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Abstract

The search for the Higgs boson and for physics beyond the Standard
Model are the major motivations behind the LHC experiment. In
many scenarios the success of the experiment depends on the knowledge
of signal and background event rates at least at one-loop precision.
We present the approach of the GOLEM collaboration to build a highly
automated framework for the calculation of matrix elements at the
one-loop level, which is based on the evaluation of Feynman diagrams.
Part of this effort is an open-source library for the numerical evaluation
of tensor integrals. As an application, some results for the process
pp → bb̄bb̄ calculated with this method are presented.

PACS 12.38.Bx, 13.85.Hd
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1 Introduction

The Standard Model of Particle Physics has been tested by previous collider

experiments to a very high precision [1]. Despite its great success, many fun-
damental questions such as the nature of dark matter cannot be addressed

within the Standard Model. Two main goals of the next collider exper-
iment, the LHC, are therefore the discovery (or exclusion) of a Standard

Model Higgs boson and the measurement of any new particles accessible
by the collider energy [2]. Due to the purely hadronic initial state of the
collisions one expects the interactions mainly to be governed by QCD. A

precise understanding of both the signal and the background will be crucial
for most Higgs discovery channels and for the discrimination of different

scenarios beyond the Standard Model. For many processes a Leading Order
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(LO) approximation will not suffice and has to be amended by higher order
corrections.

The calculation of matrix elements at LO has become an automated
routine for which many computer programs are available [4, 5, 6, 7, 8, 9].

Next to Leading Order (NLO) calculations, however, have never reached
this level of automation. Especially in the case of many particle final states

(≥ 3 final state particle) automatisation is not straightforward as one easily
hits the limits of current computer technology. A full NLO calculation in

QCD consists of a 2 → n particle tree-level contribution (LO), the real
emission of an extra parton (2 → n + 1, tree-level) and virtual corrections

(2 → n, one-loop diagrams). Both real and virtual corrections can contain
infrared divergences which only cancel in the sum of both contributions.
These divergences can be dealt with by subtraction methods [10] which

have also become available as automated implementations [11]. The only
missing ingredient for a full automation of NLO calculations are the virtual

corrections. Although many different methods have been proposed [12, 13,
15, 16, 14, 17, 18, 19, 20] no fully automated implementation has been made

available yet.
The GOLEM collaboration focuses on the development of such an autom-

atized tool for one-loop matrix element calculations1. We have applied the
GOLEM method to calculate the QCD one-loop corrections of the process

uū → bb̄bb̄, which is a subprocess of pp → bb̄bb̄. This process is a particu-
lar important background in MSSM Higgs searches at large values of tan β,
where one of the Higgs bosons decays predominantly into bb̄ pairs.

2 The GOLEM Approach

Our approach is based on the calculation of Feynman diagrams. We generate
the diagrams and their corresponding algebraic expressions using QGraf [21]

and project them on a colour and helicity basis. The integration over the
momentum of the virtual particle introduces tensor integrals of the form

In;µ1,...,µr

N =

∫

dnk

iπn/2

kµ1 · · ·kµr

∏N
j=1

[

(k + rj)2 − m2
j + iδ

] (1)

These integrals are reduced to a basis of scalar integrals by the method
described in [22, 23]; we use two independent implementations where

a) the tensor reduction is carried out on a symbolical level and the am-

plitude is represented in terms of Mandelstam variables, Levi-Civita
tensors and the commonly used standard basis of scalar one-loop in-
tegrals

M{λ},c = CboxI
n
4 + CtriI

n
3 + CbubIn

2 + CtadIn
1 .

1
GOLEM stands for General One Loop Evaluator for Matrix elements
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The algebraic reduction and further simplifications are achieved using
Form [24] and Maple.

b) a form factor representation is introduced for the tensor integrals and

the tensor reduction is delayed until the numerical evaluation. The
form factors are implemented in the Fortran library golem95 which is

described in [25]. The amplitude is represented in terms of Mandel-
stam variables, spinor bi-products ū(pi)(1± γ5)u(pj) and an extended
basis of one-loop integrals that allows for Feynman parameters in the

numerator.

In both strategies, Gram determinants in the denominator are either avoided
or explicitly cancelled on the symbolical level thus resulting in a numerically
stable implementation of the matrix element.

The results presented below have been obtained with implementation b)
in which the user starts from a very minimal process description. All neces-

sary files are generated by a Python script. The matrix element is obtained
as a set of Fortran90 files which are compiled on the target system, in our

case the ECDF cluster [26].
The direct integration of a one-loop matrix element over phase space

with an adaptive Monte Carlo (MC) has two major disadvantages. The
evaluation time of an NLO matrix element is considerable larger than that of

a LO matrix element. Hence one should try to avoid unnecessary calls of the
NLO matrix elements. The second problem are phase space regions where
the chosen integral basis becomes linearly dependent and lead to numerical

fluctuations. When these fluctuations reach the order of magnitude of the
precision goal of the adaptive MC, the MC program tends to overestimate

these phase space regions which can lead to numerical instabilities.
We avoid these problems by performing the phase space integration as a

reweighting of unweighted LO Monte Carlo events. We use WHIZARD [4] an
adaptive Monte Carlo integrator to obtain a list of unweighted LO events

{p}i such that an observable O can be written as

〈O〉LO ≡

∫

dΦ({p})|MLO|
2O({p}) = lim

N→∞

σLO

N

N
∑

i=1

O({p}i) (2)

where the limit is understood in the statistical sense as a limit on the variance

of the MC sum. The observable at one-loop precision is obtained as

〈O〉one−loop = lim
N→∞

σLO

N

N
∑

i=1

K({p})O({p}i) (3)

with the local K-factor

K({p}) =
M†

LO · (MLO + Mvirt + I · MLO)

|MLO|2
(4)
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The matrix elements M are understood as vectors in a given colour basis
and I is the insertion operator as defined in [10], which ensures that after

UV-renormalisation all poles in 1/(n − 4) cancel. The reweighting can be
understood as importance sampling with the probability density

w({p}) ∝
1

σLO

dσLO({p})

dΦ({p})
. (5)

3 Results for uū → bb̄bb̄

The results for the virtual correction of the process uū → bb̄bb̄ have been ob-
tained with nf = 5 massless quark flavours and for pT > 30 GeV, a rapidity

cut of η < 2.5 GeV and a separation cut of ∆R =
√

(∆Φ)2 + (∆η)2 > 0.4.
The center of mass energy is 14TeV. In this data set we choose the scales

as µF = µR =
∑4

i=1 pT,i/4 and fold with the CTEQ6.5 parton distribution
functions [27]. We work with the modifications to the dipoles and insertion

operators as proposed in [28]; for the distributions below we have evalu-
ated the insertion operator at αN = 0.1. For this specific amplitude this

modification induces a shift of the insertion operator of

Iunmodified − I(αN) =
αs(µ)

2π
· 6 CF

[

ln2 αN −
3

2
(αN − 1 − lnαN)

]

. (6)

On the ECDF cluster our code achieved a performance of 8.9 s (17.6 s) per
phase space point and node2 in double (quadruple) precision.

The above timings suggest that an evaluation of the whole integration

in quadruple precision is too costly to be practical and should be the last
resort if double precision is not sufficient. Figure 1 shows the distribution

of the values for the local K-factor, the single pole and the double pole
of an amplitude for 200,000 randomly chosen points in both double and

quadruple precision. The distribution of the the K-factor shows that the
values are sharply peaked around the the integrated result of O(1) and in

double precision a small fraction of less than a percent of the points stretches
out to atypically large values. It is clear that in a data set of order 106 MC

events a single outlier of that magnitude is already enough to tamper with
the result. On the other hand, since the number of points in doubt is very
small, an a posteriori test is enough and it suffices to re-evaluate those

points at a higher precision. As possible test criteria we studied a cut on
the K-factor, on the coefficient of the single pole and on the double pole;

if the magnitude of the double precision result exceeds the cut the point is
evaluated at higher precision.

We have taken the same sample of 200,000 points to study the influence
of the cut parameter on the integrated result. Figure 2 shows the relative

2Xeon 5450 (quad-core), 3 GHz
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Figure 1: Comparison between evaluations of the matrix element for 200,000

MC events in double precision and quadruple precision. Shown are the
distributions of the values of the local K-factor as defined in Eq. (4) (left)
and the single 1/(n− 4) (middle) and double 1/(n − 4)2 (right) pole of the

matrix element.

error εrel = |σ(SPcut) − σ(0)|/σ(0) on the cross-section versus the cut pa-
rameter SPcut. The steep increase of the error indicates an outlier in the
K-factor that is not reflected in the cancellation of the pole. A very simi-

lar picture emerges for a cut on the double pole (not shown). This lack of
correlation between the pole cancellation and error on the integral can be

circumvented by imposing a test on the local K-factor as shown in Figure 3.
In the region between 2 ≤ Kcut ≤ 5 a relative error of ≈ 0.10% is achieved

while only 0.5% of the phase space points need to be evaluated at a higher
precision.3

4 Conclusion

A successful interpretation of the LHC data will need precise predictions
of both background and signal. For many processes this involves the eval-

uation of one-loop QCD amplitudes with many particles in the final state.
We have presented the approach of the GOLEM collaboration to automatize

such calculations that allows to generate code for the matrix element which
is both fast and numerically stable in all relevant phase space regions. The

need to control the accuracy of the result has been emphasized and a pos-

3The downwards trend at Kcut ≈ 10 is a statistical fluctuation.
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Figure 2: Relative error on the integrated result versus a cut SPcut on the
coefficient of the single pole. If the cancellation of the single pole in double

precision is worse than SPcut the data point is evaluated in quadruple preci-
sion. The dashed curve indicates the percentage of points that fail the test

and need re-evaluation (right y-axis).

0.00%

0.05%

0.10%

0.15%

0.20%

10
-2

10
-1

10
0

10
1

10
2
0%

20%

40%

60%

80%

100%

ε r
el

p
q
u
ad

Kcut

εrel
pquad

Figure 3: Relative error as in Figure 2 but with a cut on the local K-factor.
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Figure 4: Distributions of the transverse momentum (left) and the rapidity

(right) of the hardest jet. The result for NLOvirt is obtained from the fi-
nite contribution of the virtual part of the NLO prediction, as described in
Eq. (4).
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Figure 5: Stability under simultaneous variation of the renormalisation
scale µR and the factorization scale µF around the central value of µ0 =
∑4

i=1 pT,i/4.
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teriori precision test has been proposed. We have introduced a new indirect
integration method based on reweighting unweighted LO events by a local

K-factor, which avoids certain problems that otherwise arise from a direct,
adaptive MC integration of the one-loop matrix element. Results have been

presented for the virtual corrections of the process uū → bb̄bb̄, which is part
of an important background for MSSM Higgs boson searches at the LHC.

We have shown that our approach allows for efficient implementations
for NLO predictions of processes with multi-particle final states and that

the GOLEM project can lead to a fully automated tool for NLO calculations.
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