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Abstract

Guided by idealized but soluble nonrenormalizable models, a non-
traditional proposal for the quantization of covariant scalar field the-
ories is advanced, which achieves a term-by-term, divergence-free per-
turbation analysis of interacting models expanded about a suitable
pseudofree theory (differing from a free theory by an ~ term). This
procedure not only provides acceptable solutions for models for which
no acceptable solution currently exists, e.g., ϕ

4
n, for spacetime dimen-

sion n ≥ 4, but offers a new, divergence-free solution, for less-singular
models as well, e.g., ϕ

4
n, for n = 2, 3.

It is common knowledge that divergences arise in the study of covariant
quantum field theories, and elaborate efforts are used to nullify the effects
of these divergences. In this letter we argue that adopting an appropriate
~ ambiguity in the quantization procedure can eliminate the divergences
that are usually encountered. Although we focus on scalar fields, similar
methods may apply for other quantum field theories. As motivation for
our approach, we initially analyze how divergences are eliminated in soluble
ultralocal models.
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Ultralocal Models

The classical action for the quartic ultralocal model is given by

I =

∫
{ 1

2
[φ̇(t,x)2 − m2

0φ(t,x)2] − g0φ(t,x)4} dtdx , (1)

where g0 ≥ 0, φ̇(t,x) = ∂φ(t,x)/∂t, x ∈ R
s, and 1 ≤ s < ∞. With no

spatial gradients, the light cone of covariant models collapses to a temporal
line reflecting the statistical independence of ultralocal fields at any two
distinct spatial points. This vast symmetry ultimately helps determine the
quantum theory for such models.

Viewed conventionally, it is hard to imagine a quartic interacting field
theory that would cause more trouble in its quantization. On one hand, it
is clear that ultralocal models are perturbatively nonrenormalizable for any
s ≥ 1; on the other hand, if viewed nonperturbatively, and limited to mass
and coupling constant renormalizations, they lead to free (Gaussian) results
based simply on the Central Limit Theorem. Clearly, other methods are
required.

Although the quantum theory of these models has been completely solved
without introducing cutoffs [1, 2], it is pedagogically useful to study the model
as regularized by a hypercubic spacetime lattice with periodic boundary con-
ditions. If a > 0 denotes the lattice spacing and L < ∞ denotes the number
of sites on each edge, then the ground-state distribution of the free theory
(g0 ≡ 0) is described by the characteristic function

Cf (f) = M

∫
eiΣ

′

kfkφkas − m0Σ
′

kφ
2
kas

Π′

kdφk

= e−
1
4
m−1

0 Σ′

kf
2
k as

→ e−
1
4
m−1

0

∫
f(x)2 dx , (2)

where in the last line we have taken the continuum limit. In this expression
k = (k1, k2, . . . , ks), kj ∈ Z, labels the sites in this spatial lattice. It is of
interest to calculate mass-like moments in the ground-state distribution as
given by

Ip(m0) ≡ M

∫
[Σ′

kφ
2
kas]p e−m0Σ

′

kφ
2
kas

Π′

kdφk = O((N ′/m0)
p) I0(m0) , (3)

where N ′ ≡ Ls is the number of lattice sites in the spatial volume. A
perturbation of the mass, with ∆ ≡ m̃0 − m0, leads to

I1(m̃0) = I1(m0) − ∆I2(m0) + 1
2
∆2I3(m0) − · · · , (4)
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which, assuming m0 = O(1), exhibits increasingly divergent contributions in
the continuum limit in which a → 0 and L → ∞ such that N ′as = (La)s

remains large but finite. The origin of these divergences is exposed if we pass
to hyperspherical coordinates, where φk ≡ κηk, Σ′

kφ
2
k ≡ κ2, and Σ′

kη
2
k ≡ 1,

for which (3) becomes

Ip(m0) = 2M

∫
κ2pasp e−m0κ

2as
κ(N ′

−1)dκ δ(1 − Σ′

kη
2
k) Π′

kdηk , (5)

which not only reveals the source of the divergences as the factor N ′ in the
measure factor κ(N ′

−1), but also confirms the approximate evaluation of (3)
by a steepest descent analysis of the κ integration. If we could somehow
change the power of κ in the measure of (5) to κ(R−1), where R is a finite
factor, these divergences would be eliminated!

The theory of infinite divisibility [3] ensures us that besides the Gaussian
ground-state distributions there are only Poisson ground-state distributions
that respect the ultralocal symmetry of the model, and they are described
by characteristic functions of the form

C(f) = exp{−
∫

dx
∫

[1 − cos(f(x)λ)] c(λ)2 dλ} , (6)

where
∫

[λ2/(1 + λ2)] c(λ)2 dλ < ∞, but
∫

c(λ)2 dλ = ∞ (to ensure the
smeared field operator only has a continuous spectrum). As an important
example, let us assume that c(λ)2 = b exp(−bmλ2)/|λ|, where b is a positive
constant with dimensions (Length)−s, and m is a mass parameter. For this
example, it follows that

M ′

∫
eiΣ

′

kfkφkas − m0Σ
′

kφ
2
kas

Π′

k[|φ|
(1−2bas) ]−1 Π′

kdφk

= Π′

k{1 − (bas)
∫

[1 − cos(fkλ)] e−bmλ2
dλ/|λ|(1−2bas) }

→ exp{−b
∫

dx
∫

[1 − cos(f(x)λ)] e−bmλ2
dλ/|λ|} ; (7)

here we have set m0 = basm, λ = φas, and used the fact that to leading
order M ′ = (bas)N ′

, which holds because

(bas)
∫

e−bmλ2
dλ/|λ|(1−2bas) ≃ 2(bas)

∫ B

0
dλ/λ(1−2bas) = B2bas

→ 1 , (8)

provided that 0 < B < ∞.
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Observe that the lattice ground-state distribution for this example is

(bas)N ′

e−m0Σ
′

kφ
2
kas

Π′

k|φk|(1−2bas)
=

(bas)N ′

e−m0κ
2as

κ(N ′
−2bas N ′) Π′

k|ηk|(1−2bas)
, (9)

which has exactly the right factor to change the κ measure from κ(N ′
−1) to

κ(R−1), where in the present case R = 2basN ′ [a finite number chosen in
order to ensure a meaningful continuum limit for (7)]. If we adopt (9) as the
appropriate “pseudofree” ground-state distribution, then all divergences due
to integration over κ will disappear!

Free and Pseudofree Theories

What exactly do we mean by free and pseudofree theories? An elementary
example of a theory that involves pseudofree behavior is given by the anhar-
monic oscillator with the classical action

I =
∫
{1

2
[ẋ(t)2 − x(t)2] − g0x(t)−4} dt , (10)

where g0 ≥ 0. The free theory (g0 ≡ 0) has solutions A cos(t + γ) that freely
cross x = 0; when g0 > 0, however, no solution can cross x = 0, and the limit
of the interacting solutions as g0 → 0 becomes ±|A cos(t + γ)|. This latter
behavior describes the classical pseudofree model, i.e., the model continuously
connected to the interacting models as g0 → 0. Quantum mechanically, the
imaginary-time propagator for the free theory is given by

Kf (x
′′, T ; x′, 0) =

∑
∞

n=0hn(x′′)hn(x′) e−(n+1/2)T , (11)

where hn(x) denotes the nth Hermite function. However, for the interacting
quantum theories, as the coupling g0 → 0, the imaginary-time propagator
converges to

Kpf (x
′′, T ; x′, 0) = θ(x′′x′)

∑
∞

n=0hn(x′′)[hn(x′) − hn(−x′)] e−(n+1/2)T , (12)

where θ(y) = 1 if y > 0 and θ(y) = 0 if y < 0, which characterizes the
quantum pseudofree model. This behavior has arisen because within a func-
tional integral the interaction acts partially as a hard core projecting out
certain histories that would otherwise be allowed by the free theory; any per-
turbation analysis of the interaction term clearly must take place about the
pseudofree theory and not about the free theory. The field theory models are
more involved, but the basic ideas are essentially the same.
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Lessons from Ultralocal Models

Observe for the classical ultralocal models that when g0 > 0 it is necessary
that

∫
φ(t,x)4dtdx < ∞ to derive the equations of motion, but when g0 = 0

this restriction is absent. Thus the set of classical solutions for g0 > 0 does
not reduce as g0 → 0 to the set of classical solutions of the free theory;
instead, the set of classical solutions for g0 > 0 passes by continuity to a set
of classical solutions of the free theory that also incorporates the hard-core
consequences of the condition

∫
φ(t,x)4dtdx < ∞. An interacting classical

theory that is not continuously connected to its own free classical theory
is likely to be associated with an interacting quantum theory that is not
continuously connected to its own free quantum theory. This situation is easy
to see for the ultralocal models. The characteristic function of the ground-
state distribution has either a Gaussian or a Poisson form as indicated, and
there is no continuous, reversible path between the two varieties. If one seeks
nontriviality, then the interacting theory must be of the Poisson type; and as
the coupling constant vanishes, the continuous limit must also be a Poisson
distribution, namely the pseudofree model as chacterized by (7).

To complete the ultralocal story, we observe that the ground-state distri-
bution for interacting models is also of the Poisson form, where

c(λ)2 = b exp[−y(λ)]/|λ| (13)

for suitable functions y(λ). Each such distribution leads to a lattice Hamil-
tonian and thereby a lattice action for a full (Euclidean) lattice spacetime
functional integral formulation. The pseudofree model has the lattice action
of a traditional free theory augmented by a local counterterm proportional
to ~

2 and (surprise!) inversely proportional to the field squared, so that it
accounts for the denominator factor, which has been central to an overall
divergence-free formulation. The form of the nontraditional counterterm is
implicitly given in the next section, and since these models have been exten-
sively discussed elsewhere [1, 2], we do not pursue them further.

However, we do take from the ultralocal model the central principle of our

analysis, which we dub “measure mashing”. In particular, in extending our
analysis to covariant models, we adopt the “slick trick” that worked so well
for the ultralocal models, namely, choosing a pseudofree model that changes
the measure factor κ(N ′

−1) for the hyperspherical radius to the form κ(R−1),
where R is a suitable finite factor for the model in question.
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Covariant Models

We restrict our initial attention to models with the classical action given by

A =
∫

(1
2
{φ̇(x)2 − [∇φ(x)]2 − m2

0φ(x)2} − g0φ(x)4 ) dnx , (14)

where x = (t = x0, x1, x2, . . . , xs) ∈ R
n, n = s + 1 ≥ 5, g0 ≥ 0, φ̇(x) =

∂φ(x)/∂t, and [∇φ(x)]2 ≡ Σs
j=1(∂φ(x)/∂xj)

2. It is not obvious, but for the
spacetime dimensions in question, the interaction term imposes a restriction
on the free action as follows from the multiplicative inequality [4, 2]

{
∫

φ(x)4 dnx}1/2 ≤ C
∫
{φ̇(x)2 + [∇φ(x)]2 + φ2} dnx , (15)

where for n ≤ 4 (the renormalizable cases), C = 4/3 is satisfactory, while for
n ≥ 5 (the nonrenormalizable cases), C = ∞ meaning that there are fields for
which the left side diverges while the right side is finite (e.g., φsingular(x) =
|x|−p e−x2

, where n/4 ≤ p < n/2 − 1). As a consequence, for n ≥ 5 the
set of solutions of the interacting classical theory do not reduce to the set of
solutions of the free classical theory as the coupling constant g0 → 0. We now
examine the quantum theory in the light of this knowledge, and we initially
focus on finding a suitable pseudofree model for covariant theories.

Choosing the Covariant Pseudofree Model

For covariant scalar fields, the lattice version of a free, nearly massless, quan-
tum theory has a characteristic functional for the ground-state distribution
given by

Cf (f) = M ′

∫
eiΣ

′

kfkφkas − Σ′

k,lφkAk−lφl a
2s

Π′

kdφk , (16)

where Ak−l accounts for the derivatives and a small, well-chosen, artificial
mass-like contribution. The quantum Hamiltonian for this ground state
(restoring ~) becomes

Hf = −1
2
~

2a−s
∑

′

k
∂2

∂φ2
k

+ 1
2

∑
′

k,lφkA2
k−lφl a

3s − E0 , (17)

where E0 is a constant ground state energy and

A2
k−l ≡ Σ′

pAk−pAp−l ≡ Σs
j=1[2δk,l − δk+δj ,l − δk−δj ,l ]a

−(2s+2)

+sL−2sa−(2s+2) , (18)
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where k ± δj ≡ (k1, k2, . . . , kj ± 1, . . . , ks), and the last factor is a small,
artificial mass-like term (introduced to deal with the zero mode φk → φk+ ξ).
The true mass term will be introduced later along with the quartic interaction
when we discuss the final model.

We next modify the free ground-state distribution in order to suggest a
suitable characteristic functional for the pseudofree ground-state distribution
by the expression

Cpf (f) = M ′′

∫
eiΣ

′

kfkφkas − Σ′

k,lφkAk−lφl a
2s − W (φa(s−1)/2/~

1/2)

×{Π′

k[Σ
′

lJk,lφ
2
l ]}

−(1−R/N ′)/2 Π′

kdφk , (19)

where the constants Jk,l ≡ 1/(2s+1) for the (2s+1) points that include l = k
and all the 2s spatially nearest neighbors to k ; Jk,l ≡ 0 for all other points.
Stated otherwise, the term Σ′

lJk,lφ
2
l is an average of field-squared values at

l = k and the 2s spatially nearest neighbors to k. Note well, that this
term leads to a factor of κ−(N ′

−R) that, in effect, replaces the hyperspherical
radius variable measure term κ(N ′

−1) by the factor κ(R−1) (i.e., mashing the
measure), and since R is finite, this choice eliminates any divergences caused
by integrations over the variable κ. Indeed, hereafter, we choose the finite
factor R = 1 in an initial effort to find suitable pseudofree models for the
covariant theories. The factor Ak−l is the same as introduced for the free
theory, while the function W is implicitly defined below.

The Hamiltonian for the Covariant Pseudofree Model

The Hamiltonian follows from the proposed ground state wave function con-
tained in (19) . To understand the role played by W , let us first assume that
W = 0. Then, in taking the necessary second-order derivatives, there will be
a contribution when one derivative acts on the Ak−l factor in the exponent
and the other derivative acts on the denominator factor involving Jk,l. The
result will be a cross term that exhibits a long-range interaction that would
cause difficulty for causality in the continuum limit. Instead, at this point,
we focus on the Hamiltonian itself as primary (rather than the ground state),
and adopt the Hamiltonian for the pseudofree model as

Hpf = −1
2
~

2a−s
∑

′

k
∂2

∂φ2
k

+ 1
2

∑
′

k(φ
∗

k − φk)
2as−2 + 1

2
s(L−2sa−2)

∑
′

kφ
2
kas

+1
2
~

2
∑

′

kFk(φ)as − Epf , (20)
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where k∗ represents a spatially nearest neighbor to k in the positive sense,
implicitly summed over all s spatial directions, and the counterterm Fk(φ),
which follows from both derivatives acting on the Jk,l factor, is given by

Fk(φ) ≡
1

4

(N ′ − 1

N ′

)2

a−2s
∑

′

r, t

Jr,kJt,kφ2
k

[Σ′

lJr, lφ2
l ][Σ

′

mJt,mφ2
m]

−
1

2

(N ′ − 1

N ′

)
a−2s

∑
′

t

Jt,k

[Σ′

mJt,mφ2
m]

+
(N ′ − 1

N ′

)
a−2s

∑
′

t

J2
t,kφ2

k

[Σ′

mJt,mφ2
m]2

. (21)

We observe that this form for the counterterm leads to a local potential in
the continuum limit even though it is a rather unfamiliar one. (Remark:

If Jk,l is taken as δk,l and N ′ − 1 is replaced by N ′ − 2basN ′, the resultant
counterterm is that appropriate to the ultralocal models.)

With this involved counterterm, the pseudofree Hamiltonian is completely
defined, and we define the implicitly given expression for the pseudofree
ground state to be the ground state Ψpf (φ) for this Hamiltonian. For large φ
values the Ak−l term well represents the solution, and for small φ values the
denominator term involving the Jk,l term also well represents the solution,
The role of the (unknown) function W and Epf is to fine tune the solution
so that it satisfies the equation Hpf Ψpf (φ) = 0. The manner in which both
a and ~ appear in Hpf dictates how they appear in W as W (φa(s−1)/2/~

1/2).

Final Form of Lattice Hamiltonian and Lattice Action

It is but a small step to propose expressions for the lattice Hamiltonian
and lattice action in the presence of the proper mass term and the quartic
interaction. The lattice Hamiltonian is given by

H = −1
2
~

2a−s
∑

′

k
∂2

∂φ2
k

+ 1
2

∑
′

k(φk∗ − φk)
2as−2 + 1

2
s(L−2sa−2)

∑
′

kφ
2
kas

+1
2
m2

0

∑
′

kφ
2
kas + λ0

∑
′

kφ
4
kas + 1

2
~

2
∑

′

kFk(φ)as − E , (22)

and the Euclidean lattice action reads

I(φ, a, ~) = +1
2

∑
k

∑
k∗(φk∗ − φk)

2an−2 + 1
2
s(L−2sa−2)

∑
kφ

2
kan

+1
2
m2

0

∑
kφ

2
kan + λ0

∑
kφ

4
kan + 1

2
~

2
∑

kFk(φ)an , (23)
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where the last sum on k∗, here made explicit, is a sum over all n lattice
directions in a positive sense from the site k, and in both expressions the
counterterm Fk(φ) is given in (21). When one studies the full action, as
in a Monte Carlo analysis, then the small, artificial mass-like term can be
omitted.

The generating functional for Euclidean lattice spacetime averages is
given, as usual, by

〈eZ
−1/2Σkhkφkan/~〉 ≡ M̃

∫
eZ

−1/2Σkhkφkan/~ − I(φ, a, ~)/~ Πkdφk , (24)

where Z is the field strength renormalization constant and Σ/Π (without
primes) denotes a sum/product over the full spacetime lattice now with
k = (k0, k1, k2, . . . , ks), where k0 denotes the imaginary-time direction. Else-
where [5, 6], we have studied the perturbation analysis of (24) and have
determined that: (i) the proper field strength renormalization is given by
Z = N ′−2(qa)1−s, (ii) the proper mass renormalization is given by m2

0 =
N ′(qa)−1m2, and (iii) the proper coupling constant renormalization is given
by g0 = N ′3(qa)s−2g. Here, q denotes a positive constant with dimensions
(Length)−1, and m and g represent finite physical factors. It is noteworthy
that Zm2

0 = m2/[N ′(qa)s] and Z2g0 = g/[N ′(qa)2]. The characterization of
the model is now complete. (Remark: Although we have confined attention
to models with quartic interactions, measure mashing also enables higher
powers, e.g., ϕ44

n , ϕ444
n , etc., to be handled just as well [5].)

Much has changed by passing from a free model to a pseudofree model as
the center of focus. Traditionally, when forming local products from free field
operators, normal ordering is used. On the contrary, after measure mashing,
the pseudofree field operators satisfy multiplicative renormalization, and no
normal ordering is involved. Indeed, the very coefficients m2

0 and g0 act
partially as multiplicative renormalization factors for the associated products
involved. To say that there are no divergences means, for example, that the
expression m2

0Σ
′

kφ
2
kas is a well defined, and this fact is established by ensuring

that m2
0Σ′

k〈φ
2
k〉a

s ∝ N ′as < ∞. The same holds true for g0Σ
′

kφ
4
kas, which

is shown to be well defined by noting that g0Σ
′

k〈φ
4
k〉a

s ∝ N ′as < ∞. These
quantities remain bounded even in the continuum limit.
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Extension to Less Singular Scalar Models

Let us take up the extension of measure mashing to other models such as
ϕ4

n, for n ≤ 4. Although the classical pseudofree theory is identical to the
free theory in these cases, this fact does not prevent us from suggesting the
consideration of mashing the measure for such less singular models in an
effort to eliminate divergences that arise in those cases. For n = 2, it is
well known that normal ordering removes all divergences, but it is also well
known that normal ordering is a rather strange rule to define local products.
In particular, if we rewrite the product of two field operators as

ϕ(x)ϕ(y) = 〈0|ϕ(x)ϕ(y)|0〉+ : ϕ(x)ϕ(y) : , (25)

then, as y → x, the most singular term is the first term, but since it is a
multiple of unity, the second and less singular term is chosen to define the
local product, ϕ(x)2

Renormalized = : ϕ(x)2 :. In sharp contrast, in the operator
product expansion, schematically given by

ϕ(x)ϕ(y) = c1(x, y) ζ1(
1
2
(x + y)) + c2(x, y) ζ2(

1
2
(x + y)) + · · · , (26)

the local product, as y → x, is defined as that operator, say ϕ(x)2
Renormalized =

ζ1(x), for which the associated c-number coefficient c1(x, y) is the most sin-

gular as y → x; this is a very reasonable rule, but it differs markedly from the
rule of normal ordering. To adopt measure mashing for φ4

2 would introduce
the operator product expansion and thereby a more natural local product
definition. This same feature also applies to φ4

3 and φ4
4, and moreover it

would eliminate divergences that appear in those models. It could even of-
fer a nontrivial proposal for φ4

4 which is widely believed to be trivial when
quantized conventionally.

Is all this a physically realistic proposal? Presumably, the answer would
depend on the application, so it is too soon to expect a firm answer to this
question. Nevertheless, it would seem there is progress already just to have a
possible solution to nonrenormalizable models rather than the unsatisfactory
results obtained by conventional techniques.
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