Boltzmanngasse 9 A-1090 Wien, Austria

Ergodicity of Z^2 Extensions of Irrational Rotations

Yuqing Zhang

Vienna, Preprint ESI 2260 (2010)

August 3, 2010

Supported by the Austrian Federal Ministry of Education, Science and Culture Available online at http://www.esi.ac.at

ERGODICITY OF \mathbb{Z}^2 EXTENSIONS OF IRRATIONAL ROTATIONS

YUQING ZHANG

ABSTRACT. Let $\mathbf{T} = [0, 1)$ be the additive group of real numbers modulo 1, $\alpha \in \mathbf{T}$ be an irrational number and $t \in \mathbf{T}$. We consider skew product extensions of irrational rotations by \mathbb{Z}^2 determined by $T: \mathbf{T} \times \mathbb{Z}^2 \to \mathbf{T} \times \mathbb{Z}^2$ $T(x, s_1, s_2) = \left(x + \alpha, \quad s_1 + 2\chi_{[0, \frac{1}{2})}(x) - 1, \quad s_2 + 2\chi_{[0, \frac{1}{2})}(x + t) - 1\right)$. We study ergodic components of such extensions and use the results to display irregularities in the uniform distribution of the sequence $\mathbb{Z}\alpha$.

1. INTRODUCTION

The study of irrational rotations of the circle leads to various questions in number theory and ergodic theory. Let $\mathbf{T} = [0, 1)$ be the additive group of real numbers modulo 1. Fix an irrational $\alpha \in \mathbf{T}$ and let $t \in \mathbf{T}$ satisfy the condition that neither t nor $t + \frac{1}{2}$ is a multiple of $\alpha \mod 1$. Define a map $f: \mathbf{T} \to \mathbb{Z}$ by

(1.1)
$$f(x) = \begin{cases} 1 & \text{for } 0 \le x < \frac{1}{2}; \\ -1 & \text{for } \frac{1}{2} \le x < 1 \end{cases}$$

and an irrational rotation T_0 of **T** by

(1.2)
$$T_0 x = x + \alpha \mod 1.$$

Set $\mathbf{X} = \mathbf{T} \times \mathbb{Z}^2$ and define $T \colon \mathbf{X} \to \mathbf{X}$ by

(1.3)
$$T(x, s_1, s_2) = (x + \alpha, \quad s_1 + f(x), \quad s_2 + f(x + t)).$$

T is a skew product extension of irrational rotations on the circle by \mathbb{Z}^2 determined by f(x) and t. We study ergodicity of T on X relative to Haar measure, continuing a theme started by [5], [6] of Schmidt and by [7] of Veech. It is known that such property of skew product extensions of irrational rotations arises from irregularity of distribution of $\mathbb{Z}\alpha$. As for the case of cylinder flows, Oren in [4] gave complete solution to the problem of ergodicity of the map $F: \mathbf{T} \times E \to \mathbf{T} \times E$ defined by $F(x,s) = (x + \alpha, s + \mathbf{1}_{[0,\beta)}(x) - \beta)$, where $\beta \in \mathbf{T}$ and E is the closed subgroup of \mathbb{R} generated by 1 and β . Earlier, special cases were done by Schmidt for $\beta = \frac{1}{2}$, $\alpha = \frac{\sqrt{5}-1}{4}$ in [6] and for $\beta = \frac{1}{2}$, α irrational in [5]. Although ergodicity of cylinder flows has been understood thoroughly, due to the fact that f(x) and f(x + t) take on independent values, the situation of \mathbb{Z}^2 extensions of irrational rotations appear to be more complicated.

Note that by definition (1.3), we have

(1.4)
$$T^n(x, s_1, s_2) = (x + n\alpha, s_1 + a_n(x), s_2 + a_n(x + t)), \quad \forall n \in \mathbb{Z},$$

²⁰¹⁰ Mathematics Subject Classification. Primary 37A25; Secondary 11J70. Key words and phrases. Cocycle, Ergodicity, Irrational rotation.

where

(1.5)
$$a_n(x) = \begin{cases} \sum_{i=0}^{n-1} f(x+i\alpha) = 2\sum_{i=0}^{n-1} \chi_{[0,\frac{1}{2})}(x+i\alpha) - n, & \forall n \ge 1; \\ 0, & \text{for } n = 0; \\ -a_{-n}(T_0^{-n}x), & \forall n \le -1. \end{cases}$$

 $t \in \mathbb{Z}\alpha$ and $t \in \mathbb{Z}\alpha + \frac{1}{2}$ are excluded *a priori*. To see this, note that for nonnegative integer m, $|a_n(x + m\alpha) - a_n(x)|$ is bounded by 2m because (1.6)

$$|a_n(x+m\alpha) - a_n(x)| = \left| \sum_{i=0}^{m-1} f(x+n\alpha+i\alpha) - \sum_{i=0}^{m-1} f(x+i\alpha) \right|$$

$$\frac{m-1}{m-1}$$

(1.7)
$$\leq \sum_{i=0}^{m-1} |f(x+n\alpha+i\alpha)| + \sum_{i=0}^{m-1} |f(x+i\alpha)| \leq 2m, \quad \forall n > m$$

We also have from (1.1) $f(x + \frac{1}{2}) = -f(x)$ and therefore

(1.8)
$$a_n(x+\frac{1}{2}) = -a_n(x), \quad \forall x \in \mathbf{T}, \quad \forall n.$$

 $|a_n(x+\frac{1}{2}+m\alpha)+a_n(x)|$ is bounded from above by 2m thereof.

Also note that $a_n(x+t) \equiv a_n(x) \mod 2$. The parity $a_n(x)$ is always the same as that of *n* from (1.5). Hence *T* cannot be ergodic on the entire space **X**. We set $G = \{(s_1, s_2) \in \mathbb{Z}^2 \mid s_1 \equiv s_2 \mod 2\}$. *G* is cocompact in \mathbb{Z}^2 .

 $a_n(x)$ satisfies the additive cocycle equation

(1.9)
$$a_n \left(T_0^m x\right) - a_{n+m}(x) + a_m(x) = 0, \quad \forall m, n \in \mathbb{Z}, \quad \forall x \in \mathbf{T}.$$

Following [5, Definition 2.1] we have

Definition 1.1. $(a,t): \mathbb{Z} \times \mathbf{T} \to \mathbb{Z}^2$ defined by

(1.10)
$$(a,t)(n,x) = (a_n(x), a_n(x+t))$$

is called a cocycle for T_0 .

[5] showed that ergodicity of T, or equivalently, ergodicity of the cocycle (a, t) is determined by the group $\mathbb{E}^2(a, t)$ of essential values of (a, t). Put $\overline{\mathbb{Z}^2} = \mathbb{Z}^2 \bigcup \{\infty\}$, the one point compactification of \mathbb{Z}^2 . We have the following definitions of essential values etc.

Definition 1.2. Let μ be Lebesgue measure on **T**. An element $(k_1, k_2) \in \mathbb{Z}^2$ is called an essential value of (a, t) if for every measurable set $A \subset \mathbf{T}$ with $\mu(A) > 0$, we have

(1.11)
$$\mu\left(\bigcup_{n\in\mathbb{Z}} \left(A\bigcap T_0^{-n}A\bigcap \{x \mid a_n(x) = k_1\} \bigcap \{x \mid a_n(x+t) = k_2\}\right)\right) > 0,$$

We denote the set of essential values of (a,t) by $\overline{\mathbb{E}^2}(a,t)$.

Definition 1.3. Set $\mathbb{E}^2(a,t) = \overline{\mathbb{E}^2}(a,t) \cap \mathbb{Z}^2$. $(k_1,k_2) \in \overline{\mathbb{E}^2}(a,t) \setminus \mathbb{E}^2(a,t)$ only if (k_1,k_2) does not lie in any compact subset of \mathbb{Z}^2 .

From [5] we derive the following properties

ERGODICITY OF \mathbb{Z}^2 EXTENSIONS OF IRRATIONAL ROTATIONS

- (1) $\mathbb{E}^{2}(a,t)$ is a closed subgroup of \mathbb{Z}^{2} under addition. $(k_{1},k_{2}) \in \mathbb{E}^{2}(a,t)$ only if $k_{1} \equiv k_{2} \mod 2$.
- (2) (a,t) is a coboundary (that is, $a_n(x) = c(T_0^n x) c(x)$ for a measurable map $c: \mathbf{T} \to \mathbb{Z}$) iff $\overline{\mathbb{E}^2}(a,t) = \{(0,0)\}.$

We say that two cocycles $(a, t), (b, t) : \mathbb{Z} \times \mathbf{T} \to \mathbb{Z}^2$ are cohomologous if (a, t) - (b, t) is a coboundary. In this case $\mathbb{E}^2(a, t) = \mathbb{E}^2(b, t)$. Given a cocycle $(a, t) : \mathbb{Z} \times \mathbf{T} \to \mathbb{Z}^2$, let $(a, t)^* : \mathbb{Z} \times \mathbf{T} \to \mathbb{Z}^2/\mathbb{E}^2(a, t)$ be the corresponding quotient cocycle. We have the following important result from [5, Lemma 3.10]:

Lemma 1.4. $\mathbb{E}^{2}(a,t)^{*} = \{(0,0)\}.$

We say that the cocycle (a, t) is regular if $\overline{\mathbb{E}^2}(a, t)^* = \{(0, 0)\}$. (a, t) is called nonregular if $\overline{\mathbb{E}^2}(a, t)^* = \{(0, 0), \infty\}$. If (a, t) is regular, then (a, t) is cohomologous to a cocycle $(b, t) : \mathbb{Z} \times \mathbf{T} \to \mathbb{E}^2(a, t)$ and the latter is ergodic as a cocycle with values in the closed subgroup $\mathbb{E}^2(a, t)$ (see [5]). In particular, if $\mathbb{E}^2(a, t)$ is cocompact in \mathbb{Z}^2 then (a, t) is regular.

We utilize approach devised in [5], [4] to prove the following theorems:

Theorem 1.5. For arbitrary irrational $\alpha \in \mathbf{T}$, the group of essential values $\mathbb{E}^2(a, t)$ of the cocycle (a, t) defined in (1.10) is $G = \{(s_1, s_2) \in \mathbb{Z}^2 \mid s_1 \equiv s_2 \mod 2\}$ for almost all $t \in \mathbf{T}$. In particular, (a, t) is regular for almost all $t \in \mathbf{T}$.

Theorem 1.6. If α is badly approximable, then the group of essential values $\mathbb{E}^2(a,t)$ is G if and only if $t \notin \mathbb{Z}\alpha$ and $t \notin \mathbb{Z}\alpha + \frac{1}{2}$.

2. Period approximating sequences, Partial convergents and other preliminaries

For $x \in \mathbb{R}$ we denote the closest integer to x by [x], denote x - [x] by $\langle x \rangle$ and denote |x - [x]| by ||x||. We assume n to be nonnegative.

According to $(1.5) a_n(x)$ is locally constant except for points of discontinuities of +2 at $0, -\alpha, -2\alpha, \ldots, -(n-1)\alpha$ and points of discontinuities of -2 at $\frac{1}{2}, \frac{1}{2} - \alpha, \frac{1}{2} - 2\alpha, \ldots, \frac{1}{2} - (n-1)\alpha$. $a_n(x+t)$ is locally constant except for points of discontinuities of +2 at $-t, -t - \alpha, -t - 2\alpha, \ldots, -t - (n-1)\alpha$ and points of discontinuities of -2 at $\frac{1}{2} - t, \frac{1}{2} - t, -t - \alpha, \ldots, \frac{1}{2} - t - (n-1)\alpha$.

If we set

(2.1)
$$S_n(x) = \sum_{i=0}^{n-1} \chi_{[0,\frac{1}{2})}(x+i\alpha) = \#\left\{i \mid 0 \le i \le n-1; \quad x+i\alpha \in [0,\frac{1}{2})\right\},$$

then from (1.5)

(2.2)
$$a_n(x) = 2S_n(x) - n.$$

The concept of essential values corresponds to that of periods in [4]. We have the following definition:

Definition 2.1. A period approximating sequence is a sequence $\{(n_l, A_l)\}_{l=1}^{\infty}$ where

- (1) $A_l \subset \mathbf{T}$, each A_l is measurable;
- (2) a_{n_l} is constant on both A_l and $A_l + t$, that is, $a_{n_l}(A_l) = k_1, a_{n_l}(A_l + t) = k_2 \quad \forall n_l;$
- (3) $\inf_{l} \mu(A_{l}) > 0;$
- $(4) ||n_l \alpha|| \to 0.$

YUQING ZHANG

The next lemma shows that a period approximating sequence defines an element in $\mathbb{E}^{2}(a, t)$.

Lemma 2.2. If there exists a period approximating sequence $\{(n_l, A_l)\}_{l=1}^{\infty}$ such that $a_{n_l}(A_l) = k_1$, $a_{n_l}(A_l + t) = k_2$, $\forall n_l$, then $(k_1, k_2) \in \mathbb{E}^2(a, t)$.

Proof. Set

$$B = \limsup_{l \to \infty} A_l = \bigcap_{l=1}^{\infty} \bigcup_{i=l}^{\infty} A_i.$$

 $\mu(B) > 0$ because $\inf_l \mu(A_l) > 0$ and $\mu(\mathbf{T}) = 1$.

For arbitrary $A \subset \mathbf{T}$ with $\mu(A) > 0$, there exists $m \in \mathbb{Z}$ and $A' \subset A$ such that $\mu(A') > 0$ and $T_0^m A' \subset B$ because the action T_0 is ergodic. Hence

(2.3)
$$\mu\left(B\bigcap T_0^m A'\right) = \mu\left(\bigcap_{l=1}^{\infty}\bigcup_{i=l}^{\infty} (A_i\bigcap T_0^m A')\right) = \mu\left(T_0^m A'\right) > 0,$$

hence there exists a subsequence $\{n'_l\}$ of $\{n_l\}$ such that for each n'_l , there exists a measurable set $A'_{n'_l} \subset A'$ with $\mu(A'_{n'_l}) > 0$ and

(2.4)
$$a_{n'_l}(T_0^m x) = k_1, \quad a_{n'_l}(T_0^m x + t) = k_2, \quad \forall x \in A'_{n'_l}.$$

Note that

(2.5)
$$\left| a_{n_{l}'}(T_{0}^{m}x) - a_{n_{l}'}(x) \right| = \left| \sum_{i=0}^{n_{l}'-1} f\left(x + i\alpha + m\alpha\right) - \sum_{i=0}^{n_{l}'-1} f\left(x + i\alpha\right) \right|$$
$$= \left| \sum_{i=0}^{m-1} f\left(x + i\alpha + n_{l}'\alpha\right) - \sum_{i=0}^{m-1} f\left(x + i\alpha\right) \right|,$$

(2.6)

$$\left|a_{n_{l}'}(T_{0}^{m}x+t)-a_{n_{l}'}(x+t)\right| = \left|\sum_{i=0}^{m-1} f\left(x+i\alpha+n_{l}'\alpha+t\right)-\sum_{i=0}^{m-1} f\left(x+i\alpha+t\right)\right|,$$

 $\lim \|n_l'\alpha\| = 0,$

as well as the fact that m is fixed and depends on A only, we deduce that there exists some n'_l and $A'' \subset A' \subset A$ with $\mu(A'') > 0$ such that

(2.8)
$$a_{n'_l}(T_0^m x) = a_{n'_l}(x) = k_1, \quad a_{n'_l}(T_0^m x + t) = a_{n'_l}(x + t) = k_2, \quad \forall x \in A''.$$

Hence we have

(2.9)
$$\mu \left(A \bigcap T_0^{-n'_l} A \bigcap \left\{ x \mid a_{n'_l}(x) = k_1 \right\} \bigcap \left\{ x \mid a_{n'_l}(x+t) = k_2 \right\} \right) > 0.$$

(k₁, k₂) $\in \mathbb{E}^2 (a, t).$

We record the statement of the Denjoy-Koksma inequality [4, Lemma 2] here, which plays a fundamental role in the proof.

Lemma 2.3 (Denjoy-Koksma). If $p \in \mathbb{N}, q \in \mathbb{N}$ satisfy

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2}$$
 and $(p,q) = 1$,

then $|a_q(x)| < 4$, $\forall x \in \mathbf{T}$, where $a_q(x)$ is defined in (1.5).

4

It follows from the proof of the above lemma that every interval of the form $\left[\frac{i}{q}, \frac{i+1}{q}\right)$ contains exactly one of the points $j\alpha$ for $0 \le i, j \le q-1$. In other words, the points $j\alpha$ $(0 \le j \le q-1)$ are uniformly distributed on the unit circle.

We rely on numerous facts concerning continued fractions stated in texts such as [1]. A considerable portion of our approach is borrowed from [4]. However, here we need to construct period approximating sequence $\{(n_l, A_l)\}_{l=1}^{\infty}$ such that $a_{n_l}(A_l)$ and $a_{n_l}(A_l + t)$ take on *independent* values whereas predecessors of this paper only deal with cylinder flows.

We denote by $[a_0; a_1, a_2, \ldots,]$ the continued fraction of α and call the a_i the partial quotients of α . Denote by $\frac{p_k}{q_k}$ the kth partial convergent of α where $k \geq 0$. It is known from [1] that

(2.10)
$$\frac{p_k}{q_k} = [a_0; a_1, a_2, \dots, a_k];$$

(2.11)
$$||q_k \alpha|| < \frac{1}{q_{k+1}} < \frac{1}{q_k};$$

(2.12)
$$\min_{q_k \le q < q_{k+1}} \|q\alpha\| = \|q_k\alpha\| > \frac{1}{q_k + q_{k+1}} > \frac{1}{2q_{k+1}}.$$

(2.13)
$$q_k p_{k-1} - p_k q_{k-1} = (-1)^k.$$

Set

(2.14)
$$D(\alpha) = \left\{ q_k \mid \frac{p_k}{q_k} \text{ is a partial convergent of } \alpha \right\};$$

(2.15)
$$q^+ = \min\{q' \in D(\alpha) \mid q' > q\}, \quad \forall q \in D(\alpha)$$

Adopting arguments on [5, Page 229-230] we are able to prove the following lemma which constitutes the first step in the entire proof:

Lemma 2.4.

$$(2.16) \quad \mathbb{E}^2(a,t) \bigcap \{(1,3), (1,-3), (1,1), (1,-1), (3,1), (3,-1), (3,3), (3,-3)\} \neq \emptyset.$$

Proof. From (2.13) we derive that there are infinitely many odd $q \in D(\alpha)$. For such $q \in D(\alpha)$, the Denjoy-Koksma inequality applies. In addition, from (1.5) we see that $a_q(x)$ can only be odd, that is, $a_q(x)$ can only be ± 3 or ± 1 .

Consequently there exists a period approximating sequence $\{(q_l, A_l)\}_{l=1}^{\infty}$ such that $q_l \in D(\alpha)$,

- (1) $A_l \subset \mathbf{T};$
- (2) a_{q_l} is constant on both A_l and $A_l + t$, $a_{q_l}(A_l) = k_1, a_{q_l}(A_l + t) = k_2 \quad \forall n_l;$
- (3) $\inf_{l} \mu(A_{l}) > 0;$
- (4) $||q_l\alpha|| \to 0$

and $(k_1, k_2) \in \{(1,3), (1,-3), (1,1), (1,-1), (3,1), (3,-1), (3,3), (3,-3)\}$ $\bigcup \{-(1,3), -(1,-3), -(1,1), -(1,-1), -(3,1), -(3,-1), -(3,3), -(3,-3)\}$. The proof is complete by noting that $\mathbb{E}^2(a,t)$ is a group under addition.

A major difficulty to prove Theorem 1.5 is therefore to show that $\mathbb{E}^2(a, t)$ is not isomorphic to \mathbb{Z} . We aim to show that $\mathbb{E}^2(a, t)$ is G for almost all t. This is done by using period approximating sequences. We derive from properties of continued fractions the following lemma:

Lemma 2.5. For any nonzero $q \in D(\alpha)$, we have

(2.17)
$$\min\left\{\left\|\frac{1}{2} - j\alpha\right\| \mid |j| < q\right\} \ge \frac{1}{24q}.$$

Proof. We always have

(2.18)
$$\left\|\frac{1}{2} - j\alpha\right\| \ge \frac{\|2(\frac{1}{2} - j\alpha)\|}{2} = \frac{\|2j\alpha\|}{2}.$$

We consider five cases separately under the assumption that 0 < |j| < q.

Case 1: $q^+ \ge 3q$, then since ||2j| - q| < q from 0 < |j| < q, we have ||(|2j| - q)| < q $q)\alpha \| > \frac{1}{2q}$ from (2.12) and (2.19)

$$\|2j\alpha\| = \|(|2j| - q)\alpha + q\alpha\| \ge \|(|2j| - q)\alpha\| - \|q\alpha\| > \frac{1}{2q} - \frac{1}{q^+} > \frac{1}{2q} - \frac{1}{3q} = \frac{1}{6q}$$

Here we also used the inequality $||q\alpha|| < \frac{1}{q^+}$ from (2.11). **Case 2:** If $q^+ < 3q$ and $q^{++} < 3q$, then since $|2j| < 2q \le q^{++}$, we have from (2.12)

(2.20)
$$||2j\alpha|| \ge ||q^+\alpha|| \ge \frac{1}{2q^{++}} > \frac{1}{6q}.$$

Case 3: If $q^+ < 3q$, $q^{++} \ge 3q$ and $|q^+ - |2j|| < q$, then we have $||(|2j| - q^+)\alpha|| > 1$ $\frac{1}{2q}$ from (2.12) and (2.21)

$$\|2j\alpha\| = \|(|2j|-q^+)\alpha + q^+\alpha\| \ge \|(|2j|-q^+)\alpha\| - \|q^+\alpha\| > \frac{1}{2q} - \frac{1}{q^{++}} > \frac{1}{2q} - \frac{1}{3q} = \frac{1}{6q}.$$

Case 4: If $q^+ < 3q$, $q^{++} \ge 3q$, $|q^+ - |2j|| \ge q$ and $|2j| \le q$, then from (2.12) we get

(2.22)
$$||2j\alpha|| \ge ||q\alpha|| > \frac{1}{2q^+} \ge \frac{1}{6q}$$

Case 5: If $q^+ < 3q$, $q^{++} \ge 3q$, $|q^+ - |2j|| \ge q$ and |2j| > q, then

(2.23)
$$q^+ - |4j| < 3q - 2q = q, \quad 2q - q^+ > 2q - 3q = -q;$$

(2.24)
$$|2j| \le q^+ - q \to q^+ - |4j| \ge q^+ - 2(q^+ - q) = 2q - q^+ > -q;$$

hence $|q^+ - |4j|| < q$ and from (2.12)

(2.25)
$$||4j\alpha|| = ||(q^+ - |4j|)\alpha - q^+\alpha|| \ge ||(q^+ - |4j|)\alpha|| - ||q^+\alpha|| > \frac{1}{2q} - \frac{1}{q^{++}} \ge \frac{1}{6q};$$

and $||2j\alpha|| \ge \frac{||4j\alpha||}{2}$. The inequality is established.

and $||2j\alpha|| \ge \frac{||4j\alpha||}{2}$. The inequality is established.

3. Proof of main theorems

Following [4] we set for each $q \in D(\alpha)$

(3.1)
$$\epsilon(q) = q \cdot \min\left\{ \left\| -t - j\alpha \right\| \mid |j| < q \right\};$$
$$\theta(q) = q \cdot \min\left\{ \left\| \frac{1}{2} - t - j\alpha \right\| \mid |j| < q \right\}.$$

We immediately derive that $\epsilon(q) < 1$ and $\theta(q) < 1$ from the proof of the Denjoy-Koksma inequality.

Proposition 3.1. If

(3.2)
$$\limsup_{\substack{q \in D(\alpha) \\ q \to \infty}} \min \left\{ \epsilon(q), \theta(q) \right\} > 0,$$

then $\mathbb{E}^2(a,t) = \left\{ (k_1,k_2) \in \mathbb{Z}^2 \mid k_1 \equiv k_2 \mod 2 \right\} = G.$

Proof. Let $\{q_n\}_{n=1}^{\infty} \subset D(\alpha)$ be such that $\min \{\epsilon(q_n), \theta(q_n)\} > \delta > 0, \forall n$.

Recall $a_{q_n}(x)$ as set in (1.5) is locally constant except for points of discontinuities of +2 at $0, -\alpha, -2\alpha, \ldots, -(q_n - 1)\alpha$ and points of discontinuities of -2 at $\frac{1}{2}, \frac{1}{2} - \alpha, \frac{1}{2} - 2\alpha, \ldots, \frac{1}{2} - (q_n - 1)\alpha$. $a_{q_n}(x + t)$ is locally constant except for points of discontinuities of +2 at $-t, -t - \alpha, -t - 2\alpha, \ldots, -t - (q_n - 1)\alpha$ and points of discontinuities of -2 at $\frac{1}{2} - t, \frac{1}{2} - t - \alpha, \ldots, \frac{1}{2} - t - (q_n - 1)\alpha$. For fixed n, let $I_1, I_2, \ldots, I_{4q_n}$ denote the intervals of constancy of both $a_{q_n}(x)$ and $a_{q_n}(x)$ and a

For fixed n, let $I_1, I_2, \ldots, I_{4q_n}$ denote the intervals of constancy of both $a_{q_n}(x)$ and $a_{q_n}(x+t)$ in cyclic order. Since $a_{q_n}(\cdot)$ takes on at most four values by Lemma 2.3, there exists a union of intervals, A_n , such that $a_{q_n}(x)$ and $a_{q_n}(x+t)$ are constant on A_n and $\mu(A_n) \geq \frac{1}{16}$. Let A'_n be the union of intervals proximal on the right to those of A_n . Note that the distance between any discontinuities of $a_{q_n}(x)$ and $a_{q_n}(x+t)$ is given by $\|(i-j)\alpha\|$ or $\|\frac{1}{2}+(i-j)\alpha\|$ or $\|-t+(i-j)\alpha\|$ or $\|\frac{1}{2}-t+(i-j)\alpha\|$ for $0 \leq i, j \leq q_n - 1$. From (2.12), Lemma 2.5 and (3.2), we have that min $\left\{\frac{1}{24q_n}, \frac{\epsilon(q_n)}{q_n}, \frac{\theta(q_n)}{q_n}\right\}$ is a lower bound for the lengths $|I_i|, i = 1, 2, \ldots, 4q_n$. Since every interval of length $\frac{2}{q_n}$ must contain a +2 discontinuity by discussion following Lemma 2.3, we have $|I_i| < \frac{2}{q_n}$. Therefore we have

(3.3)
$$\frac{|I_i|}{|I_j|} > \frac{1}{2} \min\left\{\frac{1}{24}, \epsilon(q_n), \theta(q_n)\right\}, \quad 1 \le i, j \le 4q_n.$$

By setting $\epsilon = \min\left\{\frac{1}{24}, \delta\right\}$, we thus have $\mu(A'_n) \geq \frac{1}{2}\epsilon\mu(A_n) \geq \frac{1}{32}\epsilon$, $\forall n. (a,t)(q_n, x) = (a_{q_n}(x), a_{q_n}(x+t))$ can take on A'_n only the values $(a_{q_n}(A_n) \pm 2, a_{q_n}(A_n+t))$ or $(a_{q_n}(A_n), a_{q_n}(A_n+t) \pm 2)$ since each interval of A'_n is proximal on the right to one of A_n . We can find $A''_n \subset A'_n$ such that $a_{q_n}(x)$ and $a_{q_n}(x+t)$ are both constant on $A''_n, \mu(A''_n) \geq \frac{1}{128}\epsilon$ and (3.4)

$$(a_{q_n}(A_n''), a_{q_n}(A_n''+t)) = (a_{q_n}(A_n) \pm 2, a_{q_n}(A_n+t)) \text{ or } (a_{q_n}(A_n), a_{q_n}(A_n+t) \pm 2).$$

We assume that $a_{q_n}(A_n) = 1$ and $a_{q_n}(A_n + t) = 3$, that is (1,3) lies in $\mathbb{E}^2(a,t)$. We prove both (2,0) and (0,2) lie in $\mathbb{E}^2(a,t)$. Other possibilities can be treated analogously.

Case 1:

Suppose we have (3,3) and (1,3) both lie in $\mathbb{E}^2(a,t)$ as a result of the above arguments. $(\pm 2,0)$ lies in $\mathbb{E}^2(a,t)$ because $\mathbb{E}^2(a,t)$ is a subgroup of \mathbb{Z}^2 .

Moreover, there exists a period approximating sequence $\{(q_n, A_n)\}_{n=1}^{\infty}$ which defines $(1,3) \in \mathbb{E}^2(a,t)$. Namely we have

(1) $A_n \subset \mathbf{T};$

(2) a_{q_n} is constant on both A_n and $A_n + t$, $a_{q_n}(A_n) = 1$, $a_{q_n}(A_n + t) = 3$, $\forall n$; (3) $\inf_n \mu(A_n) > 0$;

(4) $||q_n\alpha|| \to 0.$

Therefore there exists a period approximating sequence $\{(q'_n, B'_n)\}_{n=1}^{\infty}$ which defines $(k, 1) \in \mathbb{E}^2(a, t)$ for some $k \in \{\pm 1, \pm 3\}$. Namely we have

(1) $\{q'_n\}$ is a subsequence of $\{q_n\}, B'_n + t \subset A'_n, \mu(B'_n) \ge \frac{1}{4}\mu(A'_n);$

YUQING ZHANG

(2) $a_{q'_n}$ is constant on both B'_n and $B'_n + t$, $a_{q'_n}(B'_n) = k$, $a_{q'_n}(B'_n + t) = a_{q'_n}(A'_n) = 1, \quad \forall n';$ (3) $\inf_{n'} \mu(B'_n) > 0;$ (4) $\|q'_n\alpha\| \to 0.$

(3.5)
$$(3,3) \in \mathbb{E}^2(a,t) \text{ and } (2,0) \in \mathbb{E}^2(a,t) \to (k,3) \in \mathbb{E}^2(a,t);$$

(3.6)
$$(k,1) \in \mathbb{E}^2(a,t) \text{ and } (k,3) \in \mathbb{E}^2(a,t) \to (0,2) \in \mathbb{E}^2(a,t)$$

Consequently both (2,0) and (0,2) lie in $\mathbb{E}^2(a,t)$.

Case 2:

Suppose we have (-1,3) and (1,3) both lie in $\mathbb{E}^2(a,t)$. $(\pm 2,0)$ lies in $\mathbb{E}^2(a,t)$ because $\mathbb{E}^2(a,t)$ is a subgroup of \mathbb{Z}^2 .

Moreover, there exists a period approximating sequence $\{(q_n, A_n)\}_{n=1}^{\infty}$ which defines $(1,3) \in \mathbb{E}^2(a,t)$. Namely we have

- (1) $A_n \subset \mathbf{T};$
- (2) a_{q_n} is constant on both A_n and $A_n + t$, $a_{q_n}(A_n) = 1$, $a_{q_n}(A_n + t) = 3$, $\forall n$;
- (3) $\inf_n \mu(A_n) > 0;$
- (4) $||q_n\alpha|| \to 0$

Therefore there exists a period approximating sequence $\{(q'_n, B'_n)\}_{n=1}^{\infty}$ which defines $(k,1) \in \mathbb{E}^2(a,t)$ for some $k \in \{\pm 1, \pm 3\}$. Namely we have

- (1) $\{q'_n\}$ is a subsequence of $\{q_n\}$, $B'_n + t \subset A'_n$, $\mu(B'_n) \ge \frac{1}{4}\mu(A'_n)$; (2) $a_{q'_n}$ is constant on both B'_n and $B'_n + t$, $a_{q'_n}(B'_n) = k$, $a_{q'_n}(B'_n + t) = a_{q'_n}(A'_n) = 1$, $\forall n'$;
- (3) $\inf_{n'} \mu(B'_n) > 0;$
- (4) $\|q'_n\alpha\| \to 0$.

(3.7)
$$(1,3) \in \mathbb{E}^2(a,t) \text{ and } (2,0) \in \mathbb{E}^2(a,t) \to (k,3) \in \mathbb{E}^2(a,t);$$

(3.8)
$$(k,1) \in \mathbb{E}^2(a,t) \text{ and } (k,3) \in \mathbb{E}^2(a,t) \to (0,2) \in \mathbb{E}^2(a,t).$$

Consequently both (2,0) and (0,2) lie in $\mathbb{E}^2(a,t)$.

Case 3:

Suppose we have (1,1) and (1,3) both lie in $\mathbb{E}^2(a,t)$. (0,2) lies in $\mathbb{E}^2(a,t)$. (2,2)also lies in $\mathbb{E}^{2}(a, t)$ and therefore (2, 0) lies in $\mathbb{E}^{2}(a, t)$.

In all cases we have shown both (2,0) and (0,2) lie in $\mathbb{E}^2(a,t)$. Along with the assumption that (1,3) lies in $\mathbb{E}^{2}(a,t)$, we derive that $\mathbb{E}^{2}(a,t) = G$ as desired.

Remark 3.2. For arbitrary α the set of t satisfying (3.2) has full Lebesgue measure. Therefore for almost all $t \in \mathbf{T}$, we have $\mathbb{E}^2(a, t) = G$ and Theorem 1.5 is established.

Next we prove Theorem 1.6. Note that α is badly approximable if and only if its partial quotients are bounded.

Proposition 3.3. If α is badly approximable and

(3.9)
$$\lim_{\substack{q \in D(\alpha) \\ a \to \infty}} \min \left\{ \epsilon(q), \theta(q) \right\} = 0,$$

then $t \in \mathbb{Z}\alpha$ or $t \in \mathbb{Z}\alpha + \frac{1}{2}$.

8

Proof. For each $q \in D(\alpha)$, let $|i_q| < q, |j_q| < q$ be such that

$$\epsilon(q) = q \left\| -t - i_q \alpha \right\|, \quad \theta(q) = q \left\| \frac{1}{2} - t - j_q \alpha \right\|$$

Then we have from the assumption of the proposition

$$\lim_{\substack{q\in D(\alpha)\\q\to\infty}}\min\left\{q\left\|-t-i_q\alpha\right\|,\quad q\left\|\frac{1}{2}-t-j_q\alpha\right\|\right\}=0.$$

Because α is badly approximable, $\frac{q^+}{q}$ and $\frac{q^{++}}{q}$ have a uniform upper bound and

$$\lim_{\substack{q \in D(\alpha) \\ q \to \infty}} \min \left\{ q^{++} \| -t - i_q \alpha \|, \quad q^{++} \| \frac{1}{2} - t - j_q \alpha \| \right\} = 0$$

Also we have for arbitrary n_1 and n_2 the following inequalities:

(3.10)
$$\|n_1 \alpha - n_2 \alpha\| \le \|-t - n_1 \alpha\| + \|-t - n_2 \alpha\|,$$

(3.11)
$$\left\|\frac{1}{2} + n_1 \alpha - n_2 \alpha\right\| \le \left\|\frac{1}{2} - t - n_1 \alpha\right\| + \left\|-t - n_2 \alpha\right\|.$$

If we have
$$q^{++} \| -t - i_{q^{+}} \alpha \| < \frac{1}{100}$$
 and $q^{++} \| \frac{1}{2} - t - j_{q} \alpha \| < \frac{1}{100}$, then by (3.11)

$$q^{++} \left\| \frac{1}{2} + i_{q^{+}} \alpha - j_{q} \alpha \right\| < \frac{1}{50}$$

Because

$$|i_{q^+} - j_q| \le |i_{q^+}| + |j_q| < q^+ + q \le q^{++},$$

this contradicts Lemma 2.5, which asserts that $q^{++} \|\frac{1}{2} + i_{q^+}\alpha - j_q\alpha\| \ge \frac{1}{24}$. Hence we have

$$\lim_{\substack{q\in D(\alpha)\\q\to\infty}}q\left\|-t-i_q\alpha\right\|=0\quad\text{or}\quad \lim_{\substack{q\in D(\alpha)\\q\to\infty}}q\left\|\tfrac{1}{2}-t-j_q\alpha\right\|=0.$$

Suppose we have $\lim_{\substack{q \in D(\alpha) \\ q \to \infty}} q \| -t - i_q \alpha \| = 0$, then by (3.10)

$$\lim_{\substack{q\in D(\alpha)\\q\to\infty}} q^{++} \left\| i_{q^+}\alpha - i_q\alpha \right\| = 0.$$

From (2.12) we derive that for q large enough $i_{q^+} = i_q$, that is, i_q is constant. Hence $t \in \mathbb{Z}\alpha$.

Suppose we have $\lim_{\substack{q \in D(\alpha) \\ q \to \infty}} q \left\| \frac{1}{2} - t - j_q \alpha \right\| = 0$, then

$$\lim_{\substack{q \in D(\alpha) \\ q \to \infty}} q^{++} \left\| j_{q^+} \alpha - j_q \alpha \right\| = 0$$

From (2.12) we derive that for q large enough $j_{q^+} = j_q$, that is, j_q is constant. Hence $t \in \mathbb{Z}\alpha + \frac{1}{2}$.

Remark 3.4. When α is not badly approximable, Merrill [3] showed that if t belongs to an uncountable set of zero measure containing numbers well approximable by multiples of α , the cocycle $v = \chi_{[0,t)} - \chi_{[\frac{1}{2},\frac{1}{2}+t)}$ is a coboundary. This implies $\mathbb{E}^2(a,t) = \{(k,k) \mid k \in \mathbb{Z}\}$. Similarly, If $t + \frac{1}{2}$ belongs to an uncountable set of zero measure containing numbers well approximable by multiples of α , then $\mathbb{E}^2(a,t) = \{(k,-k) \mid k \in \mathbb{Z}\}$.

Acknowledgements. The author is supported by Austrian Science Fund (FWF) Grant NFN S9613. The author thanks Professor Klaus Schmidt for helpful discussions and the ESI for hospitality and partial support.

YUQING ZHANG

References

- [1] A. Ya. Khinchin, Continued fractions, University of Chicago Press, Chicago, 1964.
- [2] M. Lemańczyk, M. K. Mentzen, H. Nakada Semisimple extensions of irrational rotations, Studia Math., (156) (2003), 31–57.
- K. Merrill, Cohomology of step functions under irrational rotations, Isr. J. Math., (52) (1985), 320–340.
- [4] I. Oren, Ergodicity of cylinder flows arising from irregularities of distribution, Isr. J. Math., (44) (1983), 127–138.
- [5] K. Schmidt, Lectures on cocycles of ergodic transformation groups, Lecture Notes in Mathematics, Vol. 1, MacMillan (India), 1977.
- [6] K. Schmidt, A cylinder flow arising from irregularity of distribution, Composito Math., (36) (1978) 225-232.
- [7] W. A. Veech, Topological dynamics, Bull. Am. Math. Soc., (83) (1977), 775-830.
- [8] P. Walters, An introduction to ergodic theory, New York: Springer-Verlag, 2000.

ESI, Boltzmanngasse 9, A-1090 Vienna, Austria $E\text{-}mail\ address: \texttt{zhangy6@univie.ac.at}$

10