- b I - At AR ¥ AL i VWit AV s ARV A AR oM Lvaliicaii it S

Institute for Mathematical Physics A-1090 Wien, Austria

Correlations between Center Vortices
and Low—Lying Dirac Eigenmodes

R. Hollwieser
M. Faber
J. Greensite
Urs Heller
S. Olejnik

Vienna, Preprint EST 2116 (2009) February 25, 2009

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available via http://www.esi.ac.at



| ) OF SCIENCE

Correlations between center vortices and low-lying
Dirac eigenmodes

R. Hollwieser *
Atomic Institute, University of Technology, Wiedner HatipB-10, A-1040 Vienna, Austria
E-mail: hr oman@xph. t uwi en. ac. at

M. Faber
Atomic Institute, University of Technology, Wiedner HatipB-10, A-1040 Vienna, Austria
E-mail: f aber @ph. t uwi en. ac. at

J. Greensite
Physics and Astronomy Dept., San Francisco State Uniyefdin Francisco, CA 94132, USA
E-mail: j greensi te@nuai | . com

Urs Heller
American Physical Society, One Research Road, Box 900geRitY 11961-9000, USA
E-mail: hel | er @ps. org

S. Olejnik
Institute of Physics, Slovak Academy of Sciences, SK—8BHtitlava, Slovakia
E-mail: st ef an. ol ej ni k@nuai |l . com

Correlations between center vortices and low-lying eigedes of the Dirac operator are studied
in both the overlap and asqtad formulations. In particularswggest a solution to a puzzle raised
some years ago by Gattnar et al. [Nucl. Phys. B 716 (2005), ¥4} noted the absence of low-
lying Dirac eigenmodes required for chiral symmetry breajin center-projected configurations.
We show that the low-lying modes are present in the staggessgtad) formulation, but not for
overlap, and we argue that this is due to the absence of aifiéeendent chiral symmetry on
the very rough center-projected configurations for ovedag “chirally improved” fermions. We
also confirm and extend the results of Kovalenko et al. [Phyt. B 648 (2007) 383]: there
are strong correlations between center vortex locatiodslaa scalar density of low-lying Dirac
eigenmodes, supporting the picture of topological chargefcenter vortices.
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1. Introduction

The center vortex model explains quark confinement and tse&@aargument [1] implies that
a force strong enough to confine quarks is also generallyotggeo break chiral symmetry. The
Banks-Casher relation [2] relates chiral symmetry bregkSB) with a finite density of near-zero
eigenmodes of the chiral-invariant Dirac operator. Sdwgears ago, however, Gattnar et al. [3]
reported a puzzling result with a chirally-improved versiaf the Dirac operator due to Gattringer
[4]. They found a large gap around zero in the spectrum fotargurojected configurations, which
contain only thin vortex excitations and whiake confining, implying zero chiral condensate and
therefore noySB We suggest that this large gap found by Gattnar et al. iseelo the way in
which chiral symmetry is realized on the lattice. The Caslrgument [1] is based on the usual
SU(N¢ )L x SU(Nf)r symmetry of the continuum theory with massless fermionst€eprojected
configurations are, however, maximally discontinous; pkte variables make a sudden transition
from the trivial center element outside the thin vortex, toam-trivial center element inside. The
chirally-improved Dirac operator is not necessarily cyraymmetric, even approximately, in such
backgrounds and there is no reason to expect spontaneoussgnibreaking.

We will reinforce these arguments in section 2, looking & $pectra of the overlap [5] and
asqtad [6] Dirac operators, when evaluated on normal, xatdy (i.e. center-projected), and
vortex-removed lattices. Our results support the view teatiter vortices alone can induce both
confinemenand chiral symmetry breaking. In section 3 we report on otherelations between
center-vortex locations and the density distribution e¥lging Dirac eigenmodes, following the
earlier work by Kovalenko et al. [7]. These correlations jsoip the picture advocated by Engel-
hardt and Reinhardt [8], in which topological charge is aaricated at points where vortices either
intersect, or twist about themselves (“writhe”) in a cantaiay.

Throughout this article we work with lattices generated hitite Monte Carlo simulation
of the tadpole improved Liischer-Weisz pure-gauge actiainiy at couplingBw = 3.3 (lattice
spacinga = 0.15 fm) for the SU(2) gauge group [9]. Center projection is performed in direct
maximal center gauge (adjoint Landau gauge).

2. Low-lyingeigenmodes and thin vortices

We present the first twenty overlap eigenvalues forlasice atBw = 3.3 in Fig. 1. There is
a big gap around zero for center-projected data, indicatérg chiral condensate. Looking closer
at the center-projected eigenvalues one spots only fiveeofitenty eigenvalues. This indicates a
degenerency of four, caused by the real trivial link vargsdt1,), where the two colors decouple
and the eigenvalue equati@y, = A,y is invariant under charge conjugation. We speculated
that the reason for the large gap in the vortex-only case wasected with the lack of smooth-
ness of center-projected lattices. The chiral symmetnysfiamations are gauge-field dependent
[10], and only approximate thBU(N; )L x SU(Ns)r transformations of the continuum theory for
configurations which vary slowly at the scale of the lattipacng. Center-projected configura-
tions are not even close to smooth, and the Casher argunedating confinement tySBneed
not apply. However, the overlap operator should produce eemeasonable answer when ap-
plied to a smoother version of the center-projected lattideerefore we perform an interpolation
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Figure 1: The first twenty overlap Dirac eigenvalue pairs on the Gingpalilson circle for a 16 lattice
at Biw = 3.3 for antiperiodic boundary conditions. The center-prtgdcconfigurations show a four-fold

degeneracy.

between full (gauged) and projected configurations, reduthe angle between the vector rep-
resenting group elemeti, (x) in maximal center gauge, and the vector representingSthe)
center elemer,, (x)l> by some fixed percentage. In Fig. 2 we show the low-lying eigkres for
partial projections together with the unprojected and eeptojected lattices. We see that there
is no really obvious gap in the partially-projected laticeven at 85% projection. This agrees
with our conjecture that applying the overlap operator taresther version of the vortex-only
vacuum would give a result consistent wigsB and the Banks-Casher relation. Staggered and
asqgtad fermions, on the other hand, do not require a smoatfigcwation to preserve a subgroup
of the usual continuurBU(N¢ )| x SU(N¢)r Symmetry, and by the Casher argument [1] one would
expect this remaining symmetry to be spontaneously broiemip confining gauge configuration.
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Figure 2: The first twenty overlap Dirac eigenvalue pairs from a singpafiguration on a 16lattice,
antiperiodic boundary conditions Bty = 3.3, for interpolated fields.
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Fig. 3 shows the first twenty asqtad eigenvalues, whichidige very differently now. The low
eigenmode density (chiral condensate) increases for repragected compared to full (original)
data. Thus, for the asqtad operator, we have found exacty was expected prior to the results of
Gattnar et al.: the vortex excitations of the vortex-onlyite carry not only the information about
confinement, but are also responsibleX&B via the Banks-Casher relation.
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Figure 3: The first twenty asqtad Dirac eigenvalue pairs from 4 tbtice atf,w = 3.3 for antiperiodic
boundary conditions. The center-projected configurat8iizsv no gap around zero.

3. Dirac eigenmode densitiesand vortex correlations

The correlatoiC, between the density of the eigenmatleand the vortex surface is inves-
tigated in order to clarify the role of the vortices in the odpgical structure of the vacuum. It
depends on the eigenvalue and on the local geometry of thiexvoFhe vortex point& live on
the dual lattice and they are correlated to the averagedrse@enmode density, (x) over the 16
verticesx of the 4d hypercubey, dual toR. [7]

_ >p 2xeH (VPa(X) —1)
Zpi ZXGH 1

In Fig. 4 we display the data faC, (N,) vs. N, computed for eigenmodes of the asqtad Dirac
operator in the full and center-projected configurations.fitvd that the values @, (N,) obtained
from asqgtad eigenmodes in the full configurations are onlyuala factor of four smaller than
the corresponding values in the center-projected configuma The most important feature, in
our opinion, is the fact that the correlator increases skgadth increasing number of the vortex
plaquettes\,, attached to a poirR where the Dirac eigenmode density seems to be significantly
enhanced. This fact is at least compatible with the genacailine advanced by Engelhardt and
Reinhardt [8], that topological charge is concentratedaants where vortices either intersect, or
twist about themselves (“writhe”) in a certain way.

Cr(Ny) (3.1)
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Figure 4: Vortex correlatiorC, (Ny) for asqtad staggered eigenmodegigi = 3.3 on full (left) and center-
projected (right) configurations.

4. Conclusions

Thin vortices found in center projection give rise to a loyinly spectrum of Dirac eigenmodes,
providing that the chiral symmetry of the Dirac operator sloet depend on the smoothness of the
lattice configuration. Thus, the vortex excitations of thatex-only lattice carry not only the
information about confinement, but are also responsibleyf®B via the Banks-Casher relation.
There are significant correlations between center voraeesthe low-lying modes, supporting the
picture of topological charge from center vortices. Ouwitsindicate that center vortices have a
strong effect on the existence and properties of low-lyiilggemodes of the Dirac operator. For
more details see [11].
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