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Abstract

We construct non-equilibrium states by coupling a large but finite system with quasifree
evolution to two temperature baths of free fermions or bosons with different temperature.
We are interested in the resulting behaviour of the temperature baths as well as in the
consequences for the finite system, especially what happens in the limit when the finite
system tends to infinity. As special example we consider the Kronig-Penney model and the
tight binding model. Here a heat current remains that changes the baths but does not allow
a limiting behaviour when the finite system tends to infinity. For the random versions of
these models, especially the Anderson model the heat current disappears exponentially with
the size of the system. We show that a limit state is attained that is independent of the time
direction and does not show any kind of symmetry breaking.
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1 Introduction

We know how to construct equilibrium states in the thermodynamic limit as limit of Gibbs
states. However we are also interested whether there exist other time invariant states, especially
states that permit a heat flux. For quasifree states we can construct such states by considering
quasifree states determined by a two point function corresponding to a one particle operator
that commutes with the one particle Hamiltonian. If this operator breaks reflection symmetry
it leads to a heat current. However these states are also invariant under space translation and
we cannot obtain any temperature gradient that is related to the heat current.

The general idea to construct time invariant states as it is offered in [1], [2] is to start with
an arbitrary state and take its (or some) invariant mean with respect to time evolution. To
mimic a temperature gradient we can take as initial state some arbitrary state on a large but
finite system coupled to two infinite heat baths of different temperature. In these heat baths
the time evolution is free. For an appropriate local Hamiltonian and an appropriate coupling
we can assume that scattering theory between the real time evolution and the uncoupled time
evolution applies. Then the invariant means correspond to the limits t → ±∞ and depending
on the time direction we obtain two different time invariant states reflecting the existence of a
heat current.

If the heat current corresponds to a temperature gradient we have to expect that it will
decrease when the subsystem increases. If there is enough interaction in the subsystem one
might expect that locally up to a negligible amount an equilibrium is obtained corresponding
to a temperature that varies and leads to a temperature gradient of size 1/N if N is the length
of the subsystem. Finally also the size of the heat current should be of size 1/N .

Of course so far I do not know the tools how to handle such an interacting system. Therefore I
reduce my research to systems I can control. These are those where also the increasing subsystem
is quasifree and the calculations take place on the one particle level. This is still of some interest,
because in general for these systems the limit is taken without any coupling to heatbaths, and
one is just interested in the spectral properties in the thermodynamic limit. Now these spectral
properties will give the main information on the limiting state, however the coupling to the
heatbaths is still powerful enough so that we can apply scattering theory, where of course
the time the system needs to reach its final state will in general increase with the size of the
subsystem. The Hamiltonian corresponding to an infinite system with periodic interaction will
determine which states are possible as time invariant states, but which of these permitted states
will be reached will be determined by the heat baths.

A natural choice for such subsystems are the regular ones, that is the Kronig Penney model
with a differential equation and the tight binding model with a difference equation. In both cases
scattering theory works. The Kronig Penney model is more interesting insofar as some energy
regions are forbidden and in these regions we have nearly reflection. In the permitted regions
in both cases we have a heat current whose direction depends on the time direction. Inside of
the system as inside of the heat baths we have space translation invariance on a microscopic
scale, if we neglect the boundary region. The relevant scattering essentially only occurs at the
boundary of the system to the heat baths, but we cannot get rid of the size of the system for
increasing size but keep a heat current whose strength slightly fluctuates with the size of the
system and does not tend to 0 when the size of the interacting systems tend to infinity.

The next examples are again the Kronig Penney model and the tight binding model, but
now with random parameters and thus mimicking interaction. The tight binding model is known
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as Anderson model. These models and variations of them are well studied in the literature [3].
The main tool is Fuerstenbergs theorem [4], that guarantees, that for almost all models in this
context the thermodynamic limit allows only a point spectrum and therefore a heatcurrent
is not possible. But as long as the system is finite and coupled to the heat baths we still
have an absolutely continuous spectrum and can apply scattering theory. As for the Kronig
Penney model in the forbidden region in the thermodynamic limit the heat current will decrease
exponentially with the size of the system, but now for all energies. But this does not imply that
inside of the system we have a vacuum. But neither will we get a state that we can interpret as a
state with locally varying temperature and therefore reflecting the mixing power of interaction.
We obtain a unique state, now independent of the time direction, that is quasifree with a two
point function which is a mean corresponding to the two temperatures and does not break the
symmetry relation of the Hamiltonian. Neither can we speak of a temperature gradient as the
state depends on space only insofar as the time evolution itself does not commute with space
translation. Altogether we observe, that it is possible to construct time invariant states that
reflect in some way the coupling to different temperature baths in quite different ways, but
never in a way that we expect to happen in realistic models.

2 The models

We follow essentially the treatment in [3]. We only add that the system is infinite but outside of
a finite region free. We arrange the free system in such a way that the total Hamiltonian has only
absolutely continuous spectrum. In this way the state on the free part of the system determines
in the long run also the state inside of the finite part where the random potential mimics
interaction between the particles. More precisely we consider the following models represented
by their one-particle Hamiltonian:

Model 1: Kronig-Penney model in a finite region

H = −
d2

dx2
+

n=N
∑

n=−N

λδ(x − nl), (−∞ < x < ∞) λ > 0 (1)

Model 2: Kronig-Penney model with varying strength and distance

H = −
d2

dx2
+

n=N
∑

n=−N

λnδ(x − ln), (−∞ < x < ∞) λn − λn−1 > 0 (2)

Model 3: Tight binding electron model: We describe the Hamiltonian as quadratic form, so
that it is evident that it is positive definite:

< Ψ|H|Ψ >=
∑

|n|>N

|Ψn − Ψn−1|
2 +

∑

|n|≤N

(α|Ψn − Ψn−1|
2 + βn|Ψn|

2) (3)

where α < 1 and 4α + β < 4, 0 ≤ βn = β ∀ − N ≤ n ≤ N − 1, βN = 0.
Model 4: Anderson model

< Ψ|H|Ψ >=
∑

|n|>N

|Ψn − Ψn−1|
2 +

∑

|n|≤N

(α|Ψn − Ψn−1|
2 + βn|Ψn|

2) (4)
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where now 0 ≤ βn can vary but still has to satisfy 4α + βn < 4.
All these Hamiltonians are selfadjoint with absolutely continuous spectrum and can be

characterized by their generalized eigenfunctions. We first concentrate on the models 1 and 2.
Following [3] we look for the generalized eigenfunctions. In the interval ln < x < ln+1 we write
them as Ψ(x) = Ancos(kx)+Bnsin(kx) so that the values An, Bn are calculated by the transfer
matrix Tn

(

An+1

Bn+1

)

= Tn

(

An

Bn

)

Tn =

[

cos(k((ln+1 − ln)) 1
ksin(k(ln+1 − ln))

−ksin(k(ln+1 − ln)) + λncos(k(ln+1 − ln)) cos(k(ln+1 − ln)) + λn
k sin(k(ln+1 − ln))

]

(5)
where we can take ln+1 − ln = 1 ∀|n| > N . The choice how to describe the eigenfunctions
is done in such a way that the transfer matrix Tn is real with determinant 1 so that we can
apply Fuerstenbergs theorem [4]. Since the determinant is 6= 0 eigenfunctions cannot have finite
support. The energy corresponding to the eigenfunctions is E(k) = k2. The Hamiltonian is
selfadjoint and by our condition on λ positive definite, therefore k has to be real both in model
1 and 2.

Model 3 and 4 have essentially the same structure. Our choice of parameters follows from
the fact that

0 ≤< Ψ|H0|Ψ >=
∑

n

|Ψn − Ψn−1|
2 ≤ 4

∑

n

|Ψn|
2 (6)

and therefore the energy spectrum is [0, 4]. The energy spectrum of H should coincide with the
energy spectrum of H0. This follows on one hand because for functions localized outside of a
finite region the expectation values coincide and therefore the range of the spectrum can only
be larger. That this does not happen is guaranteed by

0 ≤ α < Ψ|H0|Ψ >≤< Ψ|H|Ψ >≤

∑

|n|>N

(|Ψn| + |Ψn−1|)
2 +

∑

|n|6=N

α((|Ψn| + |Ψn−1|)
2 + βn|Ψn|

2) ≤ 4
∑

n

|Ψn|
2 (7)

The quadratic form of the Hamiltonian corresponds to the operator

(HΨ)n = −αn+1Ψn+1 − αnΨn + (αn + αn−1 + βn)Ψn (8)

Now the sequence {Ψn} corresponding to a generalized eigenfunction of the Hamiltonian is
determined by the transfer matrix

(

Ψn+1

Ψn

)

=

[ αn+αn−1+βn−E
αn+1

− αn
αn+1

1 0

](

Ψn

Ψn−1

)

(9)

As in model 1 and 2 the transfer matrix is real valued and has determinant 6= 0 , so that
eigenfunctions do not have compact support and therefore do not vanish in a region where
the Hamiltonian acts as the free Hamiltonian. For the permitted energy values the absolute
value of the eigenfunctions cannot decrease in the region without interaction. Therefore proper
eigenfunctions are excluded and the spectrum is determined by the behaviour outside of a finite
region and is absolutely continuous. For the model 4 we will apply Fuerstenbergs theorem for
random sequences. This demands that the transfer matrix has to be real what is satisfied but

4



also that it has to have determinant 1. This makes it necessary that αn = αn+1 except at
the transition points |n| = N. At these transition points we have to accept that αn 6= αn+1,
otherwise we cannot satisfy 4αn +βn < 4 and cannot exclude bound states. Thus the transition
matrix at these single points has determinant 6= 1, but also 6= 0 and can chance details of the
scattering, but not create transfer if it is otherwise forbidden.

3 Scattering theory

The idea how to obtain NESS-states is based on the application of scattering theory. As sug-
gested in [1], [2] we consider a finite system with some local Hamiltonian coupled to two heat
baths with different temperature. We take all systems to be onedimensional. Therefore we have
as algebra the algebra built by bosonic or fermionic creation and annihilation operators over
the Hilbertspace

L2(−∞,−N) ⊕ L2[−N, N ] ⊕ L2(N,∞) (10)

where the Hilbertspaces L2 are either over the continuum (model 1 and 2) or over the lattice
(model 3 and 4). The initial state is assumed to decompose into

ω = ω(−∞,−N)(β−) ⊗ ω[−N,N ] ⊗ ω(−N,∞)(β+) (11)

There is no need to specify how the state looks like in the region [−N, +N ] apart that we assume
that it is quasifree. Therefore the state is invariant under some Hamiltonian which corresponds
to a Hamiltonian on the one particle level of the form

Ĥ = H0
(−∞,−N) ⊕ H[−N,N ] ⊕ H0

(N,∞) (12)

where H0 is the free Hamiltonian in the restricted regions corresponding to the four models with
appropriately chosen boundary conditions. The spectrum of Ĥ contains an absolutely continuous
part from the contribution of the heat baths and a pure point spectrum corresponding to the
finite system. The time evolution on the algebra determined by this one particle Hamiltonian we
denote with τ̂t, whereas the real time evolution τt is determined by the one particle Hamiltonians
corresponding to the models 1 to 4. The state (11) will evolve in time and tend to the final
NESS-state

ω∞(A) = lim
t→∞

ω(τ̂−t ◦ τtA) (13)

if we can show that scattering theory between the automorphisms applies. Since they are
quasifree it suffices if it works between the two one particle Hamiltonians.

The state is fixed by the two point function

ω(a∗(f)a(g)) =< g|ρ̂|f >, [Ĥ, ρ̂] = 0 (14)

Therefore
ω∞(a∗(f)a(g)) = lim

t→∞
< g|eiHte−iĤtρ̂eiĤte−iHt|f > (15)

Thus our only task is to evaluate the wave operator Ω = limt→∞ eiĤte−iHt. H has absolutely
continuous spectrum and so has Ĥ apart from finitely many bound states. Therefore the limit
exists in the strong sense and has range on the absolutely continuous part of Ĥ. The adjoint
therefore converges weakly which is sufficient for the existence of the limit in (15). In complete
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generality the wave operator can be expressed as integral kernel in terms of the generalized
eigenfunctions Ψ corresponding to H and Φ corresponding to Ĥ.

Ω(x, y) =

∫

0
dkΦ+(x, k)Ψ̄+(y, k) +

∫

0
dkΦ−(x, k)Ψ̄−(y, k) (16)

The upper limit in the integral is +∞ in model 1 and 2 and 2 in model 3 and 4 accord-
ing to the energy range of the absolutely continuous spectrum. According to (12) Φ+(x, k) =
χ(N,∞)(x)sin(k(x − N)), Φ−(x, k) = χ(−∞,−N)(x)sin(k(x + N)) are the generalized eigenfunc-

tions corresponding to Ĥ, the other eigenfunctions are proper eigenfunctions and do not con-
tribute to the wave operator. Ψ±(y, k) are the generalized eigenfunctions corresponding to H
where ± indicates whether the waves are going to the right or to the left. More precisely they
have the form

Ψ+(x, k) = eikx + a(k)e−ikx, −∞ < x < −N, Ψ+(x, k) = b(k)eikx, N < x < ∞, k > 0
(17)

Ψ−(x, k) = c(k)e−ikx, −∞ < x < −N, Ψ−(x, k) = e−ikx + d(k)eikx, N < x < ∞, k > 0
(18)

where we do not specify how they look like in the interval −N < x < N , though from there the
values a(k), b(k), c(k), d(k) have to be calculated.

They are complete in the sense that

∫

0
dk[Ψ̄+(x, k)Ψ+(y, k) + Ψ̄−(x, k)Ψ−(y, k)] = δ(x − y) (19)

and they are orthogonal in the sense that

∫

dxΨ̄+(k, x)Ψ+(q, x) = δ(k − q);

∫

dxΨ̄+(k, x)Ψ−(q, x) = 0 (20)

respectively replacing appropriately the integral by a sum in models 3 and 4. That the wave
operator has this form can be seen by the ansatz

Ω(x, y) = lim
t→∞

[

∫

0
dk

∫

0
dqeit(E(q)−E(k))Φ̄+(x, k)

∫

dzΦ+(z, k)Ψ̄+(z, q)Ψ+(y, q)+

+

∫

0
dk

∫

0
dqeit(E(q)−E(k))Φ̄+(x, k)

∫

dzΦ+(z, k)Ψ̄−(z, q)Ψ−y, q)+

+

∫

0
dk

∫

0
dqeit(E(q)−E(k))Φ̄−(x, k)

∫

dzΦ−(z, k)Ψ̄+(z, q)Ψ+(y, q)+

+

∫

0
dk

∫

0
dqeit(E(q)−E(k))Φ̄−(x, k)

∫

dzΦ−(z, k)Ψ̄−(z, q)Ψ−(y, q)]

and evaluating

lim
t→∞

eit(E(q)−E(k))

∫

dzΦ±(z, k)Ψ̄±(z, q) = δ(k − q)δ(±)

where E(k), E(q) are the energies of the generalized eigenfunctions characterized by k, q. For
the models 1 and 2 this reduces to concentrating on Gauss functions (compare [5]), for the
models 3 and 4 it follows from the convexity of E(k) together with the distribution properties
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of limy→±∞
∑∞

x=0 eik(y+x). Only the asymptotic behaviour of the generalized eigenfunctions
contributes to the integral. Local parts do not contribute in the limit by Riemann-Lebesgue.
The essential contribution has the form

lim
t→+∞

lim
N→∞

N
∑

n=M

ei(k−q)n−it(cosk−cosq) =

= lim
t→+∞

lim
N→∞

e
i(k−q)(N−t

sin(k/2−q/2)
k−q

sin(k/2+q/2))
− e

−it(k−q)
sin(k/2−q/2)

k−q
sin(k/2+q/2)

ei(k−q) − 1
ei(k−q)M =

= δ(k − q)

lim
t→−∞

lim
N→∞

N
∑

n=M

ei(k−q)n−it(cosk−cosq) =

= lim
t→−∞

lim
N→∞

e
i(k−q)(N−t

sin(k/2−q/2)
k−q

sin(k/2+q/2))
− e

−it(k−q)
sin(k/2−q/2)

k−q
sin(k/2+q/2)

ei(k−q) − 1
ei(k−q)M = 0

where we notice that in the permitted region of k, q sin(k/2−q)/2
k−q sin(k/2 + q/2) is positive and

bounded. The arguments for the Kronig Penney model are essentially the same. Completeness
and orthogonality is then a consequence of applying scattering theory with respect to the free
evolution where both properties are well established. Notice that completeness when examined
for x, y both in the left or the right region implements

|a(k)|2 + |c(k)|2 = 1, |b(k)|2 + |d(k)|2 = 1 (21)

With our ansatz (11) the limit state will therefore read

ω∞(a∗(f)a(g)) =< g|P+
1

eβ+H ± 1
+ P−

1

eβ−H ± 1
|f > (22)

depending whether we consider fermions or bosons. Here P± are the projections on the gen-
eralized eigenfunctions Ψ±. Therefore we can evaluate the heat current, that is determined by
the transition values |b(k)|2 and |c(k)|2. We are interested how this heat current depends on N .
But in addition we are interested how the effect of P± is reflected locally and in which sense we
can talk of a thermodynamic limit N → ∞.

4 The thermodynamic limit

We can calculate the heat current in the left and right heat baths by

jl =

∫

0
dkk(ρβ+(k)(1 − |a(k)|2) − ρβ−

(k)|c(k)|2)

jr =

∫

0
dkk(ρβ+(k)|b(k)|2 − ρβ−

(k)(1 − |d(k)|2). (23)

Evidently from (21) it vanishes for equal temperature. From symmetry relations of the Hamil-
tonian it follows that it is the same in the right and left region. However the state in the heat
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baths will depend on N in the sense that a(k) and d(k) in (17) can still depend on N and
therefore also the generalized eigenfunctions will depend on N . How they depend in detail on
N in the various models we have to clarify.

In the interacting region we are especially interested how the state looks like far away from
the boundary. First we have to argue that the dynamics will converge to a limit. This happens if
HN converges to H∞ in the strong resolvent sense. This can be seen by the following arguments:

Take a sequence of projections PL such that < Ψ|PLHNPL|Ψ >=< Ψ|PLHN̄PL|Ψ > for
N < N̄ . Therefore also for z > 0

< Ψ|PL
1

PLHNPL + z
PL|Ψ >=< Ψ|PL

1

PLHN̄PL + z
PL|Ψ > (24)

Now we can apply

P
1

A
P = P

1

PAP
P + P

1

A
(1 − P )

1

(1 − P ) 1
A(1 − P )

(1 − P )
1

A
P.

Exponential decay of the kernels corresponding to unitaries and resolvents of the relevant op-
erators are studied in detail in the literature (e.g. [6] ). Therefore we know that for every ǫ we
can find L0 such that

||PL
1

HN
(1 − PM )|| < ǫ∀(M − L) > L0, N > M (25)

This fact allows us to conclude that

lim
N→∞

< Ψ|PL
1

HN + z
PL|Ψ >=< Ψ|PL

1

H∞ + z
PL|Ψ > (26)

With increasing N also PL can be chosen to increase to 1. From (26) we have weak resolvent
convergence. Estimating for L − M > L0, L < N and ||Ψ|| < ǫ + ||PMΨ||

||(PL + (1 − PL))(
1

H∞ + z
−

1

HN + z
)PLΨ|| ≤ ||(1 − PL))(

1

H∞ + z
−

1

HN + z
)PMΨ|| + ǫ

with using once more (24) and (25) we can strengthen the result to strong resolvent convergence.
That permits that we can take functions of HN such that the limit of their local expectation
values exist and can be written as

lim
N→∞

< f |ρ(HN )|g >=< f |ρ(H∞)|g > (27)

where H∞ corresponds to our models 1,2 3,4 with N replaced by ∞.
The systems corresponding to H∞ in the various models are well analyzed in the literature,

also in broader context, e.g. in [6] or more recently [7]. Especially the clustering behaviour (25)
is well under control. If H∞ has a continuous spectrum as in model 1 and 3 (25) is a consequence
of Riemann Lebesgue in essentially the same way as for free systems. If the spectrum is pure
point, then it is a consequence of the exponential decay of the eigenfunctions. Detailed analysis
even for more general models can be found in [6]. We examine the consequences for the different
models with the main interest how far the models allow to take the limit N → ∞ in

lim
N→∞

lim
t→∞

< g|eiHN te−iĤN tρ̂NeiĤN te−iHN t|f > .
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Model 1 is the Kronig Penney model. The transfer matrix at every point is the same. For given
energy parameter E(k) = k2 its eigenvalues are either e±iκ satisfying

cos(κ) = cos(kl) +
λ

2k
sin(kl) (28)

or they are e±κ satisfying

Cosh(κ) = cos(kl) +
λ

2k
sin(kl)

For the infinite systems Bloch’s theorem tells us that only the first case is permitted and
we are reduced to energy bands. For finite N we conclude that the generalized eigenvalues
corresponding to the forbidden regions vanish exponentially fast at the boundaries x = ±N.
This means especially that b(k), c(k) are of order e−κN and the corresponding current vanishes
exponentially fast. For the remaining part however we cannot get rid of the N -dependence. The
easiest way to see this is to write the transfer matrix in bra-ket notation

T (n) =
n+N
∏

N

Tk = T (n+N) = eiκ(n+N)|Ψ+ >< Φ+| + e−iκ(n+N)|Ψ− >< Φ−| (29)

where |Ψ± > are the eigenfunctions of T and |Φ± > are the eigenfunctions of T ∗ corresponding
to the eigenvalues e±iκ and normalized such that < Φ±|Ψ± >= 1, < Φ∓|Ψ± >= 0. b(k) is then
calculated from (17) via T (N) and therefore

〈

1
i
|(eiκ2N |Ψ+ >< Φ+| + | + e−iκ2N |Ψ− >< Φ−|)|

1
i

〉

b(k) = 1. (30)

This shows that |b(k)| and therefore the contribution to the heat current (23) will depend on
N without tending to any limit. Transfer in the forbidden region vanishes exponentially fast
with N, here we can take the thermodynamic limit. In the region in which energy is transferred
the amount will however oscillate in N . This has a consequence both for the heat baths as for
the interacting system. We can get rid of the dependence on N only by averaging over a region
N ± L where L ≪ N but tends to infinity. More precisely we can consider the limit

ω̄(a∗(f)a(g)) = lim
N→∞

1

2N1/2

c=N1/2
∑

c=−N1/2

ωN+c(a
∗(f)a(g)). (31)

In this way a finite heat current will remain. According to our remarks on the thermodynamic
limit (25),(26), as long as we stay away from the boundary, both inside of the baths as inside
of the interior of the interacting region the state will be invariant under the time evolution
(considered as time evolution in the sense of the thermodynamic limit) permitting a heat current
and being not reflection invariant. We average among states that are time invariant with respect
to different time evolutions, in this sense we cannot talk about time invariance. If however we
take into account that (26) holds far away from the boundary the dependence on N disappears
and the time evolutions coincide so that in this limit away from the boundary the state has
to be considered time and space translation invariant but neither extremely space translation
invariant nor extremely time translation invariant.
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Model 3 is called ”Tight binding electron model” in [3]. Again we have to calculate the
eigenvalues of the transfer matrix (9)

cos(κ) = cos(
2αn + βn − E

2αn
) (32)

Cosh(κ) = Cosh(
2αn + βn − E

2αn
)

depending whether 2αn+βn−E
2αn

is smaller or larger than 1. The final reflection coefficient is slightly
more complicated than (30) because there is the additional term when αn, βn change. However
as before for 2αn+βn−E

2αn
> 1 the transfer coefficient decays exponentially fast with N whereas

for 2αn+βn−E
2αn

< 1 the transfer coefficient is positive but fluctuates with N because again (30)
gives the correct N-dependence of the matrix, only the vectors have to be adjusted. Therefore
the conclusions for the heat current and the limiting state remain unchanged.

Our main interest lies on models 2 and 4. If the parameters are sufficiently random then
we will argue that the transfer coefficient will vanish exponentially fast. Therefore the state for
the heat baths sufficiently away from the boundary will not change and we do not obtain a
NESS-state there. At the boundary the coupling to the Kronig Penney model respectively to
the Anderson Model will affect the boundary conditions, but due to the exponential decay these
boundary conditions do not affect the state far away from the boundary.

Inside of the interacting region again there will be no heat current. Nevertheless according
to (22) the projection operators for finite N P± remain with different weights. However they
depend on N , and again we have to clarify what are the consequences of this N−dependence
in the thermodynamic limit.

The main tool in the analysis is Fuerstenbergs theorem:

Theorem 1. Fuerstenberg theorem

Let µ be a measure on SL(2, R) which is the group of 2-dimension unimodular matrices trans-

forming the real vector space R2 into itself. Let G be the smallest subgroup of SL(2, R)containing

the support of µ. Assume that G is noncompact and no subgroup of G of finite index is reducible.

Let {Tn; n = 1, 2, ...} denote the sequence of mutually independent G-valued random variables

with the common distribution µ. For every vector |Ψ > with ||Ψ|| = 1

lim
n→∞

1

n
log||TnTn−1..T1Ψ|| = γ > 0 (33)

with probability 1 where γ depends only on µ.

Notice that the conditions on G are satisfied if it contains at least two elements of SL(2, R)
with no common eigenvector. Therefore varying λn, ln in model 2 or α, βn in model 4 we can
easily meet the conditions. It follows that (29), the transfer matrix T (N) = ΠTN ...T1 between
the incoming and outgoing wave becomes for almost all sequences {λn, ln}, {α, βn}

T (N) = eγN |Ψ+,N >< Φ+,N | + e−γN |Ψ−,N >< Φ−,N | (34)

where |Ψ±,N >, |Φ±,N > are also random vectors and γ is determined by the sequence. If the
vector corresponding to the incoming wave is not orthogonal to |Φ+,N > then its weight b(k)
has to be exponentially small. That it is orthogonal happens with vanishing probability on N,
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according to (33). Altogether the heat current will decrease exponentially fast with N . At the
boundary the phase relations between the incoming and the reflected wave may change, however
this does not affect the state of the heat bath far away from the boundary.

Considering the state inside of the interacting region we have to be more careful than for the
regular Kronig Penney model or the regular tight binding model. Remember that also inside the
interaction region (19) has to hold. Whereas in the previous case we could concentrate on the
scattered part, i.e. the part of the continuous spectrum and the eigenfunctions corresponding to
the forbidden region contributed only to an exponentially negligible amount, now the continuous
part does not exist. Therefore we remain after having taken the limit t → ∞ with

ω∞,N (a∗(f)a(g)) =< g|P+,N
1

eβ+HN ± 1
+ P−,N

1

eβ−HN ± 1
|f > (35)

We can concentrate on local f, g so that in the thermodynamic limit HN can be replaced by
H∞, but we still have to worry about the dependence on P±,N . The generalized eigenfunctions
of the Hamiltonian HN are twofold degenerate: with Ψ(x) resp. Ψn also Ψ̄(x) or Ψ̄n is an
eigenfunction. These eigenfunctions cannot be real, as can be seen in the free regime. Therefore
we have degeneracy, however the decomposition P±,N highly depends on N . As stated we have
strong resolvent convergence of HN . To control (35) it is sufficient to argue that for localized
|f > we can take the weak limit

limP±,N |f >=
1

2
|f > (36)

Proof: We use the fact that HN is two fold degenerate. We can write

< f |P±,Ng(H)|f >=

∫

dE|f(E, ω0)Ψ±,N (E)|2g(E) (37)

where Ψ±,N (E) is the generalized eigenfunction corresponding to the energy E and f(E, ω0)
corresponds to the spectral decomposition of f where we indicate by ω0 its dependence on the
fixed sequence. However we know from resolvent convergence that its dependence on the part
of the sequence sufficiently far apart can be ignored. Therefore we can replace it by

f(E, ω0) =

∫

dµr(ω)f(E, ω) (38)

where we integrate over all sequences restricted to those that coincide with the fixed sequence
in a neighborhood of the region in which f is located. Now we can use the fact that the
sequences are random and the measure dµr(ω) is ergodic. Therefore we can interpret (37) as
the expectation value of projections in a two dimensional Hilbert space averaged by the ergodic
measure to a c-number, so that we can argue that in (37) the dependence on ± disappears and
therefore (36) holds.

From (35) and (36) it follows that

ω∞(a∗(f)a(g)) = lim
∆→∞

< g|P+,N
1

eβ+HN ± 1
+ P−,N

1

eβ−HN ± 1
|f >=

1

2
< g|

1

eβ+H∞ ± 1
+

1

eβ−H∞ ± 1
|f > ∀f, g,∆ = Distance[supp(f, g), N ] (39)
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since ∆ → ∞ implies N → ∞. Therefore after taking the limit t → ∞ we can also take the
limit N → ∞ and obtain

ω∞ =
1

2
< g|

1

eβ+H∞ ± 1
+

1

eβ−H∞ ± 1
|f > (40)

Evidently the state that finally is reached when we couple the system to two heat baths
with different temperature is not a temperature state nor does it carry a heat current. But
there is also no symmetry breaking that reflects the orientation and location in space. We
have no possibility to assign something like a temperature gradient to the system. The random
interaction with the background cannot replace the random interaction between the particles
themselves that should produce a temperature gradient.

5 Conclusion

We studied the effect of coupling a system to two heat baths of different temperature in the
thermodynamic limit. The coupled systems were quasifree, either translation invariant or with
random one particle Hamiltonians. As a consequence in the thermodynamic limit the spectra
were either absolutely continuous or pure point. In the former case they permit a heat current
that depends on the temperature of the heat baths, but also on the size of the system, so that
it does not allow a thermodynamic limit. In the latter case no heat current remains, though the
final state of the system is still determined by the heat baths but without any kind of symmetry
breaking.
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