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ERGODICITY OF Z
2 EXTENSIONS OF IRRATIONAL

ROTATIONS

YUQING ZHANG

Abstract. Let T = [0, 1) be the additive group of real numbers modulo

1, α ∈ T be an irrational number and t ∈ T. We consider skew product
extensions of irrational rotations by Z

2 determined by T : T×Z
2
→ T×Z

2

T (x, s1, s2) =

„

x + α, s1 + 2χ
[0,

1
2
)
(x) − 1, s2 + 2χ

[0,

1
2
)
(x + t) − 1

«

. We

study ergodic components of such extensions and use the results to display

irregularities in the uniform distribution of the sequence Zα.

1. Introduction

The study of irrational rotations of the circle leads to various questions in number
theory and ergodic theory. Let T = [0, 1) be the additive group of real numbers
modulo 1. Fix an irrational α ∈ T and let t ∈ T satisfy the condition that neither
t nor t + 1

2 is a multiple of α mod 1 . Define a map f : T → Z by

(1.1) f(x) =

{

1 for 0 ≤ x < 1
2 ;

−1 for 1
2 ≤ x < 1

and an irrational rotation T0 of T by

(1.2) T0x = x + α mod 1.

Set X = T × Z
2 and define T : X → X by

(1.3) T (x, s1, s2) = (x + α, s1 + f(x), s2 + f(x + t)) .

T is a skew product extension of irrational rotations on the circle by Z
2 determined

by f(x) and t. We study ergodicity of T on X relative to Haar measure, continuing
a theme started by [5], [6] of Schmidt and by [7] of Veech. It is known that such
property of skew product extensions of irrational rotations arises from irregularity
of distribution of Zα. As for the case of cylinder flows, Oren in [4] gave complete
solution to the problem of ergodicity of the map F : T × E → T × E defined by
F (x, s) = (x + α, s + 1[0,β)(x) − β), where β ∈ T and E is the closed subgroup of

R generated by 1 and β. Earlier, special cases were done by Schmidt for β = 1
2 ,

α =
√

5−1
4 in [6] and for β = 1

2 , α irrational in [5]. Although ergodicity of cylinder
flows has been understood thoroughly, due to the fact that f(x) and f(x + t) take
on independent values, the situation of Z

2 extensions of irrational rotations appear
to be more complicated.

Note that by definition (1.3), we have

(1.4) Tn(x, s1, s2) = (x + nα, s1 + an(x), s2 + an(x + t)) , ∀n ∈ Z,
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where

(1.5) an(x) =























n−1
∑

i=0

f (x + iα) = 2
n−1
∑

i=0

χ[0, 1
2
) (x + iα) − n, ∀n ≥ 1;

0, for n = 0;

− a−n(T−n
0 x), ∀n ≤ −1.

t ∈ Zα and t ∈ Zα+ 1
2 are excluded a priori. To see this, note that for nonnegative

integer m, |an(x + mα) − an(x)| is bounded by 2m because

|an(x + mα) − an(x)| =

∣

∣

∣

∣

∣

m−1
∑

i=0

f (x + nα + iα) −
m−1
∑

i=0

f (x + iα)

∣

∣

∣

∣

∣

(1.6)

≤
m−1
∑

i=0

|f (x + nα + iα)| +
m−1
∑

i=0

|f (x + iα)| ≤ 2m, ∀n > m.(1.7)

We also have from (1.1) f(x + 1
2 ) = −f(x) and therefore

(1.8) an(x +
1

2
) = −an(x), ∀x ∈ T, ∀n.

|an(x + 1
2 + mα) + an(x)| is bounded from above by 2m thereof.

Also note that an(x + t) ≡ an(x) mod 2. The parity an(x) is always the same
as that of n from (1.5). Hence T cannot be ergodic on the entire space X. We set
G = {(s1, s2) ∈ Z

2 | s1 ≡ s2 mod 2}. G is cocompact in Z
2.

an(x) satisfies the additive cocycle equation

(1.9) an (Tm
0 x) − an+m(x) + am(x) = 0, ∀m,n ∈ Z, ∀x ∈ T.

Following [5, Definition 2.1] we have

Definition 1.1. (a, t) : Z × T → Z
2 defined by

(1.10) (a, t) (n, x) = (an(x), an(x + t))

is called a cocycle for T0.

[5] showed that ergodicity of T , or equivalently, ergodicity of the cocycle (a, t) is

determined by the group E
2 (a, t) of essential values of (a, t). Put Z2 = Z

2
⋃

{∞},
the one point compactification of Z

2. We have the following definitions of essential
values etc.

Definition 1.2. Let µ be Lebesgue measure on T. An element (k1, k2) ∈ Z2 is
called an essential value of (a, t) if for every measurable set A ⊂ T with µ(A) > 0,
we have

(1.11) µ

(

⋃

n∈Z

(

A
⋂

T−n
0 A

⋂

{x | an(x) = k1}
⋂

{x | an(x + t) = k2}
)

)

> 0,

We denote the set of essential values of (a, t) by E2 (a, t).

Definition 1.3. Set E
2 (a, t) = E2 (a, t)

⋂

Z
2. (k1, k2) ∈ E2 (a, t) \ E

2 (a, t) only if
(k1, k2) does not lie in any compact subset of Z

2.

From [5] we derive the following properties



ERGODICITY OF Z
2 EXTENSIONS OF IRRATIONAL ROTATIONS 3

(1) E
2 (a, t) is a closed subgroup of Z

2 under addition. (k1, k2) ∈ E
2 (a, t) only

if k1 ≡ k2 mod 2.
(2) (a, t) is a coboundary (that is, an(x) = c(Tn

0 x)−c(x) for a measurable map

c : T → Z) iff E2 (a, t) = {(0, 0)}.

We say that two cocycles (a, t) , (b, t) : Z × T → Z
2 are cohomologous if (a, t) −

(b, t) is a coboundary. In this case E2 (a, t) = E2 (b, t). Given a cocycle (a, t) : Z ×
T → Z

2, let (a, t)
∗

: Z × T → Z
2/E

2 (a, t) be the corresponding quotient cocycle.
We have the following important result from [5, Lemma 3.10]:

Lemma 1.4. E
2 (a, t)

∗
= {(0, 0)}.

We say that the cocycle (a, t) is regular if E2 (a, t)
∗

= {(0, 0)}. (a, t) is called

nonregular if E2 (a, t)
∗

= {(0, 0),∞}. If (a, t) is regular, then (a, t) is cohomologous
to a cocycle (b, t) : Z×T → E

2 (a, t) and the latter is ergodic as a cocycle with values
in the closed subgroup E

2 (a, t) (see [5]). In particular, if E
2 (a, t) is cocompact in

Z
2 then (a, t) is regular.
We utilize approach devised in [5], [4] to prove the following theorems:

Theorem 1.5. For arbitrary irrational α ∈ T, the group of essential values E
2 (a, t)

of the cocycle (a, t) defined in (1.10) is G = {(s1, s2) ∈ Z
2 | s1 ≡ s2 mod 2} for

almost all t ∈ T. In particular, (a, t) is regular for almost all t ∈ T.

Theorem 1.6. If α is badly approximable, then the group of essential values
E

2 (a, t) is G if and only if t /∈ Zα and t /∈ Zα + 1
2 .

2. Period approximating sequences, Partial convergents and other

preliminaries

For x ∈ R we denote the closest integer to x by [x], denote x − [x] by 〈x〉 and
denote |x − [x]| by ‖x‖. We assume n to be nonnegative.

According to (1.5) an(x) is locally constant except for points of discontinuities of
+2 at 0,−α,−2α, . . . ,−(n−1)α and points of discontinuities of −2 at 1

2 , 1
2 −α, 1

2 −

2α, . . . , 1
2 −(n−1)α. an(x+t) is locally constant except for points of discontinuities

of +2 at −t,−t− α,−t− 2α, . . . ,−t− (n− 1)α and points of discontinuities of −2
at 1

2 − t, 1
2 − t − α, . . . , 1

2 − t − (n − 1)α.
If we set

(2.1) Sn(x) =
n−1
∑

i=0

χ[0, 1
2
) (x + iα) = #

{

i | 0 ≤ i ≤ n − 1; x + iα ∈ [0,
1

2
)

}

,

then from (1.5)

(2.2) an(x) = 2Sn(x) − n.

The concept of essential values corresponds to that of periods in [4]. We have the
following definition:

Definition 2.1. A period approximating sequence is a sequence {(nl, Al)}
∞
l=1 where

(1) Al ⊂ T, each Al is measurable;
(2) anl

is constant on both Al and Al + t, that is, anl
(Al) = k1, anl

(Al + t) =
k2 ∀nl;

(3) inf l µ(Al) > 0;
(4) ‖nlα‖ → 0.
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The next lemma shows that a period approximating sequence defines an element
in E

2 (a, t).

Lemma 2.2. If there exists a period approximating sequence {(nl, Al)}
∞
l=1 such

that anl
(Al) = k1, anl

(Al + t) = k2, ∀nl, then (k1, k2) ∈ E
2 (a, t).

Proof. Set

B = lim sup
l→∞

Al =
∞
⋂

l=1

∞
⋃

i=l

Ai.

µ(B) > 0 because inf l µ(Al) > 0 and µ(T) = 1.
For arbitrary A ⊂ T with µ(A) > 0, there exists m ∈ Z and A′ ⊂ A such that

µ(A′) > 0 and Tm
0 A′ ⊂ B because the action T0 is ergodic. Hence

(2.3) µ
(

B
⋂

Tm
0 A′

)

= µ

(∞
⋂

l=1

∞
⋃

i=l

(Ai

⋂

Tm
0 A′)

)

= µ (Tm
0 A′) > 0,

hence there exists a subsequence {n′
l} of {nl} such that for each n′

l, there exists a
measurable set A′

n′

l

⊂ A′ with µ(A′
n′

l

) > 0 and

(2.4) an′

l
(Tm

0 x) = k1, an′

l
(Tm

0 x + t) = k2, ∀x ∈ A′
n′

l

.

Note that

∣

∣

∣
an′

l
(Tm

0 x) − an′

l
(x)
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

n′

l
−1
∑

i=0

f (x + iα + mα) −

n′

l
−1
∑

i=0

f (x + iα)

∣

∣

∣

∣

∣

∣

(2.5)

=

∣

∣

∣

∣

∣

m−1
∑

i=0

f (x + iα + n′
lα) −

m−1
∑

i=0

f (x + iα)

∣

∣

∣

∣

∣

,

∣

∣

∣
an′

l
(Tm

0 x + t) − an′

l
(x + t)

∣

∣

∣
=

∣

∣

∣

∣

∣

m−1
∑

i=0

f (x + iα + n′
lα + t) −

m−1
∑

i=0

f (x + iα + t)

∣

∣

∣

∣

∣

,

(2.6)

(2.7) lim ‖n′
lα‖ = 0,

as well as the fact that m is fixed and depends on A only, we deduce that there
exists some n′

l and A′′ ⊂ A′ ⊂ A with µ(A′′) > 0 such that

(2.8) an′

l
(Tm

0 x) = an′

l
(x) = k1, an′

l
(Tm

0 x + t) = an′

l
(x + t) = k2, ∀x ∈ A′′.

Hence we have

(2.9) µ
(

A
⋂

T
−n′

l

0 A
⋂

{

x | an′

l
(x) = k1

}

⋂

{

x | an′

l
(x + t) = k2

})

> 0.

(k1, k2) ∈ E
2 (a, t). �

We record the statement of the Denjoy-Koksma inequality [4, Lemma 2] here,
which plays a fundamental role in the proof.

Lemma 2.3 (Denjoy-Koksma). If p ∈ N, q ∈ N satisfy
∣

∣

∣

∣

α −
p

q

∣

∣

∣

∣

<
1

q2
and (p, q) = 1,

then |aq(x)| < 4, ∀x ∈ T, where aq(x) is defined in (1.5).
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It follows from the proof of the above lemma that every interval of the form
[

i
q
, i+1

q

)

contains exactly one of the points jα for 0 ≤ i, j ≤ q − 1. In other words,

the points jα (0 ≤ j ≤ q − 1) are uniformly distributed on the unit circle.
We rely on numerous facts concerning continued fractions stated in texts such as

[1]. A considerable portion of our approach is borrowed from [4]. However, here we
need to construct period approximating sequence {(nl, Al)}

∞
l=1 such that anl

(Al)
and anl

(Al + t) take on independent values whereas predecessors of this paper only
deal with cylinder flows.

We denote by [a0; a1, a2, . . . , ] the continued fraction of α and call the ai the
partial quotients of α. Denote by pk

qk

the kth partial convergent of α where k ≥ 0.

It is known from [1] that

(2.10)
pk

qk

= [a0; a1, a2, . . . , ak];

(2.11) ‖qkα‖ <
1

qk+1
<

1

qk

;

(2.12) min
qk≤q<qk+1

‖qα‖ = ‖qkα‖ >
1

qk + qk+1
>

1

2qk+1
.

(2.13) qkpk−1 − pkqk−1 = (−1)k.

Set

(2.14) D(α) =

{

qk |
pk

qk

is a partial convergent of α

}

;

(2.15) q+ = min{q′ ∈ D(α) | q′ > q}, ∀q ∈ D(α).

Adopting arguments on [5, Page 229-230] we are able to prove the following lemma
which constitutes the first step in the entire proof:

Lemma 2.4.

(2.16) E
2 (a, t)

⋂

{(1, 3), (1,−3), (1, 1), (1,−1), (3, 1), (3,−1), (3, 3), (3,−3)} 6= ∅.

Proof. From (2.13) we derive that there are infinitely many odd q ∈ D(α). For
such q ∈ D(α), the Denjoy-Koksma inequality applies. In addition, from (1.5) we
see that aq(x) can only be odd, that is, aq(x) can only be ±3 or ±1.

Consequently there exists a period approximating sequence {(ql, Al)}
∞
l=1 such

that ql ∈ D(α),

(1) Al ⊂ T;
(2) aql

is constant on both Al and Al + t, aql
(Al) = k1, aql

(Al + t) = k2 ∀nl;
(3) inf l µ(Al) > 0;
(4) ‖qlα‖ → 0

and (k1, k2) ∈ {(1, 3), (1,−3), (1, 1), (1,−1), (3, 1), (3,−1), (3, 3), (3,−3)}
⋃

{−(1, 3),−(1,−3),−(1, 1),−(1,−1),−(3, 1),−(3,−1),−(3, 3),−(3,−3)}. The proof
is complete by noting that E

2 (a, t) is a group under addition. �

A major difficulty to prove Theorem 1.5 is therefore to show that E
2 (a, t) is not

isomorphic to Z. We aim to show that E
2 (a, t) is G for almost all t. This is done

by using period approximating sequences. We derive from properties of continued
fractions the following lemma:
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Lemma 2.5. For any nonzero q ∈ D(α), we have

(2.17) min
{
∥

∥

1
2 − jα

∥

∥ | |j| < q
}

≥
1

24q
.

Proof. We always have

(2.18)

∥

∥

∥

∥

1

2
− jα

∥

∥

∥

∥

≥
‖2( 1

2 − jα)‖

2
=

‖2jα‖

2
.

We consider five cases separately under the assumption that 0 < |j| < q.
Case 1: q+ ≥ 3q, then since ||2j| − q| < q from 0 < |j| < q, we have ‖(|2j| −

q)α‖ > 1
2q

from (2.12) and

(2.19)

‖2jα‖ = ‖(|2j| − q)α + qα‖ ≥ ‖(|2j| − q)α‖ − ‖qα‖ >
1

2q
−

1

q+
>

1

2q
−

1

3q
=

1

6q
.

Here we also used the inequality ‖qα‖ <
1

q+
from (2.11).

Case 2: If q+ < 3q and q++ < 3q, then since |2j| < 2q ≤ q++, we have from
(2.12)

(2.20) ‖2jα‖ ≥ ‖q+α‖ ≥
1

2q++
>

1

6q
.

Case 3: If q+ < 3q, q++ ≥ 3q and |q+−|2j|| < q, then we have ‖(|2j|−q+)α‖ >
1
2q

from (2.12) and

(2.21)

‖2jα‖ = ‖(|2j|−q+)α+q+α‖ ≥ ‖(|2j|−q+)α‖−‖q+α‖ >
1

2q
−

1

q++
>

1

2q
−

1

3q
=

1

6q
.

Case 4: If q+ < 3q, q++ ≥ 3q, |q+ − |2j|| ≥ q and |2j| ≤ q, then from (2.12) we
get

(2.22) ‖2jα‖ ≥ ‖qα‖ >
1

2q+
≥

1

6q
.

Case 5: If q+ < 3q, q++ ≥ 3q, |q+ − |2j|| ≥ q and |2j| > q, then

(2.23) q+ − |4j| < 3q − 2q = q, 2q − q+ > 2q − 3q = −q;

(2.24) |2j| ≤ q+ − q → q+ − |4j| ≥ q+ − 2(q+ − q) = 2q − q+ > −q;

hence |q+ − |4j|| < q and from (2.12)

(2.25) ‖4jα‖ = ‖(q+−|4j|)α−q+α‖ ≥ ‖(q+−|4j|)α‖−‖q+α‖ >
1

2q
−

1

q++
≥

1

6q
;

and ‖2jα‖ ≥
‖4jα‖

2
. The inequality is established. �

3. Proof of main theorems

Following [4] we set for each q ∈ D(α)

ǫ(q) =q · min {‖−t − jα‖ | |j| < q} ;(3.1)

θ(q) =q · min
{∥

∥

1
2 − t − jα

∥

∥ | |j| < q
}

.

We immediately derive that ǫ(q) < 1 and θ(q) < 1 from the proof of the Denjoy-
Koksma inequality.
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Proposition 3.1. If

(3.2) lim sup
q∈D(α)
q→∞

min {ǫ(q), θ(q)} > 0,

then E
2 (a, t) =

{

(k1, k2) ∈ Z
2 | k1 ≡ k2 mod 2

}

= G.

Proof. Let {qn}
∞
n=1 ⊂ D(α) be such that min {ǫ(qn), θ(qn)} > δ > 0, ∀n.

Recall aqn
(x) as set in (1.5) is locally constant except for points of discontinu-

ities of +2 at 0,−α,−2α, . . . ,−(qn − 1)α and points of discontinuities of −2 at
1
2 , 1

2 − α, 1
2 − 2α, . . . , 1

2 − (qn − 1)α. aqn
(x + t) is locally constant except for points

of discontinuities of +2 at −t,−t − α,−t − 2α, . . . ,−t − (qn − 1)α and points of
discontinuities of −2 at 1

2 − t, 1
2 − t − α, . . . , 1

2 − t − (qn − 1)α.
For fixed n, let I1, I2, . . . , I4qn

denote the intervals of constancy of both aqn
(x)

and aqn
(x + t) in cyclic order. Since aqn

(·) takes on at most four values by Lemma
2.3, there exists a union of intervals, An, such that aqn

(x) and aqn
(x + t) are

constant on An and µ(An) ≥ 1
16 . Let A′

n be the union of intervals proximal on the
right to those of An. Note that the distance between any discontinuities of aqn

(x)
and aqn

(x + t) is given by ‖(i − j)α‖ or ‖ 1
2 + (i − j)α‖ or ‖ − t + (i − j)α‖ or

‖ 1
2 − t + (i− j)α‖ for 0 ≤ i, j ≤ qn − 1. From (2.12), Lemma 2.5 and (3.2), we have

that min
{

1
24qn

, ǫ(qn)
qn

, θ(qn)
qn

}

is a lower bound for the lengths |Ii|, i = 1, 2, . . . , 4qn.

Since every interval of length 2
qn

must contain a +2 discontinuity by discussion

following Lemma 2.3, we have |Ii| < 2
qn

. Therefore we have

(3.3)
|Ii|

|Ij |
>

1

2
min

{

1

24
, ǫ(qn), θ(qn)

}

, 1 ≤ i, j ≤ 4qn.

By setting ǫ = min
{

1
24 , δ

}

, we thus have µ(A′
n) ≥ 1

2ǫµ(An) ≥ 1
32ǫ, ∀n. (a, t) (qn, x) =

(aqn
(x), aqn

(x + t)) can take on A′
n only the values (aqn

(An) ± 2, aqn
(An + t)) or

(aqn
(An), aqn

(An + t) ± 2) since each interval of A′
n is proximal on the right to one

of An. We can find A′′
n ⊂ A′

n such that aqn
(x) and aqn

(x + t) are both constant on
A′′

n, µ(A′′
n) ≥ 1

128ǫ and
(3.4)
(aqn

(A′′
n), aqn

(A′′
n + t)) = (aqn

(An) ± 2, aqn
(An + t)) or (aqn

(An), aqn
(An + t) ± 2) .

We assume that aqn
(An) = 1 and aqn

(An + t) = 3, that is (1, 3) lies in E
2 (a, t).

We prove both (2, 0) and (0, 2) lie in E
2 (a, t). Other possibilities can be treated

analogously.
Case 1:

Suppose we have (3, 3) and (1, 3) both lie in E
2 (a, t) as a result of the above

arguments. (±2, 0) lies in E
2 (a, t) because E

2 (a, t) is a subgroup of Z
2.

Moreover, there exists a period approximating sequence {(qn, An)}∞n=1 which
defines (1, 3) ∈ E

2 (a, t). Namely we have

(1) An ⊂ T;
(2) aqn

is constant on both An and An + t, aqn
(An) = 1, aqn

(An + t) = 3, ∀n;
(3) infn µ(An) > 0;
(4) ‖qnα‖ → 0.

Therefore there exists a period approximating sequence {(q′n, B′
n)}∞n=1 which defines

(k, 1) ∈ E
2 (a, t) for some k ∈ {±1,±3}. Namely we have

(1) {q′n} is a subsequence of {qn}, B′
n + t ⊂ A′

n, µ(B′
n) ≥ 1

4µ(A′
n);
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(2) aq′

n
is constant on both B′

n and B′
n + t, aq′

n
(B′

n) = k,
aq′

n
(B′

n + t) = aq′

n
(A′

n) = 1, ∀n′;
(3) infn′ µ(B′

n) > 0;
(4) ‖q′nα‖ → 0.

(3.5) (3, 3) ∈ E
2 (a, t) and (2, 0) ∈ E

2 (a, t) → (k, 3) ∈ E
2 (a, t) ;

(3.6) (k, 1) ∈ E
2 (a, t) and (k, 3) ∈ E

2 (a, t) → (0, 2) ∈ E
2 (a, t) .

Consequently both (2, 0) and (0, 2) lie in E
2 (a, t).

Case 2:

Suppose we have (−1, 3) and (1, 3) both lie in E
2 (a, t). (±2, 0) lies in E

2 (a, t)
because E

2 (a, t) is a subgroup of Z
2.

Moreover, there exists a period approximating sequence {(qn, An)}∞n=1 which
defines (1, 3) ∈ E

2 (a, t). Namely we have

(1) An ⊂ T;
(2) aqn

is constant on both An and An + t, aqn
(An) = 1, aqn

(An + t) = 3, ∀n;
(3) infn µ(An) > 0;
(4) ‖qnα‖ → 0.

Therefore there exists a period approximating sequence {(q′n, B′
n)}∞n=1 which defines

(k, 1) ∈ E
2 (a, t) for some k ∈ {±1,±3}. Namely we have

(1) {q′n} is a subsequence of {qn}, B′
n + t ⊂ A′

n, µ(B′
n) ≥ 1

4µ(A′
n);

(2) aq′

n
is constant on both B′

n and B′
n + t, aq′

n
(B′

n) = k,
aq′

n
(B′

n + t) = aq′

n
(A′

n) = 1, ∀n′;
(3) infn′ µ(B′

n) > 0;
(4) ‖q′nα‖ → 0.

(3.7) (1, 3) ∈ E
2 (a, t) and (2, 0) ∈ E

2 (a, t) → (k, 3) ∈ E
2 (a, t) ;

(3.8) (k, 1) ∈ E
2 (a, t) and (k, 3) ∈ E

2 (a, t) → (0, 2) ∈ E
2 (a, t) .

Consequently both (2, 0) and (0, 2) lie in E
2 (a, t).

Case 3:

Suppose we have (1, 1) and (1, 3) both lie in E
2 (a, t). (0, 2) lies in E

2 (a, t). (2, 2)
also lies in E

2 (a, t) and therefore (2, 0) lies in E
2 (a, t).

In all cases we have shown both (2, 0) and (0, 2) lie in E
2 (a, t). Along with the

assumption that (1, 3) lies in E
2 (a, t), we derive that E

2 (a, t) = G as desired. �

Remark 3.2. For arbitrary α the set of t satisfying (3.2) has full Lebesgue measure.
Therefore for almost all t ∈ T, we have E

2 (a, t) = G and Theorem 1.5 is established.

Next we prove Theorem 1.6. Note that α is badly approximable if and only if
its partial quotients are bounded.

Proposition 3.3. If α is badly approximable and

(3.9) lim
q∈D(α)
q→∞

min {ǫ(q), θ(q)} = 0,

then t ∈ Zα or t ∈ Zα + 1
2 .
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Proof. For each q ∈ D(α), let |iq| < q, |jq| < q be such that

ǫ(q) = q ‖−t − iqα‖ , θ(q) = q
∥

∥

1
2 − t − jqα

∥

∥ .

Then we have from the assumption of the proposition

lim
q∈D(α)
q→∞

min
{

q ‖−t − iqα‖ , q
∥

∥

1
2 − t − jqα

∥

∥

}

= 0.

Because α is badly approximable, q+

q
and q++

q
have a uniform upper bound and

lim
q∈D(α)
q→∞

min
{

q++ ‖−t − iqα‖ , q++
∥

∥

1
2 − t − jqα

∥

∥

}

= 0.

Also we have for arbitrary n1 and n2 the following inequalities:

(3.10) ‖n1α − n2α‖ ≤ ‖−t − n1α‖ + ‖−t − n2α‖ ,

(3.11)
∥

∥

1
2 + n1α − n2α

∥

∥ ≤
∥

∥

1
2 − t − n1α

∥

∥+ ‖−t − n2α‖ .

If we have q++
∥

∥−t − iq+α
∥

∥ < 1
100 and q++

∥

∥

1
2 − t − jqα

∥

∥ < 1
100 , then by (3.11)

q++
∥

∥

1
2 + iq+α − jqα

∥

∥ <
1

50
.

Because
|iq+ − jq| ≤ |iq+ | + |jq| < q+ + q ≤ q++,

this contradicts Lemma 2.5, which asserts that q++
∥

∥

1
2 + iq+α − jqα

∥

∥ ≥
1

24
. Hence

we have

lim
q∈D(α)
q→∞

q ‖−t − iqα‖ = 0 or lim
q∈D(α)
q→∞

q
∥

∥

1
2 − t − jqα

∥

∥ = 0.

Suppose we have limq∈D(α)
q→∞

q ‖−t − iqα‖ = 0, then by (3.10)

lim
q∈D(α)
q→∞

q++
∥

∥iq+α − iqα
∥

∥ = 0.

From (2.12) we derive that for q large enough iq+ = iq, that is, iq is constant. Hence
t ∈ Zα.

Suppose we have limq∈D(α)
q→∞

q
∥

∥

1
2 − t − jqα

∥

∥ = 0, then

lim
q∈D(α)
q→∞

q++
∥

∥jq+α − jqα
∥

∥ = 0.

From (2.12) we derive that for q large enough jq+ = jq, that is, jq is constant.

Hence t ∈ Zα + 1
2 . �

Remark 3.4. When α is not badly approximable, Merrill [3] showed that if t belongs
to an uncountable set of zero measure containing numbers well approximable by
multiples of α, the cocycle v = χ[0,t) − χ

[
1
2 ,

1
2+t)

is a coboundary. This implies

E
2 (a, t) = {(k, k) | k ∈ Z}. Similarly, If t + 1

2 belongs to an uncountable set of zero

measure containing numbers well approximable by multiples of α, then E
2 (a, t) =

{(k,−k) | k ∈ Z}.
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