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PROJECTIVE BGG EQUATIONS, ALGEBRAIC SETS, ANDCOMPACTIFICATIONS OF EINSTEIN GEOMETRIESA. �AP, A.R. GOVER, M. HAMMERLAbstra
t. For 
urved proje
tive manifolds we introdu
e a notion of a normal tra
torframe �eld, based around any point. This leads to 
anoni
al systems of (redundant)
oordinates that generalise the usual homogeneous 
oordinates on proje
tive spa
e.These give preferred lo
al maps to the model proje
tive spa
e that en
ode geometri

onta
t with the model to a level that is optimal, in a suitable sense. In terms of thetrivialisations arising from the spe
ial frames, normal solutions of 
lasses of naturallinear PDE (so-
alled �rst BGG equations) are shown to be ne
essarily polynomialin the generalised homogeneous 
oordinates; the polynomial system is the pull ba
kof a polynomial system that solves the 
orresponding problem on the model. Thusquestions 
on
erning the zero lo
us of solutions, as well as related �ner geometri
and smooth data, are redu
ed to a study of the 
orresponding polynomial systemsand algebrai
 sets. We show that a normal solution determines a 
anoni
al manifoldstrati�
ation that re�e
ts an orbit de
omposition of the model. Appli
ations in
ludethe 
onstru
tion of new stru
tures that are analogues of Poin
aré-Einstein manifolds.ARG gratefully a
knowledges support from the Royal So
iety of New Zealand viaMarsden Grant no. 06-UOA-029; A� and MH gratefully a
knowledge support by proje
tP19500�N13 of the �Fonds zur Förderung der wissens
haftli
hen Fors
hung� (FWF) andthe hospitality of the University of Au
kland.1. Introdu
tionNatural (or geometri
) partial di�erential equations (PDE) are those whi
h, in a suit-able sense, are determined by some underlying geometry. Given su
h an equation, animportant problem is to expose the geometri
 
ontent of a solution, and the impli
ationsof its existen
e. Example questions 
lose to our fo
us here are the following. Whatgeneral results 
an be established 
on
erning the nature and geometri
 stru
ture of thesolution's zero lo
us? What is the relationship of these features to the ambient stru
ture?At the most primitive level there are questions of topology and smoothness; at the nextlevel, it 
an be that the zero lo
us satis�es an interesting smooth embedding equationand inherits a ri
h intrinsi
 geometri
 stru
ture.Here we study a large 
lass of solutions to overdetermined PDE arising naturallyin proje
tive geometry. We show that, to a surprising extent, these problems 
an beredu
ed to vastly simpler questions of an algebrai
 geometri
 type. This leads to a
on
eptual and pra
ti
al way to des
ribe, and manage geometri
ally, 
ompa
ti�
ationsof 
urved geometries; the 
ompa
ti�
ations involved are naturally related to the geodesi
stru
ture.2000 Mathemati
s Subje
t Classi�
ation. Primary 53C25, 53A30; Se
ondary 53B20.Key words and phrases. Proje
tive di�erential geometry, 
ompa
ti�
ations, Poin
aré-Einstein mani-folds, Einstein manifolds, 
onformal geometry, paraboli
 geometries.1



2 �ap, Gover, HammerlOur work is partly inspired by the ri
h programme surrounding Poin
aré-Einstein(PE) manifolds; these were introdu
ed by Fe�erman-Graham as a tool for 
onstru
t-ing 
onformal invariants [21℄. A PE stru
ture 
onsists of a 
onformal 
ompa
ti�
ationof a geodesi
ally 
omplete Einstein-pseudo-Riemannian manifold, and broadly the pro-gramme involves naturally relating geometry and �elds on a 
onformal boundary withEinstein-Riemannian geometry and �eld theory on the interior. Over the past de
ade thisproblem has been a domain of intense interest and deep progress [1, 10, 22, 23, 34, 38, 42℄,in part the work has been driven by strong links with the AdS/CFT 
orresponden
e ofMalda
ena [41, 36℄, see e.g. [32, 35, 46℄. The original PE 
onstru
tion was pre
eded bya Kähler-Einstein-CR geometry analogue [19, 20℄ and re
ently there has been work toextend the pi
ture to quaternioni
-Kähler metri
s and beyond [8, 9℄.It was observed in [26℄ that a PEmanifold is the same as a 
onformalmanifold equippedwith a solution of a 
ertain 
onformally invariant PDE; this solution having the propertythat its (ne
essarily smooth and embedded) zero lo
us is pre
isely the topologi
al bound-ary. That result led to an e�e
tive approa
h to 
ertain key problems for these stru
tures,extension to the notion of almost Einstein manifolds [27, 28℄, and also methods for ge-ometri
ally 
onstru
ting, and partly 
hara
terising, examples of PE manifolds [30℄. In[28℄ it is seen that the almost Einstein 
lass also naturally in
ludes asymptoti
ally lo-
ally Eu
lidean (ALE) stru
tures that admit isolated point 
onformal 
ompa
ti�
ation;in fa
t the nature of the 
ompa
ti�
ation is shown to be an easy 
onsequen
e of the
ompatibility of Ri

i-�atness with the governing 
onformal PDE.Here we show that 
onsidering a 
lass of solutions to similar, but essentially di�erentequations, leads to a natural extension of these ideas. In fa
t the s
ope is broader thanthis suggests, as the wider perspe
tive draws in 
onsiderable new phenomena. In thesimplest 
lass of 
ases the linear equations studied take the form(1.1) (
∇(a1

∇a2
· · ·∇ak+1) + lower order terms)σ = 0,where ∇ is an a�ne 
onne
tion, σ is a fun
tion and the (· · · ) indi
ates taking the sym-metri
 part over the en
losed indi
es. (Here, and in many pla
es throughout, we usePenrose's abstra
t index notation [44℄.) These equations have a symmetry known asproje
tive invarian
e that plays an important role. We see in Se
tion 3.1 that 
ertainsolutions for the 
ases k = 1 and k = 2 do indeed lead to stru
tures that are analogousto PE manifolds. In parti
ular in Se
tion 3.3 the k = 2 
ase yields a 
urved analogue ofthe hyperboli
 ball. This is a manifold with boundary. As in the 
ase of a PE manifold,the boundary has a 
anoni
al 
onformal stru
ture and the interior has a geodesi
ally
omplete (Riemannian) negative Einstein stru
ture. However in this 
ase a proje
tive
ompa
ti�
ation is involved, whi
h emphasises the role of geodesi
s; this is stri
tly dif-ferent from 
onformal 
ompa
ti�
ation thus the stru
ture is not PE, see Proposition 3.3.There are analogues for all signatures and the Lorentzian 
ase should be of interest to thegeneral relativity 
ommunity. These examples also show rather 
learly that although theequations we 
onsider are linear, the integrability 
onditions for these 
an involve veryinteresting non-linear 
onditions (su
h as the Einstein equations), on whi
h we obtain anew perspe
tive.Let us now be spe
i�
 about the full 
lass of equations we treat. We restri
t ourattention to natural equations on a proje
tive manifold of dimension at least 2. Re
allthat this 
onsists of a manifold M equipped with an equivalen
e 
lass p of a�ne 
on-ne
tions (we write (M, p)); the 
lass is 
hara
terised by the fa
t that two 
onne
tions
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∇ and ∇̂ in p have the same geodesi
s up to parametrisation. A model stru
ture is n-dimensional proje
tive spa
e RP

n, but to avoid issues of orientability we prefer to workwith its double 
over, the proje
tive sphere Sn. We view this as a homogeneous spa
e for
G = SL(n+ 1, R) and write P for isotropy subgroup of a point; so P is a maximal para-boli
 subgroup and we may identify Sn with G/P . To ea
h irredu
ible G-representation
V there is on S

n a 
anoni
al �nite resolution by linear di�erential operators [18℄ whi
his related to the algebrai
 resolutions from [7, 40℄,(1.2) 0 → V → B0 D
→ B1 → · · ·Bn → 0.Here the Bi are irredu
ible (weighted) tensor bundles. For the di�erential operators inthe sequen
e there are 
anoni
al 
urved analogues, that is, generalisations that exist andare invariant on general proje
tive manifolds (M, p) [17℄. In parti
ular, this is true forea
h �rst BGG operator D, and we use the same terminology (and notation) for ea
h
orresponding 
urved analogue.These proje
tively invariant �rst BGG operators give the equations we study. For thesewe 
onsider the spe
ial 
lass of so-
alled normal solutions; see Se
tion 2.3. On proje
tivemanifolds there is a 
anoni
al normal Cartan 
onne
tion on a higher frame bundle. Theequivalent indu
ed linear 
onne
tions are termed (normal) tra
tor 
onne
tions [6, 11℄;the tra
tor and Cartan 
onne
tions are reviewed brie�y in Se
tion 2.2. Beginning witha tra
tor bundle indu
ed from an irredu
ible G-representation, ea
h parallel tra
tor isequivalent to a normal solution of a �rst BGG equation. On Sn all solutions are normal,but a priori on 
urved stru
tures it is a restri
tion.By their de�nition, normal solutions are related to holonomy redu
tions of the Car-tan/tra
tor 
onne
tion and from this perspe
tive 
ertain lo
al aspe
ts have been inves-tigated in [3, 4℄. There one sees that, on the one hand, the available holonomy groupsrestri
t the range of 
urved 
ases (although the treatment there 
lassi�es irredu
ible ho-lonomy algebras, and so is not exhaustive), but on the other hand within the allowedgroups interesting geometri
 stru
tures arise in
luding various pseudo-Riemannian Ein-stein (mentioned above) and 
onta
t adapted proje
tive stru
tures in the sense of [24℄.The main fo
us of the 
urrent arti
le is to show how to a

ess geometri
 and topologi
alinformation via a remarkable 
onne
tion to the model S

n, and then a new understandingof the nature of the �rst BGG solutions there. Re
alling that Möbius' homogeneous
oordinates are a fundamental tool for the 
al
ulus on proje
tive spa
e, in Se
tion 2.5we �nd lo
al 
urved analogues, see Lemma 2.4. Based around a point, these are deter-mined uniquely by a normal tra
tor frame that we also build. The whole 
onstru
tion is
anoni
al up to a freedom parametrised by the paraboli
 subgroup P . The generalisedhomogeneous 
oordinates lead to a di�eomorphism between the 
urved proje
tive man-ifold (Mn, p) and the model S
n that, together with the normal frame, en
odes a highdegree of geometri
 
onta
t. In parti
ular, in the normal trivialisations, the 
omponentsof parallel tra
tor �elds on (M, p) pull ba
k to parallel tra
tor �elds on the model, seeTheorem 2.5 and Corollary 2.6 whi
h are the �rst main results.An immediate 
onsequen
e of these 
onstru
tions is Corollary 2.7 whi
h shows that the
omponents of normal solutions are ne
essarily the push forward (via the di�eomorphism)of a �rst BGG solution on the model. It follows that many lo
al analyti
 and geometri
questions for normal solutions on (M, p) 
an be settled by studying the same problemin the simpler setting of the model. This strongly suggests there is signi�
ant value inunderstanding the nature of �rst BGG solutions on Sn. It turns out that the answer,given in Proposition 2.9, is rather appealing: the �rst BGG solutions on Sn are pre
isely



4 �ap, Gover, Hammerlthe (weighted) irredu
ible tensor �elds arising from a natural 
lass (that we term G-irredu
ible) of homogeneous polynomial systems on Rn+1. For example, for a given k, thesolutions of (1.1), on Sn, are simply the proje
tive polynomials of degree k. Remarkablyin the 
urved setting, normal �rst BGG solutions are given by the same formal polynomialsystems, now as understood as polynomials in the generalised homogeneous 
oordinates.In general, these 
onstru
tions allow us to 
on
lude that a normal solution τ of a �rstBGG operator is, in a pre
ise way, a 
urved analogue of a G-irredu
ible polynomial tensor�eld on Sn. This is an interpretation of the next main result, Theorem 2.10.To indi
ate the s
ope we point out that appropriate 
olle
tions of the solutions of theBGG operators on s
ales (1.1) are su�
ient to yield 
urved analogues of any proje
tivepolynomial system see Se
tion 2.6. Note that sin
e we work over R, a polynomial sys-tem generally 
ontains stri
tly more information that the algebrai
 set it determines.In parti
ular various distin
t geometri
 stru
tures arise as 
urved analogues of distin
tpolynomial polynomial systems with the 
ommon feature of empty zero lo
us; these
an be important and interesting, and in the analogous 
onformal setting this in
ludesFe�erman spa
es [13, 14℄, and positive Riemannian Einstein metri
s [28℄.As an immediate appli
ation, in Corollary 2.12 we see that the lo
al nature of thezero lo
us of a normal solution τ may be 
ompletely dedu
ed from the data of the
orresponding algebrai
 set on S
n. For example we 
an use this to des
ribe 
lassesof 
ases where any zero lo
us of τ is ne
essarily a smooth embedded submanifold. Infa
t information that is both �ner and has global 
ontent is available. For a proje
tivemanifold (M, p) equipped with a normal solution τ we obtain a de
omposition, or morea

urately strati�
ation, of (M, p) whi
h re�e
ts the 
orresponding Bruhat-type orbitde
omposition of the model S

n; this is termed a P -type de
omposition. This perspe
tiveshould be useful in developing 
urved analogues of the ve
tor valued Poisson transforms(
f. for example [43℄). Information of a more analyti
 nature 
an also be dedu
ed fromthe model, and indeed in two of the examples of Se
tion 3.1 we use this idea to showthat the open P -types are geodesi
ally 
omplete.Finally we should point out that we have sele
ted here, for development in some detail,just part of a very general pi
ture. It is essentially 
lear that a dire
t analogue of our
onstru
tions is possible for 
onformal geometry; the importan
e of parallel tra
tors ismore established in the 
onformal setting [2℄ and examples in
lude the Fe�erman spa
e[13, 14, 39℄ (as well as PE and almost Einstein geometries). In fa
t via a di�erent ap-proa
h related results 
an be established for all Cartan geometries, and thus in parti
ularfor all paraboli
 geometries [15℄.2. The 
urved analogue of proje
tive polynomial systemsHere we shall 
onstru
t and exploit 
urved analogues of 
ertain proje
tive polynomialsystems. We require some ba
kground to des
ribe the 
onstru
tion.2.1. Proje
tive di�erential geometry and tra
tor 
al
ulus. As mentioned above,we shall write S
n := P+(Rn+1) to denote the ray proje
tivisation of R

n+1. This has anatural 
lass of preferred paths that may be viewed as unparametrised geodesi
s; thesearise from the proje
tivisation of 2-dimensional linear subspa
es in R
n+1. This stru
tureis preserved by a group a
tion. Evidently, G := SL(n+ 1, R) a
ts transitively on Sn andmaps geodesi
s to geodesi
s. To be 
on
rete in our development, we �x some 
hoi
e ofnon-zero e0 ∈ Rn+1 and de�ne P to be the paraboli
 subgroup stabilising the ray R+·e0.The 
lassi
al 
urved generalisation of Sn is termed a proje
tive stru
ture (Mn, p),

n ≥ 2, as de�ned in the introdu
tion. Alternatively phrased, as 
onne
tions on T ∗M ,



Proje
tive equations, algebrai
 sets, and 
ompa
ti�
ations 5the elements in p satisfy(2.1) ∇̂aub = ∇aub − Υaub − Υbuawhere Υ is some smooth se
tion of T ∗M .2.2. Proje
tive tra
tor 
al
ulus. If M is oriented we write E(1) for the (−n − 1)stroot of the 
anoni
al bundle. Otherwise we write E(1) for a 
hoi
e of line bundle with
(−2n − 2)nd power the square of the 
anoni
al bundle. We note that any 
onne
tion
∇ ∈ p determines a 
onne
tion on E(1) and its real powers E(w), w ∈ R; we 
all E(w)the bundle of proje
tive densities of weight w. As a point on notation: Given a bundle
B we shall write B(w) as a shorthand for B ⊗ E(w).Although, by the de�nition of a proje
tive stru
ture, there is no preferred 
onne
tionon TM , there is a 
anoni
al 
onne
tion, known as the tra
tor 
onne
tion, on a relatedhigher rank bundle. In the 
ase of the model S

n = G/P this is remarkably simple.For any P -representation W one has the indu
ed homogeneous bundle W := G ×P Wwhere this means G × W modulo the equivalen
e relation (gr, v) ∼ (g, r·v), for r ∈ P .However in the spe
ial 
ase that W is the restri
tion to P of a G-representation then Wis 
anoni
ally trivialised φ : W → (G/P )×W by (g, v) 7→ (gP, g·v). Canoni
ally we havethe trivial 
onne
tion on (G/P )×W and via φ this pulls ba
k to the tra
tor 
onne
tion
∇T on W .Sin
e it o

upies little spa
e, and be
ause in any 
ase we need the notation and 
on-
epts, we review brie�y the 
onstru
tion of the tra
tor 
onne
tion in general; we follow[6℄ and the 
onventions there. In an abstra
t index notation let us write EA for J1E(1),the �rst jet prolongation of E(1). Canoni
ally we have the jet exa
t sequen
e(2.2) 0 → Ea(1)

ZA
a

→ EA
XA

→ E(1) → 0,where we have written XA ∈ ΓE(1) for the jet proje
tion, and ZA
a for the map inserting

Ea(1); these are both 
anoni
al. We write EA = Ea(1)+
�
�E(1) to summarise the 
omposi-tion stru
ture in (2.2). As mentioned, any 
onne
tion ∇ ∈ p determines a 
onne
tion on

E(1), and this is pre
isely a splitting of (2.2). Thus given su
h a 
hoi
e we have the dire
tsum de
omposition EA
∇
= Ea(1)⊕ E(1) with respe
t to whi
h we de�ne a 
onne
tion by(2.3) ∇T
a (µb | σ) := (∇aµb + Pabσ | ∇aσ − µa).Here Pab is the proje
tive S
houten tensor and, with Rab

c
d denoting the 
urvature of ∇,is related to the Ri

i tensor Rab := Rca

c
b by (n−1)Pab = Rab−

2
n+1R[ab]; [· · · ] indi
atesthe skew part over the en
losed indi
es. It turns out that (2.3) is independent of the
hoi
e ∇ ∈ p, and so ∇T is determined 
anoni
ally by the proje
tive stru
ture p. This isthe 
otra
tor 
onne
tion of [47℄ and is equivalent to the normal Cartan 
onne
tion for theCartan stru
ture of type (G, P ), see [11℄. Thus we shall also term EA the 
otra
tor bundle,and we note the dual tra
tor bundle EA (or in index free notation T ) has 
anoni
ally thedual tra
tor 
onne
tion: in terms of a splitting dual to that above this is given by(2.4) ∇T

a



 νb

ρ



 =



 ∇aν
b + ρδb

a

∇aρ − Pabν
b



 .It will be useful to understand how the underlying 
onne
tions in p arise from thetra
tor 
onne
tion. By dualising (2.2) it follows that the tra
tor bundle has a 
anoni
al
omposition stru
ture given by the exa
t sequen
e(2.5) 0 → E(−1)
XA

→ EA ZA
a

→ Ea(−1) → 0.



6 �ap, Gover, HammerlThe isomorphism EA
∇
= Ea(1)⊕E(1) determined by∇ ∈ p also splits (2.5) and is evidentlyequivalent to a 
hoi
e of se
tion YB ∈ EB(−1) satisfying XBYB = 1. Su
h a splitting isequivalent to a Weyl stru
ture (
f. [16℄). This determines a bundle monomorphism,(2.6) ZA

a : Ea(−1) → EA.Using this a 
onne
tion ∇Y
a on Ea(−1) is then re
overed from∇T by the 
omposition (onse
tions of Ea(−1)) of∇T with the map (2.6) followed by the 
anoni
al map EA → Ea(−1)of (2.5); this is evident from (2.4). This then determines a 
onne
tion on TM that wemay denote ∇Y .Sin
e EA is J1E(1) we have the 
anoni
al universal 1-jet di�erential operator DA :

E(1) → EA, and from (2.2) XA
DA is the identity on E(1). Thus any nowhere vanishingse
tion σ ∈ ΓE(1) determines a spe
ial Weyl stru
ture, termed a s
ale, by taking YA :=

σ−1
DAσ. In fa
t by 
onsidering powers and roots of E(1) one sees that DA generalises toan invariant operator DA : E(w) → EA(w − 1), w ∈ R, known to Thomas [6, 47℄ and weshall term any nowhere vanishing se
tion τ ∈ ΓE(w), w 6= 0, a s
ale (sin
e we may take

YA = 1
w

τ−1DAτ). We write ∇τ for the a�ne 
onne
tion in p determined by a 
hoi
e ofs
ale τ .2.3. Normal solutions. Any ve
tor bundle whi
h is a tensor produ
t of tensor powersof the tra
tor and 
otra
tor bundles, or a tensor part thereof, is termed a tra
tor bundle.The stru
tures whi
h arise are handled e�
iently by appeal to a prin
ipal bundle pi
tureas follows.Following [11℄ we 
onsider the bundle G of adapted frames for T whi
h respe
t the�ltration stru
ture shown in (2.5). This is a prin
ipal bundle with stru
ture group P .Then tautologi
ally T is the asso
iated bundle G ×P R
n+1. It is also straightforward tore
over, from the tra
tor 
onne
tion, the unique Cartan 
onne
tion ω on G fromwhi
h thetra
tor 
onne
tion is indu
ed. It follows that, given any representation W of G, we obtaina tra
tor bundle W = G ×P W equipped with a (linear) tra
tor 
onne
tion indu
ed from

ω. When we talk about tra
tor �elds being parallel we mean that they are 
ovariantly
onstant with respe
t to this 
onne
tion. If W is an irredu
ible G-representation thenwe say that the tra
tor bundle W is G-irredu
ible. In this 
ase there is a natural bundlemap Π : W → B0, where B0 is an irredu
ible weighted tensor bundle, indu
ed by the
P -epimorphism from W to its P -irredu
ible quotient.Proposition 2.1. [18℄ Let V be a G-irredu
ible tra
tor bundle on (M, p) and supposethat I is a parallel se
tion of V. Then the bundle map Π : V → B0 takes I to a solution
τ := Π(I) of a �rst BGG operator

D : B0 → B1.De�nition: We shall say that τ , arising as in the Proposition, is a normal solution (ofthe operator D). In the following text we may use the term �normal solution� to meanthe normal solution for some �rst BGG operator D, without spe
ifying D.Remark: It is worth noting that in the 
ase of the model S
n all solutions arise this way.In fa
t in the resolution (1.2) the G-representation V may be identi�ed with the spa
eof parallel tra
tors in the tra
tor bundle asso
iated to V.2.4. The Thomas 
one spa
e M . In view of the 
anoni
al �bration π : Rn+1 \0 → Snwe may regard Rn+1 \ 0 as a 
one spa
e over Sn. Here we re
over the 
urved analogue ofthis (whi
h was probably known to T.Y. Thomas), see [16, 24℄.



Proje
tive equations, algebrai
 sets, and 
ompa
ti�
ations 7In Se
tion 2.3 above we mentioned that the Cartan 
onne
tion indu
es a 
anoni
altra
tor 
onne
tion on any asso
iated bundle G ×P W, where W is the restri
tion to Pof a G-representation. It is immediate from the equivarian
e properties of ω that, moregenerally for any 
losed subgroup P0 ⊂ P , we obtain a 
anoni
al 
onne
tion on G×P0
W,a ve
tor bundle over the �brewise quotient G/P0. In parti
ular, let us hen
eforth write

P0 to denote the subgroup of G �xing e0 and de�ne M to be the quotient G/P0, that is,it is the total spa
e
M = G ×P E+where E+ is the R+-ray generated by e0 in Rn+1; from (2.5) we see that it is equivalentlythe total spa
e of the ray-bundle E(−1)+ (i.e. the subbundle of positive rays in E(−1)).We write π : M → M for the 
anoni
al bundle proje
tion.Now observe that, as P0 representations, we have g/p0

∼= Rn+1. From this there followtwo points. First by the last isomorphism, and that Rn+1 may be 
onsidered as therestri
tion to P0 of a G-representation spa
e, it follows that ω 
anoni
ally indu
es a ve
torbundle 
onne
tion on G×P0
g/p0. Se
ond, by the standard theory of Cartan 
onne
tions,we also have 
anoni
ally the identi�
ation G ×P0

g/p0
∼= TM . From the formula forthe tra
tor 
onne
tion (equivalently the normalisation 
onditions of the normal Cartan
onne
tion) it follows that this 
onne
tion is Ri

i-�at. In summary.Proposition 2.2. The proje
tive stru
ture (M, p) determines a 
anoni
al Ri

i-�at a�ne
onne
tion ∇ on the manifold M .The 
anoni
al se
tion XA 
orresponds to a se
tion ζA of TM whi
h generates the R+a
tion on the �bres, and it is straightforward to verify that(2.7) ∇BζA = δA

B.Asso
iated bundles on M arise from P -representations U as G ×P U. Se
tions arefun
tions u : G → U whi
h are P -equivariant in the sense that u(g·r) = r−1·u(g).Sin
e P equivarian
e trivially implies equivarian
e for any subgroup, it follows that, byrestri
tion, su
h se
tions lift immediately to se
tions of the 
orresponding bundle G×P0
Uover M . In parti
ular using the formula for the tra
tor 
onne
tion from [11, Se
tion 2.5℄one sees immediately that, in the 
ase that U is a G-representation, parallel tra
tor �eldson M 
orrespond in an obvious way with parallel tensor �elds on M . It follows thatarbitrary smooth se
tions of T (or T ∗) 
orrespond to se
tions of TM (resp. T ∗

M) thatare in the null spa
e of ζA
∇A, and so general (unweighted) tra
tor �elds 
orrespond inan obvious way to tensor �elds that are parallel in the dire
tions of the �bres of π. Using(2.7) and that ∇ is torsion free, this means that a se
tion of T 
orresponds to a se
tionof TM whi
h is homogeneous of degree −1, with respe
t to the prin
ipal R+�a
tion.Now any se
tion of π determines a splitting of (2.5) and so a 
onne
tion from p. Notethat a s
ale σ determines a unique se
tion of E(−1)+ and thus a se
tion of π. It isstraightforward to verify [16℄ that the a�ne 
onne
tion ∇σ that arises is related to theThomas spa
e 
onne
tion ∇ as follows.Lemma 2.3. Let u, v ∈ ΓTM and σ a s
ale viewed, as a se
tion of π : M → M . Then

∇uv = π∗(∇σ∗uσ∗v).Note that (2.7) implies that ζA∇AζB = ζB so ea
h �bre of π agrees with the tra
e ofa verti
al geodesi
. It follows that other geodesi
s remain transverse to the �bres for alltime, and proje
t to regular 
urves on M . It is an easy 
onsequen
e of (2.3) that theseare geodesi
s from the 
lass on (M, p).
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oordinates. Here we shall show that given a point
q ∈ M , and a 
hoi
e of adapted frame for T (1)q, we obtain an otherwise 
anoni
al di�eo-morphism between (M , ∇) and a�ne R

n+1; this map is distinguished by its propertiesof geometri
 
onta
t with the model, as we shall see later in this se
tion.Re
all we denote by ζ the fundamental ve
tor �eld generating the prin
ipal right R+�a
tion on M . In the 
ase of the model π : R
n+1 \ 0 → S

n the fundamental �eld 
oin
ideswith the usual Euler ve
tor �eld E, and the a�ne 
onne
tion ∇ agrees with the usuala�ne parallel transport.Lemma 2.4. Choose q̃ ∈ M , and a unit volume frame e0, . . . , en for Tq̃M , with e0 = ζ.This determines a di�eomorphism Φ : π−1(U ′) → π−1(U) for some open neighbourhood
U of q := π(q̃) and some open set U ′ in Sn. With the following properties:
• Φ is R+-equivariant and so determines a di�eomorphism φ : U ′ → U ;
• Φ maps straight lines through Φ−1(q̃) to geodesi
s for ∇ through q̃, and so φ maps great
ir
les through φ−1(q) to geodesi
 paths through q;
• Φ∗ζ is the Euler ve
tor �eld on π−1(U ′) ⊂ Rn+1.Proof: We shall write exp for the a�ne exponential map of ∇ at the point q̃. Now let
W be an open neighbourhood of zero in R

n su
h that
(x1, . . . , xn) 7→ π(exp(x1e1 + · · ·+ xnen))de�nes a di�eomorphism from W onto an open neighbourhood U of q := π(q̃) in M . Wemay identify W with the a�ne hyperplane neighbourhood {(1, x) : x ∈ W} in R

n+1, andwrite U ′ ⊂ S
n for the open subset 
onsisting of its image under π. Now de�ne a map

Φ : π−1(U ′) → π−1(U) by
(r, rx1, . . . , rxn) 7→ exp(x1e1 + · · ·+ xnen)·r,where r > 0, (x1, . . . , xn) ∈ W and the dot indi
ates the prin
ipal right a
tion. Evidently,this is an R+�equivariant di�eomorphism, so it indu
es a di�eomorphism φ : U ′ → Uand Φ∗ζ is the Euler ve
tor �eld on π−1(U ′) ⊂ R

n+1. Also, φ maps great 
ir
les through
π((1, 0)) to geodesi
 paths through q, sin
e by 
onstru
tion it maps straight lines in thea�ne hyperplane through (1, 0) to geodesi
s through q̃ in M . �Remark: Note that the frame {e0, . . . , en} for Tq̃M determines an adapted frame for
Tq. Varying q̃ ∈ π−1(q), any adapted frame 
an be obtained in this way. Hen
e at agiven point q ∈ M , the freedom of 
hoi
e is parametrised by P .The Lemma leads to the following observation:Remark: Generalised homogeneous 
oordinates. Let us writeX0, X1, · · · , Xn : π−1(U) →
R for the fun
tions on π−1(U) ⊂ M whi
h are the push forward via Φ (i.e. pull ba
kvia Φ−1) of the standard 
oordinates X0, X1, · · · , Xn on Rn+1 (restri
ted to (π)−1(U ′)).Sin
e Φ is a di�eomorphism, the XA, A = 0, 1, · · · , n, are 
oordinates on π−1(U). Alsonote that by the equivarian
y of Φ, these fun
tions are homogeneous of degree one for theprin
ipal R+�a
tion on M , so they are equivalent to 1�densities on M . This 
olle
tionof densities may be viewed as 
urved versions of homogeneous 
oordinates.2.6. The fundamental theorem for parallel tra
tors. We show here that the dif-feomorphism of Lemma 2.4 
aptures a high degree of 
onta
t between (M, p) and Sn.This is observed by a 
ompatibility between the tra
tor parallel transport, on the twomanifolds, that we shall des
ribe pre
isely. First we 
onstru
t a frame �eld for TM on
π−1(U) that 
orresponds to an adapted frame �eld for T on U .
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ontinue the notation of Lemma 2.4. Take the ve
tors e1, . . . , en at q̃, andtransport them parallelly along the horizontal geodesi
s t 7→ exp(tx) for x in the spanof e1, . . . , en. Possibly shrinking U , these ve
tors proje
t onto a lo
al frame {ξ1, . . . , ξn}for the tangent bundle TM over U .Next, we 
laim that putting e0 = ζ along these horizontal geodesi
s, we obtain a unitvolume frame {e0, . . . , en} along exp(W ). Let c(t) be one of the horizontal geodesi
sthrough q̃. Then c′(t) is obtained by parallelly transporting c′(0) along the geodesi
 to
c(t). By assumption, c′(0) lies in the span of e1, . . . , en, when
e c′(t) lies in the spanof e1(c(t)), . . . , en(c(t)). But together with ∇ξζ = ξ and ∇c′(t)ei = 0 along c(t), thisimplies that ∇c′(t)(ζ ∧ e1 ∧ · · · ∧ en) = 0 along c(t). Sin
e ∇ is volume preserving, andthe frame has unit volume in q̃, the 
laim follows.Finally we extend our frame along the �bres of π by requiring homogeneity of degree
−1 with respe
t to the prin
ipal R+�a
tion, that is we require ei(y·r) = r−1ρr

∗·ei(y),where ρ denotes the R+-a
tion. Then it is 
lear by 
onstru
tion that ei de�nes a framefor the tangent bundle TM over π−1(U), and at the same time determines an adaptedframe for T over U via the 
orresponden
e of Se
tion 2.4. Noti
e that by 
onstru
tionand the equivarian
y of Φ we see that sin
e Φ∗e0 equals the Euler ve
tor �eld E on
{(1, x) : x ∈ W}, we have Φ∗e0 = (X0)−1E on π−1(U ′).Next we need to known what this 
onstru
tion yields on the model S

n. The natural
hoi
e is to take q̃ = (1, 0) ∈ R
n+1 and eA = ∂A = ∂

∂XA (q̃) for A = 1, . . . , n. It is easily
on
luded that the 
onstru
tion just gives the frame �eld { 1
X0E, ∂1, . . . , ∂n} on the halfspa
e X0 > 0. Now a 
onstant tensor I

′ on R
n+1 is equivalent to a parallel tra
tor on

I ′ on S
n; this uses Se
tion 2.4 for the model. Putting these things together we 
ome tothe following key fa
t. Here to simplify the statement, density bundles are trivialised bythe s
ale X0 (
orresponding to working on the se
tion X0 = 1 of M).Theorem 2.5. Suppose that I is a parallel se
tion of a tra
tor bundle. Composing with

φ the 
oordinate fun
tions of I with respe
t to the frame derived from {e0, . . . , en}, oneobtains the 
oordinate fun
tions of a parallel tra
tor I ′ on the homogeneous model withrespe
t to the tra
tor frame obtained in the same way from { 1
X0E, ∂1, . . . , ∂n}.Proof: Denote by I the parallel tensor on (M , ∇) equivalent to I . We 
onsider anexpression for I in the form aJeJ , where the elements eJ are linear 
ombinations oftensor produ
ts of the ej , whi
h form a lo
al frame for the given tensor bundle. Thenalong any of the geodesi
s c(t) through q̃, and lying in exp(W ), we 
an 
onsider

0 = ∇c′(t)

∑

J

aJeJ =
∑

J

(c′(t)·aJ (c(t)))eJ +
∑

J

aJ∇c′(t)eJTo expand the last term, we only need to know that ∇c′(t)e0 = c′(t) while ∇c′(t)ei = 0for i > 0 along c(t). This shows that for the 
oe�
ients aJ we obtain a �rst orderODE on the fun
tion t 7→ aJ(c(t)) = bJ(t) whi
h has the form b′(t) = F (b(t)) and oneobtains the same system on the 
orresponding straight line through (1, 0) ∈ Rn+1 overthe homogeneous model Sn. In verti
al dire
tions, everything is �xed by homogeneity,so we obtain the result. �There is a useful variant of the above result. To simplify the dis
ussion let us simplyidentify tra
tor �elds in M with the 
orresponding homogeneous tensor �elds on M anddo the same on the model.On the homogeneous model, we 
an dire
tly 
ompute the 
hange from the frame
{ 1

X0E, ∂1, . . . , ∂n} to {∂0, . . . , ∂n}, and then make the same 
hange on M . Denoting,



10 �ap, Gover, Hammerlas above, the generalised homogeneous 
oordinates on M by XA, this implies that anyparallel tra
tor has 
onstant 
oordinate fun
tions with respe
t to the the frame(2.8) {f0, f1, . . . , fn}, where f0 = e0 −
X1

X0
e1 − · · · −

Xn

X0
enand fi = ei for i = 1, · · · , n. The 
orresponding 
oframe is given by f0 = e0 and

f i = ei + Xi

X0 e0 for i = 1, · · · , n.Sin
e the 
hange of frame (2.8) is rational in the 
oordinates and these 
oordinatesare the push forward by Φ of the standard 
oordinates on R
n+1, Theorem 2.5 
an beequivalently phrased in terms of the frame fA. More generally we may de�ne, on asu�
iently small neighbourhood U of any point q ∈ M , a map Φ from tra
tor �elds on

U ′ = φ−1(U) ⊂ Sn to tra
tor �elds on U as follows: Use the frame fA and its dual totrivialise the tensor bundles on M . Use the standard R
n+1 frame to do the same on themodel. Then push forward the 
omponent fun
tions of tra
tors �elds (as homogeneousfun
tions on R

n+1) on the model via the di�eomorphism Φ and interpret as 
omponentsof a tra
tor �eld in the trivialisation on M . Then we have the following.Corollary 2.6. Given q ∈ M , a 
hoi
e of adapted frame eA(q) for Tq 
anoni
ally deter-mines, for some neighbourhood U of q, a di�eomorphism φ : U ′ ⊂ S
n → U , a trivialisa-tion of tra
tor and density bundles, and a 
ompatible map Φ from tra
tor �elds on U ′ totra
tor �elds on U with the properties:

• for parallel tra
tors I the 
omponent fun
tions are 
onstant;
• any parallel tra
tor I on U is the image under Φ of a parallel tra
tor U ′ ⊂ S

n;
• the 
omponents of the 
anoni
al tra
tor �eld XA (in the trivialisation) are exa
tly thegeneralised homogeneous 
oordinates XA of Se
tion 2.5, and these are the image under
Φ of the standard 
oordinates on Rn+1.Proof: The �rst part of the last fa
t follows from (2.8) and that X0e0 = ζ. The �nalobservation is immediate sin
e on homogeneous fun
tions on Rn+1, Φ is just Φ∗. Theother points were treated above. �Remark: By the same argument that led to the �rst bullet point of the Corollary, wesee that the frame �eld fA is parallel along those geodesi
s through q̃ ∈ M whi
h liein exp(W ). Then in the verti
al dire
tions we have ∇ζfA = 0, A = 0, 1, · · · , n. Theseproperties with fA(q̃) := eA(q) obviously 
hara
terise this frame, whi
h we will 
all anormal frame. Thus the generalised homogeneous 
oordinates are 
hara
terised as the
omponent fun
tions (densities) of the 
anoni
al tra
tor XA, with respe
t to this normalframe. This frame also determines a normal s
ale σ = f0

AXA = e0
AXA. This agrees with

Φ(X0), so trivialising density bundles on M using σ, is 
ompatible via φ with trivialisingdensity bundles on S
n using X0. This is impli
it in the 
onstru
tion proving Theorem2.5.In our dis
ussion below, we shall use both the normal frame fA and the adapted frame

eA. Note that the map Φ 
an also been obtained using the trivialisations 
orrespondingto the adapted frame.Theorem 2.5 and its equivalent Corollary 2.6 allow us to treat normal solutions sin
e,by Proposition 2.1, ea
h su
h arises as Π(I) for a parallel tra
tor I , where Π denotesthe proje
tion Π to the irredu
ible quotient bundle. This is easily understood using theadapted tra
tor frame {e0, · · · , en} from above. Referring to (2.2) and (2.5), but usingthe normal s
ale σ = e0
AXA to trivialise densities, the proje
tion ZA

a : EA → Ea to theirredu
ible quotient is 
hara
terised by e0 7→ 0 and ei 7→ ξi for i = 1, . . . , n. Dually for
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EA the proje
tion is given by 
ontra
ting with XA, and so is 
hara
terised by by e0 7→ 1and ei 7→ 0 for i = 1, . . . , n. These determine Π on tensor produ
ts.Let us des
ribe the trivialisation of tensor bundles on M (or Sn) indu
ed by theframe {ξ1, . . . , ξn} and the normal density σ (the frame on Sn given by the proje
tion of
{∂1, . . . , ∂n} and the normal density X0) as a normal trivialisation.Corollary 2.7. Suppose that τ is a normal solution of a �rst BGG equation Dτ = 0on (Mn, p). For ea
h point q ∈ M there are open sets U ∋ q and U ′ ⊂ S

n and adi�eomorphism φ : U ′ → U , whi
h maps great 
ir
les through φ−1(q) to geodesi
s through
q, su
h that τ ◦ φ = τ ′ where τ ′ is a solution for D on the model, and τ , τ ′ are the
omponent fun
tions of τ and τ ′ in the appropriate normal trivialisations.The Corollary here is a �rst version of what we shall shortly refer to as the fundamentaltheorem for normal solutions. What is la
king at this point is some expli
it understandingof what the normal BGG solutions are on the model. Fortunately the tools we havealready developed give an answer almost immediately. Let us follow through a the abovefor a spe
ial 
lass of examples.Consider the 
ase of a 
ompletely symmetri
 parallel tra
tor HA1···Ak

on (M, p). From(2.2) the map Π of Proposition 2.1 is simply HA1···Ak
7→ HA1···Ak

XA1 · · ·XAk =: σ ∈
ΓE(k). Now σ 
orresponds to degree k homogeneous fun
tion on M that we shalldenote the same way. From Corollary 2.7, lo
ally (and using the 
onstru
tions andnotation from above) we have σ = φ∗σ

′ where σ′ is a solution to D on S
n . Withrespe
t to the trivialisations arising from the tra
tor frame fA, we have σ 
orrespondsto the homogeneous fun
tion σ = HA1···Ak

XA1 · · ·XA
k on M . From Corollary 2.6, the
omponents HA1···Ak

are 
onstant, so σ is expressed as a polynomial. A

ording to the
onstru
tion, and using Corollary 2.5, σ′ is simply the same homogeneous polynomial (instandard 
oordinates), now viewed as a homogeneous fun
tion on Rn+1. The latter ispre
isely a proje
tive polynomial on Sn of degree k.Note that this out
ome is also 
lear via another perspe
tive from Corollary 2.6: σ =
Π(H) is Φσ′, for some density σ′ on Sn. By expressing σ′ in the frame fA as above,
σ = HA1···Ak

XA1 · · ·XA
k , and using Corollary 2.6, we see σ′ is given by the same formalexpression on R

n+1 and hen
e is Π(H ′) for a parallel tra
tor H ′ there. From eitherperspe
tive, as a spe
ial 
ase of this wemay repla
e (M, p)with Sn to obtain the following.Proposition 2.8. On S
n the degree k proje
tive polynomials are pre
isely the �rst BGGsolutions 
orresponding to symmetri
 rank k parallel tra
tors.So we see that, at least for this 
lass of 
ases, �rst BGG solutions on the model arejust proje
tive polynomials. On the other hand Corollary 2.7 shows that 
orrespondingnormal solutions in ΓE(k), on a proje
tive manifold (M, p), are 
urved analogues. Sin
eany algebrai
 set arises from a 
olle
tion of su
h polynomials, we have a universal wayto des
ribe a 
anoni
al 
urved analogue of the proje
tive polynomial system involved.We may elaborate on the Proposition somewhat. The PDE involved are the equationsof the operators Dk : ΓE(k) → ΓE(a1a2···ak)(k) that, in terms of ∇ ∈ p, take the form(1.1). The equation Dkσ = 0 
hara
terises degree k proje
tive polynomial densities. Thespe
i�
 polynomial densities solving this are then in 1-1 
orresponden
e with parallelsymmetri
 
otra
tors in ΓE(A1···Ak). The parallel tra
tor 
orresponding to a parti
ularsolution σ is really part of the jet (roughly, Taylor series) data of σ determined byprolongation (in [18℄ and 
f. [5℄), but remarkably we 
an avoid any signi�
ant details ofthis beyond what is impli
it in the treatment above.
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orresponding re�nementof Corollary 2.7. A �rst observation is that the tra
tor 
onne
tion preserves a se
tion of
Λn+1EA (a tra
tor volume form), and it follows that, without loss of generality, we maywork with 
ovariant tra
tor �elds, and we hen
eforth make this simpli�
ation. Howeverto work with these, and state results 
on
isely, we shall need to re
all some standardrepresentation theory, as well as related notions and notation.2.7. Tensors and representations. Up to isomorphism, ea
h irredu
ible representa-tion of G is des
ribed by a weight(2.9) r = (r1, · · · , rn), where r1 ≥ · · · ≥ rn ≥ 0,and ri ∈ Z≥0, i = 1, · · · , n. Below we use the notation |r| :=

∑n
1 ri. Equivalently therepresentation (2.9) is given by a Young diagram where from the top, and pro
eedingdown, the rows have respe
tive lengths r1, · · · , rn, see e.g. [25℄. As a shorthand for theweights we shall omit any terminal string of 0s. For example (2, 2) means

(2, 2, 0, · · · , 0)︸ ︷︷ ︸
n

.De�nition. G-type and P -type. Let us view (Rn+1)∗ as the dual of the de�ning rep-resentation of SL(n + 1, R). G and its subgroups a
t on the tensor algebra of (Rn+1)∗and tensors will be said to be of the same G-type (respe
tively P -type) if they lie in thesame G-orbit (respe
tively P -orbit).Ea
h tensor power of ⊗|r|(Rn+1)∗ may be de
omposed into irredu
ible representations
lassi�ed by the weights as in (2.9). Realising the irredu
ible representations in tensorpowers of the (dual to the) standard representation is not unique. Certainly a tensorbelonging to the representation (2.9) has valen
e (i.e. total rank) |r| :=
∑n

1 ri. Therepresentation given in (2.9) will be realised by tensors
IA1···Ar1

B1···Br2
···E1···Ernwhi
h are 
ompletely symmetri
 over ea
h of the respe
tive index setsA1 · · ·Ar1

, B1 · · ·Br2
,and so on to E1 · · ·Ern

. We 
all a tensor in su
h a subrepresentation G-irredu
ible. Theirredu
ibility of the representation is further en
oded in what are sometimes termed hid-den symmetries of the tensor elements [44℄. For example symmetrising over any r1 + 1indi
es will annihilate the tensor I . With this understood we shall write R(r) for theve
tor spa
e of su
h tensors in ⊗|r|(Rn+1)∗.Finally as a point of notation. Above we have expressed the tensor I as an obje
tadorned with abstra
t indi
es. (Rn+1)∗ has a standard basis, this generates a standardve
torial basis for the tensor algebra it generates. In terms of this we may express I interms of its 
omponents, and write
IA1···Ar1

B1···Br2
···E1···Ern

.2.8. G-irredu
ible polynomial systems. As above, let us write XA, A = 0, 1, · · · , nfor the standard 
oordinates on Rn+1. Given a tensor in ⊗|r|(Rn+1)∗ we may 
onstru
tpolynomial systems by 
ontra
tion in the obvious way. For example if RA1A2B1B2
∈

R(2, 2) then we may form the two (in general non-trivial) polynomial systems
PA2B1B2

= RA1A2B1B2
XA1 and QB1B2

= RA1A2B1B2
XA1XA2where repeated indi
es are summed (a

ording to the Einstein summation 
onvention).We shall term the latter of these saturated sin
e any 
ontra
tion of XC into QAB will
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ations 13result in annihilation, as a result of the (hidden) symmetries of R. Su
h polynomialsform a natural 
lass for many purposes, as shall be 
lear shortly.De�nition: We shall say that a polynomial system is G-irredu
ible if it arises as(2.10) QB1···Br2
···E1···Ern

= IA1···Ar1
B1···Br2

···E1···Ern
XA1 · · ·XAr1for some tensor I ∈ R(r). Note that the system is homogeneous of degree r1, and de�nesa proje
tive algebrai
 set on Sn.The system Q given in (2.10) is saturated and homogeneous. By 
onstru
tion, as a ten-sor �eld on R

n+1 it has symmetries 
onsistent with the representation r′ = (r2, · · · , rn).It now follows that these 
olle
tively imply that it 
orresponds to a 
ertain �eld τ on S
n.In fa
t from (2.2) and the relationship between tra
tors bundle se
tions and 
one tensor�elds, as des
ribed in Se
tion 2.4, we obtain that this tensor τ is a se
tion of weightedirredu
ible tensor bundle E(r2, · · · , rn)(k), where k = |r|. Here E(r2, · · · , rn) is the bun-dle of 
ovariant tensors having the Young symmetry (r2, · · · , rn) and E(r2, · · · , rn)(k) =

E(r2, · · · , rn) ⊗ E(k). We shall say that a tensor �eld on S
n that arises in this way is a

G-irredu
ible polynomial tensor �eld. The 
riti
al point here is that we 
an give a pre
isedi�erential 
hara
terisation of these, that we shall 
ome to now.By their de�nition (and with Proposition 2.1) we see the weighted tensor bundles
E(r2, · · · , rn)(k), k ≥ r2 + |r′| in Z, are exa
tly the bundles B0 in the BGG 
omplexesmentioned in the introdu
tion (see (1.2)). Now we 
an state the full extension of Propo-sition 2.8.Proposition 2.9. The G-irredu
ible polynomial tensor �elds on S

n are pre
isely the so-lutions of �rst BGG operators D : B0 → B1: If B0 is realised as the irredu
ible weightedtensor bundle E(r2, · · · , rn)(k) and a se
tion τ thereof is a solution (i.e. Dτ = 0),then the homogeneous polynomial system 
orresponding to τ is the saturate of some
I ∈ R(r1, · · · , rn) where r1 = k − |r′|.This result is an easy 
onsequen
e of the main Theorem 2.10, whi
h follows shortly.Remark: Note that on S

n the homogeneous 
oordinates X0, · · · , Xn linearly generatethe full solution spa
e of the k = 1 system (1.1). Thus via the Proposition, thesepolynomially generate all �rst BGG solutions. The Proposition also gives the spe
i�
polynomial systems involved.2.9. The fundamental theorem of normal solutions. As observed above ea
h do-main bundle B0, for a �rst BGG operator, may be realised in the form E(r2, · · · , rn)(k).Let τ ∈ ΓE(r2, · · · , rn)(k) be a normal solution. Then τ = Π(Iτ ) where Iτ is a G-irredu
ible parallel tra
tor �eld. It is an easy 
onsequen
e of the �ltration stru
turearising from (2.2) that Π may be realised expli
itly by saturating Iτ with X to yield
Qτ

B1···Br2
···E1···Ern

= Iτ
A1···Ar1

B1···Br2
···E1···Ern

XA1 · · ·XAr1 ,(where r1 = k − |r′|) and by then 
ontra
ting the proje
tors ZA
a (of (2.6)) onto allremaining indi
es. Note that Qτ takes values in an irredu
ible subbundle of the weightedtra
tor bundle EB1···Br2

···E1···Ern
(r1) and the �nal step of 
ontra
ting with the 
on
atena-tion of ZA

a proje
tors is simply realising the isomorphism between this subbundle and theweighted tensor bundle E(r2, · · · , rn)(k). Thus we hen
eforth identify E(r2, · · · , rn)(k)with this subbundle (as done impli
itly in Corollary 2.7) and thus τ and Qτ are also tobe identi�ed.



14 �ap, Gover, HammerlNow �x an arbitrary point q̃ ∈ M . In a neighbourhood of q̃, and in terms of a normalframe �eld (as de�ned in (2.8), and see the Remark below that) we have
Qτ

B1···Br2
···E1···Ern

= Iτ
A1···Ar1

B1···Br2
···E1···Ern

XA1 · · ·XAr1and, by Corollary 2.6, the 
omponents Iτ
A1···Ar0

B1···Br1
···E1···Ern

are 
onstant. Using againCorollary 2.6 to interpret this on S
n we have the following.Theorem 2.10. Suppose that τ ∈ ΓE(r2, · · · , rn)(k) is a normal solution of the equation

Dτ = 0 on (Mn, p). For an arbitrary point q ∈ M , �x a an adapted frame at q. Thisdetermines a normal frame fA (as in 2.8), a lo
al di�eomorphism φ : S
n → M , and 
or-responding generalised homogeneous 
oordinates XA in a neighbourhood of q. In termsof these the following hold:

• With respe
t to the trivialisation of EB1···Br2
···E1···Ern

(r1), determined by fA, the 
o-ordinate fun
tions τ (of τ) form a homogeneous polynomial system in the generalisedhomogeneous 
oordinates.
• The 
olle
tion Φ∗τ is given by the same formal polynomial system, where the XA arenow interpreted as the standard 
oordinates of Rn+1. With respe
t to the standard frameon Rn+1, the 
olle
tion Φ∗τ are the 
oordinate fun
tions of a solution τ ′ of the equation
Dτ ′ = 0 on Sn.Remark: Note that the polynomial system τ , as in the Theorem, satis�es polynomialrelations. These arise in an obvious way from the fa
t that tra
tor se
tion, equivalent to
τ , is saturated with respe
t to 
ontra
tion with XA. For example in the 
ase τ ∈ ΓEa(2)then the system τ 
onsists of the n + 1 linear polynomials KABXB where the matrix of
omponents of K is skew, i.e. KAB = −KBA. Thus there is the one polynomial relation
KABXAXB = 0.Next note that sin
e the reasoning in the �rst part of the proof above applies, inparti
ular, when we begin with τ a solution of D in the ��at 
ase� (i.e. on S

n with itsstandard proje
tive stru
ture) as a 
orollary we have at on
e the Proposition 2.9.2.10. The zero lo
us of normal solution. The Theorem above is lo
al in nature butit (or equivalently Corollary 2.7) has a global interpretation. Before we 
ome to this weneed some simple observations, and a de�nition.De�nition. G-type and P -type of a point. Consider a proje
tive manifold (M, p)equipped a with a normal solution τ , and let Iτ be the parallel tra
tor su
h that
τ = Π(Iτ ). For a point q ∈ M we 
an 
hoose a tra
tor frame eA for the tra
tor spa
e
Tq at q, whi
h is adapted in the sense that e0 is parallel to XA. Using this frame, the
omponents of Iτ (q) de�ne an element in the tensor algebra of (Rn+1)∗. As we havenoted in 2.3 any two su
h frames are related by the a
tion of an element of P . Hen
e the
P�orbit of this element, whi
h we 
all the P -type of the point q, depends only on (M, p),
τ , and q, and not on further 
hoi
es. Of 
ourse, this implies that also its G�orbit is wellde�ned, and we 
all this the G-type of the point qSin
e a parallel tra
tor has 
onstant 
omponents with respe
t to the normal frames fAwhi
h, although not adapted, are volume normalised, we obtain the following.Theorem 2.11. If (M, p) is 
onne
ted then any parallel tra
tor �eld I has a 
onstant
G-type.An analogous statement is not available for P -type, be
ause an adapted frame is notparallel along any 
urve; this is 
lear from (2.7).
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ompa
ti�
ations 15It follows from Theorem 2.11 that, for a normal solution τ on a 
onne
ted manifold
(M, p), we may asso
iate a �xed G-irredu
ible polynomial tensor �eld τ ′ on the model
Sn, and this is obviously unique (up to a G-a
tion that we shall ignore). In this 
ase weshall say that (Sn, τ ′) is the model for (M, p, τ) (meaning (M, p) equipped with a normalsolution τ).For a given normal solution τ on a proje
tive manifold (M, p), its zero lo
us Z(τ) is notne
essarily smooth. However, given q ∈ Z(τ), Corollary 2.7 shows that there is a point
q′ ∈ Z(τ ′) ⊂ S

n and a lo
al di�eomorphism from an open neighbourhood of q to an openneighbourhood of q′ in the model, whi
h is 
ompatible with respe
t to the zero sets. Inparti
ular, Z(τ) 
annot have worse singularities than Z(τ ′). For example if q′ is a smoothpoint then, in a neighbourhood of q, Z(τ) is an embedded smooth submanifold. Hen
ethe problem of the 
lassi�
ation of zero lo
us singularities for normal solutions is redu
edto a problem in real algebrai
 geometry. Note that it 
an be that the model algebrai
 setis not (globally) smooth and yet the zero lo
us Z(τ) is smooth and embedded; indeed asan extreme 
ase Z(τ) may be empty.For emphasis we 
olle
t some of these de�nitions and 
onsequen
es of Theorem 2.10into a statement.Corollary 2.12. Let τ be a normal solution on a 
onne
ted manifold (M, p) and let
(Sn, τ ′) be the 
orresponding model. If q ∈ Z(τ) then there some q′ ∈ Z(τ ′) with thesame singularity type. In parti
ular, if Z(τ ′) is a smooth algebrai
 set then Z(τ) is asmooth embedded submanifold.2.11. Orbit type de
omposition of M . Here we observe that a normal solution τ(equivalently a parallel tra
tor �eld Iτ) determines a 
anoni
al strati�
ation of M .Di�erent points on the manifold may have the same P -type and this establishes anequivalen
e relation for the points of M . Thus the points of the manifold M are par-titioned a

ording to P -type. On a given stru
ture (M, p, τ) there 
an be many orbittypes. For example a point where τ vanishes is 
ertainly in a di�erent P -type to a pointwhere τ is not zero. In general the P -type de
omposition exposes 
onsiderably �nerstru
ture than this example illustrates. We treat some examples in Se
tion 3.1 below,but a more detailed analysis is the subje
t of [15℄.Now we 
laim that the di�eomorphism φ, of Lemma 2.4, preserves P -type. Pre
isely,the P�type of Iτ at φ(y) 
oin
ides with the P�type of Iτ ′ at y. To see this, arguing as inthe proof of Theorem 2.5, simply observe that these tra
tors have the same 
oordinateexpression in di�erent frames, both of whi
h are adapted. This exa
tly means same theyhave the same P�type.Thus we may take the alternative view that the maps φ transfers the P -type de
om-position of the model (Sn, τ ′) onto the 
orresponding 
urved stru
ture (M, p, τ). Part ofthe power of this lies in the following result (dis
ussed in greater detail in [15℄).Proposition 2.13. Let GI′ ⊂ G be the isotropy subgroup of a tensor I ′ in ⊗

R
∗. Viewing

I ′ as a parallel tra
tor on S
n, the P -type de
omposition of (Sn, I ′) is the same as the orbitde
omposition of Sn under the a
tion of GI′.Proof: It is easily veri�ed dire
tly, that in either 
ase the orbits are naturally parametrisedby the points of the double 
oset spa
e GI′\G/P . �In general a proje
tive manifold (M, p), with a parallel tra
tor I , admits no a
tion by

GI′, and so a GI′-orbit de
omposition of M makes no sense. However we have the simplebut surprising out
ome that the P -type de
omposition is well de�ned, and this e
hoes
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omposition of the model. For example it follows from the Proposition2.13 that the P -types of Sn are non-self-interse
ting smoothly immersed (in fa
t initial[37, Theorem 5.14℄) submanifolds and hen
e, via the di�eomorphism φ of Lemma 2.4,we may 
on
lude that so are the P -types of (M, p, I). Thus the P -types give a smoothstrati�
ation of M . In summary we have the following.Theorem 2.14. Let (M, p) be proje
tive manifold equipped with a parallel tra
tor I.Then (M, p) is strati�ed a

ording to a P -type de
omposition. The di�eomorphism φ ofLemma 2.4 preserves the P -type and, in parti
ular, the o

urring P -types are a sele
tionof those arising in the model (Sn, I ′).2.12. Geometry. The presen
e of a parallel tra
tor equips (M, p) with additional geo-metri
 stru
ture. Of 
ourse a parallel tra
tor may be reinterpreted as a redu
tion of the(proje
tive) tra
tor holonomy. By de�nition this is additional geometri
 stru
ture, andas mentioned in the introdu
tion, lo
al and generi
 aspe
ts of this have been exploredin, for example, [3, 4℄. In the examples of the next se
tion we shall see, from our 
urrentpoint of view, how su
h 
lassi
al stru
tures arise. In one 
ase we shall see the stru
tureis ne
essarily non-Ri

i-�at pseudo-Riemannian Einstein on open subsets.More importantly for the dire
tions here, we show that the parallel tra
tor, alongwith Theorems 2.5 and 2.10, provides a tool whi
h 
an relate the geometry of a normalsolution zero lo
us to that on the 
omplementary spa
e.3. Examples3.1. Preliminary observations. In several of the examples below we 
onsider normalsolutions τ whi
h are se
tions of a density bundle E(w), where w 6= 0, and the open
P -types are submanifolds on whi
h τ is nowhere vanishing. On su
h a P -type, denotedby M+ say, τ is a s
ale and so naturally determines an a�ne 
onne
tion ∇τ from theproje
tive 
lass (restri
ted to M+) as dis
ussed in Se
tion 2.2. We want to explain howour method 
an be used to prove results related to geodesi
 
ompleteness of∇τ . Considera geodesi
 path in M whi
h leaves M+, i.e. whi
h interse
ts both M+ and Z(τ). Takea point q ∈ Z(τ) whi
h lies in the 
losure of M+ and 
arry out the 
onstru
tion fromLemma 2.4 for some point q̃ over q. Then our geodesi
 path will be
ome a geodesi
 γ forthe 
onne
tion determined by the normal s
ale σ determined by the 
onstru
tion.Now take a point x ∈ M+ whi
h lies on γ (and in the range of the di�eomorphism φ).Starting from x and moving along γ in the dire
tion of q, the point q will of 
ourse berea
hed in �nite time. Now some reparametrisation γ̂ of γ will be a geodesi
 for ∇τ , andit may happen that this reparametrisation has the e�e
t that q is no longer rea
hed in�nite time.If we assume that the original manifold M is 
losed then the only way for M+ to begeodesi
ally in
omplete is that geodesi
s leave M+ in �nite time. Hen
e if in the above
onsiderations q is never rea
hed in �nite time, geodesi
 
ompleteness follows.The reparametrisation from γ to γ̂ 
an be obtained as the solution of a an ODE whi
hdepends only on the fun
tion des
ribing τ in the trivialisation of the density bundledetermined by σ. But now it follows from the 
onstru
tion that the di�eomorphism φrelates σ and the fun
tion des
ribing τ in the trivialisation determined by σ to their
ounterparts on the homogeneous model. Consequently, the reparametrisations on thehomogeneous model and on the 
urved manifold are determined by the same ODE andhen
e 
oin
ide. Thus, if the point φ−1(q) on the homogeneous model is not rea
hed in�nite time after the reparametrisation, then the same is true for q. In parti
ular, geodesi
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ompleteness 
arries over from the homogeneous model to 
urved geometries on 
losedmanifolds.If in su
h a situation Z(τ) is the boundary of M+ (as in �rst two examples below)then it reasonable to 
all Z(τ) the proje
tive in�nity for (M+,∇τ ) (as an analogue ofthe term 
onformal in�nity). This is not meant to imply that that Z(τ) ne
essarily hasa 
anoni
al proje
tive stru
ture.3.2. The parallel standard 
otra
tor � proje
tive almost Ri

i-�at. Here we ob-tain a stru
ture whi
h generalises that of an a�ne Ri

i �at manifold (
f. [45℄); the resultis a�ne Ri

i-�at on an open dense set. From the point of view of 
ompa
ti�
ations,it yields a stru
ture that is a 
ompa
ti�
ation of a Ri

i-�at manifold that is a 
urvedgeneralisation of the usual proje
tive 
ompa
ti�
ation of the a�ne plane to a hemispherevia 
entral proje
tion. Thus, in parti
ular, it is di�erent to a 
onformal 
ompa
ti�
ationof su
h a spa
e (whi
h for the 
ase of the Eu
lidean plane is a 1-point 
ompa
ti�
ation).The stru
ture in this 
ase in a proje
tive manifold (M, p) equipped with a parallelse
tion IA of the standard 
otra
tor bundle. Let σ denote IAXA. To �nd the �rst BGGequation that this satis�es we may 
al
ulate with respe
t to∇ ∈ p. We have IB
∇
= (µb σ)and using the formula for the tra
tor 
onne
tion (2.3), we see that IB parallel impliesthat µb = ∇bσ and then(3.1) ∇a∇bσ + Pabσ = 0;this is the k = 1 
ase of (1.1). All solutions of (3.1) arise this way (i.e. any solution of(3.1) is normal), indeed a prolongation of this equation determines the tra
tor 
onne
tion[6℄.Where σ is nowhere vanishing (3.1) is the equation that ∇ is proje
tively Ri

i-�at;more pre
isely in an open neighbourhood with σ nowhere zero the 
onne
tion ∇̂, 
har-a
terised by ∇̂σ = 0 and hen
e related to ∇ via (2.1) with Υa given by σ−1∇aσ, is Ri

i�at. Thus the stru
ture (M, p, IA) generalises the notion of a Ri

i-�at a�ne manifold.The model stru
ture is (Sn, σ′) where σ′ is the weight 1 density whi
h arises as aproje
tive polynomial from IAXA on R

n+1 where IA is a 
onstant 
ove
tor there. Sin
e
IAXA = 0 des
ribes a hyperplane through the origin in R

n+1 it follows that the zero lo
usof σ′ is a totally geodesi
 embedded Sn−1 in Sn with its standard proje
tive stru
ture. The
P -type de
omposition 
onsists of the 3 submanifolds where σ′ is, respe
tively, positive,zero, and negative. On the open submanifolds Sn

± where σ′ is, respe
tively, positive,and negative, σ′ is a s
ale and indu
es the �at 
onne
tion ∇σ′ in agreement with theidenti�
ation (by 
entral proje
tion) of S
n
± with, respe
tively, the a�ne subspa
es in R

n+1des
ribed by IAXA = ±1. Thus these manifolds (Sn
±,∇σ′

) are geodesi
ally 
omplete.A

ording to our general results above these features are ne
essarily reprodu
ed in thegeneral situation. Thus we have the following.Theorem 3.1. Consider a proje
tive manifold (M, p) equipped with a parallel standard
otra
tor IA. Then the weight 1 proje
tive density σ = IAXA satis�es the equation (3.1).The manifold is strati�ed by P -types M+, Mo, M− a

ording to the stri
t sign of σ. These
omponents have a stru
ture as follows:
• The zero lo
us Mo of σ is either empty, or forms a smooth embedded hypersurfa
e. Withrespe
t to any ∇ ∈ p, this is totally geodesi
, and has 
anoni
ally an intrinsi
 proje
tivestru
ture pMo = [∇Mo] where ∇Mo is simply the restri
tion of ∇. The normal tra
tor
onne
tion of (Mo, p

Mo) is naturally a restri
tion of the ambient tra
tor 
onne
tion.
• The open submanifolds (M±,∇σ) are Ri

i-�at a�ne manifolds, whi
h are geodesi
ally
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omplete if M is 
losed.
• If M \M+ or M \M− is 
ompa
t (e.g. if M is 
losed this is for
ed) then (M \M∓, p, I)is a geometri
ally 
anoni
al 
ompa
ti�
ation of, respe
tively, (M±, p) (where throughout
p and I are restri
ted to the indi
ated submanifolds).Proof: The last bullet point is simply the observation that the 
onstru
tion yields aproje
tive analogue of 
onformal 
ompa
ti�
ation of Einstein manifolds.Con
erning the zero lo
us: On the model the zero lo
us is a totally geodesi
 equatorialembedded (n−1)-sphere. It follows at on
e that Mo is totally geodesi
, as based arounda point q in Z(σ), by 
onstru
tion Φ−1 is 
ompatible with the geodesi
 paths through
q. Thus Mo has a proje
tive stru
ture whi
h is simply a restri
tion of that from theambient (M, p).This result 
an also be seen via the Thomas 
one spa
e sin
e there IA is parallel, andthus is a 
onormal to the zero lo
us of σ = IAζA (where we have used ∇AζB = δB

A ).Sin
e this zero lo
us Z(σ) has a parallel 
onormal it is totally geodesi
. On the otherhand the non-verti
al geodesi
s of M are the lifts of the geodesi
s from (M, p), and itfollows that Mo is totally geodesi
. Using now that Z(σ) is totally geodesi
, it followsthat it inherits an a�ne manifold stru
ture by the restri
tion of the ambient ∇. The
laims about the normal tra
tor 
onne
tion follow, with this restri
tion of ∇ to Z(σ)being the Thomas spa
e over (Mo, p|Mo
).Away from its zero lo
us, σ is a s
ale and so we have ∇σσ = 0, thus the 
laim thatthe 
omponents (M±,∇σ) are Ri

i-�at follows from (3.1).All other points follow immediately from the 
orresponding results on the model viaTheorem 2.10 (and its proof), Corollary 2.12, Theorem 2.14, and the dis
ussion of se
tion3.1. �3.3. A parallel tra
tor metri
 � Klein-Einstein stru
tures. Here we 
onsider aproje
tive manifold (M, p) equipped with a non-degenerate symmetri
 and parallel 2-
otra
tor HAB of signature (r, s), r ≥ s ≥ 0. In this 
ase σ := HABXAXB satis�es thethird order equation(3.2) ∇(a∇b∇c)σ + 4P(ab∇c)σ + 2

(
∇(aPbc)

)
σ = 0,where (· · · ) indi
ates the symmetri
 part over the en
losed indi
es.The model stru
ture is (Sn, σ′) where σ′ is the weight 2 density whi
h arises as apolynomial s
alar density from the homogeneous polynomial σ := HABXAXB on Rn+1,where HAB is a �xed (signature (r, s)) inner produ
t there.If s ≥ 1 then HABXAXB = 0 is a quadrati
 variety in Rn+1 and, 
orresponding to this,the zero lo
us of σ′ is an embedded variety Sr−1×Ss−1 in S

n with a signature (r−1, s−1)
onformal stru
ture indu
ed from HAB (viewed now as a metri
 in R
n+1 \{0}) restri
tedto tangent ve
tors in Z(σ). The P -type de
omposition 
onsists of the 3 submanifoldswhere σ′ is, respe
tively, positive, zero, and negative. On the open submanifolds S

n
±where σ′ is, respe
tively, positive, and negative, σ′ is a s
ale and indu
es a spa
eformmetri
, with signature respe
tively (r, s− 1) and (r − 1, s), and with ∇σ′ the 
ompatibleLevi-Civita 
onne
tion having 
urvature, respe
tively, negative and positive. It is wellknown that these that these manifolds (Sn

±,∇σ′

) are geodesi
ally 
omplete.If s = 0 then the model is very simple. Then Z(σ) is empty on Rn+1 \ {0}. There isjust the one P -type, viz. Sn, and, via σ, HAB indu
es the usual (up to di�eomorphism)unit round metri
 on this, and ∇σ is the standard Levi-Civita 
onne
tion. In general wehave the following.
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ations 19Theorem 3.2. Consider a proje
tive manifold (M, p) equipped with a non-degeneratesymmetri
 and parallel 2-
otra
tor HAB of signature (r, s), r ≥ s ≥ 0. The weight 2proje
tive density σ = HABXAXB satis�es the equation (3.2). If s = 0 then:
• M is a single P -type and σ is a s
ale on M that indu
es a positive Einstein metri
.If s ≥ 1 we have the following:
• The manifold is strati�ed by P -types M+, Mo, M− a

ording to the stri
t sign of σ.
• The zero lo
us Mo of σ is either, empty, or forms a smooth embedded hypersurfa
ewith a 
onformal stru
ture c of signature (r − 1, s − 1). The standard 
onformal tra
torbundle agrees with the restri
tion of the proje
tive tra
tor bundle T to Mo and the normal
onformal tra
tor 
onne
tion of (Mo, c) is naturally the 
orresponding restri
tion of theambient proje
tive tra
tor 
onne
tion.
• On the open submanifold M±, σ is a s
ale that indu
es, respe
tively, a positive/negativeEinstein metri
 gσ of signature (r−1, s) or (r, s−1). In ea
h 
ase, the a�ne 
onne
tion
∇σ is the 
orresponding Levi-Civita 
onne
tion. If M is 
losed then ea
h of (M±, gσ) isgeodesi
ally 
omplete.
• If M \ M+ or M \ M− is 
ompa
t with boundary Mo (e.g. if M is 
losed this isfor
ed) then (M \M∓, p, H) is a geometri
ally 
anoni
al 
ompa
ti�
ation of, respe
tively,
(M±, gσ) (H is restri
ted to the indi
ated submanifolds).Proof: Sin
e a s
ale trivialises the bundles E(w) and splits the dual Euler sequen
e(2.5), it follows that in the presen
e of a s
ale, HAB determines a 
ovariant symmetri
two tensor on the manifold M . As in the 
ase of the model, the signature of this dependson the P -type, and indeed via the di�eomorphism Φ, of Lemma 2.4, we 
an 
on
lude thesignature of ea
h P -type from the model; in either 
ase this is determined in an obviousway a

ording to whether XA is timelike or spa
elike with respe
t to HAB . Cal
ulatinglo
ally where σ is a s
ale one sees that ∇T

a HBC = 0 implies that ∇σ
aPbc = 0 and that

Pbc agrees up to a 
onstant (giving the sign of the s
alar 
urvature) with the metri
indu
ed from HBC, and this 
onstant is non-zero on the open P -types [3, 31℄. Sin
e ∇σis torsion-free it follows that on these P -types it is an Einstein Levi-Civita 
onne
tion.
Mo is the set where XA is null (with respe
t to HAB). But, where XA is null, oneeasily sees that HAB determines a signature (r − 1, s − 1) bilinear form, taking valuesin E(2)|Mo

, that is independent of any splitting of (2.5). This is lo
ally 
ompatible withthe model via Φ. Sin
e HAB is parallel, this is in parti
ular so along Mo, and so ∇T ismetri
 preserving along Mo. Here, as elsewhere, we have that in any 
hoi
e of weight1 s
ale σ, and with ∇σ for the moment denoting the 
oupled s
ale-tra
tor 
onne
tion,we have that ∇σ
a(σ−1XB) gives a splitting of (2.5). Combining with the fa
t that ∇T istorsion free it follows, using its 
hara
terisation in [12℄, that ∇T agrees with the normal
onformal tra
tor 
onne
tion along Mo.As in the previous example, all remaining fa
ts follow immediately from the 
orre-sponding results on the model via Theorem 2.10, Corollary 2.12, Theorem 2.14, and thedis
ussion of se
tion 3.1. �Remarks: The 
ase that HAB has Lorentzian signature is important. Looking at themodel (Sn, σ′), the part S

n
− where σ′ is negative 
onsists of two 
opies of hyperboli
spa
e H

n antipodally pla
ed as the interior of the standard double Sn−1 quadri
 on S
n.The 
ompa
ti�
ation Sn \ Sn

+ adds the boundary spheres. Sin
e this model is basedon 
entral proje
tion (with e.g. geodesi
s arising from planes through the origin) it isnatural to think of the result as two 
opies of the Klein model of Hn; when
e the 
urvedanalogue 
ould be 
alled a Klein-Einstein manifold by analogy with the use of the termPoin
aré-Einstein in the literature. Note that the 
onformal stru
ture of the interior



20 �ap, Gover, Hammerlof the Klein-Einstein (KE) manifold does not extend to the boundary, even though thelatter has a 
anoni
al 
onformal stru
ture. This is 
lear by 
ontinuity 
onsiderations, forexample, sin
e the signature of the ambient metri
 
hanges as we 
ross the zero lo
us of
σ. Thus we have a result, whi
h we state as proposition in order to highlight.Proposition 3.3. A Klein-Einstein manifold involves a 
ompa
ti�
ation of its Einsteininterior that is stri
tly di�erent to the 
onformal 
ompa
ti�
ation of a Poin
aré-Einstein(PE) manifold; there is never a smooth di�eomorphism between a PE manifold and KEmanifold that restri
ts to a 
onformal map on the interior.Returning to the model with HAB Lorentzian, the 
omponent S

n
+ is the geometryknown as de Sitter spa
e in the general relativity literature; Sn \ Sn
− is the proje
tive
ompa
ti�
ation of this. Again (M \M−, p, HAB) is a 
urved analogue.The details of the geometry of the Klein-Einstein type stru
tures, and their links toPE manifolds is taken up in [29, 31℄.3.4. Singular and higher 
odimension zero lo
us. Examples with singular zerolo
us arise easily in the 
ase where we assume more than one parallel tra
tor �eld. Forexample if we assume I1

A and I2
A are linearly independent parallel 
otra
tor �elds, on agiven proje
tive manifold (M, p), then SAB := I1

AI2
B + I1

BI2
A is symmetri
 and parallel.Thus we are in the situation of the previous example ex
ept that SAB is far from non-degenerate. We have

Z(XAXBSAB) = Z(σ1σ2) = Z(σ1) ∪ Z(σ2),where σ1 = I1
AXA and σ2 = I2

AXA. In the model, and generi
ally, this is not smooth.There are three P -types a

ording to whether none, one, or both of σ1 and σ2 is zero.Geometri
ally, on an open dense set, the stru
ture (M, p, SAB) has proje
tively related(in the sense of (2.1)) Ri

i-�at a�ne stru
tures.Assume (M, p), I1, and I2 as above, and set KAB = I1
AI2

B − I1
BI2

A, then we generi
allyobtain a smooth 
odimension 2 zero lo
us
Z(ka) = Z(σ1) ∩ Z(σ2)for the weight 2 one-form �eld ka = σ1∇aσ

2 − σ2∇aσ
1 whi
h 
orresponds to KABXB.(Here∇ is any 
onne
tion from p). We haveKABXB = Zb

Akb where Zb
A is the proje
tivelyinvariant bundle monomorphism in the Euler sequen
e (2.2), and note that ∇aσ

i isnowhere vanishing along Z(σi) as I i 6= 0, for i = 1, 2. ) There are two P -types: simply
Z(ka) and its 
omplement. Note that the �rst BGG equation in this 
ase is

∇(akb) = 0.Referen
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