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PROJECTIVE BGG EQUATIONS, ALGEBRAIC SETS, ANDCOMPACTIFICATIONS OF EINSTEIN GEOMETRIESA. �AP, A.R. GOVER, M. HAMMERLAbstrat. For urved projetive manifolds we introdue a notion of a normal tratorframe �eld, based around any point. This leads to anonial systems of (redundant)oordinates that generalise the usual homogeneous oordinates on projetive spae.These give preferred loal maps to the model projetive spae that enode geometriontat with the model to a level that is optimal, in a suitable sense. In terms of thetrivialisations arising from the speial frames, normal solutions of lasses of naturallinear PDE (so-alled �rst BGG equations) are shown to be neessarily polynomialin the generalised homogeneous oordinates; the polynomial system is the pull bakof a polynomial system that solves the orresponding problem on the model. Thusquestions onerning the zero lous of solutions, as well as related �ner geometriand smooth data, are redued to a study of the orresponding polynomial systemsand algebrai sets. We show that a normal solution determines a anonial manifoldstrati�ation that re�ets an orbit deomposition of the model. Appliations inludethe onstrution of new strutures that are analogues of Poinaré-Einstein manifolds.ARG gratefully aknowledges support from the Royal Soiety of New Zealand viaMarsden Grant no. 06-UOA-029; A� and MH gratefully aknowledge support by projetP19500�N13 of the �Fonds zur Förderung der wissenshaftlihen Forshung� (FWF) andthe hospitality of the University of Aukland.1. IntrodutionNatural (or geometri) partial di�erential equations (PDE) are those whih, in a suit-able sense, are determined by some underlying geometry. Given suh an equation, animportant problem is to expose the geometri ontent of a solution, and the impliationsof its existene. Example questions lose to our fous here are the following. Whatgeneral results an be established onerning the nature and geometri struture of thesolution's zero lous? What is the relationship of these features to the ambient struture?At the most primitive level there are questions of topology and smoothness; at the nextlevel, it an be that the zero lous satis�es an interesting smooth embedding equationand inherits a rih intrinsi geometri struture.Here we study a large lass of solutions to overdetermined PDE arising naturallyin projetive geometry. We show that, to a surprising extent, these problems an beredued to vastly simpler questions of an algebrai geometri type. This leads to aoneptual and pratial way to desribe, and manage geometrially, ompati�ationsof urved geometries; the ompati�ations involved are naturally related to the geodesistruture.2000 Mathematis Subjet Classi�ation. Primary 53C25, 53A30; Seondary 53B20.Key words and phrases. Projetive di�erential geometry, ompati�ations, Poinaré-Einstein mani-folds, Einstein manifolds, onformal geometry, paraboli geometries.1



2 �ap, Gover, HammerlOur work is partly inspired by the rih programme surrounding Poinaré-Einstein(PE) manifolds; these were introdued by Fe�erman-Graham as a tool for onstrut-ing onformal invariants [21℄. A PE struture onsists of a onformal ompati�ationof a geodesially omplete Einstein-pseudo-Riemannian manifold, and broadly the pro-gramme involves naturally relating geometry and �elds on a onformal boundary withEinstein-Riemannian geometry and �eld theory on the interior. Over the past deade thisproblem has been a domain of intense interest and deep progress [1, 10, 22, 23, 34, 38, 42℄,in part the work has been driven by strong links with the AdS/CFT orrespondene ofMaldaena [41, 36℄, see e.g. [32, 35, 46℄. The original PE onstrution was preeded bya Kähler-Einstein-CR geometry analogue [19, 20℄ and reently there has been work toextend the piture to quaternioni-Kähler metris and beyond [8, 9℄.It was observed in [26℄ that a PEmanifold is the same as a onformalmanifold equippedwith a solution of a ertain onformally invariant PDE; this solution having the propertythat its (neessarily smooth and embedded) zero lous is preisely the topologial bound-ary. That result led to an e�etive approah to ertain key problems for these strutures,extension to the notion of almost Einstein manifolds [27, 28℄, and also methods for ge-ometrially onstruting, and partly haraterising, examples of PE manifolds [30℄. In[28℄ it is seen that the almost Einstein lass also naturally inludes asymptotially lo-ally Eulidean (ALE) strutures that admit isolated point onformal ompati�ation;in fat the nature of the ompati�ation is shown to be an easy onsequene of theompatibility of Rii-�atness with the governing onformal PDE.Here we show that onsidering a lass of solutions to similar, but essentially di�erentequations, leads to a natural extension of these ideas. In fat the sope is broader thanthis suggests, as the wider perspetive draws in onsiderable new phenomena. In thesimplest lass of ases the linear equations studied take the form(1.1) (
∇(a1

∇a2
· · ·∇ak+1) + lower order terms)σ = 0,where ∇ is an a�ne onnetion, σ is a funtion and the (· · · ) indiates taking the sym-metri part over the enlosed indies. (Here, and in many plaes throughout, we usePenrose's abstrat index notation [44℄.) These equations have a symmetry known asprojetive invariane that plays an important role. We see in Setion 3.1 that ertainsolutions for the ases k = 1 and k = 2 do indeed lead to strutures that are analogousto PE manifolds. In partiular in Setion 3.3 the k = 2 ase yields a urved analogue ofthe hyperboli ball. This is a manifold with boundary. As in the ase of a PE manifold,the boundary has a anonial onformal struture and the interior has a geodesiallyomplete (Riemannian) negative Einstein struture. However in this ase a projetiveompati�ation is involved, whih emphasises the role of geodesis; this is stritly dif-ferent from onformal ompati�ation thus the struture is not PE, see Proposition 3.3.There are analogues for all signatures and the Lorentzian ase should be of interest to thegeneral relativity ommunity. These examples also show rather learly that although theequations we onsider are linear, the integrability onditions for these an involve veryinteresting non-linear onditions (suh as the Einstein equations), on whih we obtain anew perspetive.Let us now be spei� about the full lass of equations we treat. We restrit ourattention to natural equations on a projetive manifold of dimension at least 2. Reallthat this onsists of a manifold M equipped with an equivalene lass p of a�ne on-netions (we write (M, p)); the lass is haraterised by the fat that two onnetions



Projetive equations, algebrai sets, and ompati�ations 3
∇ and ∇̂ in p have the same geodesis up to parametrisation. A model struture is n-dimensional projetive spae RP

n, but to avoid issues of orientability we prefer to workwith its double over, the projetive sphere Sn. We view this as a homogeneous spae for
G = SL(n+ 1, R) and write P for isotropy subgroup of a point; so P is a maximal para-boli subgroup and we may identify Sn with G/P . To eah irreduible G-representation
V there is on S

n a anonial �nite resolution by linear di�erential operators [18℄ whihis related to the algebrai resolutions from [7, 40℄,(1.2) 0 → V → B0 D
→ B1 → · · ·Bn → 0.Here the Bi are irreduible (weighted) tensor bundles. For the di�erential operators inthe sequene there are anonial urved analogues, that is, generalisations that exist andare invariant on general projetive manifolds (M, p) [17℄. In partiular, this is true foreah �rst BGG operator D, and we use the same terminology (and notation) for eahorresponding urved analogue.These projetively invariant �rst BGG operators give the equations we study. For thesewe onsider the speial lass of so-alled normal solutions; see Setion 2.3. On projetivemanifolds there is a anonial normal Cartan onnetion on a higher frame bundle. Theequivalent indued linear onnetions are termed (normal) trator onnetions [6, 11℄;the trator and Cartan onnetions are reviewed brie�y in Setion 2.2. Beginning witha trator bundle indued from an irreduible G-representation, eah parallel trator isequivalent to a normal solution of a �rst BGG equation. On Sn all solutions are normal,but a priori on urved strutures it is a restrition.By their de�nition, normal solutions are related to holonomy redutions of the Car-tan/trator onnetion and from this perspetive ertain loal aspets have been inves-tigated in [3, 4℄. There one sees that, on the one hand, the available holonomy groupsrestrit the range of urved ases (although the treatment there lassi�es irreduible ho-lonomy algebras, and so is not exhaustive), but on the other hand within the allowedgroups interesting geometri strutures arise inluding various pseudo-Riemannian Ein-stein (mentioned above) and ontat adapted projetive strutures in the sense of [24℄.The main fous of the urrent artile is to show how to aess geometri and topologialinformation via a remarkable onnetion to the model S

n, and then a new understandingof the nature of the �rst BGG solutions there. Realling that Möbius' homogeneousoordinates are a fundamental tool for the alulus on projetive spae, in Setion 2.5we �nd loal urved analogues, see Lemma 2.4. Based around a point, these are deter-mined uniquely by a normal trator frame that we also build. The whole onstrution isanonial up to a freedom parametrised by the paraboli subgroup P . The generalisedhomogeneous oordinates lead to a di�eomorphism between the urved projetive man-ifold (Mn, p) and the model S
n that, together with the normal frame, enodes a highdegree of geometri ontat. In partiular, in the normal trivialisations, the omponentsof parallel trator �elds on (M, p) pull bak to parallel trator �elds on the model, seeTheorem 2.5 and Corollary 2.6 whih are the �rst main results.An immediate onsequene of these onstrutions is Corollary 2.7 whih shows that theomponents of normal solutions are neessarily the push forward (via the di�eomorphism)of a �rst BGG solution on the model. It follows that many loal analyti and geometriquestions for normal solutions on (M, p) an be settled by studying the same problemin the simpler setting of the model. This strongly suggests there is signi�ant value inunderstanding the nature of �rst BGG solutions on Sn. It turns out that the answer,given in Proposition 2.9, is rather appealing: the �rst BGG solutions on Sn are preisely



4 �ap, Gover, Hammerlthe (weighted) irreduible tensor �elds arising from a natural lass (that we term G-irreduible) of homogeneous polynomial systems on Rn+1. For example, for a given k, thesolutions of (1.1), on Sn, are simply the projetive polynomials of degree k. Remarkablyin the urved setting, normal �rst BGG solutions are given by the same formal polynomialsystems, now as understood as polynomials in the generalised homogeneous oordinates.In general, these onstrutions allow us to onlude that a normal solution τ of a �rstBGG operator is, in a preise way, a urved analogue of a G-irreduible polynomial tensor�eld on Sn. This is an interpretation of the next main result, Theorem 2.10.To indiate the sope we point out that appropriate olletions of the solutions of theBGG operators on sales (1.1) are su�ient to yield urved analogues of any projetivepolynomial system see Setion 2.6. Note that sine we work over R, a polynomial sys-tem generally ontains stritly more information that the algebrai set it determines.In partiular various distint geometri strutures arise as urved analogues of distintpolynomial polynomial systems with the ommon feature of empty zero lous; thesean be important and interesting, and in the analogous onformal setting this inludesFe�erman spaes [13, 14℄, and positive Riemannian Einstein metris [28℄.As an immediate appliation, in Corollary 2.12 we see that the loal nature of thezero lous of a normal solution τ may be ompletely dedued from the data of theorresponding algebrai set on S
n. For example we an use this to desribe lassesof ases where any zero lous of τ is neessarily a smooth embedded submanifold. Infat information that is both �ner and has global ontent is available. For a projetivemanifold (M, p) equipped with a normal solution τ we obtain a deomposition, or moreaurately strati�ation, of (M, p) whih re�ets the orresponding Bruhat-type orbitdeomposition of the model S

n; this is termed a P -type deomposition. This perspetiveshould be useful in developing urved analogues of the vetor valued Poisson transforms(f. for example [43℄). Information of a more analyti nature an also be dedued fromthe model, and indeed in two of the examples of Setion 3.1 we use this idea to showthat the open P -types are geodesially omplete.Finally we should point out that we have seleted here, for development in some detail,just part of a very general piture. It is essentially lear that a diret analogue of ouronstrutions is possible for onformal geometry; the importane of parallel trators ismore established in the onformal setting [2℄ and examples inlude the Fe�erman spae[13, 14, 39℄ (as well as PE and almost Einstein geometries). In fat via a di�erent ap-proah related results an be established for all Cartan geometries, and thus in partiularfor all paraboli geometries [15℄.2. The urved analogue of projetive polynomial systemsHere we shall onstrut and exploit urved analogues of ertain projetive polynomialsystems. We require some bakground to desribe the onstrution.2.1. Projetive di�erential geometry and trator alulus. As mentioned above,we shall write S
n := P+(Rn+1) to denote the ray projetivisation of R

n+1. This has anatural lass of preferred paths that may be viewed as unparametrised geodesis; thesearise from the projetivisation of 2-dimensional linear subspaes in R
n+1. This strutureis preserved by a group ation. Evidently, G := SL(n+ 1, R) ats transitively on Sn andmaps geodesis to geodesis. To be onrete in our development, we �x some hoie ofnon-zero e0 ∈ Rn+1 and de�ne P to be the paraboli subgroup stabilising the ray R+·e0.The lassial urved generalisation of Sn is termed a projetive struture (Mn, p),

n ≥ 2, as de�ned in the introdution. Alternatively phrased, as onnetions on T ∗M ,



Projetive equations, algebrai sets, and ompati�ations 5the elements in p satisfy(2.1) ∇̂aub = ∇aub − Υaub − Υbuawhere Υ is some smooth setion of T ∗M .2.2. Projetive trator alulus. If M is oriented we write E(1) for the (−n − 1)stroot of the anonial bundle. Otherwise we write E(1) for a hoie of line bundle with
(−2n − 2)nd power the square of the anonial bundle. We note that any onnetion
∇ ∈ p determines a onnetion on E(1) and its real powers E(w), w ∈ R; we all E(w)the bundle of projetive densities of weight w. As a point on notation: Given a bundle
B we shall write B(w) as a shorthand for B ⊗ E(w).Although, by the de�nition of a projetive struture, there is no preferred onnetionon TM , there is a anonial onnetion, known as the trator onnetion, on a relatedhigher rank bundle. In the ase of the model S

n = G/P this is remarkably simple.For any P -representation W one has the indued homogeneous bundle W := G ×P Wwhere this means G × W modulo the equivalene relation (gr, v) ∼ (g, r·v), for r ∈ P .However in the speial ase that W is the restrition to P of a G-representation then Wis anonially trivialised φ : W → (G/P )×W by (g, v) 7→ (gP, g·v). Canonially we havethe trivial onnetion on (G/P )×W and via φ this pulls bak to the trator onnetion
∇T on W .Sine it oupies little spae, and beause in any ase we need the notation and on-epts, we review brie�y the onstrution of the trator onnetion in general; we follow[6℄ and the onventions there. In an abstrat index notation let us write EA for J1E(1),the �rst jet prolongation of E(1). Canonially we have the jet exat sequene(2.2) 0 → Ea(1)

ZA
a

→ EA
XA

→ E(1) → 0,where we have written XA ∈ ΓE(1) for the jet projetion, and ZA
a for the map inserting

Ea(1); these are both anonial. We write EA = Ea(1)+
�
�E(1) to summarise the omposi-tion struture in (2.2). As mentioned, any onnetion ∇ ∈ p determines a onnetion on

E(1), and this is preisely a splitting of (2.2). Thus given suh a hoie we have the diretsum deomposition EA
∇
= Ea(1)⊕ E(1) with respet to whih we de�ne a onnetion by(2.3) ∇T
a (µb | σ) := (∇aµb + Pabσ | ∇aσ − µa).Here Pab is the projetive Shouten tensor and, with Rab

c
d denoting the urvature of ∇,is related to the Rii tensor Rab := Rca

c
b by (n−1)Pab = Rab−

2
n+1R[ab]; [· · · ] indiatesthe skew part over the enlosed indies. It turns out that (2.3) is independent of thehoie ∇ ∈ p, and so ∇T is determined anonially by the projetive struture p. This isthe otrator onnetion of [47℄ and is equivalent to the normal Cartan onnetion for theCartan struture of type (G, P ), see [11℄. Thus we shall also term EA the otrator bundle,and we note the dual trator bundle EA (or in index free notation T ) has anonially thedual trator onnetion: in terms of a splitting dual to that above this is given by(2.4) ∇T

a



 νb

ρ



 =



 ∇aν
b + ρδb

a

∇aρ − Pabν
b



 .It will be useful to understand how the underlying onnetions in p arise from thetrator onnetion. By dualising (2.2) it follows that the trator bundle has a anonialomposition struture given by the exat sequene(2.5) 0 → E(−1)
XA

→ EA ZA
a

→ Ea(−1) → 0.



6 �ap, Gover, HammerlThe isomorphism EA
∇
= Ea(1)⊕E(1) determined by∇ ∈ p also splits (2.5) and is evidentlyequivalent to a hoie of setion YB ∈ EB(−1) satisfying XBYB = 1. Suh a splitting isequivalent to a Weyl struture (f. [16℄). This determines a bundle monomorphism,(2.6) ZA

a : Ea(−1) → EA.Using this a onnetion ∇Y
a on Ea(−1) is then reovered from∇T by the omposition (onsetions of Ea(−1)) of∇T with the map (2.6) followed by the anonial map EA → Ea(−1)of (2.5); this is evident from (2.4). This then determines a onnetion on TM that wemay denote ∇Y .Sine EA is J1E(1) we have the anonial universal 1-jet di�erential operator DA :

E(1) → EA, and from (2.2) XA
DA is the identity on E(1). Thus any nowhere vanishingsetion σ ∈ ΓE(1) determines a speial Weyl struture, termed a sale, by taking YA :=

σ−1
DAσ. In fat by onsidering powers and roots of E(1) one sees that DA generalises toan invariant operator DA : E(w) → EA(w − 1), w ∈ R, known to Thomas [6, 47℄ and weshall term any nowhere vanishing setion τ ∈ ΓE(w), w 6= 0, a sale (sine we may take

YA = 1
w

τ−1DAτ). We write ∇τ for the a�ne onnetion in p determined by a hoie ofsale τ .2.3. Normal solutions. Any vetor bundle whih is a tensor produt of tensor powersof the trator and otrator bundles, or a tensor part thereof, is termed a trator bundle.The strutures whih arise are handled e�iently by appeal to a prinipal bundle pitureas follows.Following [11℄ we onsider the bundle G of adapted frames for T whih respet the�ltration struture shown in (2.5). This is a prinipal bundle with struture group P .Then tautologially T is the assoiated bundle G ×P R
n+1. It is also straightforward toreover, from the trator onnetion, the unique Cartan onnetion ω on G fromwhih thetrator onnetion is indued. It follows that, given any representation W of G, we obtaina trator bundle W = G ×P W equipped with a (linear) trator onnetion indued from

ω. When we talk about trator �elds being parallel we mean that they are ovariantlyonstant with respet to this onnetion. If W is an irreduible G-representation thenwe say that the trator bundle W is G-irreduible. In this ase there is a natural bundlemap Π : W → B0, where B0 is an irreduible weighted tensor bundle, indued by the
P -epimorphism from W to its P -irreduible quotient.Proposition 2.1. [18℄ Let V be a G-irreduible trator bundle on (M, p) and supposethat I is a parallel setion of V. Then the bundle map Π : V → B0 takes I to a solution
τ := Π(I) of a �rst BGG operator

D : B0 → B1.De�nition: We shall say that τ , arising as in the Proposition, is a normal solution (ofthe operator D). In the following text we may use the term �normal solution� to meanthe normal solution for some �rst BGG operator D, without speifying D.Remark: It is worth noting that in the ase of the model S
n all solutions arise this way.In fat in the resolution (1.2) the G-representation V may be identi�ed with the spaeof parallel trators in the trator bundle assoiated to V.2.4. The Thomas one spae M . In view of the anonial �bration π : Rn+1 \0 → Snwe may regard Rn+1 \ 0 as a one spae over Sn. Here we reover the urved analogue ofthis (whih was probably known to T.Y. Thomas), see [16, 24℄.



Projetive equations, algebrai sets, and ompati�ations 7In Setion 2.3 above we mentioned that the Cartan onnetion indues a anonialtrator onnetion on any assoiated bundle G ×P W, where W is the restrition to Pof a G-representation. It is immediate from the equivariane properties of ω that, moregenerally for any losed subgroup P0 ⊂ P , we obtain a anonial onnetion on G×P0
W,a vetor bundle over the �brewise quotient G/P0. In partiular, let us heneforth write

P0 to denote the subgroup of G �xing e0 and de�ne M to be the quotient G/P0, that is,it is the total spae
M = G ×P E+where E+ is the R+-ray generated by e0 in Rn+1; from (2.5) we see that it is equivalentlythe total spae of the ray-bundle E(−1)+ (i.e. the subbundle of positive rays in E(−1)).We write π : M → M for the anonial bundle projetion.Now observe that, as P0 representations, we have g/p0

∼= Rn+1. From this there followtwo points. First by the last isomorphism, and that Rn+1 may be onsidered as therestrition to P0 of a G-representation spae, it follows that ω anonially indues a vetorbundle onnetion on G×P0
g/p0. Seond, by the standard theory of Cartan onnetions,we also have anonially the identi�ation G ×P0

g/p0
∼= TM . From the formula forthe trator onnetion (equivalently the normalisation onditions of the normal Cartanonnetion) it follows that this onnetion is Rii-�at. In summary.Proposition 2.2. The projetive struture (M, p) determines a anonial Rii-�at a�neonnetion ∇ on the manifold M .The anonial setion XA orresponds to a setion ζA of TM whih generates the R+ation on the �bres, and it is straightforward to verify that(2.7) ∇BζA = δA

B.Assoiated bundles on M arise from P -representations U as G ×P U. Setions arefuntions u : G → U whih are P -equivariant in the sense that u(g·r) = r−1·u(g).Sine P equivariane trivially implies equivariane for any subgroup, it follows that, byrestrition, suh setions lift immediately to setions of the orresponding bundle G×P0
Uover M . In partiular using the formula for the trator onnetion from [11, Setion 2.5℄one sees immediately that, in the ase that U is a G-representation, parallel trator �eldson M orrespond in an obvious way with parallel tensor �elds on M . It follows thatarbitrary smooth setions of T (or T ∗) orrespond to setions of TM (resp. T ∗

M) thatare in the null spae of ζA
∇A, and so general (unweighted) trator �elds orrespond inan obvious way to tensor �elds that are parallel in the diretions of the �bres of π. Using(2.7) and that ∇ is torsion free, this means that a setion of T orresponds to a setionof TM whih is homogeneous of degree −1, with respet to the prinipal R+�ation.Now any setion of π determines a splitting of (2.5) and so a onnetion from p. Notethat a sale σ determines a unique setion of E(−1)+ and thus a setion of π. It isstraightforward to verify [16℄ that the a�ne onnetion ∇σ that arises is related to theThomas spae onnetion ∇ as follows.Lemma 2.3. Let u, v ∈ ΓTM and σ a sale viewed, as a setion of π : M → M . Then

∇uv = π∗(∇σ∗uσ∗v).Note that (2.7) implies that ζA∇AζB = ζB so eah �bre of π agrees with the trae ofa vertial geodesi. It follows that other geodesis remain transverse to the �bres for alltime, and projet to regular urves on M . It is an easy onsequene of (2.3) that theseare geodesis from the lass on (M, p).



8 �ap, Gover, Hammerl2.5. Generalised homogeneous oordinates. Here we shall show that given a point
q ∈ M , and a hoie of adapted frame for T (1)q, we obtain an otherwise anonial di�eo-morphism between (M , ∇) and a�ne R

n+1; this map is distinguished by its propertiesof geometri ontat with the model, as we shall see later in this setion.Reall we denote by ζ the fundamental vetor �eld generating the prinipal right R+�ation on M . In the ase of the model π : R
n+1 \ 0 → S

n the fundamental �eld oinideswith the usual Euler vetor �eld E, and the a�ne onnetion ∇ agrees with the usuala�ne parallel transport.Lemma 2.4. Choose q̃ ∈ M , and a unit volume frame e0, . . . , en for Tq̃M , with e0 = ζ.This determines a di�eomorphism Φ : π−1(U ′) → π−1(U) for some open neighbourhood
U of q := π(q̃) and some open set U ′ in Sn. With the following properties:
• Φ is R+-equivariant and so determines a di�eomorphism φ : U ′ → U ;
• Φ maps straight lines through Φ−1(q̃) to geodesis for ∇ through q̃, and so φ maps greatirles through φ−1(q) to geodesi paths through q;
• Φ∗ζ is the Euler vetor �eld on π−1(U ′) ⊂ Rn+1.Proof: We shall write exp for the a�ne exponential map of ∇ at the point q̃. Now let
W be an open neighbourhood of zero in R

n suh that
(x1, . . . , xn) 7→ π(exp(x1e1 + · · ·+ xnen))de�nes a di�eomorphism from W onto an open neighbourhood U of q := π(q̃) in M . Wemay identify W with the a�ne hyperplane neighbourhood {(1, x) : x ∈ W} in R

n+1, andwrite U ′ ⊂ S
n for the open subset onsisting of its image under π. Now de�ne a map

Φ : π−1(U ′) → π−1(U) by
(r, rx1, . . . , rxn) 7→ exp(x1e1 + · · ·+ xnen)·r,where r > 0, (x1, . . . , xn) ∈ W and the dot indiates the prinipal right ation. Evidently,this is an R+�equivariant di�eomorphism, so it indues a di�eomorphism φ : U ′ → Uand Φ∗ζ is the Euler vetor �eld on π−1(U ′) ⊂ R

n+1. Also, φ maps great irles through
π((1, 0)) to geodesi paths through q, sine by onstrution it maps straight lines in thea�ne hyperplane through (1, 0) to geodesis through q̃ in M . �Remark: Note that the frame {e0, . . . , en} for Tq̃M determines an adapted frame for
Tq. Varying q̃ ∈ π−1(q), any adapted frame an be obtained in this way. Hene at agiven point q ∈ M , the freedom of hoie is parametrised by P .The Lemma leads to the following observation:Remark: Generalised homogeneous oordinates. Let us writeX0, X1, · · · , Xn : π−1(U) →
R for the funtions on π−1(U) ⊂ M whih are the push forward via Φ (i.e. pull bakvia Φ−1) of the standard oordinates X0, X1, · · · , Xn on Rn+1 (restrited to (π)−1(U ′)).Sine Φ is a di�eomorphism, the XA, A = 0, 1, · · · , n, are oordinates on π−1(U). Alsonote that by the equivariany of Φ, these funtions are homogeneous of degree one for theprinipal R+�ation on M , so they are equivalent to 1�densities on M . This olletionof densities may be viewed as urved versions of homogeneous oordinates.2.6. The fundamental theorem for parallel trators. We show here that the dif-feomorphism of Lemma 2.4 aptures a high degree of ontat between (M, p) and Sn.This is observed by a ompatibility between the trator parallel transport, on the twomanifolds, that we shall desribe preisely. First we onstrut a frame �eld for TM on
π−1(U) that orresponds to an adapted frame �eld for T on U .



Projetive equations, algebrai sets, and ompati�ations 9Here we ontinue the notation of Lemma 2.4. Take the vetors e1, . . . , en at q̃, andtransport them parallelly along the horizontal geodesis t 7→ exp(tx) for x in the spanof e1, . . . , en. Possibly shrinking U , these vetors projet onto a loal frame {ξ1, . . . , ξn}for the tangent bundle TM over U .Next, we laim that putting e0 = ζ along these horizontal geodesis, we obtain a unitvolume frame {e0, . . . , en} along exp(W ). Let c(t) be one of the horizontal geodesisthrough q̃. Then c′(t) is obtained by parallelly transporting c′(0) along the geodesi to
c(t). By assumption, c′(0) lies in the span of e1, . . . , en, whene c′(t) lies in the spanof e1(c(t)), . . . , en(c(t)). But together with ∇ξζ = ξ and ∇c′(t)ei = 0 along c(t), thisimplies that ∇c′(t)(ζ ∧ e1 ∧ · · · ∧ en) = 0 along c(t). Sine ∇ is volume preserving, andthe frame has unit volume in q̃, the laim follows.Finally we extend our frame along the �bres of π by requiring homogeneity of degree
−1 with respet to the prinipal R+�ation, that is we require ei(y·r) = r−1ρr

∗·ei(y),where ρ denotes the R+-ation. Then it is lear by onstrution that ei de�nes a framefor the tangent bundle TM over π−1(U), and at the same time determines an adaptedframe for T over U via the orrespondene of Setion 2.4. Notie that by onstrutionand the equivariany of Φ we see that sine Φ∗e0 equals the Euler vetor �eld E on
{(1, x) : x ∈ W}, we have Φ∗e0 = (X0)−1E on π−1(U ′).Next we need to known what this onstrution yields on the model S

n. The naturalhoie is to take q̃ = (1, 0) ∈ R
n+1 and eA = ∂A = ∂

∂XA (q̃) for A = 1, . . . , n. It is easilyonluded that the onstrution just gives the frame �eld { 1
X0E, ∂1, . . . , ∂n} on the halfspae X0 > 0. Now a onstant tensor I

′ on R
n+1 is equivalent to a parallel trator on

I ′ on S
n; this uses Setion 2.4 for the model. Putting these things together we ome tothe following key fat. Here to simplify the statement, density bundles are trivialised bythe sale X0 (orresponding to working on the setion X0 = 1 of M).Theorem 2.5. Suppose that I is a parallel setion of a trator bundle. Composing with

φ the oordinate funtions of I with respet to the frame derived from {e0, . . . , en}, oneobtains the oordinate funtions of a parallel trator I ′ on the homogeneous model withrespet to the trator frame obtained in the same way from { 1
X0E, ∂1, . . . , ∂n}.Proof: Denote by I the parallel tensor on (M , ∇) equivalent to I . We onsider anexpression for I in the form aJeJ , where the elements eJ are linear ombinations oftensor produts of the ej , whih form a loal frame for the given tensor bundle. Thenalong any of the geodesis c(t) through q̃, and lying in exp(W ), we an onsider

0 = ∇c′(t)

∑

J

aJeJ =
∑

J

(c′(t)·aJ (c(t)))eJ +
∑

J

aJ∇c′(t)eJTo expand the last term, we only need to know that ∇c′(t)e0 = c′(t) while ∇c′(t)ei = 0for i > 0 along c(t). This shows that for the oe�ients aJ we obtain a �rst orderODE on the funtion t 7→ aJ(c(t)) = bJ(t) whih has the form b′(t) = F (b(t)) and oneobtains the same system on the orresponding straight line through (1, 0) ∈ Rn+1 overthe homogeneous model Sn. In vertial diretions, everything is �xed by homogeneity,so we obtain the result. �There is a useful variant of the above result. To simplify the disussion let us simplyidentify trator �elds in M with the orresponding homogeneous tensor �elds on M anddo the same on the model.On the homogeneous model, we an diretly ompute the hange from the frame
{ 1

X0E, ∂1, . . . , ∂n} to {∂0, . . . , ∂n}, and then make the same hange on M . Denoting,



10 �ap, Gover, Hammerlas above, the generalised homogeneous oordinates on M by XA, this implies that anyparallel trator has onstant oordinate funtions with respet to the the frame(2.8) {f0, f1, . . . , fn}, where f0 = e0 −
X1

X0
e1 − · · · −

Xn

X0
enand fi = ei for i = 1, · · · , n. The orresponding oframe is given by f0 = e0 and

f i = ei + Xi

X0 e0 for i = 1, · · · , n.Sine the hange of frame (2.8) is rational in the oordinates and these oordinatesare the push forward by Φ of the standard oordinates on R
n+1, Theorem 2.5 an beequivalently phrased in terms of the frame fA. More generally we may de�ne, on asu�iently small neighbourhood U of any point q ∈ M , a map Φ from trator �elds on

U ′ = φ−1(U) ⊂ Sn to trator �elds on U as follows: Use the frame fA and its dual totrivialise the tensor bundles on M . Use the standard R
n+1 frame to do the same on themodel. Then push forward the omponent funtions of trators �elds (as homogeneousfuntions on R

n+1) on the model via the di�eomorphism Φ and interpret as omponentsof a trator �eld in the trivialisation on M . Then we have the following.Corollary 2.6. Given q ∈ M , a hoie of adapted frame eA(q) for Tq anonially deter-mines, for some neighbourhood U of q, a di�eomorphism φ : U ′ ⊂ S
n → U , a trivialisa-tion of trator and density bundles, and a ompatible map Φ from trator �elds on U ′ totrator �elds on U with the properties:

• for parallel trators I the omponent funtions are onstant;
• any parallel trator I on U is the image under Φ of a parallel trator U ′ ⊂ S

n;
• the omponents of the anonial trator �eld XA (in the trivialisation) are exatly thegeneralised homogeneous oordinates XA of Setion 2.5, and these are the image under
Φ of the standard oordinates on Rn+1.Proof: The �rst part of the last fat follows from (2.8) and that X0e0 = ζ. The �nalobservation is immediate sine on homogeneous funtions on Rn+1, Φ is just Φ∗. Theother points were treated above. �Remark: By the same argument that led to the �rst bullet point of the Corollary, wesee that the frame �eld fA is parallel along those geodesis through q̃ ∈ M whih liein exp(W ). Then in the vertial diretions we have ∇ζfA = 0, A = 0, 1, · · · , n. Theseproperties with fA(q̃) := eA(q) obviously haraterise this frame, whih we will all anormal frame. Thus the generalised homogeneous oordinates are haraterised as theomponent funtions (densities) of the anonial trator XA, with respet to this normalframe. This frame also determines a normal sale σ = f0

AXA = e0
AXA. This agrees with

Φ(X0), so trivialising density bundles on M using σ, is ompatible via φ with trivialisingdensity bundles on S
n using X0. This is impliit in the onstrution proving Theorem2.5.In our disussion below, we shall use both the normal frame fA and the adapted frame

eA. Note that the map Φ an also been obtained using the trivialisations orrespondingto the adapted frame.Theorem 2.5 and its equivalent Corollary 2.6 allow us to treat normal solutions sine,by Proposition 2.1, eah suh arises as Π(I) for a parallel trator I , where Π denotesthe projetion Π to the irreduible quotient bundle. This is easily understood using theadapted trator frame {e0, · · · , en} from above. Referring to (2.2) and (2.5), but usingthe normal sale σ = e0
AXA to trivialise densities, the projetion ZA

a : EA → Ea to theirreduible quotient is haraterised by e0 7→ 0 and ei 7→ ξi for i = 1, . . . , n. Dually for
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EA the projetion is given by ontrating with XA, and so is haraterised by by e0 7→ 1and ei 7→ 0 for i = 1, . . . , n. These determine Π on tensor produts.Let us desribe the trivialisation of tensor bundles on M (or Sn) indued by theframe {ξ1, . . . , ξn} and the normal density σ (the frame on Sn given by the projetion of
{∂1, . . . , ∂n} and the normal density X0) as a normal trivialisation.Corollary 2.7. Suppose that τ is a normal solution of a �rst BGG equation Dτ = 0on (Mn, p). For eah point q ∈ M there are open sets U ∋ q and U ′ ⊂ S

n and adi�eomorphism φ : U ′ → U , whih maps great irles through φ−1(q) to geodesis through
q, suh that τ ◦ φ = τ ′ where τ ′ is a solution for D on the model, and τ , τ ′ are theomponent funtions of τ and τ ′ in the appropriate normal trivialisations.The Corollary here is a �rst version of what we shall shortly refer to as the fundamentaltheorem for normal solutions. What is laking at this point is some expliit understandingof what the normal BGG solutions are on the model. Fortunately the tools we havealready developed give an answer almost immediately. Let us follow through a the abovefor a speial lass of examples.Consider the ase of a ompletely symmetri parallel trator HA1···Ak

on (M, p). From(2.2) the map Π of Proposition 2.1 is simply HA1···Ak
7→ HA1···Ak

XA1 · · ·XAk =: σ ∈
ΓE(k). Now σ orresponds to degree k homogeneous funtion on M that we shalldenote the same way. From Corollary 2.7, loally (and using the onstrutions andnotation from above) we have σ = φ∗σ

′ where σ′ is a solution to D on S
n . Withrespet to the trivialisations arising from the trator frame fA, we have σ orrespondsto the homogeneous funtion σ = HA1···Ak

XA1 · · ·XA
k on M . From Corollary 2.6, theomponents HA1···Ak

are onstant, so σ is expressed as a polynomial. Aording to theonstrution, and using Corollary 2.5, σ′ is simply the same homogeneous polynomial (instandard oordinates), now viewed as a homogeneous funtion on Rn+1. The latter ispreisely a projetive polynomial on Sn of degree k.Note that this outome is also lear via another perspetive from Corollary 2.6: σ =
Π(H) is Φσ′, for some density σ′ on Sn. By expressing σ′ in the frame fA as above,
σ = HA1···Ak

XA1 · · ·XA
k , and using Corollary 2.6, we see σ′ is given by the same formalexpression on R

n+1 and hene is Π(H ′) for a parallel trator H ′ there. From eitherperspetive, as a speial ase of this wemay replae (M, p)with Sn to obtain the following.Proposition 2.8. On S
n the degree k projetive polynomials are preisely the �rst BGGsolutions orresponding to symmetri rank k parallel trators.So we see that, at least for this lass of ases, �rst BGG solutions on the model arejust projetive polynomials. On the other hand Corollary 2.7 shows that orrespondingnormal solutions in ΓE(k), on a projetive manifold (M, p), are urved analogues. Sineany algebrai set arises from a olletion of suh polynomials, we have a universal wayto desribe a anonial urved analogue of the projetive polynomial system involved.We may elaborate on the Proposition somewhat. The PDE involved are the equationsof the operators Dk : ΓE(k) → ΓE(a1a2···ak)(k) that, in terms of ∇ ∈ p, take the form(1.1). The equation Dkσ = 0 haraterises degree k projetive polynomial densities. Thespei� polynomial densities solving this are then in 1-1 orrespondene with parallelsymmetri otrators in ΓE(A1···Ak). The parallel trator orresponding to a partiularsolution σ is really part of the jet (roughly, Taylor series) data of σ determined byprolongation (in [18℄ and f. [5℄), but remarkably we an avoid any signi�ant details ofthis beyond what is impliit in the treatment above.



12 �ap, Gover, HammerlWe now see a generalisation of the Proposition above and orresponding re�nementof Corollary 2.7. A �rst observation is that the trator onnetion preserves a setion of
Λn+1EA (a trator volume form), and it follows that, without loss of generality, we maywork with ovariant trator �elds, and we heneforth make this simpli�ation. Howeverto work with these, and state results onisely, we shall need to reall some standardrepresentation theory, as well as related notions and notation.2.7. Tensors and representations. Up to isomorphism, eah irreduible representa-tion of G is desribed by a weight(2.9) r = (r1, · · · , rn), where r1 ≥ · · · ≥ rn ≥ 0,and ri ∈ Z≥0, i = 1, · · · , n. Below we use the notation |r| :=

∑n
1 ri. Equivalently therepresentation (2.9) is given by a Young diagram where from the top, and proeedingdown, the rows have respetive lengths r1, · · · , rn, see e.g. [25℄. As a shorthand for theweights we shall omit any terminal string of 0s. For example (2, 2) means

(2, 2, 0, · · · , 0)︸ ︷︷ ︸
n

.De�nition. G-type and P -type. Let us view (Rn+1)∗ as the dual of the de�ning rep-resentation of SL(n + 1, R). G and its subgroups at on the tensor algebra of (Rn+1)∗and tensors will be said to be of the same G-type (respetively P -type) if they lie in thesame G-orbit (respetively P -orbit).Eah tensor power of ⊗|r|(Rn+1)∗ may be deomposed into irreduible representationslassi�ed by the weights as in (2.9). Realising the irreduible representations in tensorpowers of the (dual to the) standard representation is not unique. Certainly a tensorbelonging to the representation (2.9) has valene (i.e. total rank) |r| :=
∑n

1 ri. Therepresentation given in (2.9) will be realised by tensors
IA1···Ar1

B1···Br2
···E1···Ernwhih are ompletely symmetri over eah of the respetive index setsA1 · · ·Ar1

, B1 · · ·Br2
,and so on to E1 · · ·Ern

. We all a tensor in suh a subrepresentation G-irreduible. Theirreduibility of the representation is further enoded in what are sometimes termed hid-den symmetries of the tensor elements [44℄. For example symmetrising over any r1 + 1indies will annihilate the tensor I . With this understood we shall write R(r) for thevetor spae of suh tensors in ⊗|r|(Rn+1)∗.Finally as a point of notation. Above we have expressed the tensor I as an objetadorned with abstrat indies. (Rn+1)∗ has a standard basis, this generates a standardvetorial basis for the tensor algebra it generates. In terms of this we may express I interms of its omponents, and write
IA1···Ar1

B1···Br2
···E1···Ern

.2.8. G-irreduible polynomial systems. As above, let us write XA, A = 0, 1, · · · , nfor the standard oordinates on Rn+1. Given a tensor in ⊗|r|(Rn+1)∗ we may onstrutpolynomial systems by ontration in the obvious way. For example if RA1A2B1B2
∈

R(2, 2) then we may form the two (in general non-trivial) polynomial systems
PA2B1B2

= RA1A2B1B2
XA1 and QB1B2

= RA1A2B1B2
XA1XA2where repeated indies are summed (aording to the Einstein summation onvention).We shall term the latter of these saturated sine any ontration of XC into QAB will



Projetive equations, algebrai sets, and ompati�ations 13result in annihilation, as a result of the (hidden) symmetries of R. Suh polynomialsform a natural lass for many purposes, as shall be lear shortly.De�nition: We shall say that a polynomial system is G-irreduible if it arises as(2.10) QB1···Br2
···E1···Ern

= IA1···Ar1
B1···Br2

···E1···Ern
XA1 · · ·XAr1for some tensor I ∈ R(r). Note that the system is homogeneous of degree r1, and de�nesa projetive algebrai set on Sn.The system Q given in (2.10) is saturated and homogeneous. By onstrution, as a ten-sor �eld on R

n+1 it has symmetries onsistent with the representation r′ = (r2, · · · , rn).It now follows that these olletively imply that it orresponds to a ertain �eld τ on S
n.In fat from (2.2) and the relationship between trators bundle setions and one tensor�elds, as desribed in Setion 2.4, we obtain that this tensor τ is a setion of weightedirreduible tensor bundle E(r2, · · · , rn)(k), where k = |r|. Here E(r2, · · · , rn) is the bun-dle of ovariant tensors having the Young symmetry (r2, · · · , rn) and E(r2, · · · , rn)(k) =

E(r2, · · · , rn) ⊗ E(k). We shall say that a tensor �eld on S
n that arises in this way is a

G-irreduible polynomial tensor �eld. The ritial point here is that we an give a preisedi�erential haraterisation of these, that we shall ome to now.By their de�nition (and with Proposition 2.1) we see the weighted tensor bundles
E(r2, · · · , rn)(k), k ≥ r2 + |r′| in Z, are exatly the bundles B0 in the BGG omplexesmentioned in the introdution (see (1.2)). Now we an state the full extension of Propo-sition 2.8.Proposition 2.9. The G-irreduible polynomial tensor �elds on S

n are preisely the so-lutions of �rst BGG operators D : B0 → B1: If B0 is realised as the irreduible weightedtensor bundle E(r2, · · · , rn)(k) and a setion τ thereof is a solution (i.e. Dτ = 0),then the homogeneous polynomial system orresponding to τ is the saturate of some
I ∈ R(r1, · · · , rn) where r1 = k − |r′|.This result is an easy onsequene of the main Theorem 2.10, whih follows shortly.Remark: Note that on S

n the homogeneous oordinates X0, · · · , Xn linearly generatethe full solution spae of the k = 1 system (1.1). Thus via the Proposition, thesepolynomially generate all �rst BGG solutions. The Proposition also gives the spei�polynomial systems involved.2.9. The fundamental theorem of normal solutions. As observed above eah do-main bundle B0, for a �rst BGG operator, may be realised in the form E(r2, · · · , rn)(k).Let τ ∈ ΓE(r2, · · · , rn)(k) be a normal solution. Then τ = Π(Iτ ) where Iτ is a G-irreduible parallel trator �eld. It is an easy onsequene of the �ltration struturearising from (2.2) that Π may be realised expliitly by saturating Iτ with X to yield
Qτ

B1···Br2
···E1···Ern

= Iτ
A1···Ar1

B1···Br2
···E1···Ern

XA1 · · ·XAr1 ,(where r1 = k − |r′|) and by then ontrating the projetors ZA
a (of (2.6)) onto allremaining indies. Note that Qτ takes values in an irreduible subbundle of the weightedtrator bundle EB1···Br2

···E1···Ern
(r1) and the �nal step of ontrating with the onatena-tion of ZA

a projetors is simply realising the isomorphism between this subbundle and theweighted tensor bundle E(r2, · · · , rn)(k). Thus we heneforth identify E(r2, · · · , rn)(k)with this subbundle (as done impliitly in Corollary 2.7) and thus τ and Qτ are also tobe identi�ed.



14 �ap, Gover, HammerlNow �x an arbitrary point q̃ ∈ M . In a neighbourhood of q̃, and in terms of a normalframe �eld (as de�ned in (2.8), and see the Remark below that) we have
Qτ

B1···Br2
···E1···Ern

= Iτ
A1···Ar1

B1···Br2
···E1···Ern

XA1 · · ·XAr1and, by Corollary 2.6, the omponents Iτ
A1···Ar0

B1···Br1
···E1···Ern

are onstant. Using againCorollary 2.6 to interpret this on S
n we have the following.Theorem 2.10. Suppose that τ ∈ ΓE(r2, · · · , rn)(k) is a normal solution of the equation

Dτ = 0 on (Mn, p). For an arbitrary point q ∈ M , �x a an adapted frame at q. Thisdetermines a normal frame fA (as in 2.8), a loal di�eomorphism φ : S
n → M , and or-responding generalised homogeneous oordinates XA in a neighbourhood of q. In termsof these the following hold:

• With respet to the trivialisation of EB1···Br2
···E1···Ern

(r1), determined by fA, the o-ordinate funtions τ (of τ) form a homogeneous polynomial system in the generalisedhomogeneous oordinates.
• The olletion Φ∗τ is given by the same formal polynomial system, where the XA arenow interpreted as the standard oordinates of Rn+1. With respet to the standard frameon Rn+1, the olletion Φ∗τ are the oordinate funtions of a solution τ ′ of the equation
Dτ ′ = 0 on Sn.Remark: Note that the polynomial system τ , as in the Theorem, satis�es polynomialrelations. These arise in an obvious way from the fat that trator setion, equivalent to
τ , is saturated with respet to ontration with XA. For example in the ase τ ∈ ΓEa(2)then the system τ onsists of the n + 1 linear polynomials KABXB where the matrix ofomponents of K is skew, i.e. KAB = −KBA. Thus there is the one polynomial relation
KABXAXB = 0.Next note that sine the reasoning in the �rst part of the proof above applies, inpartiular, when we begin with τ a solution of D in the ��at ase� (i.e. on S

n with itsstandard projetive struture) as a orollary we have at one the Proposition 2.9.2.10. The zero lous of normal solution. The Theorem above is loal in nature butit (or equivalently Corollary 2.7) has a global interpretation. Before we ome to this weneed some simple observations, and a de�nition.De�nition. G-type and P -type of a point. Consider a projetive manifold (M, p)equipped a with a normal solution τ , and let Iτ be the parallel trator suh that
τ = Π(Iτ ). For a point q ∈ M we an hoose a trator frame eA for the trator spae
Tq at q, whih is adapted in the sense that e0 is parallel to XA. Using this frame, theomponents of Iτ (q) de�ne an element in the tensor algebra of (Rn+1)∗. As we havenoted in 2.3 any two suh frames are related by the ation of an element of P . Hene the
P�orbit of this element, whih we all the P -type of the point q, depends only on (M, p),
τ , and q, and not on further hoies. Of ourse, this implies that also its G�orbit is wellde�ned, and we all this the G-type of the point qSine a parallel trator has onstant omponents with respet to the normal frames fAwhih, although not adapted, are volume normalised, we obtain the following.Theorem 2.11. If (M, p) is onneted then any parallel trator �eld I has a onstant
G-type.An analogous statement is not available for P -type, beause an adapted frame is notparallel along any urve; this is lear from (2.7).



Projetive equations, algebrai sets, and ompati�ations 15It follows from Theorem 2.11 that, for a normal solution τ on a onneted manifold
(M, p), we may assoiate a �xed G-irreduible polynomial tensor �eld τ ′ on the model
Sn, and this is obviously unique (up to a G-ation that we shall ignore). In this ase weshall say that (Sn, τ ′) is the model for (M, p, τ) (meaning (M, p) equipped with a normalsolution τ).For a given normal solution τ on a projetive manifold (M, p), its zero lous Z(τ) is notneessarily smooth. However, given q ∈ Z(τ), Corollary 2.7 shows that there is a point
q′ ∈ Z(τ ′) ⊂ S

n and a loal di�eomorphism from an open neighbourhood of q to an openneighbourhood of q′ in the model, whih is ompatible with respet to the zero sets. Inpartiular, Z(τ) annot have worse singularities than Z(τ ′). For example if q′ is a smoothpoint then, in a neighbourhood of q, Z(τ) is an embedded smooth submanifold. Henethe problem of the lassi�ation of zero lous singularities for normal solutions is reduedto a problem in real algebrai geometry. Note that it an be that the model algebrai setis not (globally) smooth and yet the zero lous Z(τ) is smooth and embedded; indeed asan extreme ase Z(τ) may be empty.For emphasis we ollet some of these de�nitions and onsequenes of Theorem 2.10into a statement.Corollary 2.12. Let τ be a normal solution on a onneted manifold (M, p) and let
(Sn, τ ′) be the orresponding model. If q ∈ Z(τ) then there some q′ ∈ Z(τ ′) with thesame singularity type. In partiular, if Z(τ ′) is a smooth algebrai set then Z(τ) is asmooth embedded submanifold.2.11. Orbit type deomposition of M . Here we observe that a normal solution τ(equivalently a parallel trator �eld Iτ) determines a anonial strati�ation of M .Di�erent points on the manifold may have the same P -type and this establishes anequivalene relation for the points of M . Thus the points of the manifold M are par-titioned aording to P -type. On a given struture (M, p, τ) there an be many orbittypes. For example a point where τ vanishes is ertainly in a di�erent P -type to a pointwhere τ is not zero. In general the P -type deomposition exposes onsiderably �nerstruture than this example illustrates. We treat some examples in Setion 3.1 below,but a more detailed analysis is the subjet of [15℄.Now we laim that the di�eomorphism φ, of Lemma 2.4, preserves P -type. Preisely,the P�type of Iτ at φ(y) oinides with the P�type of Iτ ′ at y. To see this, arguing as inthe proof of Theorem 2.5, simply observe that these trators have the same oordinateexpression in di�erent frames, both of whih are adapted. This exatly means same theyhave the same P�type.Thus we may take the alternative view that the maps φ transfers the P -type deom-position of the model (Sn, τ ′) onto the orresponding urved struture (M, p, τ). Part ofthe power of this lies in the following result (disussed in greater detail in [15℄).Proposition 2.13. Let GI′ ⊂ G be the isotropy subgroup of a tensor I ′ in ⊗

R
∗. Viewing

I ′ as a parallel trator on S
n, the P -type deomposition of (Sn, I ′) is the same as the orbitdeomposition of Sn under the ation of GI′.Proof: It is easily veri�ed diretly, that in either ase the orbits are naturally parametrisedby the points of the double oset spae GI′\G/P . �In general a projetive manifold (M, p), with a parallel trator I , admits no ation by

GI′, and so a GI′-orbit deomposition of M makes no sense. However we have the simplebut surprising outome that the P -type deomposition is well de�ned, and this ehoes



16 �ap, Gover, Hammerlthe GI′-orbit deomposition of the model. For example it follows from the Proposition2.13 that the P -types of Sn are non-self-interseting smoothly immersed (in fat initial[37, Theorem 5.14℄) submanifolds and hene, via the di�eomorphism φ of Lemma 2.4,we may onlude that so are the P -types of (M, p, I). Thus the P -types give a smoothstrati�ation of M . In summary we have the following.Theorem 2.14. Let (M, p) be projetive manifold equipped with a parallel trator I.Then (M, p) is strati�ed aording to a P -type deomposition. The di�eomorphism φ ofLemma 2.4 preserves the P -type and, in partiular, the ourring P -types are a seletionof those arising in the model (Sn, I ′).2.12. Geometry. The presene of a parallel trator equips (M, p) with additional geo-metri struture. Of ourse a parallel trator may be reinterpreted as a redution of the(projetive) trator holonomy. By de�nition this is additional geometri struture, andas mentioned in the introdution, loal and generi aspets of this have been exploredin, for example, [3, 4℄. In the examples of the next setion we shall see, from our urrentpoint of view, how suh lassial strutures arise. In one ase we shall see the strutureis neessarily non-Rii-�at pseudo-Riemannian Einstein on open subsets.More importantly for the diretions here, we show that the parallel trator, alongwith Theorems 2.5 and 2.10, provides a tool whih an relate the geometry of a normalsolution zero lous to that on the omplementary spae.3. Examples3.1. Preliminary observations. In several of the examples below we onsider normalsolutions τ whih are setions of a density bundle E(w), where w 6= 0, and the open
P -types are submanifolds on whih τ is nowhere vanishing. On suh a P -type, denotedby M+ say, τ is a sale and so naturally determines an a�ne onnetion ∇τ from theprojetive lass (restrited to M+) as disussed in Setion 2.2. We want to explain howour method an be used to prove results related to geodesi ompleteness of∇τ . Considera geodesi path in M whih leaves M+, i.e. whih intersets both M+ and Z(τ). Takea point q ∈ Z(τ) whih lies in the losure of M+ and arry out the onstrution fromLemma 2.4 for some point q̃ over q. Then our geodesi path will beome a geodesi γ forthe onnetion determined by the normal sale σ determined by the onstrution.Now take a point x ∈ M+ whih lies on γ (and in the range of the di�eomorphism φ).Starting from x and moving along γ in the diretion of q, the point q will of ourse bereahed in �nite time. Now some reparametrisation γ̂ of γ will be a geodesi for ∇τ , andit may happen that this reparametrisation has the e�et that q is no longer reahed in�nite time.If we assume that the original manifold M is losed then the only way for M+ to begeodesially inomplete is that geodesis leave M+ in �nite time. Hene if in the aboveonsiderations q is never reahed in �nite time, geodesi ompleteness follows.The reparametrisation from γ to γ̂ an be obtained as the solution of a an ODE whihdepends only on the funtion desribing τ in the trivialisation of the density bundledetermined by σ. But now it follows from the onstrution that the di�eomorphism φrelates σ and the funtion desribing τ in the trivialisation determined by σ to theirounterparts on the homogeneous model. Consequently, the reparametrisations on thehomogeneous model and on the urved manifold are determined by the same ODE andhene oinide. Thus, if the point φ−1(q) on the homogeneous model is not reahed in�nite time after the reparametrisation, then the same is true for q. In partiular, geodesi



Projetive equations, algebrai sets, and ompati�ations 17ompleteness arries over from the homogeneous model to urved geometries on losedmanifolds.If in suh a situation Z(τ) is the boundary of M+ (as in �rst two examples below)then it reasonable to all Z(τ) the projetive in�nity for (M+,∇τ ) (as an analogue ofthe term onformal in�nity). This is not meant to imply that that Z(τ) neessarily hasa anonial projetive struture.3.2. The parallel standard otrator � projetive almost Rii-�at. Here we ob-tain a struture whih generalises that of an a�ne Rii �at manifold (f. [45℄); the resultis a�ne Rii-�at on an open dense set. From the point of view of ompati�ations,it yields a struture that is a ompati�ation of a Rii-�at manifold that is a urvedgeneralisation of the usual projetive ompati�ation of the a�ne plane to a hemispherevia entral projetion. Thus, in partiular, it is di�erent to a onformal ompati�ationof suh a spae (whih for the ase of the Eulidean plane is a 1-point ompati�ation).The struture in this ase in a projetive manifold (M, p) equipped with a parallelsetion IA of the standard otrator bundle. Let σ denote IAXA. To �nd the �rst BGGequation that this satis�es we may alulate with respet to∇ ∈ p. We have IB
∇
= (µb σ)and using the formula for the trator onnetion (2.3), we see that IB parallel impliesthat µb = ∇bσ and then(3.1) ∇a∇bσ + Pabσ = 0;this is the k = 1 ase of (1.1). All solutions of (3.1) arise this way (i.e. any solution of(3.1) is normal), indeed a prolongation of this equation determines the trator onnetion[6℄.Where σ is nowhere vanishing (3.1) is the equation that ∇ is projetively Rii-�at;more preisely in an open neighbourhood with σ nowhere zero the onnetion ∇̂, har-aterised by ∇̂σ = 0 and hene related to ∇ via (2.1) with Υa given by σ−1∇aσ, is Rii�at. Thus the struture (M, p, IA) generalises the notion of a Rii-�at a�ne manifold.The model struture is (Sn, σ′) where σ′ is the weight 1 density whih arises as aprojetive polynomial from IAXA on R

n+1 where IA is a onstant ovetor there. Sine
IAXA = 0 desribes a hyperplane through the origin in R

n+1 it follows that the zero lousof σ′ is a totally geodesi embedded Sn−1 in Sn with its standard projetive struture. The
P -type deomposition onsists of the 3 submanifolds where σ′ is, respetively, positive,zero, and negative. On the open submanifolds Sn

± where σ′ is, respetively, positive,and negative, σ′ is a sale and indues the �at onnetion ∇σ′ in agreement with theidenti�ation (by entral projetion) of S
n
± with, respetively, the a�ne subspaes in R

n+1desribed by IAXA = ±1. Thus these manifolds (Sn
±,∇σ′

) are geodesially omplete.Aording to our general results above these features are neessarily reprodued in thegeneral situation. Thus we have the following.Theorem 3.1. Consider a projetive manifold (M, p) equipped with a parallel standardotrator IA. Then the weight 1 projetive density σ = IAXA satis�es the equation (3.1).The manifold is strati�ed by P -types M+, Mo, M− aording to the strit sign of σ. Theseomponents have a struture as follows:
• The zero lous Mo of σ is either empty, or forms a smooth embedded hypersurfae. Withrespet to any ∇ ∈ p, this is totally geodesi, and has anonially an intrinsi projetivestruture pMo = [∇Mo] where ∇Mo is simply the restrition of ∇. The normal tratoronnetion of (Mo, p

Mo) is naturally a restrition of the ambient trator onnetion.
• The open submanifolds (M±,∇σ) are Rii-�at a�ne manifolds, whih are geodesially



18 �ap, Gover, Hammerlomplete if M is losed.
• If M \M+ or M \M− is ompat (e.g. if M is losed this is fored) then (M \M∓, p, I)is a geometrially anonial ompati�ation of, respetively, (M±, p) (where throughout
p and I are restrited to the indiated submanifolds).Proof: The last bullet point is simply the observation that the onstrution yields aprojetive analogue of onformal ompati�ation of Einstein manifolds.Conerning the zero lous: On the model the zero lous is a totally geodesi equatorialembedded (n−1)-sphere. It follows at one that Mo is totally geodesi, as based arounda point q in Z(σ), by onstrution Φ−1 is ompatible with the geodesi paths through
q. Thus Mo has a projetive struture whih is simply a restrition of that from theambient (M, p).This result an also be seen via the Thomas one spae sine there IA is parallel, andthus is a onormal to the zero lous of σ = IAζA (where we have used ∇AζB = δB

A ).Sine this zero lous Z(σ) has a parallel onormal it is totally geodesi. On the otherhand the non-vertial geodesis of M are the lifts of the geodesis from (M, p), and itfollows that Mo is totally geodesi. Using now that Z(σ) is totally geodesi, it followsthat it inherits an a�ne manifold struture by the restrition of the ambient ∇. Thelaims about the normal trator onnetion follow, with this restrition of ∇ to Z(σ)being the Thomas spae over (Mo, p|Mo
).Away from its zero lous, σ is a sale and so we have ∇σσ = 0, thus the laim thatthe omponents (M±,∇σ) are Rii-�at follows from (3.1).All other points follow immediately from the orresponding results on the model viaTheorem 2.10 (and its proof), Corollary 2.12, Theorem 2.14, and the disussion of setion3.1. �3.3. A parallel trator metri � Klein-Einstein strutures. Here we onsider aprojetive manifold (M, p) equipped with a non-degenerate symmetri and parallel 2-otrator HAB of signature (r, s), r ≥ s ≥ 0. In this ase σ := HABXAXB satis�es thethird order equation(3.2) ∇(a∇b∇c)σ + 4P(ab∇c)σ + 2

(
∇(aPbc)

)
σ = 0,where (· · · ) indiates the symmetri part over the enlosed indies.The model struture is (Sn, σ′) where σ′ is the weight 2 density whih arises as apolynomial salar density from the homogeneous polynomial σ := HABXAXB on Rn+1,where HAB is a �xed (signature (r, s)) inner produt there.If s ≥ 1 then HABXAXB = 0 is a quadrati variety in Rn+1 and, orresponding to this,the zero lous of σ′ is an embedded variety Sr−1×Ss−1 in S

n with a signature (r−1, s−1)onformal struture indued from HAB (viewed now as a metri in R
n+1 \{0}) restritedto tangent vetors in Z(σ). The P -type deomposition onsists of the 3 submanifoldswhere σ′ is, respetively, positive, zero, and negative. On the open submanifolds S

n
±where σ′ is, respetively, positive, and negative, σ′ is a sale and indues a spaeformmetri, with signature respetively (r, s− 1) and (r − 1, s), and with ∇σ′ the ompatibleLevi-Civita onnetion having urvature, respetively, negative and positive. It is wellknown that these that these manifolds (Sn

±,∇σ′

) are geodesially omplete.If s = 0 then the model is very simple. Then Z(σ) is empty on Rn+1 \ {0}. There isjust the one P -type, viz. Sn, and, via σ, HAB indues the usual (up to di�eomorphism)unit round metri on this, and ∇σ is the standard Levi-Civita onnetion. In general wehave the following.



Projetive equations, algebrai sets, and ompati�ations 19Theorem 3.2. Consider a projetive manifold (M, p) equipped with a non-degeneratesymmetri and parallel 2-otrator HAB of signature (r, s), r ≥ s ≥ 0. The weight 2projetive density σ = HABXAXB satis�es the equation (3.2). If s = 0 then:
• M is a single P -type and σ is a sale on M that indues a positive Einstein metri.If s ≥ 1 we have the following:
• The manifold is strati�ed by P -types M+, Mo, M− aording to the strit sign of σ.
• The zero lous Mo of σ is either, empty, or forms a smooth embedded hypersurfaewith a onformal struture c of signature (r − 1, s − 1). The standard onformal tratorbundle agrees with the restrition of the projetive trator bundle T to Mo and the normalonformal trator onnetion of (Mo, c) is naturally the orresponding restrition of theambient projetive trator onnetion.
• On the open submanifold M±, σ is a sale that indues, respetively, a positive/negativeEinstein metri gσ of signature (r−1, s) or (r, s−1). In eah ase, the a�ne onnetion
∇σ is the orresponding Levi-Civita onnetion. If M is losed then eah of (M±, gσ) isgeodesially omplete.
• If M \ M+ or M \ M− is ompat with boundary Mo (e.g. if M is losed this isfored) then (M \M∓, p, H) is a geometrially anonial ompati�ation of, respetively,
(M±, gσ) (H is restrited to the indiated submanifolds).Proof: Sine a sale trivialises the bundles E(w) and splits the dual Euler sequene(2.5), it follows that in the presene of a sale, HAB determines a ovariant symmetritwo tensor on the manifold M . As in the ase of the model, the signature of this dependson the P -type, and indeed via the di�eomorphism Φ, of Lemma 2.4, we an onlude thesignature of eah P -type from the model; in either ase this is determined in an obviousway aording to whether XA is timelike or spaelike with respet to HAB . Calulatingloally where σ is a sale one sees that ∇T

a HBC = 0 implies that ∇σ
aPbc = 0 and that

Pbc agrees up to a onstant (giving the sign of the salar urvature) with the metriindued from HBC, and this onstant is non-zero on the open P -types [3, 31℄. Sine ∇σis torsion-free it follows that on these P -types it is an Einstein Levi-Civita onnetion.
Mo is the set where XA is null (with respet to HAB). But, where XA is null, oneeasily sees that HAB determines a signature (r − 1, s − 1) bilinear form, taking valuesin E(2)|Mo

, that is independent of any splitting of (2.5). This is loally ompatible withthe model via Φ. Sine HAB is parallel, this is in partiular so along Mo, and so ∇T ismetri preserving along Mo. Here, as elsewhere, we have that in any hoie of weight1 sale σ, and with ∇σ for the moment denoting the oupled sale-trator onnetion,we have that ∇σ
a(σ−1XB) gives a splitting of (2.5). Combining with the fat that ∇T istorsion free it follows, using its haraterisation in [12℄, that ∇T agrees with the normalonformal trator onnetion along Mo.As in the previous example, all remaining fats follow immediately from the orre-sponding results on the model via Theorem 2.10, Corollary 2.12, Theorem 2.14, and thedisussion of setion 3.1. �Remarks: The ase that HAB has Lorentzian signature is important. Looking at themodel (Sn, σ′), the part S

n
− where σ′ is negative onsists of two opies of hyperbolispae H

n antipodally plaed as the interior of the standard double Sn−1 quadri on S
n.The ompati�ation Sn \ Sn

+ adds the boundary spheres. Sine this model is basedon entral projetion (with e.g. geodesis arising from planes through the origin) it isnatural to think of the result as two opies of the Klein model of Hn; whene the urvedanalogue ould be alled a Klein-Einstein manifold by analogy with the use of the termPoinaré-Einstein in the literature. Note that the onformal struture of the interior



20 �ap, Gover, Hammerlof the Klein-Einstein (KE) manifold does not extend to the boundary, even though thelatter has a anonial onformal struture. This is lear by ontinuity onsiderations, forexample, sine the signature of the ambient metri hanges as we ross the zero lous of
σ. Thus we have a result, whih we state as proposition in order to highlight.Proposition 3.3. A Klein-Einstein manifold involves a ompati�ation of its Einsteininterior that is stritly di�erent to the onformal ompati�ation of a Poinaré-Einstein(PE) manifold; there is never a smooth di�eomorphism between a PE manifold and KEmanifold that restrits to a onformal map on the interior.Returning to the model with HAB Lorentzian, the omponent S

n
+ is the geometryknown as de Sitter spae in the general relativity literature; Sn \ Sn
− is the projetiveompati�ation of this. Again (M \M−, p, HAB) is a urved analogue.The details of the geometry of the Klein-Einstein type strutures, and their links toPE manifolds is taken up in [29, 31℄.3.4. Singular and higher odimension zero lous. Examples with singular zerolous arise easily in the ase where we assume more than one parallel trator �eld. Forexample if we assume I1

A and I2
A are linearly independent parallel otrator �elds, on agiven projetive manifold (M, p), then SAB := I1

AI2
B + I1

BI2
A is symmetri and parallel.Thus we are in the situation of the previous example exept that SAB is far from non-degenerate. We have

Z(XAXBSAB) = Z(σ1σ2) = Z(σ1) ∪ Z(σ2),where σ1 = I1
AXA and σ2 = I2

AXA. In the model, and generially, this is not smooth.There are three P -types aording to whether none, one, or both of σ1 and σ2 is zero.Geometrially, on an open dense set, the struture (M, p, SAB) has projetively related(in the sense of (2.1)) Rii-�at a�ne strutures.Assume (M, p), I1, and I2 as above, and set KAB = I1
AI2

B − I1
BI2

A, then we generiallyobtain a smooth odimension 2 zero lous
Z(ka) = Z(σ1) ∩ Z(σ2)for the weight 2 one-form �eld ka = σ1∇aσ

2 − σ2∇aσ
1 whih orresponds to KABXB.(Here∇ is any onnetion from p). We haveKABXB = Zb

Akb where Zb
A is the projetivelyinvariant bundle monomorphism in the Euler sequene (2.2), and note that ∇aσ

i isnowhere vanishing along Z(σi) as I i 6= 0, for i = 1, 2. ) There are two P -types: simply
Z(ka) and its omplement. Note that the �rst BGG equation in this ase is
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