : x1 : x2] is, in fact,
the corresponding blow-down map. To see this, consider the preimage:

• If [x0 : x1 : x2] 6= [1 : 0 : 0], then the preimage is the single point

π−1
(
[x0 : x1 : x2]

)
= [x0 : x1 : x2|x2 : −x1] (239)

• If [x0 : x1 : x2] = [1 : 0 : 0], then the preimage is

π−1
(
[1 : 0 : 0]

)
=
{

[1 : 0 : 0|t0 : t1]
∣∣∣[t0 : t1] ∈ P1

}
≃ P1 (240)

In other words, the hypersurface eq. (238) is the blow-up at [1 : 0 : 0] ∈ P2.

We now consider involutions of the hypersurface induced from the ambient space
P2×P1. In fact, up to coordinate changes there are two distinct possibilities, namely

σ1 : B1 → B1,
[
x0 : x1 : x2

∣∣t0 : t1
]
7→
[
− x0 : x1 : x2

∣∣t0 : t1
]

(241a)

and
σ2 : B1 → B1,

[
x0 : x1 : x2

∣∣t0 : t1
]
7→
[
x0 : x2 : x1

∣∣t1 : t0
]
. (241b)

In terms of the blown-up P2, the two involutions can be understood as follows. Recall
from Subsection A.2 that the fixed-point set on P2 is the disjoint union of a line and
a point.

1. The first involution, eq. (241a), is the blow-up of the isolated fixed point on
P2. The corresponding fixed-point set in B1 is the whole exceptional P1 as well
as the fixed line in P1. This Z2 group action is toric.

2. The second involution, eq. (236), is the blow-up at a point on the fixed line

on P2. The exceptional P1 is mapped to itself, but it is not point-wise fixed.
Rather, the involution acts as a rotation by π on this P1 ≃ S2 and the north
and south pole of the sphere end up being fixed. Looking at the whole B1, the
proper transform of the fixed line in P2 passes through one of the fixed points

in the exceptional curve. Hence, the fixed point set consists of this proper
transform31 l̃ ≃ P1 together with the remaining fixed point in the exceptional
curve and the isolated fixed point that was already in P2.

In terms of toric geometry, this involution is induced from the reflection sym-

metry of the polyhedron shown in Figure 6

31The σ2-fixed line l2 in P2 has the parametrisation

ξ 7→ l2(ξ) = [1 : ξ : ξ], ξ ∈ C ∪ {∞} ≃ P1. (242)
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0

Figure 6: Symmetry of the toric polytope defining B1.

More abstractly, we can understand the two involutions from the (−1)-curves. Since
there is precisely one such curve, namely e1, this curve must necessarily be mapped

to itself under any involution. But whenever there is an invariant32 exceptional curve
on Bn, then we can blow down this curve and obtain a involution on Bn−1 (or P1×P1

if n = 2). This is why every involution on B1 is simply the (unique) involution on
P2 blown up at a fixed point. There are two connected components to the fixed

point set, and the choice of blow-up point coincides with the two different ways that
e1 ≃ P1 can be mapped to itself:

1. If one blows up the isolated fixed point on P2, then e1 is point-wise fixed under

the induced involution on B1.

2. If one blows up one point in the fixed line on P2, then the induced involution

on B1 acts on e1 ≃ S2 as rotation by π.

A.5 Blow-up of the Projective Plane at Two Points

The blow-up of P2 at two points, B2, is the first case with an interesting pattern of
(−1)-curves. Clearly, there are the exceptional divisors e1 and e2. But there is also

It passes through the point l2(0) = [1 : 0 : 0], which we are about to blow up. By definition, the
proper transform is the curve

l̃ = π−1 ◦ l2

(
P1 − {0}

)
∪ lim

ξ→0

(
π−1 ◦ l2

(
ξ
))

⊂ B1. (243)

Since l̃ · l = 1 = l̃ · e1, the homology class of the proper transform must be [l̃] = l − e1.
32One can of course blow down any (−1)-curve and obtain a smooth surface, but the involution

is lost (or, rather, becomes a birational map) if the (−1)-curve was not invariant.
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a third rigid curve, namely the line on P2 through the two blow-up points. As we
reviewed in Footnote 31, this line defines a curve on the blow-up B2. This so-called
proper transform has homology class

l̃ = l − e1 − e2. (244)

One can easily check that l̃2 = −1, as expected for a rigid curve. We draw the
intersection pattern of the three lines in Figure 7. In the following, we will always

e2

l̃ = l − e1 − e2

e1

Figure 7: On the left, intersection pattern of the three (−1)-curves on B2.
The dual graph is shown on the right.

use the dual graph of the (−1)-curves (and, by abuse of notation, drop the “dual”).
By definition, this is the graph with

• One node for each (−1)-curve, and

• One connecting line whenever two curves intersect.

There are two different kinds of nodes, one of valence 2 and two of valence 1. Blowing

down the middle node yields P1 × P1, while blowing down one of the nodes at the
end yields B1.

Clearly, the automorphism group of the graph is Z2 and the middle node is always
fixed. Hence, the easiest way to describe all involutions is as blow-up of P1 × P1,
where there were three distinct involutions. Just an in eq. (238), we will realise the
blow-up at the point [ξ0 : ξ1|η0 : η1] ∈ P1 × P1 as a degree-(1, 1, 1) hypersurface

B2 =
{

(ξ1x0 − ξ0x1)t0 + (η1y0 − η0y1)t1 = 0
}
⊂ P1

[x0:x1]
× P1

[y0:y1] × P1
[t0:t1]

. (245)

Using this construction, we can characterise the three different involutions on B2 as
follows:
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1. First, let us start by blowing up (P1 × P1, σ1) at a σ1-fixed point. The fixed
point set consists of two disjoint P1, so one might think that there is a discrete
choice. However, the two P1 are exchanged by a remaining symmetry of P1×P1,

so they cannot be distinguished. Henceforth, we will pick the fixed point

p = [1 : 1|0 : 1] ∈ P1 × P1 (246)

and define

B2 =
{

(x0 − x1)t0 + y0t1 = 0
}
⊂ P1

[x0:x1]
× P1

[y0:y1] × P1
[t0:t1]

. (247)

In order to make the hypersurface equation invariant under the involution, we
must extend eq. (237a) to

σ1 : B2 → B2, [x0 : x1|y0 : y1|t0 : t1] 7→ [x1 : x0|y0 : y1| − t0 : t1]. (248)

2. Now we blow up one of the 4 fixed points of (P1 × P1, σ2). Again, the fixed
points are exchanged by residual symmetries, and cannot be distinguished.

Hence, there is essentially only one choice which we take to be

p = [1 : 1|1 : 1] ∈ P1 × P1. (249)

The blow-up with the induced involution is then

B2 =
{

(x0 − x1)t0 + (y0 − y1)t1 = 0
}
⊂ P1

[x0:x1]
× P1

[y0:y1]
× P1

[t0:t1]
, (250)

σ2 : B2 → B2, [x0 : x1|y0 : y1|t0 : t1] 7→ [x1 : x0|y1 : y0|t0 : t1]. (251)

3. Finally, we can blow-up one point on the fixed (diagonal) P1 in (P1 × P1, σ3).
For concreteness, let us take the point in eq. (249), which is also fixed under
σ3. Hence, the hypersurface equation is the same as in eq. (250). However, the
induced involution has to extend a different involution on P1 × P1, and must

be

σ3 : B2 → B2, [x0 : x1|y0 : y1|t0 : t1] 7→ [y0 : y1|x0 : x1|t1 : t0]. (252)

Equivalently, the three involutions can be described as blow-ups of P2 at two points.
Let us quickly go over this equivalent point of view.
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1. The first two involutions correspond to the trivial automorphism of the graph
of (−1)-curves. Hence, one must blow up two fixed points of (P2, σ). The first
possibility is to blow up the isolated fixed point and one point on the fixed

line in P2. As we saw in Subsection A.4, blowing up a point on the fixed P1

leaves the proper transform l̃ (in the homology class l − e1) and one isolated
point fixed. Blowing up the fixed point leads to a point-wise fixed exceptional
divisor e2.

2. The second involution is the blow-up of two points on the fixed P1 of (P2, σ).
The fixed point set consists of

• The proper transform of the fixed line. Its homology class is l − e1 − e2.

• One isolated fixed point on e1 and one on e2.

• The isolated fixed point that was already on P2.

3. The last involution corresponds to the non-trivial automorphism of the graph.
There, the involution must exchange the two blow-up points. The fixed point

set is the same as on (P2, σ).

Clearly, the first two involutions act trivially on H2(B2, Z). The third involution
exchanges e1 ↔ e2 while leaving l invariant.

A.6 Blow-up of the Projective Plane at Three Points

The del Pezzo surface B3 has 6 rigid lines, the 3 exceptional divisors together with
the 3 lines connecting any pair of blow-up points. Their homology classes are

e1, e2, e3, l− e2 − e3, l − e1 − e3, l − e2 − e3. (253)

The graph of (−1)-curves is a hexagon, whose automorphism group is D12, the

dihedral group with 12 elements. It has 3 conjugacy classes of order 2, which are
depicted in Figure 8. We now investigate which involutions on B3 give rise to each
graph automorphism.

1. Let us start with the trivial action on the graph. This is necessarily the blow-

up of (P2, σ) at three fixed points. Note, however, that by construction no
three point can lie on any one line and, in particular, not on the fixed line.
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Z
(1)
2 Z

(2)
2 Z

(3)
2Trivial

e1

e2

e3

e1

e2

e3

e1

e2

e3

e1

e2

e3

l−e1−e3

l−e1−e2

l−e2−e3

Figure 8: The trivial and the three order-2 automorphisms of the graph of

(−1)-curves on B3.

Therefore, there is (up to coordinate changes) only one choice33 of three fixed
points to blow up. In the coordinates given by eq. (231), these three points
can be chosen to be

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1] (254)

The first involution on B3 is the one defined through the blow-up,

(
B3, σ1) = Bl{p1,p2,p3}

(
P2, σ

)
. (255)

We denote by ei the exceptional divisor of the blow-up at pi. With this notation,
the fixed point set consists of the exceptional divisor e1, the proper transform
of the fixed P1, one isolated point on e2, and one isolated point on e3.

2. We now consider the first non-trivial involution on the graph of (−1)-lines,

which is denoted Z
(1)
2 in Figure 8. There are two fixed (−1)-curves, one of

which we already labelled e3. Blowing down this exceptional divisor e3, we

clearly obtain the surface B2 with the non-trivial action on its graph of (−1)-
curves. There is only one such involution, namely (B2, σ3). Therefore, the
desired involution on B3 is the blow-up of (B2, σ3) at a fixed point.

Recall that (B2, σ3) is the blow-up of (P2, σ) at a point–image point pair. We
can pick coordinates such that

(
B2, σ3

)
= Bl{

[1:1:0],[−1:1:0]
}(P2, σ

)
. (256)

33Namely the isolated fixed point and two points on the fixed line in P2.
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The fixed point set of (B2, σ3) has two connected components, an isolated point
[1 : 0 : 0] and [0 : ∗ : ∗] ≃ P1. Note, however, that the isolated point is collinear
with the previous blow-up points,

{
[1 : 1 : 0], [−1 : 1 : 0], [1 : 0 : 0]

}
∈
{

[∗ : ∗ : 0]
}
. (257)

Hence, we cannot blow up (B2, σ3) at the isolated fixed point. The only possi-
bility is to pick a fixed point q 6= [1 : 0 : 0]. This point q must lie on the fixed

P1 of (B2, σ3). Hence we obtain the involution

(
B3, σ2

)
= Blq

(
B2, σ3

)
. (258)

3. Now, consider the Z
(2)
2 -automorphism shown in Figure 8. There is no fixed

(−1)-curve, so we cannot describe it in terms of a blown-up B2 del Pezzo.

We can, however, blow down a pair of (−1)-curves that is exchanged by the
involution and does not intersect. There is only one such pair, marked in red.
Blowing down this pair yields a del Pezzo surface of degree 8 without any
remaining (−1)-curves, that is, P1 × P1.

There are three choices for the involution on P1 × P1. It turns out34 that

(P1 × P1, σ3) gives rise to the right graph automorphism. Therefore, we set

(
B3, σ3

)
= Bl{p,q}

(
P1 × P1, σ3

)
, (259)

where p, q is a generic point and its image on (P1 × P1, σ3). The fixed point
set Bσ4

3 is, by construction, the same as (P1 × P1)σ3. Since the (−1)-curves
span H2(B3, Z), the action on the curve homology classes can be read off from

Figure 8. One obtains




l
e1

e2

e3


 7→




2l − e1 − e2 − e3

l− e1 − e3

l− e2 − e3

l − e1− e2


 (260)

4. Finally, consider Z
(3)
2 . Again, there is no (−1)-curve, but we can blow down

a pair of (−1)-curves and relate the involution to P1 × P1. In fact, only one

34On (P1 × P1, σ1) there is no suitable pair of non-fixed points to blow up into B3. The second
involution, (P1 × P1, σ3), will be used in Item 4.
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involution on P1×P1 gives rise to the desired graph automorphism. Hence, we
set (

B3, σ4

)
= Bl{p,q}

(
P1 × P1, σ2

)
, (261)

where p, q is a generic point and its image on (P1 × P1, σ2).

A.7 The Weyl Group and The Graph of Lines

Recall that, by definition, the degree of a curve is its intersection with the canonical

class K = −3l +
∑

i ei. As an alternative basis for the curve homology classes one
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Figure 9: The Petersen graph (left) and the Clebsch graph (right).

can use the canonical class and the degree zero sublattice

K⊥ ⊂ H2(Bn, Z). (262)

This sublattice contains a finite number of classes with self-intersection −2. One can

show [81] that these classes span the root lattice35 of a Lie algebra for n ≥ 2. By this
identification, we will call the (−2)-classes36 of degree 0 roots, as well. Explicitly,
the simple roots can be taken to be

αi = ei − ei+1, i = 1, . . . , n− 1,

αn = l − e1 − e2 − e3.
(263)

35The lattice product on K⊥ is minus the intersection product in homology.
36Note that such a (−2)-homology class cannot be represented by a holomorphic curve on a del

Pezzo surface.
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del Pezzo S deg(S)
# of
roots

root lattice Weyl group W Order |W | Number of Z2

conjugacy classes
graph

P2 9 0 {} 1 1 0 {}
P1 × P1 8 0 {} 1 1 0 {}
B1 8 0 {} 1 1 0 •
B2 7 2 A1 Z2 2 1 • • •

B3 6 8 A2 ⊕A1 D6 × Z2 = D12 12 3 •
••

•
• •

11
11 

B4 5 20 A4 S5 120 2
Petersen graph

Figure 9

B5 5 40 D5 Weyl(D5) 1920 5
Clebsch graph

Figure 9

B6 5 72 E6 Weyl(E6) 51840 4 27 nodes

B7 5 126 E7 Weyl(E7) 2903040 9 56 nodes

B8 5 240 E8 Weyl(E8) 696729600 9 240 nodes

Table 21: The Weyl groups and the number of Z2 conjugacy classes. The Weyl group equals the auto-
morphism group of the graph of (−1)-curves on each del Pezzo surfaces.
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The intersection matrix is given in terms of the Cartan matrix Cij of the correspond-
ing Lie algebra as

αi · αj = −Cij, αi ·K = 0, K2 = 9− n. (264)

The root lattices for the del Pezzo surfaces are listed in Table 21 together with some

information on the corresponding Weyl groups.

One of the advantages of working with this root lattice is the following char-
acterisation of the symmetries of the graph of (−1)-curves on a del Pezzo surface:

Theorem 1 (Manin) The Weyl group of the root lattice associated to a del Pezzo
surface equals the automorphism group of the graph of (−1)-curves.

In particular, we are interested in the conjugacy classes of involutions acting on the

graph of (−1)-curves, which we can easily compute in terms of the conjugacy classes
of Z2 subgroups in the corresponding Weyl group. It is now a simple (but tedious)
computation to enumerate37 all the Weyl group elements in each conjugacy class.

Note that, on del Pezzo surfaces of degree 6 and higher (Bn with n ≥ 3), the
canonical class and root lattice span the whole homology group38 H2(Bn, Q). From

now on we will restrict ourselves to this case, where we now have three equivalent
bases for the (rational) homology:

• The standard basis l, e1, . . . , en.

• The canonical class together with the n simple roots.

• Any maximal (that is, consisting of n + 1) linearly independent set of (−1)-
curves.

The second basis is especially useful to determine the homology action of an involu-
tion on a del Pezzo surface. By definition, the canonical class is invariant under the

action of a holomorphic map and the Weyl group acts on its orthogonal complement
K⊥. In Table 22, we use this to find the action on the homology of each possible
involution of the graph of (−1)-curves. Note that conjugate involutions can have

37We list the sizes of the conjugacy classes in Table 22.
38In fact, span{K, α1, . . . , αn} is a finite-index sublattice of H2(Bn, Z) for n ≥ 3. However, since

there is no torsion in the homology of del Pezzo surfaces this does not matter in the following.

117



Table 22: The Z2 conjugacy classes in the Weyl groups associated to del Pezzo
surfaces. These (together with the trivial group element) classify
the possible actions on the degree-2 homology of the corresponding

del Pezzo surface. Note that in some cases the potential action
cannot be realised on a del Pezzo surface. The d×d identity matrix

is denoted by 1d, the 2× 2 permutation matrix by H = ( 0 1
1 0 ).

d
el

P
ez

zo

W
ey

l
gr

ou
p

Action on H2

(
Bn, Z

)
= Span

{
l, e1, . . . , en

} (
b+
2 , b−2

)

S
iz

e
of

co
n
j.

cl
as

s

B3 A2 ⊕ A1

I
(1)
B3

= 12 ⊕H (3, 1) 3

I
(2)
B3

=

(
2 1 1 1
−1 −1 0 −1
−1 0 −1 −1
−1 −1 −1 0

)
(2, 2) 3

I
(3)
B3

=

(
2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

)
(3, 1) 1

B4 A4

I
(1)
B4

= 13 ⊕H (4, 1) 10

I
(2)
B4

= 11 ⊕ 2H (3, 2) 15

B5 D5

I
(1)
B5

= 14 ⊕H No such B5 involution! (5, 1) 20

I
(2)
B5

= 12 ⊕ 2H (4, 2) 60

I
(3)
B5

= I
(2)
B3
⊕H (3, 3) 60

I
(4)
B5

= I
(3)
B3
⊕H (4, 2) 10

I
(5)
B5

=




3 2 1 1 1 1
−2 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0
−1 −1 0 −1 0 0
−1 −1 0 0 −1 0
−1 −1 0 0 0 −1



 (2, 4) 5

B6 E6

I
(1)
B6

= 15 ⊕H No such B6 involution! (6, 1) 36

I
(2)
B6

= 13 ⊕ 2H (5, 2) 270

I
(3)
B6

= 11 ⊕ 3H No such B6 involution! (4, 3) 540

I
(4)
B6

= I
(5)
B5
⊕ 11 (3, 4) 45

Continued on the next page
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Table 22 – continued from previous page

Bn Weyl Action on H2

(
Bn, Z

)
= span

{
l, e1, . . . , en

} (
b+
2 , b−2

)
|I (·)

Bn
|Weyl

I
(1)
B7

= 16 ⊕H No such B7 involution! (7, 1) 63

I
(2)
B7

= 14 ⊕ 2H No such B7 involution! (6, 2) 945

I
(3)
B7

= 12 ⊕ 3H No such B7 involution! (5, 3) 3780

I
(4)
B7

= I
(2)
B3
⊕ 2H No such B7 involution! (4, 4) 3780

I
(5)
B7

= I
(3)
B3
⊕ 2H (5, 3) 315

I
(6)
B7

= I
(5)
B5
⊕ 12 (4, 4) 315

B7 E7 I
(7)
B7

= I
(5)
B5
⊕H (3, 5) 945

I
(8)
B7

=




4 3 1 1 1 1 1 1
−3 −2 −1 −1 −1 −1 −1 −1
−1 −1 −1 0 0 0 0 0
−1 −1 0 −1 0 0 0 0
−1 −1 0 0 −1 0 0 0
−1 −1 0 0 0 −1 0 0
−1 −1 0 0 0 0 −1 0
−1 −1 0 0 0 0 0 −1



No such B7

involution!
(2, 6) 63

I
(9)
B7

=




8 3 3 3 3 3 3 3
−3 −2 −1 −1 −1 −1 −1 −1
−3 −1 −2 −1 −1 −1 −1 −1
−3 −1 −1 −2 −1 −1 −1 −1
−3 −1 −1 −1 −2 −1 −1 −1
−3 −1 −1 −1 −1 −2 −1 −1
−3 −1 −1 −1 −1 −1 −2 −1
−3 −1 −1 −1 −1 −1 −1 −2


 (1, 7) 1

I
(1)
B8

= 17 ⊕H No such B8 involution! (8, 1) 120

I
(2)
B8

= 15 ⊕ 2H No such B8 involution! (7, 2) 3780

I
(3)
B8

= 13 ⊕ 3H No such B8 involution! (6, 3) 37800

I
(4)
B8

= 11 ⊕ 4H No such B8 involution! (5, 4) 113400

I
(5)
B8

= I
(5)
B5
⊕ 13 (5, 4) 3150

B8 E8 I
(6)
B8

= I
(5)
B5
⊕ 11 ⊕H (4, 5) 37800

I
(7)
B8

= I
(8)
B7
⊕ 11 No such B8 involution! (3, 6) 3780

I
(8)
B8

= I
(9)
B7
⊕ 11 No such B8 involution! (2, 7) 120

I
(9)
B8

=




17 6 6 6 6 6 6 6 6
−6 −3 −2 −2 −2 −2 −2 −2 −2
−6 −2 −3 −2 −2 −2 −2 −2 −2
−6 −2 −2 −3 −2 −2 −2 −2 −2
−6 −2 −2 −2 −3 −2 −2 −2 −2
−6 −2 −2 −2 −2 −3 −2 −2 −2
−6 −2 −2 −2 −2 −2 −3 −2 −2
−6 −2 −2 −2 −2 −2 −2 −3 −2
−6 −2 −2 −2 −2 −2 −2 −2 −3


 (1, 8) 1
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different matrix expressions; We pick particularly “nice” representatives by picking
block-diagonal ones such that the bottom right blocks are either 2× 2 permutation
matrices, or identity matrices.

Note that no two (−1)-curves are homologous, that is, the homology classes of the
(−1)-curves are all distinct. Hence, the homology class of a (−1)-curve can only be

invariant under an involution if the (−1)-curve is geometrically invariant. Similarly,
a pair of homology classes of self-intersection −1 is exchanged under an involution if
and only if the actual (−1)-curves are exchanged by the involution. Hence,

• If an involution on Bn leaves one (−1)-class invariant, then said involution is
the blow-up of an involution on Bn−1 at one invariant point. In the standard

basis, the group action on H2(Bn, Z) is block diagonal, consisting of the action
on H2(Bn−1, Z) and one 11 block.

• If an involution on Bn exchanges two (−1)-classes that do not intersect, then
said involution is the blow-up of an involution on Bn−2 at a pair of points (that
is, a non-fixed point and its image point). In the standard basis, the group

action on H2(Bn, Z) is block diagonal, consisting of the action on H2(Bn−2, Z)
and one H block.

A.8 Minimal Involutions

Analysing the list of possible actions on H2(S, Z) in Table 20, one easily sees that

many are related by adding 11 or H blocks. If the action is induced from a del Pezzo
surface, then these operations correspond to blowing up a fixed point and blowing
up a point–image point pair, respectively. The minimal group actions, which cannot
be built from simpler ones, are

• 11 acting on H2(P
2, Z) Realised by (P2, σ), eq. (231).

• 12 acting on H2(P
1 × P1, Z)

Realised by (P1 × P1, σ1) and (P1 × P1, σ2), eqns. (237a) and (237b).

• H acting on H2(P
1 × P1, Z) Realised by (P1 × P1, σ3), eq. (237a).

• I
(5)
B5

acting on H2(B5, Z)

• I
(8)
B7

acting on H2(B7, Z)
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• I
(9)
B7

acting on H2(B7, Z)

• I
(9)
B8

acting on H2(B8, Z)

Moreover, the first three (and only the first three) are related by adding and subtract-
ing blocks of the form 11 and H. In terms of geometric involutions, this means that
they are birational. Hence, there are five disconnected cases of involutions modulo

blow-up/down. One obvious way to understand these cases is to look at the minimal
involution, that is, those that cannot be further blown down. We already analysed
the minimal models (P2, σ), (P1×P1, σ1), (P1×P1, σ2), and (P1×P1, σ3), all of which
are birationally equivalent39. The remaining four minimal involutions are classically

known involutions:

I
(9)
B8

: The Bertini involution on B8, which we denote by (B8, σB). Its fixed point set
see eq. (272), consists of a genus-4 curve and one isolated fixed point. Since
b+
2 = 1, all invariant homology classes must be proportional to the canonical

class. The constant of proportionality determines the genus of a corresponding
holomorphic curve via eq. (74). Using this, the homology class of the fixed
point set must be

[Σ4] = −3K = 9l − 3
8∑

i=1

ei ∈ H2

(
B8, Z

)σB = ZK. (265)

I
(9)
B7

: The Geiser involution on B7, which we denote by (B7, σG). The fixed point set,
see eq. (272), consists of a genus-3 curve with homology class

[Σ3] = −2K = 6l − 2

7∑

i=1

ei ∈ H2

(
B7, Z

)σG = ZK. (266)

I
(8)
B7

: The de Jonquières involution of degree 4 on the blow-up of P2 at 7 points.

In this case, 6 of the points necessarily lie on a conic [82], so this involution
cannot be realised on a del Pezzo surface. The invariant homology classes are
the rank-2 lattice generated by K and l− e1. The fixed point set consists of a

39Evidently, a minimal model can be a “local minimum”

121



single genus-2 curve Σ2. Its homology class is

[Σ2] = −K + (l − e1) = 4l − 2e1 −
7∑

i=2

ei

∈ H2

(
B7, Z

)σdJ = span
Z

{
K, l − e1

}
. (267)

I
(5)
B5

: The de Jonquières involution of degree 3 on B5, which we denote by (B5, σdJ).

The fixed point set, see eq. (272), consists of a single genus-1 curve (that is, an
elliptic curve) Σ1 in the class

[Σ1] = −K = 3l −
5∑

i=1

ei ∈ H2

(
B5, Z

)σdJ = span
Z

{
K, l − e1

}
. (268)

Each of these involutions comes with moduli, which can be identified with the moduli
of the fixed point curve Σg [83, 84]. For example, the moduli space of (B5, σ) is the

usual moduli space of elliptic curves40. Since these moduli spaces are all connected,
we learn that there is (up to continuous deformation) a unique involution giving rise

to the actions (I
(5)
B5

, I
(8)
B7

, I
(9)
B7

, and I
(9)
B8

, respectively) in homology.

Looking at the fixed point sets, we can understand the five different birationally

connected components of involutions as follows. Note that blowing up a point on
a surface always generates an exceptional divisor ≃ P1 and does not change the
genus of other curves. Hence, all fixed points in del Pezzo involutions birationally

connected to (P2, σ) are either isolated fixed points or of genus 0. The fixed point
set in the other 4 disconnected components all contain a single curve of genus 1, 2, 3,
and 4, respectively. Again, since the genus of these divisors is a birational invariant,
these 5 cases cannot be connected by a chain of blow-ups/downs.

A.9 Blow-ups of Minimal Models

In order to list all involutions on del Pezzo surfaces, we now just have to start with
the 5 minimal involutions and perform successive blow-ups at fixed points or point–

image point pairs. Recall that, by definition, the blow-up point must not lie on (−1)
curves, see Footnote 17. Together with our local analysis of the fixed-point set after
blow-up, Subsection A.4, we can summarise the blow-up procedure as follows:

40That is, the upper half plane modulo PSL(2, Z).
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• Blowing up an isolated fixed point is only allowed if this fixed point is not part
of a (−1)-curve. After the blow-up, the isolated fixed point is replaced with
the point-wise fixed exceptional divisor en ≃ P1 on Bn. No points of en may

be blown up any further.

• On a point-wise fixed curve C one may blow up points as long as C2 ≥ 0 and

the point is not one of the finitely many intersection points with (−1)-curves.
After the blow up to Bn, the fixed curve C is replaced by its proper transform
C̃ and one isolated point p̃. The new exceptional divisor en is not point-wise
fixed, but intersects C̃ · en = 1 and contains p̃ ∈ en. In particular, p̃ may not

be blown up further. The homology class of the new fixed-point set is

[C̃] = [C − en] ∈ H2

(
Bn, Z

)
(269)

and C̃2 = C2 − 1.

• A generic point p is neither fixed nor part of the finitely many (−1)-curves.
Hence, one can always find such a point p and image point q. However, since
the two points are not independent, one must check that all points are still in
general position, see Footnote 17. The fixed point set does not change when

blowing up such a pair of points.

Clearly, the important data about the fixed points set are the curves and the isolated
fixed points that can/cannot be blown up further.

The successive blow-ups of minimal involutions are then subject to the require-
ment that the blow-up points are in general position. This yields the following
restrictions:

• Consider a generic point–image point pair on (P2, σ),

p = [y : x0 : x1], q = [−y, x0 : x1] ∈ P2. (270)

p, q, and the isolated fixed point [1 : 0 : 0] ∈ (P2)σ are collinear. Hence, one
may either blow up this isolated fixed point or blow up a point–image point
pair, but not all three.

• Amongst 4 invariant points on (P2, σ) there are 3 collinear ones. This excludes
actions containing 15 and higher.
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• Any 3 point–image point pairs on (P2, σ) lie on a conic. This excludes actions
containing 3H and 4H.

• Any 3 point–image point pairs on (P1 × P1, σ3) lie on a conic. This excludes

the action I
(2)
B3
⊕ 2H.

• The de Jonquières involution of degree 4 on the blow-up of P2 at 7 points is
excluded since there are 6 points lying on a conic.

• Recall the action of the Geiser involution on B7 = Blp1,...,p7 P2, the image of a
point q ∈ B7 is the remaining basepoint of the pencil of cubics going through
the 8 points {p1, . . . , p7, q}. If this remaining basepoint coincides with q, then
the cubic has a node at q. Hence, blowing up a fixed point of (B7, σG) is

excluded as it would result in a nodal cubic going through the 8 points.

Starting from the minimal involutions, this lets us enumerate all involutions on
del Pezzo surfaces. The result is presented in Table 6. These involutions are related
through blowing up fixed points or point–image point pairs. This is depicted in

Figure 10.

A.10 Explicit Realisations

Finally, let us list explicit examples for the involutions on del Pezzo surfaces of degree
5 and less. These can be written as hypersurfaces in weighted projective spaces. For
simplicity, we pick a particular simple point in the complex moduli space in each
case:

B6 =
{
x3

0 + x3
1 + x3

2 + x3
3 = 0

}
⊂ P1,1,1,1

B7 =
{
y2 + x4

0 + x4
1 + x4

2 = 0
}
⊂ P2,1,1,1

B7 =
{
y2 + z3 + x6

0 + x6
1 = 0

}
⊂ P3,2,1,1

(271)
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Figure 10: Relations between the involutions on del Pezzo surfaces. The sin-

gle arrows (→) are the blow-downs of a fixed (−1)-curve, the dou-
ble arrows (⇒) are the blow-downs of a (−1)-curve and its image

curve. The minimal involutions are encircled.
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The involutions listed in Table 6 then act as follows on the hypersurfaces:

σ1 : B6 → B6,
[
x0 : x1 : x2 : x3

]
7→
[
x1 : x0 : x3 : x2

]
,

σ2 : B6 → B6,
[
x0 : x1 : x2 : x3

]
7→
[
x1 : x0 : x2 : x3

]
,

σ1 : B7 → B7,
[
y : x0 : x1 : x2

]
7→
[
− y : −x0 : x1 : x2

]
,

σ2 : B7 → B7,
[
y : x0 : x1 : x2

]
7→
[
y : −x0 : x1 : x2

]
,

σ3 : B7 → B7,
[
y : x0 : x1 : x2

]
7→
[
y : x1 : x0 : x2

]
,

σG : B7 → B7,
[
y : x0 : x1 : x2

]
7→
[
− y : x0 : x1 : x2

]
,

σ1 : B8 → B8,
[
y : z : x0 : x1

]
7→
[
y : z : −x0 : x1

]
,

σ2 : B8 → B8,
[
y : z : x0 : x1

]
7→
[
y : z : x1 : x0

]
,

σB : B8 → B8,
[
y : z : x0 : x1

]
7→
[
− y : z : x0 : x1

]
.

(272)

B Cohomology of Line Bundles over del Pezzo

Surfaces

On a del Pezzo surface Bn = Blp1,p2,...,pn

(
P2
)
, n ≤ 8, the line bundles41

Pic(Bn) = H2(Bn, Z) = span
Z

{
l, e1, e2, . . . , en

}
≃ Zn+1 (273)

are classified by their first Chern class. We will parametrise the first Chern class of

any line bundle L as

L = O
(
al +

∑

i∈I

biei −
∑

j∈J

cjej

)
, a ∈ Z, bi ∈ Z≥, cj ∈ Z>, (274)

where we split the index range {1, 2, . . . , n} = I ∪ J into two disjoint index sets.

In order to compute the bundle cohomology groups of L, we fist recall the fol-
lowing two facts:

• The index of L is

χ(L) =
2∑

k=0

(−1)khk(Bn, L) =

∫

Bn

ch(L)Td(TBn) =

=

(
a + 2

2

)
−
∑

i∈I

bi(bi − 1)

2
−
∑

j∈J

cj(cj + 1)

2
.

(275)

41We are going to label the exceptional divisors such that ek ⊂ Bn corresponds to the blow-up
point pk ∈ P2, k = 1, . . . , n.
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• Serre duality relates

Hk
(
Bn, L

)∨
= H2−k

(
Bn, L

∨ ⊗K
)

= H2−k
(
Bn, L

∨ ⊗O(−3l + e1 + · · ·+ en)
) (276)

Using Serre duality if necessary, it therefore suffices to calculate the cohomology

groups of L for a ≥ −2. In the following, we will always assume this to be the case.

First, the cohomology of O(al) is clearly identical to the cohomology of OP2(a),

which is

H∗
(
Bn,O(al)

)
=






0 ∗ = 2

0 ∗ = 1(
a+2
2

)
∗ = 0.

(277)

The
(

a+2
2

)
global sections are nothing but the degree-a homogeneous polynomials in

the 3 homogeneous variables. Similarly, the global sections of O(al −∑ ciei) can
be identified with the degree-a homogeneous polynomials that vanish at the blow-up

point pj to the degree cj, j ∈ J . Note that the homogeneous polynomials are a linear
space spanned by the monomials, and, therefore, counting the dimension of the space
of such sections is a simple linear algebra problem. We denote the dimension of the

sections vanishing at p1, . . . , pn by42

AP

cipi
(a) = dim

{
Pa(x, y, z)

∣∣Pa(pi) = 0 to order ci

}
. (280)

To obtain the higher-degree cohomology groups, consider the standard short exact
sequence

0 // OBn

(
al−∑ cjej

)
// OBn

(
al
)

// ⊕j∈JOcjej
// 0. (281)

42The expected dimension is

Aexpect
P

cipi

(a) = max

{
0,

(
a + 2

2

)
−
∑ cj(cj + 1)

2

}
, (278)

and this is often the actual value. However, for example, OB3
(3−3e1−2e2−e3) has Aexpect

3e1+2e2+e1
(3) =

0 while the actual value is A3e1+2e2+e1
(3) = 1. Moreover, for special values of the complex structure

moduli of Bn, the dimension of the cohomology group jumps and AP

cipi
(a) > Aexpect

P

cipi

(a). Note

that one can always pick coordinates on P2 such that

p1 = [1 : 0 : 0], p2 = [0 : 1 : 0], p3 = [0 : 0 : 1], p4 = [1 : 1 : 1]. (279)

In other words, only Bn with n ≥ 5 have complex structure moduli, parametrised by the position
of the points p5, . . . , pn.

127



From the corresponding long exact sequence43,

0 // H0
(
OBn

(
al −∑ cjej

))
//
(

a+2
2

)
//
∑ cj (cj+1)

2 EDBC

GF@A
// H1

(
OBn

(
al −∑ cjej

))
// 0 // 0,

(282)

it follows that the cohomology is concentrated in degrees 0 and 1 only. Hence, using
the index, one obtains that

H2
(
Bn,O(al−

∑
cjej)

)
= 0. (283)

Finally, consider the short exact sequence

0 // OBn

(
al−∑ cjej

)
// L // ⊕i∈IObiei

(−bi) // 0 . (284)

The corresponding long exact sequence reads

0 // H0
(
OBn

(
al−∑ ciei

))
// H0(L) // 0

EDBC

GF@A
// H1

(
OBn

(
al−∑ ciei

))
// H1(L) //

∑ bi(bi+1)
2 EDBC

GF@A
// 0 // H2(L) // 0 // 0.

(285)

One immediately notices that the cohomology of L is concentrated in degrees 0 and

1, and therefore is determined by the index and A. Therefore, the cohomology of
L = O(al +

∑
biei −

∑
cjej) with a ≥ −2 is given by

H∗
(
Bn, L

)
=






0 ∗ = 2

−χ(L)− AP

cipi
(a) ∗ = 1

AP

cipi
(a) ∗ = 0.

(286)

43By abuse of notation, we just write k instead of a k-dimensional vector space in long exact
sequences.
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C Cohomology of Line Bundles On Rational El-

liptic Surfaces

By definition, a dP9 surface is a rational elliptic surface, meaning that it is simulta-
neously a blow-up of P2 and elliptically fibred. Given this definition, one can show

that there must be precisely 9 blow-up points44

dP9 = Bl{p1,...,p9}
(
P2
)
, (287)

that the base of the fibration must be P1 and can45 be taken to be e9), and that the
fibre class is

f = 3l −
9∑

i=1

ei ∈ H2

(
dP9, Z

)
. (288)

However, the position of the 9 points are not arbitrary. In other words, not every

blow-up of P2 at 9 points is elliptically fibred, but, rather, the blow-up points have
to be in the right position. The immediate consequence for line bundles is that often
the actual cohomology groups are larger than what one would obtain from the naive
application of Section B. For example [85],

H∗( dP9,OdP9
(f)
)

= (2, 1, 0), (289)

while eq. (286) would have yielded46 (1, 0, 0).

However, there are two special cases47 where we can, in fact, simply apply the

results of Section B for Br, r = 0, . . . , 8:

• Consider the case where one of the exceptional divisors (say, e9) does not appear
in the line bundle, that is,

L = O
(
al +

∑

i∈I

biei −
∑

j∈J

cjej + 0 · e9

)
, a ∈ Z, bi ∈ Z≥, cj ∈ Z>, (290)

44In contrast to the del Pezzo case, the blow-up points can be “infinitesimally close”. This
generates (−2)-curves in the blown-up surface, which are allowed on a dP9 but not on a del Pezzo
surface. In fact, the irreducible components of most Kodaira fibres (all except I0, I1, and III) have
self-intersection −2.

45And we will make this choice always in the following.
46Of course, the index is the same since it is a topological quantity.
47Here, and in the following, we will assume that we are on a sufficiently generic dP9 surface

where all blow-up points p1, . . . , p9 can be chosen to be distinct.
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with I ∪J = {1, . . . , 8} disjoint index sets. Then, we can identify the cohomol-
ogy with the analogue

H∗( dP9, L
)

= H∗
(
B8,OB8

(
al +

∑
i∈I biei −

∑
j∈J cjej

))
(291)

on B8, where eq. (286) holds.

• The canonical bundle is
KdP9 = OdP9(−f), (292)

and, therefore, Serre duality allows us to identify

H∗( dP9, L⊗OdP9(−f)
)

= H2−∗( dP9, L
∨)∨. (293)

However, in general one has to use the use the program detailed in [85], and
use the Leray-Serre spectral sequence for the elliptic fibration π : dP9 → P1. This
revolves around the three steps:

1. Compute the push-down Rqπ∗L for linear combinations of sections, adding and
subtracting one section s at a time. This amounts to repeated applications of
the short exact sequence

0 −→ OdP9(D − s) −→ OdP9(D) −→ Os(D · s) −→ 0 (294)

and the corresponding long exact sequence

0 // π∗
(
OdP9(D − s)

)
// π∗
(
OdP9(D)

)
// OP1(D · s)

EDBC

GF@A
// R1π∗

(
OdP9(D − s)

)
// R1π∗

(
OdP9(D)

)
// 0,

(295)
for push-downs.

2. Use the projection formula

Rqπ∗
(
L⊗OdP9(nf)

)
= Rqπ∗

(
L
)
⊗OP1(n) (296)

to shift fibre classes to the base P1.
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3. Compute the cohomology groups of Rqπ∗(L) (on P1) and use the Leray-Serre
spectral sequence to conclude

H∗( dP9, L
)

=






H1
(
P1, R1π∗(L)

)
∗ = 2,

H1
(
P1, π∗(L)

)
⊕H0

(
P1, R1π∗(L)

)
∗ = 1,

H0
(
P1, π∗(L)

)
∗ = 0.

(297)

As an example, let us consider L = L−2 ⊗ L−1
Y = OdP9(2e9 + e1 − e2 − 2f) in

Table 8. Adding and subtracting sections yields (vanishing R1π∗s are skipped)

π∗
(
OdP9

)
= OP1, R1π∗

(
OdP9

)
= OP1(−1),

π∗
(
OdP9(e9)

)
= OP1,

π∗
(
OdP9(2e9)

)
= OP1 ⊕OP1(−2),

π∗
(
OdP9(2e9 + e1)

)
= OP1 ⊕OP1(−2)⊕OP1(−1),

π∗
(
OdP9(2e9 + e1 − e2)

)
= OP1(−2)⊕OP1(−1).

(298)

Hence, using eq. (296),

π∗
(
L
)

= OP1(−4)⊕OP1(−3)

R1π∗
(
L
)

= 0.
(299)

Finally, the Leray-Serre spectral sequence yields

H∗( dP9, L
)

= (0, 5, 0). (300)
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