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EQUIVARIANT QUANTIZATIONS FOR AHS–STRUCTURES

ANDREAS ČAP AND JOSEF ŠILHAN

Dedicated to Peter W. Michor at the occasion of his 60th birthday

Abstract. We construct an explicit scheme to associate to any potential sym-

bol an operator acting between sections of natural bundles (associated to irre-
ducible representations) for a so–called AHS–structure. Outside of a finite set

of critical (or resonant) weights, this procedure gives rise to a quantization,
which is intrinsic to this geometric structure. In particular, this provides pro-

jectively and conformally equivariant quantizations for arbitrary symbols on
general (curved) projective and conformal structures.

1. Introduction

Consider a smooth manifoldM , two vector bundles E and F over M and a linear
differential operator D : Γ(E) → Γ(F ), where Γ( ) indicates the space of smooth
sections. If D is of order at most k, then it has a well defined (kth order) principal
symbol σD, which can be viewed as a vector bundle map SkT ∗M ⊗E → F or as a
smooth section of the vector bundle SkTM ⊗E∗ ⊗ F . Here TM and T ∗M are the
tangent respectively cotangent bundle of M , E∗ is the bundle dual to E, and Sk

denotes the kth symmetric power.
A quantization on M is a right inverse to the principal symbol map. This means

that to each smooth section τ of the bundle SkTM ⊗E∗ ⊗F , one has to associate
a differential operator Aτ : Γ(E) → Γ(F ) of order k with principal symbol τ . Note
that operators of order 0 coincide with their principal symbols, so there a unique
possible quantization in order 0. Given any kth order operator D with principal
symbol τ , the difference D − Aτ is of order k − 1. Iterating this, we conclude
that, having a quantization in each order ≤ k, one actually obtains an isomorphism
between the space Diffk (E, F ) of differential operators Γ(E) → Γ(F ) of order at
most k and the space of smooth sections of the bundle ⊕k

i=0S
iTM ⊗ E∗ ⊗ F .

A classical example of a quantization is provided by the Fourier transform for
smooth functions on R

n. However, it is well known that (even for E = F = M ×R)
there is no canonical quantization on a general manifold M , but one has to make
additional choices. For our purposes, the most relevant example is to choose linear
connections on the vector bundles E and TM . Having done this, one obtains
induced linear connections on duals and tensor products of these bundles, and we
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will denote all these connections by ∇. For a smooth section s of E, one can
then form the k–fold covariant derivative ∇ks, which is a section of ⊗kT ∗M ⊗ E.
Symmetrizing in the T ∗M entries, we obtain a section ∇(k)s of SkT ∗M⊗E. Viewing
a symbol τ as a bundle map SkT ∗M⊗E → F , we can simply put Aτ(s) := τ (∇(k)s).
Clearly this defines a differential operator Aτ of order k and it is well known that
its principal symbol is τ , so we have obtained a quantization in this way.

This provides a link to geometry. Suppose thatM is endowed with some geomet-
ric structure which admits a canonical connection. Then one obtains quantizations
for all natural bundles associated to this structure. The classical example of this
situation is the case when (M, g) is a Riemannian manifold. Then the natural
bundles are tensor and spinor bundles, and on each such bundle one has the Levi–
Civita connection. Hence the above procedure leads to a natural quantization (in
the sense that it is intrinsic to the Riemannian structure) for any pair E and F of
natural vector bundles.

At this point there arises the question whether weaker geometric structures,
which do not admit canonical connections, still do admit natural quantizations.
This problem has been originally posed in [15] and has been intensively studied since
then. The examples above naturally lead to the two geometric structures for which
this problem has been mainly considered. On the one hand, one may replace a single
linear connection on TM by a projective equivalence class of such connections. Here
two connections are considered as equivalent if they have the same geodesics up to
parametrization. On the other hand, the most natural weakening of Riemannian
metrics is provided by conformal structures. Here one takes an equivalence class of
(pseudo–)Riemannian metrics which are obtained from each other by multiplication
by positive smooth functions.

Projective and conformal structures fit into the general scheme of so–called AHS–
structures. These are geometric structures which admit an equivalent description
by a canonical Cartan connection modelled on a compact Hermitian symmetric
space G/P , where G is semisimple and P ⊂ G is an appropriate parabolic sub-
group. These geometries and the more general class of parabolic geometries have
been studied intensively during the last years, and several striking results have
been obtained, see e.g. [8]. In particular, an efficient differential calculus for these
structures based on so–called tractor bundles has been worked out in [4].

This general point of view has shown up in the theory of equivariant quanti-
zations already. Namely, it turns out that the homogeneous space G/P always
contains a dense open subset (the big Schubert–cell) which is naturally diffeomor-
phic to R

n. While the G–action on G/P cannot be restricted to this subspace,
one obtains a realization of the Lie algebra g of G as a Lie algebra of vector fields
on R

n. For the homogeneous model G/P and geometries locally isomorphic to it,
naturality of a quantization is then equivalent to equivariancy for the action of this
Lie algebra of vector fields. In many articles, the question of quantizations natu-
rally associated to a projective and/or conformal structure is posed in this setting.
Also, the algebras corresponding to general AHS–structures have been studied in
this setting under the name “IFFT–equivariant quantizations”, see [1]. It should
be pointed out however, that these methods only apply to geometries locally iso-
morphic to G/P (e.g. to locally conformally flat conformal structures). As it is well
known from the theory of linear invariant differential operators, passing from the
locally flat category to general structures is a very difficult problem.
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Most of the work on natural quantizations only applies to operators on sections of
line bundles (density bundles). It was only recently that the methods for projective
structures have been extended to general natural vector bundles in [12]. The con-
struction there uses the Thomas–Whitehead (or ambient) description of projective
structures, which is an equivalent encoding of the canonical Cartan connection for
projective structures. This approach is only available in the projective case, though.
As mentioned in [12], there is hope to use the Fefferman–Graham ambient metric
for conformal structures to find conformally invariant quantizations, but there sev-
eral immediate problems with this approach. For the other AHS–structures, there
is no clear analog of the ambient description.

It should be also mentioned that the results for projective structures have been
obtained using the canonical Cartan connection, see [16]. After this article was
essentially completed, we learned about the recent preprint [17], in which the Cartan
approach is extended to prove existence of a natural quantization for conformal
structures and it is claimed that the method further extends to all AHS–structures.

In this article, we use the recent advances on invariant calculi for parabolic
geometries to develop a scheme for constructing equivariant quantizations. This
scheme is explicit and uniform, it applies to all AHS–structures and to all (irre-
ducible) natural bundles for such structures. As it is known from the special cases
studied so far, equivariant quantizations do not always exist, so our scheme does
not always lead to an equivariant quantization.

To formulate the result more precisely, we need a bit more background. It
turns out that for any AHS–structure there is a family of natural line bundles
E [w] parametrized by a real number w, the so–called density bundles. Any natural
bundle E can be twisted by forming tensor products with density bundles to obtain
bundles E[w] := E⊗E [w]. (For conformal structures, this free parameter is known
as “conformal weight”.) Doing this to the target bundle of differential operators,
we can view a section τ ∈ Γ(SkTM ⊗ E∗ ⊗ F ⊗ E [δ]) as the potential symbol
of an operator Γ(E) → Γ(F [δ]). We first universally decompose the bundle of
symbols into a finite direct sum of subbundles. On the level of sections, we write
this decomposition as τ =

∑

i τi. Given such a section, our scheme constructs a
differential operator Aτ : Γ(E) → Γ(F [δ]) for any choice of weight δ. The principal
symbol of Aτ is

∑

i γiτi for real numbers γi which only depend on i, and δ (and
not on τ or on the manifold in question). We prove that each γi is nonzero except
for finitely many values of δ. Whenever all γi are non–zero, we obtain a natural
quantization by mapping τ to AP

i γ−1

i τi
.

Our method does not only lead to an abstract proof that the set of critical
weights (i.e. of weights δ for which some γi vanishes) is finite. We also get general
information on the number and size of critical weights. In each concrete example,
one can determine the set of critical weights explicitly, and this needs only finite
dimensional representation theory.

We should mention that the developments in this article are closely related to
the results in the recent thesis [14] of J. Kroeske, in which the author system-
atically constructs bilinear natural differential operators for AHS–structures and,
more generally, for parabolic geometries.
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2. AHS–structures and invariant calculus

In this section we review basics facts on AHS–structures and invariant differential
calculus for these geometries. Our basic references are [18], [6], and [7].

2.1. |1|–graded Lie algebras and first order structures. The starting point
for defining an AHS–structure is a simple Lie algebra g endowed with a so called
|1|–grading, i.e. a decomposition g = g−1 ⊕ g0 ⊕ g1, such that [gi, gj] ⊂ gi+j, where
we agree that gℓ = 0 for ℓ /∈ {−1, 0, 1}. The classification of such gradings is well
known, since it is equivalent to the classification of Hermitian symmetric spaces.
We put p := g0 ⊕ g1 ⊂ g. By the grading property, p is a subalgebra of p and g1 is
a nilpotent ideal in p.

Given a Lie group G with Lie algebra g, there are natural subgroups G0 ⊂ P ⊂ G
corresponding to the Lie subalgebras g0 ⊂ p ⊂ g. For P one may take a subgroup
lying between the normalizer NG(p) of p in G and its connected component of the
identity. Then G0 ⊂ P is defined as the subgroup of all elements whose adjoint
action preserves the grading of g. In particular, restricting the adjoint action to g−1,
one obtains a representation G0 → GL(g−1). This representation is infinitesimally
injective, so it makes sense to talk about first order G–structures with structure
group G0 on smooth manifolds of dimension dim(g−1).

By definition, such a structure is given by a smooth principal bundle p : G0 →M
with structure group G0, such that the associated bundle G0 ×G0

g−1 is isomorphic
to the tangent bundle TM . It turns out that the Killing form on g induces a
G0–equivariant duality between g−1 and g1, so G0 ×G0

g1
∼= T ∗M . Using this,

one can realize arbitrary tensor bundles on M as associated bundles to G0. More
generally, any representation of G0, via forming associated bundles, gives rise to a
natural vector bundle on manifolds endowed with such a structure. It turns out
that G0 is always reductive with one–dimensional center. Hence finite dimensional
representations of G0 on which the center acts diagonalizably (which we will always
assume in the sequel) are completely reducible, i.e. they split into direct sums of
irreducible representations.

The one–dimensional center of G0 leads to a family of natural line bundles.
For w ∈ R, we can define a homomorphism G0 → R+ by mapping g ∈ G0 to

| det(Ad−(g))|
w
n , where n = dim(g−1) and Ad−(g) : g−1 → g−1 is the restriction

of the adjoint action of g. This evidently is a smooth homomorphism, thus giving
rise to a one–dimensional representation R[w] of G0. It is easy to see that R[w]
is non–trivial for w 6= 0. (The factor 1

n is included to get the usual normalization
in the case of conformal structures.) The corresponding associated bundle will be
denoted by E [w], and adding the symbol [w] to the name of a natural bundle will
always indicate a tensor product with E [w]. Using the convention that 1–densities
are the objects which can be naturally integrated on non–orientable manifolds, E [w]
is by construction the bundle of (−w

n )–densities. In particular, all the bundles E [w]
are trivial line bundles, but there is no canonical trivialization for w 6= 0.

2.2. Canonical Cartan connections and AHS–structures. The exponential
mapping restricts to a diffeomorphism from g1 onto a closed normal Abelian sub-
group P+ ⊂ P such that P is the semidirect product of G0 and P+. Hence G0

can also naturally be viewed as a quotient of P . In particular, given a principal
P –bundle G → M , the subgroup P+ acts freely on G, and the quotient G/P+ is
naturally a principal bundle with structure group G0. Next, suppose that there
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is a Cartan connection ω ∈ Ω1(G, g) on the principal bundle G. Then the g−1–
component of ω descends to a well defined one–form θ ∈ Ω1(G/P+, g−1), which
is G0–equivariant and strictly horizontal. This means that (G/P+ → M, θ) is a
first order structure with structure group G0. In this sense, any Cartan geometry
(p : G → M,ω) of type (G, P ) has an underlying first order structure with struc-
ture group G0. Conversely, one can talk about extending a first order structure to
a Cartan geometry.

It turns out (see e.g. [7]) that, for almost all choices of (G, P ), for any given
first order structure with structure group G0 there is a unique (up to isomorphism)
extension to a Cartan geometry of type (G, P ), for which the Cartan connection
ω satisfies a certain normalization condition. This is usually phrased as saying
that such structures admit a canonical Cartan connection. The main exception is
g = gl(n + 1,R) with a |1|–grading such that g0 = gl(n,R) and g±1

∼= R
n. For an

appropriate choice of G, the adjoint action identifies G0 with GL(g−1) = GL(n,R).
A first order structure for this group on a manifold M is just the full linear frame
bundle of M and hence contains no information. In this case, an extension to a
normal Cartan geometry of type (G, P ) is equivalent to the choice of a projective
equivalence class of torsion free connections on the tangent bundle TM , i.e. to a
classical projective structure.

Normal Cartan geometries of type (G, P ) as well as the equivalent underlying
structures (i.e. classical projective structures respectively first order structures with
structure group G0) are often referred to as AHS–structures. AHS is short for
“almost Hermitian symmetric”. To explain this name, recall that the basic example
of a Cartan geometry of type (G, P ) is provided by the natural projectionG→ G/P
and the left Maurer–Cartan form as the Cartan connection. This is called the
homogeneous model of geometries of type (G, P ). Now the the homogeneous spaces
G/P for pairs (G, P ) coming from |1|–gradings as described above, are exactly the
compact irreducible Hermitian symmetric spaces.

2.3. Natural bundles and the fundamental derivative. Via forming associ-
ated bundles, any representation of the group P gives rise to a natural bundle for
Cartan geometries of type (G, P ). As we have seen above, P is the semi–direct
product of the reductive subgroup G0 and the normal vector subgroup P+, so
its representation theory is fairly complicated. Via the quotient homomorphism
P → G0, any representation of G0 gives rise to a representation of P . It turns
out that the representations of P obtained in this way are exactly the completely
reducible representations, i.e. the direct sums of irreducible representations. Corre-
spondingly, we will talk about completely reducible and irreducible natural bundles
on Cartan geometries of type (G, P ). If we have a Cartan geometry (p : G →M,ω)
with underlying structure (p0 : G0 → M, θ) and V is a representation of G0, which
we also view as a representation of P , then we can naturally identify G ×P V with
G0 ×G0

V . Hence completely reducible bundles can be easily described in terms of
the underlying structure.

There is a second simple source of representations of P , which leads to an im-
portant class of natural bundles. Namely, one may restrict any representation of
G to the subgroup P . The corresponding natural vector bundles are called trac-
tor bundles, their general theory is developed in [4]. The most important tractor
bundle is the adjoint tractor bundle. For a Cartan geometry (p : G → M,ω) it
is defined by AM := G ×P g, so it is the associated bundle with respect to the
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restriction of the adjoint representation of G to P . Now the P –invariant subspaces
g1 ⊂ p ⊂ g give rise to a filtration A1M ⊂ A0M ⊂ AM of the adjoint tractor
bundle by smooth subbundles. By construction, A1M ∼= T ∗M and since g/p ∼= g−1

we see that AM/A0M ∼= TM . We will write Π : AM → TM for the resulting
natural projection. Hence the adjoint tractor bundle has the cotangent bundle as
a natural subbundle and the tangent bundle as a natural quotient.

The Killing form defines a G–invariant, non–degenerate bilinear form on g. It
turns out that g1 is the annihilator of p with respect to the Killing form, which leads
to duality with g/p ∼= g−1 observed above. On the level of associated bundles, we
obtain a natural non–degenerate bilinear form on the adjoint tractor bundle AM ,
which thus can be identified with the dual bundle A∗M . Under this pairing, the
subbundle A1M is the annihilator of A0M . The resulting duality between A1M
and AM/A0M is exactly the duality between T ∗M and TM .

The adjoint tractor bundle gives rise to a basic family of natural differential
operators for AHS–structures (and more generally for parabolic geometries). These
have been introduced in [4] under the name “fundamental D–operators”, more
recently, the name fundamental derivative is commonly used. Let us start with
an arbitrary representation V of P and consider the corresponding natural bundle
E := G ×P V → M for a geometry (p : G → M,ω). Then smooth sections
of this bundle are in bijective correspondence with smooth maps f : G → V ,
which are P –equivariant. In the special case V = g of the adjoint tractor bundle,
we can then use the trivialization of TG provided by the Cartan connection ω
to identify P –equivariant functions G → g with P –invariant vector fields on G.
For a section s ∈ Γ(AM), we can form the corresponding vector field ξ ∈ X(G)
and use it to differentiate the equivariant function f : G → V corresponding to
a section σ ∈ Γ(E). The result will again be equivariant, thus defining a smooth
section Dsσ ∈ Γ(E). Hence we can view the fundamental derivative as an operator
D = DE : Γ(AM)×Γ(E) → Γ(E). The basic properties of this operator as proved
in section 3 of [4] are:

Proposition 1. Let V be a representation of P and let E = G ×P V be the corre-
sponding natural bundle for an AHS–structure (p : G →M,ω). Then we have:
(1) D : Γ(AM)×Γ(E) → Γ(E) is a first order differential operator which is natural,
i.e. intrisic to the AHS–structure on M .
(2) D is linear over smooth functions in the AM–entry, so we can also view σ 7→ Dσ
as an operator Γ(E) → Γ(A∗M ⊗E).
(3) For s ∈ Γ(AM), σ ∈ Γ(E), and f ∈ C∞(M,R), we have the Leibniz rule
Ds(fσ) = (Π(s)·f)σ + fDsσ, where Π : Γ(AM) → Γ(TM) is the natural tensorial
projection.
(4) For a second natural bundle F = G ×P W , a P–equivariant map V → W , and
the corresponding bundle map Φ : E → F , the fundamental derivatives on E and
F are related by DF

s (Φ ◦ σ) = Φ ◦DE
s σ for all s ∈ Γ(AM) and σ ∈ Γ(E).

The naturality statement in (4) justifies denoting the fundamental derivatives on
all natural bundles by the same letter. Since there is no restriction on the bundle
E, the fundamental derivative in the form of part (2) can evidently be iterated. For
σ ∈ Γ(E) we can form Dσ, D2σ = D(Dσ) and inductively Dkσ ∈ Γ(⊗kA∗M ⊗E).
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2.4. Curved Casimir operators. Curved Casimir operators form another basic
set of natural differential operators defined on AHS–structures. They have been in-
troduced in [9] in the general context of parabolic geometries. That article contains
all the facts about curved Casimir operators we will need, as well as the general
construction for splitting operators that we will use below.

As above, we start with a representation V of P and consider the corresponding
natural vector bundle E = G ×P V for an AHS–structure (p : G → M,ω). As
noticed above, the composition of two fundamental derivatives defines an operator
D2 : Γ(E) → Γ(⊗2A∗M⊗E). From 2.3 we know that the Killing form on g induces
a non–degenerate bilinear form on AM . Using this to identify AM with A∗M , we
also get a natural bilinear form B on A∗M . This can be used to define a bundle
map B ⊗ id : ⊗2A∗M ⊗ E → E. Now one defines the curved Casimir operator
C = CE : Γ(E) → Γ(E) by C(σ) := (B ⊗ id) ◦D2σ.

Part (4) of proposition 1 easily implies (compare with proposition 2 of [9]) that
for another natural vector bundle F and a bundle map Φ : E → F coming form
a P –equivariant map between the inducing representations, one gets CF (Φ ◦ σ) =
Φ◦CE(σ). This is the justification for denoting all curved Casimir operators by the
same symbol.

From the construction it is clear that C is a natural differential operator of
order at most 2. However, it turns out that C actually always is of order at most
one. Moreover, on sections of bundles induced by irreducible representations, the
operator C acts by a scalar which can be computed from representation theory
data. One can associate to any irreducible representation of g0 a highest and a
lowest weight by passing to complexifications, see section 3.4 of [9]. The weights
are functionals on the Cartan subalgebra h of the complexification gC of g, which
at the same time is a Cartan subalgebra for (g0)C. Recall that the Killing form
of g induces a positive definite inner product on the real space of functionals on h

spanned by possible weights for finite dimensional representations. Denoting this
inner product by 〈 , 〉 and the corresponding norm by ‖ ‖, the following result is
proved as theorem 1 in [9].

Proposition 2. Let V be a representation of P and let E = G ×P V be the corre-
sponding natural vector bundle for an AHS–structure (p : G →M,ω). Then
(1) C : Γ(E) → Γ(E) is a natural differential operator of order at most one.
(2) If the representation V is irreducible of lowest weight −λ, then C acts on Γ(E)
by multiplication by ‖λ‖2 + 2〈λ, ρ〉, where ρ is half the sum of all positive roots of
gC.

3. The quantization scheme

Throughout this section, we fix a pair (G, P ), two irreducible representations V
and W of G0 with corresponding natural bundles E and F , as well as an order
k > 0. Given these data, we try to construct a quantization for kth order symbols
of operators mapping sections of E to sections of F [δ] for δ ∈ R.

The basic idea for the construction is very simple. The bundle of symbols in
this situation is SkTM ⊗ E∗ ⊗ F [δ]. We know from 2.3 that TM naturally is a
quotient of the adjoint tractor bundle AM , so the bundle of symbols is a quotient
of SkAM ⊗ E∗ ⊗ F [δ]. Using the general machinery of splitting operators, we can
associate to a symbol a section of the latter bundle. But such a section can be
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interpreted as a bundle map SkA∗M ⊗E → F [δ], so we can apply it to the values
of the symmetrized k–fold fundamental derivative of sections of E.

3.1. Some properties of the fundamental derivative. To carry out this idea,
we first have to derive some properties of the iterated fundamental derivative Dk

and its symmetrization D(k) : Γ(E) → Γ(WM), where WM := SkA∗M ⊗ E.
Recall from 2.3 that AM admits a natural filtration of the form A1M ⊂ A0M ⊂
A−1M := AM . Since elements of WM can be interpreted as k–linear, symmetric
maps (AM)k → E, we get an induced filtration of the bundle WM . We first
take the natural filtration of SkAM , with components indexed from −k to k, and
then define WℓM to be the annihilator of the filtration component with index
−ℓ+1. Explicitly, this means that WℓM to consist of all maps Ψ ∈ WM such that
Ψ(s1, . . . , sk) = 0 for arbitrary elements sj ∈ AijM , provided that i1 + · · ·+ ik >
−ℓ. Then by definition, we get Wℓ+1M ⊂ WℓM for each ℓ, Wk+1M = 0, and
W−kM = WM . Moreover, a map Φ ∈ WkM by definition vanishes if at least one
of its entries is from A0M ⊂ AM . Hence this factors to a k–linear symmetric map
on copies of AM/A0M ∼= TM , and we get an isomorphism WkM ∼= SkT ∗M ⊗ E.
We will denote by ι : SkT ∗M ⊗E → WM the corresponding natural inclusion.

Proposition 3. (1) The symmetrized k–fold fundamental derivative D(k) : Γ(E) →
Γ(WM) has values in the space of sections of the subbundle W0M .
(2) Consider any principal connection on the bundle G0 → M , denote by ∇ all
the induced connections on associated vector bundles, by ∇k the k–fold covariant
derivative, and by ∇(k) its symmetrization.

Then the operator Γ(E) → Γ(W̃M) given by ϕ 7→ Dkϕ − i(∇kϕ) has order at
most k−1. In particular, D(k)ϕ is the sum of i(∇(k)ϕ) and terms of order at most
k − 1 in ϕ.

Proof. We will proceed by induction on k. Recall that there is a family of preferred
connections on the bundle G0 which is intrinsic to the AHS–structure, see [4, 6].
Any such connection also determines determines a splitting of the filtration of the
adjoint tractor bundle, i.e. an isomorphism AM → T ∗M ⊕ End0(TM) ⊕ TM ,
where End0(TM) = G0×G0

g0, which behaves well with respect to the filtration. In
particular, the last component is given by the natural projection Π : AM → TM ,
while the first component restricts to the natural isomorphism A1M → T ∗M .
Fixing one preferred connection, the difference to any other principal connection
on G0 is given by a tensorial operator, so it suffices to prove part (2) for the chosen
preferred connection.

A formula for the action of the fundamental derivative on tensor bundles in terms
of ∇ and this splitting is derived in section 4.14 of [4]. The argument used there
applies to all bundles constructed from completely reducible subquotients of tractor
bundles, and hence to all bundles associated to G0. If s ∈ Γ(AM) corresponds
to (ψ,Φ, ξ) in the splitting determined by ∇, then Dsϕ = ∇ξϕ − Φ • ϕ, where
• : End0(TM) × E → E is the tensorial operation induced by the infinitesimal
action g0 × V → V . Now s ∈ Γ(A1M) if and only if ξ = 0 and Φ = 0, so Dsϕ = 0
in this case. On the other hand, ξ = Π(s) so Dsϕ − ∇Π(s)ϕ = Φ • ϕ is tensorial.
Hence we have proved (1) and (2) for k = 1.
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Next observe that naturality of the fundamental derivative implies that for
s0, . . . , sk ∈ Γ(AM) we obtain the Leibniz rule

(∗)
(Dk+1ϕ)(s0, . . . , sk) =

Ds0
(Dkϕ(s1, . . . , sk)) −

∑k
i=1(D

kϕ)(s1 , . . . , Ds0
si, . . . , sk),

compare with proposition 3.1 of [4]. Assuming inductively that part (2) holds for
k, the second summand is evidently of order at most k in ϕ. Moreover, the first
summand is given by ∇Π(s0)(∇

kϕ(Π(s1), . . . ,Π(sk))) plus terms of order at most
k − 1 in ϕ which immediately implies (2).

To prove (1), observe Dkϕ ∈ Γ(W0M) if and only if Dkϕ(s1, . . . , sk) = 0 pro-
vided that at least r of the sections si have values in A0M and at least k − r + 1
of them even have values in A1M . We assume this inductively and prove the cor-
responding property of Dk+1ϕ. Hence we take sections s0, . . . , sk, and assume that
r′ of them have values in A0M and k − r′ + 2 even have values in A1M .

If s0 has values in A1M , then Ds0
acts trivially on Γ(E) as well as on sections

of A1M , it maps sections of AM to sections of A0M and sections of A0M to
sections of A1M . Hence the first summand of the right hand side of (∗) vanishes.
In the second term of this right hand side, only summands in which si does not
have values in A1M can provide a non–zero contribution. If si ∈ Γ(A0M), then
in the corresponding summand we have r′ − 1 sections of A0M , and k − r′ + 2 =
k−(r′−1)+1 of them have values in A1M , so the corresponding summand vanishes
by inductive hypothesis. If si is not a section of A0M , then in the corresponding
summand we have r′ sections of A0M , and k− r′ +1 of them have values in A1M ,
so again vanishing follows by induction.

If s0 has values in A0M but not in A1M , then we only need to take into account
that, acting on sections of AM , Ds0

preserves sections of each filtration component.
This shows that in each of the summands in the right hand side of (∗), there are
r′ − 1 sections of A0M inserted into Dkϕ, and k− r′ +2 = k− (r′ − 1)+ 1 of them
have values in A1M . Hence again vanishing of each summand follows by induction.

Finally, if s0 does not have values in A0M , then we again need only that Ds0

preserves sections of each of the filtration components of AM . This shows that
in each summand of the right hand side of (∗), we have r′ sections of A0M and
k − r′ + 2 of them have values in A1M . Thus vanishing of each summand again
follows by induction, and the proof of (1) follows by symmetrization. �

3.2. The splitting operators. According to the the idea described in the be-
ginning of section 3, we should next consider the bundle SkTM ⊗ E∗ ⊗ F [δ] of

symbols as a quotient of the bundle ṼM := SkAM ⊗E∗ ⊗ F [δ]. However, in view
of proposition 3, we can already improve the basic idea. As we have noted in 3.1,
the bundle SkAM carries a natural filtration. Taking the tensor product with E∗

and F [δ], we obtain a filtration of the bundle ṼM of the form

ṼkM ⊂ · · · ⊂ Ṽ0M ⊂ · · · ⊂ Ṽ−kM = ṼM.

As we have observed in the beginning of section 3, there is a well defined bilinear
pairing ṼM ×WM → F [δ]. By definition of the filtration on WM , this factorizes

to a bilinear pairing of VM ×W0M → F [δ], where VM := ṼM/Ṽ1M . We denote

all these pairings by 〈 , 〉. As we shall see below, replacing the bundle ṼM by its
quotient VM leads to a smaller set of critical weights δ.
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For the same reason, it is preferable to take a further decomposition according
to irreducible components of the bundle of symbols as follows. By construction, the
filtration on SkAM is induced by P –invariant subspaces of the representation Skg,
so the filtration of ṼM comes from a P –invariant filtration of Skg⊗V ∗⊗W [δ]. The
quotient of this space by the largest proper filtration component by construction is
Sk(g/p) ⊗ V ∗ ⊗W [δ], which induces the bundle of symbols. Now if we restrict to
the subgroup G0 ⊂ P , then g decomposes into the direct sum g−1⊕g0⊕g1, and the
filtration components are just g0 ⊕ g1 and g1. Correspondingly, the filtrations on
Skg and Skg ⊗ V ∗ ⊗W [δ], viewed as G0–representations, are induced from direct
sum decompositions.

Since we have assumed that V and W are irreducible representations of P (and
hence ofG0), the tensor product Sk(g/p)⊗V ∗⊗W [δ] splits into a direct sum ⊕iRi of
irreducible representations of G0. Identifying g/p with g−1, we can view each Ri as
a subspace in the quotient of Skg⊗V ∗⊗W by the P –invariant filtration component
with index 1. Then for each i, we can look at the P –module Si generated by Ri.
Each Si has a P –invariant filtration with completely reducible subquotients, and
the quotient of Si by the largest proper filtration component is Ri.

Passing to associated bundles, we see that for each i, we can consider G ×P Ri

as a subbundle of the bundle SkTM ⊗E∗ ⊗F [δ] of symbols, and these subbundles
form a decomposition into a direct sum. In particular, any section τ of the bundle
of symbols can be uniquely written as τ =

∑

i τi of sections τi ∈ Γ(G ×P Ri).
Likewise, for each i, we can view G ×P Si as a subbundle of VM , so in particular,
sections of G ×P Si can be viewed as sections of VM .

Now for each i, we denote by β0
i the eigenvalue by which the curved Casimir

operator acts on sections of the irreducible bundle G ×P Ri, see proposition 2.
Further, by β1

i , . . . , β
ni

i we denote the different Casimir eigenvalues occurring for
irreducible components in the other quotients of consecutive filtration components
of Si. Using this, we can now formulate:

Proposition 4. Let Π : VM → SkTM ⊗ E∗ ⊗ F [δ] be the natural projection and
denote the induced tensorial operator on sections by the same symbol. For each i
define γi :=

∏ni

j=1(β
0
i − βj

i ).

Then there is a natural operator L : Γ(SkTM ⊗E∗ ⊗ F [δ]) → Γ(VM) such that

Π(L(τ )) =
∑

i γiτi

for any section τ =
∑

i τi of the bundle of symbols.

Proof. Of course for each i, mapping τ to τi ∈ Γ(G×PRi) defines a tensorial natural
operator. The construction of splitting operators in theorem 2 of [9] gives us, for
each i, a natural differential operator Li : Γ(G ×P Ri) → Γ(G ×P Si). This has
the property that denoting by Πi the tensorial projection in the other direction, we
obtain Πi(L(τi)) = γiτi for the number γi defined in the proposition. As we have
noted above, we can naturally view sections of G ×P Si as sections of VM , so we
can simply define L(τ ) :=

∑

iLi(τi). �

It is easy to give an explicit description of L, since the construction of splitting
operators in [9] is explicit. Given τ , we have to choose sections si ∈ Γ(G ×P Si) ⊂
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Γ(VM) such that Π(si) = τi for all i. Then we claim that

L(τ ) =
∑

i

ni
∏

j=1

(C − βj
i )(si).

The product for fixed i exactly corresponds to the definition of the splitting operator
from [9]. Naturality of the curved Casimir operator thus implies that each of the
summands equals Li(τi), viewed as a section of VM , and the claim follows.

3.3. The quantization scheme. We are now ready to formulate our first main
result.

Theorem 5. The map (τ, ϕ) 7→ 〈L(τ ), D(k)ϕ〉 defines a natural bilinear operator
Γ(SkTM ⊗ E∗ ⊗ F [δ])× Γ(E) → Γ(F [δ]).

For τ =
∑

i τi ∈ Γ(SkTM ⊗ E∗ ⊗ F [δ]), the operator Aτ : Γ(E) → Γ(F [δ])

defined by Aτ (ϕ) := 〈L(τ ), D(k)ϕ〉 is of order at most k and has principal symbol
∑

i γiτi.

Proof. Naturality of L, D(k), and the pairing 〈 , 〉 implies naturality of the bilinear
operator. Now fix τ and consider the operator Aτ . Choose any principal connection
on G0 and denote by ∇ all the induced linear connections on associated vector
bundles. Using proposition 3 we see that Aτ (ϕ) = 〈L(τ ), i(∇(k)ϕ)〉 up to terms of
order at mots k − 1 in ϕ. Hence Aτ is of order at most k and by the properties of
the pairing 〈 , 〉, the principal symbol is obatined as the result of pairing Π(L(τ )) ∈
Γ(SkTM ⊗E∗ ⊗F [δ]) with ∇(k)ϕ ∈ Γ(SkT ∗M ⊗E). Thus the result follows from
proposition 4. �

Now we define a weight δ ∈ R to be critical if at least one of the γi is zero for
the chosen value of δ. For non–critical weights, our theorem immediately leads to
a natural quantization:

Corollary 6. If the weight δ is not critical, then the map τ 7→ AP

i γ−1

i τi
defines a

natural quantization for the bundles E and F [δ].

We want to emphasize that the naturality result in the corollary in particular
implies that in the case of the homogeneous model G/P of the AHS–structure in
question the quantization is equivariant (as a bilinear map) under the natural G–
action on the spaces of sections of the bundles in question (which are homogeneous
vector bundles in this case). We can restrict the quantization to the big Schubert
cell in G/P , which is diffeomorphic to R

n, n = dim(G/P ). The G–equivariancy
on G/P immediately implies that the result is equivariant for the Lie subalgebra
of vector fields on R

n formed by the fundamental vector fields for this G–action.
Hence our quantization will specialize to an equivariant quantization in the usual
sense.

3.4. The set of critical weights. To complete our results, we have to prove that
for any choice of bundles E and F and any order k, the set of critical weights is
finite. Verifying this is a question of finite dimensional representation theory. In
fact, we not only get an abstract proof of finiteness of the set of critical weights,
but a method to determine the set of critical weights for any given example.

In view of proposition 4 and theorem 5, it is clear that we have to understand the

dependence of the Casimir eigenvalues, or more precisely of the differences β0
i −β

j
i ,
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on δ. To get a complete understanding of the set of critical weights, one has to
determine the composition series (i.e. the structure of the quotients of iterated fil-
tration components), of the P –modules Si. Recall from 3.2 that, as a representation
of G0, Si is simply the direct sum of all the composition factors, so essentially we
have to determine the decomposition of Si into irreducible components as a G0–
module. From proposition 2 we know how to determine the numbers β from the
lowest weights of these irreducible components. Notice that changing the weight δ
corresponds to taking a tensor product with a one–dimensional representation. In
particular, this does not influence the basic decompositions into irreducible com-
ponents, apart from the fact that each of these components is tensorized with that
one–dimensional representation. As we shall see, we can get quite a bit of informa-
tion without detailed knowledge of the decomposition into irreducibles, using only
structural information on the possible irreducible components. We start by proving
a basic finiteness result.

Theorem 7. Fix an irreducible component Ri ⊂ Skg−1 ⊗ V ∗ ⊗W [δ], consider the

corresponding Casimir eigenvalue β0
i , and one of the other Casimir eigenvalues βj

i .

Then there is exactly one value of δ for which β0
i = βj

i . Hence there are at most ni

many values for δ for which γi = 0, and at most
∑

i ni critical weights.

Proof. Let us first make a few comments. The Casimir eigenvalues can be com-
puted from lowest weights, which are defined via complexification of non–complex
representations and of the Lie algebra in question. Since these complexifications do
not change the decomposition into irreducible components, we may work in the set-
ting of complex |1|–graded Lie algebras throughout the proof. Second, recall that
for an irreducible representation of a complex semisimple Lie algebra, the negative
of the lowest weight coincides with the highest weight of the dual representation.
In this way, standard results on highest weights have analogs for the negatives of
lowest weights.

As we have noted in proposition 2, for a representation with lowest weight −λ,
the Casimir eigenvalue on sections of the corresponding induced bundle is given
by ‖λ‖2 + 2〈λ, ρ〉 = 〈λ, λ + 2ρ〉. Writing cλ for this number, the last expression
immediately shows that for two weights λ and λ′, we have

(1) cλ′ − cλ = 2〈λ′ − λ, λ+ ρ〉 + ‖λ′ − λ‖2.

We have to understand, how this is influenced by changing δ. Denoting by µ the
highest weight associated to the representation R[1], which induces the bundle E [1],
the bundle E [w] corresponds to the weight wµ. Moving from δ to δ+w corresponds
to forming a tensor product with E [w], and hence replacing λ by λ + wµ and λ′

by λ′ +wµ. This means that the difference of the two weights remains unchanged,
and equation (1) shows that

(2) cλ′+wµ − cλ+wµ = cλ′ − cλ + 2w〈λ′ − λ, µ〉.

Now by definition, the weights of the representation g are exactly the roots of g.
Consequently, any weight of Skg is a sum of k roots. Further, it is well know
that the highest weight of any irreducible component in a tensor product of two
irreducible representations can be written as a sum of the highest weight of one of
the two factors and some weight of the other factor. Passing to duals, we see that
the same statement holds for the negatives of lowest weights. Thus, the negative of
the lowest weight of any irreducible component of Skg⊗V ∗⊗W can be written as a
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linear combination of the negative of the lowest weight of an irreducible component
of V ∗ ⊗W and at most k roots.

Now recall (see [18]) that for a complex |1|–graded Lie algebra, one can choose
a Cartan subalgebra h ⊂ g and positive roots in such a way that there is a unique
simple root α0 for which the corresponding root space is contained in g1. More
precisely, for a root α, the corresponding root space sits in gi for i = −1, 0, 1, where
i is the coefficient of α0 in the expansion of α as a sum of simple roots. Then the
center of g0 is generated by the unique element H0 ∈ h for which that α0(H0) = 1,
while all other simple roots vanish on H0. The orthocomplement of H0 in h is a
Cartan subalgebra of the semisimple part of g0.

Since the semisimple part of g0 acts trivially on R[1], we conclude that µ(H) =
aB(H,H0) for some nonzero number a and all H ∈ h, where B denotes the Killing
form of g. Going through the conventions, it is easy to see that actually a < 0.
By definition of the inner product, this means that for any weight ν , we have
〈µ, ν〉 = aν(H0). Since H0 acts by a scalar on any irreducible representation, it
also acts by a scalar on all of Skg−1 ⊗ V ∗ ⊗W . But this implies that if −ν is the
lowest weight of an irreducible component of V ∗ ⊗W , then ν(H0) = a0 for a fixed
number a0. Consequently, if −ν is the lowest weight of an irreducible component
of the quotient of two consecutive filtrations components in VM , say the one with
index ℓ by the one with index ℓ + 1, ν(H0) = a0 + ℓ. In particular, if −λ is the
lowest weight of Ri, then λ(H0) = a0 − k. Likewise if −λ′ is the lowest weight

giving rise to βj
i then λ′(H0) = a0 + ℓ for some ℓ > −k. Thus we conclude that

〈λ′ − λ, µ〉 = a(k+ ℓ) < 0, and formula (2) shows that λ and λ′ give rise to exactly
one critical weight. �

Note that the proof actually leads to an explicit formulae for the critical weights.
Suppose that −λ and −λ′ are the lowest weights of irreducible components giving
rise to β0

i and βj
i , and that the irreducible component corresponding to −λ′ sits in

the quotient of the ℓth by the (ℓ+1)st filtration component. Then formulae (1) and
(2) from the proof show that the critical weight caused by these two components is
given by

(3) δ =
2〈λ′ − λ, λ+ ρ〉 + ‖λ′ − λ‖2

2〈λ′ − λ, µ〉

where µ is the highest weight of the representation R[1]. In particular, we can use
this formula to completely determine the set of all critical weights if we know all
the P –representations Si together with their composition structure.

3.5. Restrictions on critical weights. We can also get some information on
the set of critical weights without this detailed knowledge. For any P –module,
we can look at the restriction of the P –action to G0 and the restriction of the
infinitesimal action of p to the abelian subalgebra g1. Since P is the semidirect
product of G0 and exp(g1), one immediately concludes that any subspace in a
representation of P , which is G0–invariant and closed under the infinitesimal action
of g1 is actually P –invariant. By construction, the actions of elements of g1 on any
P –module commute. Hence the iterated action of elements of g1 (in the P –module
Skg⊗V ∗⊗W [δ]) on Ri define maps Sℓg1⊗Ri → Skg⊗V ∗⊗W [δ]. By construction,
the image sits in the filtration component with index ℓ− k as well as in Si. Hence
we actually obtain a map ⊕k

ℓ=0S
ℓg1 ⊗Ri → Si, which is evidently G0–equivariant.
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In particular, the image is a G0–invariant subspace of Si and from the construction
it follows immediately that it is also closed under the infinitesimal action of g1.

The upshot of this is that any G0–irreducible component of Si also occurs in
⊕k

ℓ=0S
ℓg1 ⊗ Ri. If we determine the set of all weights δ for which an irreducible

component of ⊕k
ℓ=1S

ℓg1 ⊗ Ri corresponds to the same Casimir eigenvalue as Ri,
then the union of these sets for all i contains the set of all critical weights.

We next work out more details on the set of critical weights for some examples in
the case of even dimensional conformal structures of arbitrary signature (p, q). (This
is significantly more complicated than the case of projective structures, which is
mainly considered in the literature). Hence G0 is the conformal group CO(p, q) and
g−1 is the standard representation R

n, n = p+ q of this group, and we assume that
n is even. As above, we may work in the complexified setting, and we will use the
notation, conventions and results from [5] for weights. We will fix representations
V and W and determine critical weights starting from Skg−1 ⊗ V ∗ ⊗W (i.e. with
δ = 0).

Let us assume that Skg−1⊗V
∗⊗W contains an irreducible component Ri

∼= R[w]
for some w ∈ R. The decomposition of Sℓ

R
n∗ into irreducible components is given

by Sℓ
0R

n∗ ⊕ Sℓ−2
0 R

n∗[−2]⊕ Sℓ−4
0 R

n∗[−4]⊕ . . . , where the subscript 0 indicates the
totally tracefree part. From 3.5 we thus conclude that in any case all the irreducible
components of P –module Si generated by Ri must be of the form Sℓ

R
n∗[w − 2m]

for non–negative integers ℓ and m such that ℓ+ 2m ≤ k.
In particular, for k = 1, the only possibility is R

n[w]. In the notation from section
2.4 of [5], R[w] corresponds to the weight (w|0, . . .) while R

n∗[w] corresponds to
(w − 1|1, 0, . . .), which immediately shows that the corresponding critical weight
is δ = −w. For k = 2, we get S2

0R
n∗[w] and R[w − 2], which correspond to

(w − 2|2, 0, . . .) and (w − 2|0, . . .) and the critical weights 1 − w and 1 − w − n
2 .

For a general order k, the possible representations are (w − ℓ|ℓ− 2m, 0, . . .) for
ℓ ≤ k and ℓ− 2m ≥ 0 and one easily verifies directly:

Proposition 8. The possible critical weights caused by an irreducible component
R[w] ⊂ Skg−1 ⊗ V ∗ ⊗W are contained in the set

{

−w − 1 + ℓ− 2m+
m(2 + 2m− n)

ℓ
: 0 ≤ ℓ ≤ k, 0 ≤ 2m ≤ ℓ

}

.

We can derive an effective upper bound, above which there are no critical weights
for quantization in any order. This can be viewed as a vast generalization of the
results in section 3.1 of [11] on quantization of operators on functions. Observe
first that it may happen that for the representations V and W inducing E and F ,
the tensor product V ∗ ⊗W itself splits into several irreducible components. For
example, if V = W , then one always has the one dimensional invariant subspace
spanned by the identity. Given an irreducible component U ⊂ V ∗ ⊗W and δ ∈ R,
we have Skg−1 ⊗ U [δ] ⊂ Skg−1 ⊗ V ∗ ⊗W [δ], so one may talk about symbols of
type U of any order and any weight. Of course, one may apply the constructions
from 3.1–3.3 directly to this subspace. As an irreducible representation of g0, U [δ]
has an associated lowest weight. Using this, we can now formulate

Theorem 9. Let −λ be the lowest weight of U [δ] and assume that δ is chosen in
such a way that λ is g–dominant. Then for any order k, the weight δ is non–critical
for symbols of type U . In particular, this always holds for sufficiently large values
of δ.
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Proof. Let us first assume that λ is g–dominant and integral. Then there is a finite
dimensional irreducible representation Ũ of g with lowest weight −λ. We can pass
to the dual Ũ∗, and look at the p–submodule generated by a highest weight vector.
It is well known that this realizes the irreducible representation of p with highest
weight λ. Passing back, we see that U [δ] can be naturally viewed as a quotient of

Ũ . Consequently, for any k ≥ 0, we can naturally view Skg−1 ⊗ U [δ] as quotient

of the representation Skg ⊗ Ũ of g. In particular, for any irreducible component
Ri ⊂ Skg−1 ⊗ U [δ] we obtain a corresponding g–invariant subset S̃i ⊂ Skg ⊗ Ũ
(which can be taken to be g–irreducible) with p–irreducible quotient Ri. It is also

evident that applying the natural map Skg ⊗ Ũ → Skg ⊗ U [δ] to S̃i and then
factoring by the filtration component of degree zero, the image has to contain the
p–submodule Si generated by Ri. In particular, any g0–irreducible component of
Si also has to occur in S̃i.

But for the bundles corresponding to irreducible representations of g, the critical
weights are described in lemma 2 of [9] in terms of the Kostant Laplacian � and
the value c0 by which the (algebraic) Casimir operator of g acts on the irreducible

representation S̃i. Now c0 coincides with the Casimir eigenvalue β0
i in our sense and

hence lemma 2 of [9] shows that βj
i − β0

i can be computed as twice the eigenvalue
of � on the irreducible component giving rise to βi

j . Now Kostant’s theorem from

[13] in particular implies that the kernel of � on S̃i consists of Ri (viewed as a g0–
invariant subspace) only. This implies the result if λ is g–dominant and integral.

More is known about the eigenvalues of �, however. The lemma in Cartier’s
remarks ([10]) to Kostant’s article shows that all eigenvalues of square are non–
positive. In the terminology of the proof of theorem 7 this means that cλ′ − cλ < 0.
There we have also seen that 〈λ′ − λ, µ〉 < 0, so formula (2) from that proof shows
that cλ′+wµ − cλ+wµ < 0 for w ≥ 0. Now if −λ is the lowest weight of a finite
dimensional irreducible representation of p, then λ is p–dominant and p–integral.
But this means that λ + wµ is g–dominant for sufficiently large values of w and
g–integral for all integral values of w, which implies all the remaining claims. �

3.6. Low order quantizations for even–dimensional conformal structures.

Let us move to more complete examples in the setting from above. We will restrict
to the cases that V ∗⊗W ∼= R and V ∗⊗W ∼= R

n, and to orders at most three in the
first case and at most two in the second case. For V ∗⊗W ∼= R, we get quantizations
on density bundles, which can be compared to available results in the literature.
The case V ∗ ⊗W ∼= R

n can be used to understand operators mapping weighted
one–forms to densities and, vice versa, mapping densities to weighted one–forms.

We have already noted in 3.5 that the decomposition of Skg−1 is given by
⊕ℓ≤k/2S

ℓg−1[2ℓ].
First order operators on densities. Here the symbol representation is g−1

∼=
R

n, so this is irreducible and corresponds to the weight (1|1, 0 . . .). Likewise, g is
an irreducible representation of g, and there is only one relevant level which may
produce critical weights, namely g0

∼= Λ2
R

n[2] ⊕ R, which is the quotient of the
filtration components of degrees 0 and 1. The summands correspond to the weights
(0|1, 1, 0, . . .) ⊕ (0|0, . . .) and we obtain the critical weights −n and −2.

Second order operators on densities. The symbol representation splits into
two irreducible components R1 and R2 corresponding to the weights (2|2, 0, . . .)
(tracefree symbols) and (2|0, . . .) (symbols which are pure trace, i.e. of Laplace
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type). Also, the representation S2g of g is not irreducible any more, but splits into
four irreducible components. One of them is a trivial representation (corresponding
to the Killing form) and one is isomorphic to Λ4

R
n+2. These two components are

entirely contained in the filtration component of degree −1, so they do not con-
tribute to the quotient by the largest filtration component. One of the remaining
two irreducible components is isomorphic to S2

0R
n+2. The quotient of this compo-

nent by its intersection with the largest filtration component is exactly R2, so all of
S2 must be contained in this part. Finally, there is the highest weight component
⊚

2g ⊂ S2g (the Cartan product of two copies of g), whose quotient by the largest
filtration component is R1. Hence S1 is contained in this component.

To determine the possible critical weights it thus suffices to analyze the compo-
sition structure of the representations ⊚2g and S2

0R
n+2. This can be done fairly

easily using the description of representations of g in terms of their p–irreducible
quotients from section 3 of [3], in particular the result in lemma 3.1 of this article.
One has to use the fact that the Lie algebra cohomology groups that occur are al-
gorithmically computable using Kostant’s version of the Bott–Borel–Weil theorem.

This shows that in the language of weights, the two relevant levels of ⊚2g de-
compose as

(1|2, 1, 0, . . .) ⊕ (1|1, 0, . . .)

(0|2, 2, 0, . . .) ⊕ (0|2, 0, . . .) ⊕ (0|1, 1, 0, . . .) ⊕ (0|0, . . .),

and consequently, one obtains the critical weights−3, −2, −2−n, −1−n, (−2−n)/2,
and (−4 − n)/2.

For the case of symbols which are pure trace, the decompositions of the level for
the index −1 is irreducible corresponding to the weight (1|1, 0 . . .), while the level
for index zero decomposes as (0|2, 0, . . .) ⊕ (0|0, . . .). This gives rise to the critical
weights −2, −1 and (−2 − n)/2.

Third order operators on densities. The analysis is closely analogous to the
second order case, we mainly include the results for comparison to [2]. The symbol
representation splits into two irreducible components and again these two com-
ponents correspond to two of the seven irreducible components in S3g. Namely,
tracefree symbols (S3

0R
n) correspond to the highest weight component ⊚3g, while

trace–symbols (Rn[2]) correspond to the Cartan product g⊚S2
0R

n+2. The relevant
parts of the composition series for these two representations of g can be determined
as in the second order case. From these, one computes the critical weights. In
the tracefree case, one obtains −4, −3, −2, −4 − n, −3 − n, −2 − n, (−7 − n)/2,
(−4 − n)/2, (−8 − n)/3, (−8 − 2n)/3, (−6 − n)/3, and (−6 − 2n)/3. For trace–
type symbols, we get the critical weights −1, −2, −4, −5/2, −4/3, (−4 − n)/2,
(−4 − n)/3, (−6 − n)/3, and (−4 − 2n)/3. These are the critical weights from [2],
plus quite a few additional ones. We’ll comment on that in 3.7 below.

First order operators for V ∗ ⊗W ∼= R
n. Here the symbol representation de-

composes as

R
n ⊗ R

n = R1 ⊕ R2 ⊕ R3 = S2
0R

n ⊕ Λ2
R

n ⊕ R[2],

or in weights (2|2, 0, . . .) ⊕ (2|1, 1, 0, . . .) ⊕ (2|0, . . .). There is only one relevant
level in the composition series of g⊗R

n, which can be determined by decomposing
the tensor product g0 ⊗ R

n into irreducibles. In terms of weights, the result is
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(1|2, 1, 0, . . .)⊕(1|1, 1, 1, 0, . . .)⊕2(1|1, 0 . . .), so the last irreducible component oc-
curs with multiplicity two. Decomposing the tensor products Ri⊗R

n , one concludes
that S1 can only contain the first and a copy of the last irreducible components,
while S3 can only contain one copy of the last irreducible component. Consequently,
there are three critical weights for skew symmetric symbols (which turn out to be
−1, −4, and −n) but only two (namely −3 and −2 − n) for symmetric symbols.
For trace type symbols we obtain only one critical weight, namely −2, which agrees
with the result from 3.5.

Second order operators for V ∗ ⊗W ∼= R
n. Here the symbol representation

S2
R

n ⊗ R
n decomposes into four irreducible components, in weight notation, it is

given by
(3|3, 0, . . .) ⊕ (3|2, 1, 0, . . .) ⊕ 2(3|1, 0, . . .).

Here one of the two copies of R
n[2] is contained in S2

0R
n ⊗ R

n, while the other
comes from the trace part. Let us write this decomposition as R1 ⊕ · · · ⊕R4, with
R4 coming from the trace part. From above, we know that S2g contains the irre-
ducible components ⊚2g and S2

0R
n+2, which correspond to S2

0R
n and R[2] ⊂ S2

R
n,

respectively. Consequently, we can determine the relevant composition factors for
S1, S2, and S3 by decomposing the tensor products of the composition factors of
⊚2g as listed above with R

n, and then checking with of the components may be
contained in each Si. For S4, we proceed similarly with S2

0R
n+2 replacing ⊚2g.

For the first relevant level (corresponding to filtration index −1), we first have
to decompose (1|2, 1, 0, . . .) ⊗ (1|1, 0, . . .) which gives

(2|3, 1, 0, . . .) ⊕ (2|2, 2, 0, . . .) ⊕ (2|2, 1, 1, 0, . . .) ⊕ (2|2, 0, . . .) ⊕ (2|1, 1, 0, . . .).

Second, (1|1, 0, . . .) ⊗ (1|1, 0, . . .) ∼= (2|2, 0, . . .) ⊕ (2|1, 1, 0, . . .) ⊕ (2|0, . . .).
Looking at the tensor products Ri ⊗ R

n, we conclude that S1 can only contain
(2|3, 1, 0, . . .) and (2|2, 0, . . .), S3 can only contain (2|2, 0, . . .) and (2|1, 1, 0, . . .),
while all components of the first sum may occur in S2. Hence from this level, we get
the critical weights −4 and −4 − n for R1. For R2, we obtain the critical weights
−1, −3, −5, −1−n, and −3−n, while for R3, the critical weights are −2, −4, and
−2 − n.

The second relevant level is dealt with in an analogous way. The result is that for
R1, we get the additional critical weights −3, −3− n, (−4− n)/2, and (−7− n)/2.
For R2, we obtain −3/2, −7/2, (−1 − n)/2, (−4 − n)/2, (−7 − n)/2, (−3 − 2n)/2.
Finally, for R3, we get the additional critical weights −1, −5/2, and (−4−n)/2. A
direct evaluation shows that for R4 we exactly the same critical weights as for R3

(although the bundle involved is different).

3.7. Discussion and Remarks. (1) Note that the results in the examples from
3.6 are consistent with theorem 9, which implies that in all the cases discussed in
3.6 all critical weights have to be negative.

(2) From the examples of operators on densities discussed in 3.6 it is evident that
the sets of critical weights we obtain with our general procedure are far from being
optimal. It is actually easy to see why this happens, and even to partly improve
the procedure, to get smaller sets of critical weights. The point here is that part
(1) of proposition 3 can be heavily improved in special cases, and in particular
for the fundamental derivative on densities. In the case of densities, already the
values of a single fundamental derivative do not exhaust A0M [w]. On the contrary,
projecting to (A0M/A1M)[w] ∼= Λ2TM [w− 2]⊕ E [w], the values always lie in the
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density summand only. By naturality of the fundamental derivative, this implies
that higher order fundamental derivatives always will lie in subbundles which are
much smaller than the bundle W0M from proposition 3.

Knowing this, one can run the analog of the procedure from 3.2 and 3.3 on the
quotient by the annihilator of this subbundle, which will be significantly smaller
than the bundle VM we have used. For this smaller quotient, there will be less irre-
ducible components in the individual subquotients and hence less critical weights.
In fact, it is easy to see directly that in the examples discussed in 3.6 most (but
not all of) the superfluous critical weights will disappear.

(3) In the case V ⊗W ∼= R
n the set of critical weights we have obtained in 3.6 will

be closer to the optimum than in the case of densities. As we have noted, this case
can be used to study both quantizations for operators mapping sections of E [w] to
sections of TM [w+δ] and for operators mapping sections of T ∗M [w] ∼= TM [w−2] to
sections of E [w+δ]. While these two cases are completely symmetric from our point
of view, this is no more true if one looks at the best possible sets of critical weights.
The point is that in the first case, the value of the splitting operator will be paired
withD(k)f ∈ Γ(SkA∗M [w]) for f ∈ Γ(E [w]), and as discussed above, this has values
in a much smaller subbundle than just the filtration component of degree zero. In
the second interpretation, we will have to pair it withD(k)α ∈ Γ(SkA∗M⊗T ∗M [w])
for α ∈ Γ(T ∗M [w]), and the values of this operator fill a more substantial part of
the filtration component of degree zero. Hence in the first case, we can remove
more superfluous critical weights than in the second one.

(4) There is a systematic way to derive explicit formulae for the procedures we have
developed in terms of distinguished connections (e.g. the Levi–Civita connections
of the metrics in a conformal class), but this becomes quickly rather tedious. In
view of the construction, the main point is to obtain an explicit formula for the
curved Casimir operator on irreducible components of SkAM . This can be done
along the lines of proposition 2.2 of [5] which holds (with obvious modifications)
for general AHS–structures.
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[6] A. Čap and J. Slovák, Weyl structures for parabolic geometries, Math. Scand. 93 (2003),

no. 1, 53–90. MR 1997873 (2004j:53065)
[7] A. Čap, J. Slovák, and V. Souček, Invariant operators on manifolds with almost Hermitian

symmetric structures. II. Normal Cartan connections, Acta Math. Univ. Comenian. (N.S.)
66 (1997), no. 2, 203–220. MR 1620484 (2000a:53045)
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