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abstract: Let C(M) denote simplicial chain complex of standard triangulation of the standard
combinatorial simplex builded on vertex set M and C(M) denote simplicial chain complex associ-
ated with its barycentric subdivision. Over a field of zero characteristic we write explicit formulas

for functorial in M strong deformation retraction γ # C(M)
π-�
σ

C(M) between these (functo-

rial) chain complexes and show that such retraction is unique up to rescalling of σ, π. It allows to
transfer any functorial in M A∞-coproduct on C(M) to another functorial A∞-coproduct called
the barycentric subdivision of the original one. We argue that there exists a unique functorial A∞-
coproduct on C(M) going to itself under the barycentric subdivision. We prove this conjecture for
1-dimensional simplex and write down an explicit formula for the coproduct in terms of Bernoulli
numbers.
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Introduction

Kolmogorov’s problem. Given a finite set M let us write C = C(M) for the complex
of oriented simplicial chains of the standard triangulation of combinatorial simplex with
the vertex set M (see precise definitions in n◦ 2.1).

Early in the development of topology, at Moscow’s conference in 1935, when multiplica-
tive structures on (co)homologies were just under construction, Kolmogorov asked about
functorial w.r.t. inclusions of sets M ⊂ - M ′ co-associative co-product δ2 : C - C⊗C.

Note that the functoriality condition forces the coproduct to be equivariant w.r.t.
action of symmetric group SM = Aut (M) and provides the chain complexes of all
combinatorial simplicial complexes ∆ with compatible coalgebra structures such that
δ2(σ) ⊂ S (σ) ⊗ S (σ) for each simplex σ ∈ ∆.

Moreover, Kolmogorov proposed a candidate for such a functorial coproduct. To write
it down, let us fix some total ordering [x1, x2, . . . , xm] on M and write Y for an oriented
subset Y ⊂ M whose orientation is induced by this ordering. For two disjoint oriented

subsets Y = y1 y2 . . . yk, Z = z1 z2 . . . zℓ let X · Y
def
= y1 y2 . . . ykz1 z2 . . . zℓ . Finally,

let M i
def
= M r {xi} . In these notations, Kolmogorov’s coproduct δk

2 takes M to

1

|M |

m∑

i=1

(−1)i+1
∑

Y ⊆Mi

sgn(Y )

(
|M | − 1

|Y |

)−1

Y · {xi} ⊗ {xi} · (Mi r Y ) (1)

where the second sum runs over all subsets Y ⊂ Mi = M r {xi} (including ∅ and

Mi),
(
∗
∗

)−1
stays for inverse binomial coefficient, and sgn(Y ) means the sign of shuffle

permutation M i ↔ Y · (Mi r Y ). For example:

δk
2 (01) =

+
(
10 ⊗ 0 + 0 ⊗ 01

)
−

(
01 ⊗ 1 + 1 ⊗ 10

)

2
= −

1

2
ad01

(
0 + 1

)

where b
ada- a ⊗ b − b ⊗ a is commutation operator in tensor algebra.

Coproduct (1) is well defined1, functorial w.r.t. inclusions of finite sets M1
⊂ - M2,

and compatible with differential δ1 = ∂. However, it turns to be non-associative.

At the same time an associative product on cohomologies was constructed by means
of much simpler Alexander-Whitney coproduct

δaw
2 ([x1, x2, . . . , xk]) =

k∑

i=1

[x1, x2, . . . , xi] ⊗ [xi, xi+1, . . . , xk] ,

defined for totally ordered chains only and palpable on the level of C only up to homo-
topy. It was enough for solving the homological problem of those years and Kolmogorov’s
question has fallen outside the mainstream of topology for some time.

However, it comes back in focus when we have to compute, say, higher Massey prod-
ucts needed for recovering the homotopy type of manifold from its cohomologies, not to

1that is, does depend only on the orientation of chains but not on their total ordering



§ 1.. Recallment on A∞-things. 3

mention pure combinatorial significance of problem. Another reason for revival the Kol-
mogorov’s problem comes from quantum field theory: the Massey products are nothing
but mathematical versions of higher correlators in topological field theories.

In modern setup, the initial Kolmogorov’s question could be treated either as: ‘How
to extend the coproduct (1) to some functorial A∞-coproduct in most symmetric way?’
or (in physical cant): ‘What should be most symmetric ground theory on C producing an
effective theory on H(C) with correlators equal to the Massey products?’.

We attack these questions using barycentric subdivisions and functorial transferring of
A∞-coproducts along the barycentric subdivisions.

The paper is organized as follows. In §1 we recall well known basic properties of A∞-
coproducts, strong deformation retractions (SDR-data), and explicit formulas for trans-
ferring A∞-coproducts by means of SDR-data. We tried to make exposition self contained
and as simple as possible.

In §2 we fix the notations concerning combinatorial topological staff and write down
precise formulas for functorial in M strong deformation retraction between the chain
complex C(M) of the standard simplex with vertex set M and the chain complex C(B(M))
of its barycentric subdivision. We also show that up to an obvious rescalling such retraction
is unique. Let us note that, in particular, our barycentric SDR-data will be equivariant
w.r.t. symmetric group Aut (M) permuting the vertexes.

In §3 we argue that there is unique functorial in M A∞-coproduct

C
[M ] δka

inv-
∏

n>1

(
C

[M ]
)⊗n

that goes to itself under the functorial transferring from the barycentric subdivision and
write down explicit recursive formulas for it using the summation over oriented planar
trees.

In §4 we compute the above sums for 1-dimensional simplex and get precise closet
formula for functorial barycentrically stable coproduct of 1-dimensional simplex. It turns
out that the the generating function for higher coproducts is closely connected with the
Todd series.

Acknowledgements We thank Alexey Rudakov for many crucial improvements and Vasily
Gorbunov for stimulating discussions. Alexey Gorodentsev is very grateful to Max-Planck-
Institut für Mathematik and the Erwin Schrödinger International Institute for Mathemati-
cal Physics for their hospitality and financial support during the preparation of this paper.

§1.Recallment on A∞-things.

1.1.Grading and sign conventions. In this paper we fix a ground field k of zero
characteristic and work with graded vector spaces V = ⊕

n∈Z

Vn over k. A linear map
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V
ϕ- W has degree k, if ∀ i ϕ(Vi) ⊂ Wi+k . Tensor products of operators are composed

and applied to tensor products of elements by means of the Koszul sign rule:

( f1 ⊗ f2 ⊗ · · · ⊗ fm ) ◦ ( g1 ⊗ g2 ⊗ · · · ⊗ gm ) =

(−1)ε(f ;g) ( f1 ◦ g1 ) ⊗ ( f2 ◦ g2 ) ⊗ · · · ⊗ ( fm ◦ gm ) ,

f1 ⊗ f2 ⊗ · · · ⊗ fm ( v1 ⊗ v2 ⊗ · · · ⊗ vm ) =

(−1)ε(f ;v)f1(v1) ⊗ f2(v2) ⊗ · · · ⊗ fm(vm) ,

where the parity ε depends on two ordered collections of degrees as follows:

ε (α1, α2, . . . , αm ; β1, β2, . . . , βm ) =

deg αm · ( deg β1 + · · · + deg βm−1 )+

deg αm−1 · ( deg β1 + · · · + deg βm−2 ) + · · ·+

deg α2 · deg β1 .

We always write [f, g]
def
= fg−(−1)deg f deg ggf for graded commutator of maps. We consider

only degree −1 differentials V
∂- V . Note that [∂, ∂] = 2 ∂2 = 0 . Graded vector space

V equipped with differential ∂V is called a complex . Shift by k takes V to V [k] that has

V [k]i = Vi+k and ∂V [k] = (−1)k∂V .

Thus, the identity map s : V - V [1] has degree −1 and commutes with differentials,
i.e. s ◦ ∂V = −∂V [1] ◦ s.

1.2. Tensor algebra derivations. We write TV
def
=

∏
n>1

V ⊗n for completed reduced ten-

sor algebra, that is, the algebra of formal non-commutative power series without constant
term:

τ =
∑

k>1

τk , τk ∈ V ⊗k .

We refer to k as the tensor degree of τk, whereas the total degree deg τk comes from
deg(v1 ⊗ v2 ⊗ · · · ⊗ vk) =

∑
deg(vν) .

A derivation of TV is k-linear map TV
D- TV satisfying the Leibnitz rule

D ◦µ = µ ◦(D ⊗ 1 + 1 ⊗ D) ,

where TV ⊗ TV
µ- TV is the tensor multiplication. Being applied to elements, this

looks like:
D(ω1 ⊗ ω2) = (Dω1) ⊗ ω2 + (−1)deg D·deg ω1ω1 ⊗ (Dω2) .

There is k-linear bijection between derivations TV
D- TV and linear maps V

δ- TV .
It takes D to its restriction

δD = D|V : V
δ- TV .

Backwards, it extends δ by the Leibnitz rule to the map Dδ defined on the whole of
TV . Under this bijection the (graded) commutator of derivations [Dδ1 , Dδ2 ] turns to the
Gerstenhaber bracket of maps {δ1, δ2} defined by prescription

D{δ1,δ2}
def
= [Dδ1 , Dδ2 ] = Dδ1Dδ2 − (−1)deg δ1·deg δ2Dδ2Dδ1 .
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1.3.A∞-structures. A∞-coproduct on V is a derivation of degree −1

T(V [1])
D- T(V [1])

such that D2 = 0. It defines and is uniquely defined by k-linear map of degree −1

δ =
∑

n>1

δn = D|V [1] : V [1] - T(V [1])

such that {δ, δ} = 0. In terms of V itself, one can think of the homogeneous components
of δ as degree n − 2 maps

V
eδn- V ⊗n

fitted into commutative diagram:

V [1]
δn - V [1]⊗n

V

s
6

eδn - V ⊗n

s⊗n
6

where V
s- V [1] is the identity map (recall that deg s = −1 and deg δn = −1).

The equation {δ, δ} = 0 can be expanded as a system of quadratic relations on the

maps V
eδn- V ⊗n . For n = 1, 2, 3, . . . they are:

{δ1, δ1} = 0 ⇐⇒ δ̃2
1 = 0

{δ1, δ2} + {δ2, δ1} = 0 ⇐⇒ δ̃2δ̃1 = (δ̃1 ⊗ 1 + 1 ⊗ δ̃1) δ̃2

δ2
2 + {δ1, δ3} = 0 ⇐⇒ (δ̃2 ⊗ 1) ⊗ δ̃2 − (1 ⊗ δ̃2) ⊗ δ̃2 =

(δ̃1 ⊗ 1 ⊗ 1 + 1 ⊗ δ̃1 ⊗ 1 + 1 ⊗ 1 ⊗ δ̃1) δ̃3 + δ̃3δ̃1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

The first says that δ̃1 : V - V is a differential on V . The second says that δ̃1 satisfies
the co-Leibnitz rule w.r.t. co-multiplication δ̃2 : V - V ⊗ V . The third says that the
co-associator of this co-multiplication

V
(eδ2⊗1)⊗eδ2−(1⊗eδ2)⊗eδ2 - V ⊗3

is zero homotopic by means of contracting homotopy δ̃3, and so on.
Thus, A∞-coproduct with just two non-zero components: δ = δ1 + δ2 is the standard

co-associative DG-coalgebra structure (or just coalgebra structure, if δ1 = 0).

In terms of dual space, the dual map T(V ∗[−1])
δ∗- V ∗[−1] provides V ∗ with a series

of n-ary operations

V ∗ ⊗ · · · ⊗ V ∗
︸ ︷︷ ︸

n

eδ∗n- V ∗ , n = 1, 2, 3, . . . , (1.1)

of degrees deg δ̃∗n = 2 − n . They are called higher multiplications and satisfy quadratic
relations dual to above (they say that δ̃∗1 and δ̃∗2 provide V ∗ with the DGA-structure,
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possibly non-associative but with the associator homotopic to zero by means of ‘triple
product’ δ̃∗3 , e.t.c.). These dual data is called A∞-algebra structure on V .

1.3.1. Digression into physical terminology. In physics, higher products (1.1)

〈v∗1, v∗2, . . . , v∗n〉
def
= δ̃∗n(v∗1, v∗2, . . . , v∗n)

are known as ‘correlators’. Typically, they are expressed by some integrals. Quadratic
relations between them come from integration tricks (often not well defined). Higher
correlators appearing in ‘effective theory’ attached to some space W usually are computed
in terms of appropriate ‘ground theory’ attached to another space V connected with W
by means of some ‘reduction’. Mathematically, this is formalized as transferring A∞-
structures along deformation retractions.

1.4. SDR-data. Let (V, ∂V ) and (W, ∂W ) be two complexes fitted into diagram

γ # V
π-�
σ

W , (1.2)

where π, σ are morphisms of complexes (that is, commute with the differentials) and
γ : V - V is k-linear map of degree 1 (that is, a homotopy) such that

πσ = 1W , σπ = 1V + ∂V γ + γ∂V , γ2 = 0 , πγ = 0 , γσ = 0 . (1.3)

Following [HS] we call these data strong deformation retraction between complexes (V, ∂V ),
(W, ∂W ) or just SDR-data for short. Typical example of SDR-data is as follows.

1.4.1. Retraction onto homology. Let V = A ⊕B ⊕C, where B = im ∂V is the space
of boundaries, C ⊂ ker ∂V is transversal to B inside ker ∂V , and A ⊂ V is transversal to
ker ∂V in V . Thus, ∂V maps A isomorphically onto B and annihilates B⊕C , i.e. subspace
C ∼= H(V ) represents the homologies. Then SDR-data (1.2) is given by diagram

γ # V
π-�
σ

C ,

where C is considered as a complex with zero differential, π, σ are predicted by the
splitting V = A⊕B ⊕C, and homotopy γ takes B isomorphically onto A via −∂V |

−1
A and

annihilates C ⊕ A . Relation σπ = 1V + [∂V , γ] holds, because −[∂V , γ] projects V onto
A ⊕ B along C . Other relations are evident.

1.5. Transferring A∞-coproducts along SDR-data. Given SDR-data (1.2) and A∞-

coproduct T(V [1])
Dδ- T(V [1]) on V associated with series

δ = ∂V [1] +
∑

n>2

δn , V [1]
δn- V [1]⊗n ,

whose linear term δ1 : V [1] - V [1] coincides with the differential δ1 = ∂V [1] = −∂V ,
then transferred A∞-structure on W is given by derivation

Dδind
: T(W [1]) - T(W [1])
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associated with power series δind = ∂W [1] +
∑
n>2

δind,n , whose n-th degree component

W [1]
δind,n - W [1]⊗n , n > 2 ,

admits following explicit description via sum over trees. For each planar tree Γ with one

Fig. 1. δΓ.

root, n leaves, and internal vertices of valency > 3 consider its natural orientation from
the root to the leaves and put the operators

W
σ- V on the incoming root-edge,

V
π- W on each outgoing leaf-edge,

V
γ- V on each internal edge,

V
δk- V ⊗k on each (k + 1)-valent vertex

(see fig. 1). Write δΓ : W [1] - W [1]⊗n for the composition of these
operators along the tree Γ. Then

δind,n =
∑

Γ

δΓ . (1.4)

Further we refer (1.4) as the sum over trees formula. Implication D2
δ = 0 ⇒ D2

δind
= 0 is

natural but not obvious. It was re-proved by many authors under various assumptions1.
For convenience of readers we sketch a proof in the rest of this section. Readers who don’t
need it may jump now directly to §2.

1.6.What the sum over trees formula comes from. First of all, any SDR-data

γ # V
π-�
σ

W

provides tensor algebras of V and W with SDR-data

γT # T(V )
πT-�
σT

T(W ) , (1.5)

where T(V ), T(W ) are equipped with differentials ∂T(V ), ∂T(W ) extending ∂V , ∂W by the
Leibnitz rule; πT , σT extend π, σ to the homomorphisms of tensor algebras; and homotopy

T(V )
γT- T(W ) extends map V

γ- V to the whole of T(V ) by twisted Leibnitz rule

γT ◦µ = µ ◦((f − g) ⊗ γT + γT ⊗ 1) .

Verification of relations (1.3) is straightforward2 (see [EM]).
Further, any map D : T(V ) - T(V ) such that D2 = 0 can be considered as formal

perturbation of the differential D∂V
in the SDR-data (1.5). Under some minor technical

1results of this kind are traced back to Kadeishvili [Kd]; more closed to our subject recent versions can
be found in [GL], [HS], [Ma], [Sm] and other papers cited therein

2if two morphisms V
f-
g
- V are homotopic by means of homotopy V

γ- V (i.e. f − g = [∂, γ]) then
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restrictions, a perturbation of differential in SDR-data can be extended to the perturbation
of the whole SDR-data by a simple precise formula. Sufficient for our purposes is following
version of this differential perturbation lemma.

1.6.1. LEMMA. Let SDR-data γ # V
π-�
σ

W and a map V
ε- V satisfy the follow-

ing two conditions:

(1) perturbed differential ∂′
V = ∂V + ε satisfies ∂′

V
2 = 0 ;

(2) well defined endomorphisms of V are provided by power series1

(1 − γε)−1 = 1 +
∑

m>1

(γε)m , (1 − εγ)−1 = 1 +
∑

m>1

(εγ)m . (1.6)

Then perturbed diagram γ′ # (V, ∂′
V )

π′

-�
σ′

(W, ∂′
W ) that has

σ′ = (1 − γε)−1σ = σ + γεσ + γεγεσ + γεγεγεσ + · · · ,

π′ = π(1 − εγ)−1 = π + πεγ + πεγεγ + πεγεγεγ + · · · ,

γ′ = (1 − γε)−1γ = γ(1 − εγ)−1 = γ + γεγ + γεγεγ + · · · ,

∂′
W = ∂W + εind , where εind = πεσ′ = π′εσ = πεσ + πεγεσ + πεγεγεσ + · · · ,

provides SDR-data between perturbed complexes (V, ∂′
V ) and (W, ∂′

W ).

Proof. Let us start with checking the perturbed version of relations (1.3), which do not
include ∂′

W . First of all, γ2 = 0 implies

(γ′)2 = (1 − γε)−1γ2(1 − εγ)−1 = 0 . (1.7)

Since γ(1 − γε)−1 = γ = (1 − εγ)−1γ, conditions πγ = 0 and γσ = 0 lead to

π′γ′ = π(1 − εγ)−1γ(1 − εγ)−1 = πγ(1 − εγ)−1 = 0 ,

γ′σ′ = (1 − γε)−1γ(1 − γε)−1σ = (1 − γε)−1γσ = 0 .
(1.8)

The same computation shows also that

πγ′ = γ′σ = 0 . (1.9)

corresponding DG-algebra morphisms T(V )
fT-
gT

- T(V ) are homotopic too by homotopy T(V )
γT- T(V )

extending γ to f -g-derivation of tensor algebra defined by twisted Leibnitz rule γT ◦ µ = µ ◦(f⊗γT+γT⊗g) ,
because γT|V ⊗n =

P

α+β=n−1

f⊗α ⊗ γ ⊗ g⊗β and

[∂T, γT]|V ⊗n =
X

α+β=n−1

f
⊗α ⊗ (∂γ + γ∂) ⊗ g

⊗β =
X

α+β=n−1

f
⊗α ⊗ (f − g) ⊗ g

⊗β = f
⊗n − g

⊗n

1this technical condition holds when γε and εγ are locally nilpotent (say, by reasons of grading —
this is the case we deal with); more generally, it holds when End(E) is complete in some norm such that
||fg|| 6 ||f || · ||g|| and ||ε|| ≪ 1.
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To compute compositions π′σ′ and σ′π′, we note that

(1 − γε)−1 = 1 + γ′ε

(1 − εγ)−1 = 1 + εγ′

and rewrite π′ and σ′ as π′ = π(1 + εγ′) , σ′ = (1 + γ′ε)σ . Then, by (1.7) , (1.9)

π′σ′ = π(1 + εγ′)(1 + γ′ε)σ = πσ = 1 .

For the reverse composition we use σπ = 1 + ∂V γ + γ∂V and ε2 = −∂V ε − ε∂V :

σ′π′ = (1 + γ′ε)σπ(1 + εγ′) = (1 + γ′ε)(1 + ∂V γ + γ∂V )(1 + εγ′) =

= 1 + γ′ε + εγ′ − γ′∂V εγ′ − γ′ε∂V γ′+

+ (1 + γ′ε)∂V γ(1 + εγ′) + (1 + γ′ε)γ∂V (1 + εγ′) . (1.10)

Since γεγ′ = γ′εγ = γ′ − γ, latter two summands in (1.10) can be rewritten as

(1 + γ′ε)∂V γ(1 + εγ′) + (1 + γ′ε)γ∂V (1 + εγ′) =

= (1 + γ′ε)∂V γ′ + γ′∂V (1 + εγ′) = ∂V γ′ + γ′∂V + γ′ε∂V γ′ + γ′∂V εγ′ .

This cancels minus terms of (1.10) and gives the required identity

σ′π′ = 1 + γ′ε + εγ′ + γ′∂V + ∂V γ′ = 1 + [∂′
V , γ′] . (1.11)

To check the relations containing ∂′
W , we note that ∂′

W = ∂W + ε′ can be equivalently
rewritten as ∂′

W = π∂′
V σ′ = π′∂′

V σ . Now we use (1.11) to verify the commutation relation
∂′

W π′ = π′∂′
V :

∂′
W π′ = π∂′

V σ′π′ = π∂′
V (1 + ∂′

V γ′ + γ′∂′
V ) = (because of ∂′

V
2

= 0)

= π(1 + ∂′
V γ′)∂′

V = π(1 + εγ′ + ∂V γ′)∂′
V = (because of π∂′

V = ∂′
W π)

= π(1 + εγ′)∂′
V + ∂W πγ′∂′

V = (because of πγ′ = 0)

= π′∂′
V

Similar computation shows that σ′∂′
W = ∂′

V σ′. All these commutation relations imply the

last required identity ∂′
W

2 = ∂′
W π′∂′

V σ = π′∂′
V ∂′

V σ = 0. �

1.6.2. Proof of ‘sum over trees’ formula. Assume we are given with SDR-data

γ # (V, ∂V )
π-�
σ

(W, ∂)

and A∞-coproduct T(V [1])
Dδ- T(V [1]) , whose linear component coincides with the

differential δ1 : V [1]
−∂V- V [1] , that is, perturbs differential ∂T(V [1]) in SDR-data

γT[1] # (T(V [1], ∂T(V [1]))
πT[1] -�
σT[1]

(T(W [1], ∂T(W [1])) (1.12)
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induced by the initial SDR-data (as it was explained in n◦ 1.6) and shifted by 1. Write
this perturbation as D = ∂T(V [1]) +Dδ = D∂V [1]+δ and extend it by the differential pertur-
bation lemma n◦ 1.6.1 to the perturbation of the whole of SDR-data (1.12). The resulting
perturbed data

γ′
T

# (T(V [1], D)
π′

-�
σ′

(T(W [1], Dδind
)

contain the required A∞-coproduct Dδind
= D∂T(W [1])

+Dδind
= D∂W [1]+δind

associated with
map δind = ∂W [1] +

∑
n>2

δind,n. It has

δ̃ind,n = π⊗n
◦ ( δ + δγTδ + δγTδγTδ + δγTδγTδγTδ + · · · )n,1 ◦σ ,

where
(
∗
)
n,1

: V - V ⊗n means those component of bracketed operator that sends

V ⊂ T(V ) to V ⊗n ⊂ T(V ). It equals the sum of all oriented trees with one input and n
outputs composed from corollas

(
1⊗α ⊗ γ ⊗ (σπ)⊗β

)
◦ δα+β+1 from γTδ : δk from δ :

α arrows IdV︷ ︸︸ ︷
. . .

β arrows σπ︷ ︸︸ ︷
. . .

©δ

γ

6

σπ

-

σ
π

-

�
Id

V

�

Id
V

IdV

6

. . . . . .

©δ

IdV

6

IdV

-

Id
V

-

�
Id

V

�

Id
V

IdV

6

with the right ones allowed only as the last elements of the composition. Since total
number of γ’s in δγTδ . . . γTδ equals the number of internal edges in the corresponding
trees and outgoing γ’s are killed by the final π⊗n applied to all leaves, we get what we
want.

§2.Functorial barycentric retraction of combinatorial simplicial chain

complexes.

2.1.Combinatorial simplicial complexes. Informally, a combinatorial simplicial com-

Fig. 2.

plex is a topological space properly triangulated by simpleces in such a way that each
simplex is uniquely determined by its vertexes (see fig. 2). Formally, combi-
natorial simplicial complex is defined by set of vertices M and set of simpleces
∆, which is a subset in the set of all subsets in M such that ∆ contains all
elements of M and all subsets of each σ ∈ ∆ .

We write x1 x2 . . . xk for simpleces {x1, x2, . . . , xk} ∈ ∆ considered as
non-ordered non-oriented sets. They form a full subcategory in category
S (M) of all subsets in M with inclusions as the morphisms. The complex
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∆ = S (M) exhausting the whole of this category is called the standard
combinatorial simplex with vertex set M .

We always write [X1, X2, . . . , Xk] for totally ordered collections of ob-
jects (of any nature).

An oriented simplex x1 x2 . . . xk is the orbit of [x1, x2, . . . , xk] under the action of
alternating subgroup Ak ⊂ Sk by the permutations of xν ’s. Thus, each simplex produces
two oriented simpleces. We write Ck(∆) for vector space spanned by oriented simpleces
x1 x2 . . . xk of cardinality k in simplicial complex ∆ modulo the relation saying that the
sum of two oriented simpleces obtained from the same non-oriented simplex equals zero.
So, for the standard combinatorial simplex Ck(S (M)) = Λk(kM ) is k-th exterior power
of vector space with basis M .

The spaces of oriented simpleces are naturally organized in chain complex

0 - Cm
∂- Cm−1

∂- · · ·
∂- C2

∂- C1
- 0

(where m is the total number of vertices) with differential

∂ : x1 x2 . . . xk 7−→
k∑

ν=1

(−1)ν · x1 . . . xν−1 xν+1 . . . xk .

We call it a chain complex of combinatorial simplicial complex and denote by C. Let us
stress that simplicial chain complex commonly used in topology is C[1], because our C
is graded by means of combinatorial degree, which equals the cardinality |σ| of simplex
σ (considered as a subset of M). This combinatorial degree should not be confused with
topological degree equal to dimension dimσ = |σ| − 1.

For example, A∞-coproduct of topological chains is given by degree −1 map

C[2]
δ- T(C[2])

whose homogeneous components C
eδn- C

⊗n
have combinatorial degree 2n − 3. In par-

ticular, in combinatorial grading they are odd and satisfy sign-less quadratic relations.

2.2. Flags and barycentric subdivisions A flag of length k in M is a chain of strictly
embedded non-oriented sets

F1 ⊂ F2 ⊂ · · · ⊂ Fk (F)

Flag (F) defines and is uniquely defined by ordered collection of graded components

[G1, G2, . . . , Gk] , G1
def
= F1 , Gi

def
= FirFi−1 for i > 2 . We often use [G1, G2, . . . , Gk]

as alternative notation for flag (F).
Flag (F) is called saturated, if all its graded components have cardinality one. Saturated

flags (F) stay in bijection with total orderings on Fk.
Recall that barycentric subdivision B(M), of a simplex with vertex set M , is a simplicial

complex whose vertexes are non-empty subsets of M and k-vertex simpleces are the flags of
length k in M . Thus, vertexes of B(M) are the objects of the category S (M) (subsets of
M with inclusions as the morphisms), oriented edges of B(M) are the morphisms F1 ⊂ F2

in S (M), 2-dimensional faces are the pairs of consequent morphisms F1 ⊂ F2 ⊂ F3 in
S (M), e.t.c.
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In mechanical terms, vertex F ⊂ M depicts the centre of mass for the points of F .
Geometrically, we put new vertex in the barycenter of each face and join it with all other
vertexes of that face.

2.2.1. Barycentric chain complex C [M ] = C
[B(M)]

is the chain complex of simplicial
complex B(M). It looks like

0 - Cm+1
∂- Cm

∂- · · ·
∂- C2

∂- C1
- 0 .

Basis of vector space Ck consists of length k flags F1 ⊂ F2 ⊂ · · · ⊂ Fk and differential

Ck

∂- Ck−1 takes this flag to

k∑

ν=1

(−1)νF1 ⊂ · · · ⊂ Fν−1 ⊂ Fν+1 ⊂ · · · ⊂ Fk

(ν th term of the filtration is omitted for ν = 1, 2, . . . , k). In terms of graded components
this is written as

k−1∑

ν=1

(−1)ν [G1, . . . , Gν−1, Gν ⊔ Gν+1, Gν+2, · · · , Gk]

(ν th comma is replaced by union).

In the next section we construct functorial in M SDR-data between chain complex

C
[M ]

of standard simplex S (M) and chain complex C
[B(M)]

of its barycentric subdivision
B(M)

γ # C
[B(M)] π-�

σ
C

[M ]
(BR)

This barycentric retraction is essentially unique. Each functorial in M A∞-coproduct

δ[M ] on C
[M ]

, by functoriality, provides C
[B(M)]

with A∞-coproduct δ[B(M)], which can be

transferred along (BR) back to C
[M ]

. Thus, we get new functorial in M A∞-coproduct

δ
[M ]
ind on C

[M ]
.

We say that functorial A∞-coproduct of combinatorial simplicial chains is barycentri-
cally stable, if it is transferred to itself under this procedure.

In the next sections we explain why such a product δbs should exist, be unique up to
a constant factor, and have δbs

1 = ∂ and δbs
2 = δk from (1). We write explicit recursive

formula expressing δbs
k through δbs

<k and deduce nice closed formula for δbs(01).
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2.3. Functorial barycentric retraction of combinatorial simplex Let k be a field of
zero characteristics. In this section we write down explicit formulas for functorial w.r.t.
inclusions of finite sets M1

⊂ - M2 strong deformation retraction

γ # C
[B(M)] π-�

σ
C

[M ]

and show that it is unique up to rescalling σ 7→ tσ, π 7→ t−1π by some t ∈ k.
Note that functoriality means existence of the same retraction for any combinatorial

simplicial complex ∆ ⊂ S (M). It also forces maps σ, π, γ to be equivariant w.r.t. the
action of the permutation group Aut (M).

Actually, in a presence of this equivariance, the SDR-data relations

πσ = 1W , σπ = 1V + ∂V γ + γ∂V , γ2 = 0 , πγ = 0 , γσ = 0

produce quite over-determined system of linear equations and this is a kind of luck that
it turns to be solvable at all. The solution is given by precise formulas presented below.

There is unique up to rescalling intertwiner C ⊂
σ- C from the sign representation

of symmetric group Aut (M) on the oriented faces of M to the tabloid representation on
the flags. Geometrically, it takes each simplex to the oriented chain formed by all its
barycentric pieces. In combinatorial terms,

σ (x1 x2 . . . xk ) =
∑

g∈Sk

sgn(g)[xg(1) xg(2) . . . xg(k)]

(alternated sum of saturated flags built from {x1, x2, . . . , xk}). For example:

σ(012) = ([0, 1, 2] + [1, 2, 0] + [2, 1, 0]) − ([0, 2, 1] + [2, 1, 0] + [1, 0, 2]) ,

Note that C ⊂
σ- C obviously commutes with differentials.

Formula for functorial projection C
π- C is less obvious and requires combinatorial

denominator

π (F1 ⊂ F2 ⊂ · · · ⊂ Fk ) =
1

k∏
ν=1

|Fν |

·
∑

(x1, x2, ... , xk)
running through
G1×G2× ···×Gk

x1 x2 . . . xk .

Thus, we sum oriented simpleces x1 x2 . . . xk for all possible choices of xi ∈ Fi r Fi−1

and divide the result by the product of cardinalities of the flag sets |Fi|. For example:

π([01]) = 1
2

(
0 + 1

)
, π([0, 1]) = 1

2 01 , π([01, 2]) = 1
6

(
02 + 12

)
, π([0, 12]) = 1

3

(
01 + 02

)
.

Most complicated ingredient of our SDR data is the functorial homotopy γ : C - C
(of degree 1). By the definition, it annihilates saturated flags and sends non-saturated flag
F1 ⊂ F2 ⊂ · · · ⊂ Fk to

∑

i :
|Fi|>i

(−1)i ·
i∏

ν=1

|Fν |
−1 ·

∑

(x1, x2, ... , xi)
running through
G1×G2× ···×Gi

∑

g∈Si

sgn(g) · F (i)(x, g) ,
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where F (i)(x, g) denotes the following flag of length (k + 1)

xg(1) ⊂ xg(1)xg(2) ⊂ · · · ⊂ xg(1) xg(2) . . . xg(i) ⊂ Fi ⊂ Fi+1 ⊂ · · · ⊂ Fk .

Thus, for each i such that sub-flag

Fig. 3.

F1 ⊂ F2 ⊂ · · · ⊂ Fi

is not saturated we consider all ordered collections
(x1, x2, . . . , xi) ∈ G1 × G2 × · · · × Gi and form
alternated sum of all saturated flags built of them;
then we extend each saturated flag to the right side
by ⊂ Fi ⊂ Fi+1 ⊂ · · · ⊂ Fk and divide the

sum by (−1)i
i∏

ν=1
|Fν |; finally, we add together these

weighted sums coming from all i’s.
For example, γ acts on two combinatorially dif-

ferent internal edges of the barycentric subdivision of the triangle as follows:

γ([2, 01] = −
1

3

(
[2, 0, 1] − [0, 2, 1] + [2, 1, 0] − [1, 2, 0]

)

γ([01, 2] =
1

2

(
[0, 1, 2] + [1, 0, 2]

)

−
1

6

(
[0, 2, 1] − [2, 0, 1] + [1, 2, 0] − [2, 1, 0]

)

Next formulas show how does γ act on points, edges and triangles (all flags containing
non-proper inclusions are declared to be zeros):

γ(X) =
1

|X|

∑

x∈X

(x ⊂ X)

γ(X ⊂ Y ) =
1

|X|

∑

x∈X

(x ⊂ X ⊂ Y )

−
1

|X||Y |

∑

x∈X
y∈Y rX

[
(x ⊂ xy ⊂ Y ) − (y ⊂ xy ⊂ Y )

]

γ(X ⊂ Y ⊂ Z) =
1

|X|

∑

x∈X

(x ⊂ X ⊂ Y ⊂ Z)

−
1

|X||Y |

∑

x∈X
y∈Y rX

[
(x ⊂ xy ⊂ Y ⊂ Z) − (y ⊂ xy ⊂ Y ⊂ Z)

]

+
1

|X||Y ||Z|

∑

x∈X
y∈Y rX
z∈ZrY

[
(x ⊂ xy ⊂ xyz ⊂ Z) − (y ⊂ xy ⊂ xyz ⊂ Z)

+ (y ⊂ yz ⊂ xyz ⊂ Z) − (z ⊂ yz ⊂ xyz ⊂ Z)

+ (z ⊂ xz ⊂ xyz ⊂ Z) − (x ⊂ xz ⊂ xyz ⊂ Z)
]
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§3.Functorial A∞-coproduct transferred to itself via barycentric

retraction.

3.1.Analysis of ‘sum over trees formula’. Let C[2]
δbs
- T(C[2]) provide topological

chain complex C[1] with functorial A∞-coproduct transferred to itself along functorial
SDR-data.

γ # C
[B(M)] π-�

σ
C

[M ]
.

Then each homogeneous component δ̃bs
n : C - C

⊗n
satisfies

δ̃bs
n =

∑

Γ

δ̃bs
Γ = A(δ̃bs

n ) + B(δ̃bs
<n)

The middle sum runs over trees with one input and n output slots decorated by σ and
π’s, internal edges decorated by γ’s, and vertexes decorated δ̃bs

i .

A(δ̃bs
n )

def
= π⊗n

◦ δ̃bs
◦σ

stays for the summand contributed by one vertex tree (corolla with 1 root and n leaves).
It is the only summand depending on δ̃bs

n and this dependence is linear. The sum of all
other terms is denoted by B(δ̃bs

<n). Thus, barycentric stability of functorial A∞-coproduct
δbs implies

(1 − A) · δ̃bs
n = B(δ̃bs

<n) for all n > 3. (BS)

For n = 1, 2 the barycentric stability is expressed by equations

δ̃bs
1 = π ◦ δ̃bs

1 ◦σ , δ̃bs
2 = (π ⊗ π) ◦ δ̃bs

2 ◦σ

3.1.1. PROPOSITION. Pairs of compatible tensors C
[M ] eδ

[M ]
1- C

[M ]
, C

[M ] eδ
[M ]
2- C

[M ]⊗2

of combinatorial degrees −1 and +1 that are functorial in M and go to itself via linear

transformations δ
[M ]
1 7→ π ◦ δ

[B(M)]
1 ◦σ and δ

[M ]
2 7→ π⊗2 ◦ δ

B([M ])
2 ◦σ form 1-dimensional

subspace spanned by the simplicial chain differential ∂ and the Kolmogorov co-product

(1)

3.2.Recursive formula for δbs. One could try to recover the whole of barycentrically
stable A∞-coproduct δbs from its starting terms δbs

1 , δbs
2 by solving (BS) w.r.t. δbs

n .

3.2.1. CONJECTURE.. Eigenvalues of linear operator A : δ
[M ]
n 7→ π⊗n ◦ δ

B([M ])
n ◦σ,

which acts on functorial in M tensors C
[M ] δ

[M ]
n- C

[M ]⊗n

of combinatorial degree 2n − 2,

never are equal to 1 for n > 3 and decrease exponentially as n → +∞. Thus, barycen-

trically stable functorial A∞-coproduct of combinatorial simplicial chains is unique up to

rescalling and can be computed by recursion:

δbs

n = (1 − A)−1 · B(δbs

<n) , (3.1)
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where B(δbs
<n) is the sum over planar trees with one incoming slot, n outgoing slots, and

internal vertexes of valency 3 6 v 6 (n − 1) oriented from the input to the outputs and

decorated by σ on input, π’s on outputs, γ’s on internal edges and δν ’s on internal vertexes.

3.3.Open questions. It would be very interesting to compute eigenvectors and eigen-
values of linear operator

An : δ̃[M ]
n 7→ π⊗n

◦ δ̃B([M ])
n ◦σ

acting on functorial in M tensors C
[M ] eδ

[M ]
n- C

[M ]⊗n

of combinatorial degree 2n − 3.
We expect elegant generating series (over n) for such eigentensors. Conjecturally, they

should be closely connected with quasi-symmetric functions and Malvenuto–Reutenauer
Hopf algebra of permutations as well as with its partner — non-commutative symmetric
functions investigated extensively by Gelfand, Lascoux, Retakh, and others.

Computational experiments made by Shamil Shakirov corroborate the above conjecture
as far as he can compute eigenvalues by Maple. For example, in 2-dimensional case they
decrease as 6−n.

But the most interesting problem is to get closed formula for the whole barycentrically
stable functorial A∞-coproduct

δbs : C[2] - T(C[2])

in all higher dimensions.
It follows from general Koszul duality for operads that the image of δbs lies in subal-

gebra of Lie power series. Thus, we expect close connections between δbs
n ’s and projectors

onto the subspaces of Lie polynomials. A closed formula for δbs costs, probably, the same
prise as the Kampbell–Hausdorf formula.

§4.Closed formula in dim = 1 case.

4.1. Starting remarks. Since the combinatorial degree of δ̃n : C - C
⊗n

is 2n−3, the
co-product δ̃(0) should have just one non-zero component. Namely, up to constant factor

δ̃(0) = δ̃2(0) = 0 ⊗ 0 (4.1)

We fix this factor to be 1 and define the functorial coproduct of point by formula (4.1).

The same reasons of degree show, the restriction of map C
eδn- C

⊗n
onto cardinality

2 simplex 01 lie in the linear span of maps

01 7−→ 01
⊗α

⊗ 0 ⊗ 01
⊗β

01 7−→ 01
⊗α

⊗ 1 ⊗ 01
⊗β

(where α, β > 0, α + β = n − 1)

Among these maps, the functorial ones (that is, commuting with transposition 0 ↔ 1) are
spanned by

δα
n : 01 7−→ 01

⊗α
⊗

(
0 + (−1)n · 1

)
⊗ 01

⊗β
. (4.2)
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At the same time, tensors (4.2) are precisely the eigenvectors of linear operator

An : δ[01]
n 7→ π⊗n

◦ δ[B(01)]
n ◦σ

and have eigenvalues (1/2)n−1 for odd n and (1/2)n−2 for even n. Indeed,

δα
n ◦σ

(
01

)
= δα

n([0, 1] − [1, 0]) =

= [0, 1]⊗α ⊗ ( 0 + (−1)n · 01 ) ⊗ [0, 1]⊗β − [1, 0]⊗α ⊗ ( 1 + (−1)n · 01 ) ⊗ [1, 0]⊗β

and, applying π⊗n, we get

π⊗n
◦ δα

n ◦σ
(
01

)
=

1

2n−1
· 01

⊗α
⊗

(
0 + (−1)n ·

0 + 1

2

)
⊗ 01

⊗β
−

1

2n−1
· 10

⊗α
⊗

(
1 + (−1)n ·

0 + 1

2

)
⊗ 10

⊗β

=
3 + (−1)n

2n
· 01

⊗α
⊗

(
0 + (−1)n · 1

)
⊗ 01

⊗β
=

3 + (−1)n

2n
· δα

n

(
01

)
.

This agrees with the above claim that δ̃bs
1 = δ1

1 = ∂ : 01 7−→ 0 − 1 is the only functorial

A-invariant differential and forces δ̃bs
2 to take

01 7−→ x ·
(
0 + 1

)
⊗ 01 + y · 01 ⊗

(
0 + 1

)

Evaluating δ̃bs
2 ◦ δ̃bs

1 +
(

1 ⊗ δ̃bs
1 + δ̃bs

1 ⊗ 1
)

◦ δ̃bs
2 = 0 at 01 and using formula (4.1) for the

coproduct of point, we get

0 = 0 ⊗ 0 − 1 ⊗ 1 − x ·
(
0 + 1

)
⊗

(
0 − 1

)
+ y ·

(
0 − 1

)
⊗

(
0 + 1

)
=

= (1 − x + y) ·
(
0 ⊗ 0 − 1 ⊗ 1

)
+ (x + y) ·

(
1 ⊗ 0 − 0 ⊗ 1

)

Thus δ̃bs
2 (01) = 1

2

(
(0 + 1) ⊗ 01 − 01 ⊗ (0 + 1)

)
= −1

2 · ad01(0 + 1) .

Since for n > 3 the eigenvalues of An never equal 1, all higher components of δbs are
uniquely recovered from δ̃bs

1 and δ̃bs
2 by means of recursive formula (3.1)

δ̃bs
n = (1 − A)−1 · B(δ̃bs

<n) ,

where B(δ̃bs
<n) is the sum over oriented planar trees with one root, n leaves, internal

Fig. 4.

vertexes of valencies 3 6 v 6 (n − 1), and decorated
by σ on root, π’s on leaves, γ’s on edges, and δ̃bs

ν ’s on
vertexes.

4.2.Computation of δ̃bs

3
. For n = 3 there are totally

2 trees in the sum. Both grow from the root corolla
δ̃bs
2 ◦σ (see fig. 4), which takes

01
σ- [0, 1] − [1, 0]

eδbs
2-

ad[1,0] ( 1 + 01 ) − ad[0,1] ( 0 + 01 )

2
.
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Homotopy γ annihilates everything except for the only non-saturated flag 01. This allows
to forget about 0, 1 and forces to apply π to all factors [0, 1], [1, 0] and to replace 01 by
δ̃bs
2 ◦ γ ( 01 ) , which takes

01
γ- [0, 1] + [1, 0]

2

eδbs
2- −

ad[0,1] ( 0 + 01 ) + ad[1,0] ( 1 + 01 )

2
.

It is productive to think of δ̃bs
3 as composition of two ‘propagators’

C
[eδbs

2 ◦σ] - C ⊗ C ⊕ C ⊗ C
[eδbs

2 ◦ γ] - C
⊗3

.

The first C
[eδbs

2 ◦σ] - C ⊗C ⊕ C ⊗C is obtained from δ̃bs
2 ◦σ by removing from the

result all occurrences of 0, 1 ∈ ker γ and replacing all [0, 1] , [1, 0] by π([0, 1]) = 01/2 ,
π([1, 0]) = −01/2 . It takes

01
[eδbs

2 ◦σ] - 1

4
( ad10 ( 01 ) − ad01 ( 01 ) ) = −

1

2
ad01 ( 01 ) .

Then the second C ⊗ C ⊕ C ⊗ C
[eδbs

2 ◦ γ] - C
⊗3

replaces each 01 by

(π ⊗ π) ◦ δ̃bs
2 ◦ γ ( 01 ) = −

1

2
π ⊗ π

(
ad[0,1] ( 0 + 01 ) + ad[1,0] ( 1 + 01 )

)
=

= −
1

8
ad01

(
0 − 1

)
.

Thus, the sum over trees sends 1
16 01 7−→ ad2

01

(
0 − 1

)
, then (1 − A)−1 multiplies the

result by its eigenvalue
(
1 − 1

4

)−1
= 4

3 , and we get finally

δ̃bs
3 (01) =

1

12
· ad2

01

(
0 − 1

)

4.2.1. THEOREM. For all n > 3

δ̃bs

n

(
01

)
=

Bn−1

(n − 1)!
· adn−1

01

(
0 − 1

)
=

=
Bn−1

(n − 1)!
·

n−1∑

β=0

(−1)β

(
n − 1

β

)
· 01

⊗(n−1−β)
⊗ (0 − 1) ⊗ 01

⊗β
(4.3)

where Bn−1 is the Bernoulli number and ada : b 7→ a ⊗ b − b ⊗ a is the commutation

operator in the tensor algebra.

4.2.2. Remark. Since Bk = 0 for all odd k > 3 , all the components of even tensor
degree do vanish except for

δ̃bs
2 (01) = B1 · ad01

(
0 + 1

)
.

All the other components can be combined into one operator
(
1 +

∑

k>2

Bk

k!
adk

01

)
◦ ∂

4.3. Proof of theorem n◦ 4.2.1 uses induction over n and consists of two steps:
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(1) The non-zero contribution to the sum over trees in the recursive formula for δ̃bs
n

comes only from one trunk trees with γ’s staying along the trunk. The contribution
of such a tree can be written as composition of propagators

C - C · C
⊗k def

=
⊕

µ+ν=k−1

C
⊗µ

⊗ C ⊗ C
⊗ν

completely similar to ones used in the computation of δ̃bs
3 in n◦ 4.2. In n◦ 4.3.1

we use the inductive assumptions on δ̃bs
<n to compute the contribution of all these

propagators in terms of Bernoulli numbers.

(2) In n◦ 4.3.2 we show that the precise formula for propagators obtained at the first step
reproduces the required value for δ̃bs

n after summation over trees. The key argument
here is the following recursive formula for Bernoulli numbers

Bm

m!
=

1

16
·

(
1 −

1

2m

)−1

·
∑

m−2=
k1+···+ki

(
−Bk1

2k1k1!

)
· · · · ·

(
−Bki

2kiki!

)
(4.4)

where summation runs over all compositions of (m − 2) into a sum of numbered
positive even integers. We verify (4.4) in the last n◦ 4.3.3.

4.3.1. Contribution of propagators. Contribution of each tree is a composition of
propagators analogous to ones used in n◦ 4.2. The first applied to 01 is the root propagator

C
[eδbs

r ◦σ] - C · C
⊗(r−1)

.

It takes firstly

01
eδbs
r ◦σ - Br−1

(r − 1)!

(
adr−1

[0,1](0 − 01) − adr−1
[1,0](1 − 01)

)
,

then applies π to all tensor factors [0, 1] , [1, 0] and reduces the remaining factor modulo
ker γ. Since for odd r this gives

adr−1
01

( 0 − 1 ) ≡ 0 (mod ker γ) ,

the root propagator necessary has even tensor degree, which is forced to be equal 2, because
of inductive assumption and vanishing of the Bernoulli numbers B2k+1 for k > 1. Thus,
the root propagator takes

01
[eδbs

2 ◦σ] - −
ad01 ( 01 )

2
(mod ker γ) .

The root propagator is followed by the trunk propagators

C
[eδbs

k ◦ γ] - C · C
⊗(k−1)

.

Each of them takes firstly

01
eδbs
k

◦ γ - Bk−1

(k − 1)!
·
adk−1

[0,1](0 − 01) + adk−1
[1,0](1 − 01)

2
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and then applies π to all [0, 1]’s and [1, 0]’s. This gives

Bk−1

2k(k − 1)!
·

∣∣∣∣∣
adk−1

01
( 0 + 1 − 2 · 01 ) (for odd k)

adk−1
01

( 0 − 1 ) (for even k)

Since 0 − 1 ∈ ker γ, each trunk propagator except for the last one has odd tensor degree
k and sends

01
[eδbs

k ◦ γ] - −Bk−1

2k−1(k − 1)!
· adk−1

01
( 01 ) .

Since 0 + 1 − 2 · 01 ∈ ker π , the last trunk propagator has even tensor degree, that is 2,
and takes

01
(π⊗π) ◦ eδbs

2 ◦ γ - −
1

8
· ad01

(
0 − 1

)
.

4.3.2. Inductive step. It follows from the above computations that for even n > 4 the
sum over threes vanishes and δbs

n = 0. For odd n the sum over threes equals

1

16

∑

n−3=
k1+···+ki

(
−Bk1

2k1k1!

)
· · · · ·

(
−Bki

2kiki!

)
· adn−1

01
(0 − 1)

where the sum runs over all distributions of n − 3 valences between interior (neither the
root nor the last) trunk propagators. Since the eigenvalue of A on this eigenvector is 21−n ,
it follows from recursion (4.4) that

δbs
n

(
01

)
=

1

16

(
1 −

1

2n−1

)−1 ∑

n−3=
k1+···+ki

(−1)i
i∏

ν=1

Bkν

2kνkν !
· adn−1

01
(0 − 1) =

=
Bn−1

(n − 1)!
· adn−1

01

(
0 − 1

)

To complete the proof it remains to verify the recursion (4.4) for Bernoulli numbers.

4.3.3. Prof of recursion (4.4). The Bernoulli numbers Bi with i > 3 can be defined by
means of ‘cotangensum’

(t/2) · cth(t/2) = 1 +
∑

k>3

(Bk/k!) · tk .

Obvious relation cth(t) = 1
2

(
cth(t/2) + th(t/2)

)
implies the identity

t · cth(t) − (t/2) · cth(t/2) = (t2/4) · ( (t/2) · cth(t/2) )−1 .

Expanding (1 +
∑

(Bk/k!)tk)−1 as the geometric progression and comparing coefficients
at tm , we get recursive formula

(2m − 1) ·
Bm

m!
=

1

4

∑

m−2=
k1+···+ki

(−1)i
i∏

ν=1

Bkν

kν !
,

It remains to multiply both sides by

(2m − 1)−1 =

(
1 −

1

2m

)−1

·
1

2k1
· · · · ·

1

2ki
·
1

4

This completes the proof of theorem n◦ 4.2.1.
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