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LAGRANGIAN FLOER THEORY ON COMPACT TORIC

MANIFOLDS: SURVEY

KENJI FUKAYA, YONG-GEUN OH, HIROSHI OHTA, KAORU ONO

Abstract. This is a survey of a series of papers [FOOO3, FOOO4, FOOO5].

We discuss the calculation of the Floer cohomology of Lagrangian submanifold
which is a T n orbit in a compact toric manifold. Applications to symplectic
topology and to mirror symmetry are also discussed.
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1. Introduction

This is a survey of a series of papers [FOOO3, FOOO4, FOOO5] we had writ-
ten about Lagrangian Floer theory of toric manifolds and their mirror symmetry.
Our main purpose is to perform systematic computation of the Lagrangian Floer
cohomology of the Tn orbit in toric manifolds together with various operations
introduced in [FOOO1] Section 3.8 and apply them to mirror symmetry between
toric A model and Landau-Ginzburg B model and to symplectic topology of toric
manifolds.

Let X be a compact toric manifold with complex dimension n and L(u) a
Tn orbit. (Here u is an element of the interior of the moment polytope which
parametrizes the Tn orbit. See Section 4 Formula (12).) We show that the num-
ber (counted with multiplicity) of the pair (L(u), b) (where b is an element of
H1(L(u); Λ0)/H1(L(u); 2π

√
−1Z)) for which Floer cohomology HF ((L(u), b), (L(u), b); Λ)

is nonzero is equal to the Betti number of X. (Theorem 11.6.)
Such a pair (L(u), b) corresponds one to one to a critical point of certain function

PO, the potential function, where u (the position of L(u)) is the valuation of the
coordinate of the critical points. Given X the valuation of the critical points of
PO can be calculated by explicitly solving calculable algebraic equations finitely
many times. (We illustrate these examples in sections 6 and 10. We use the result
of Cho-Oh [CO] for this calculation.)

This identification is induced by an isomorphism between quantum cohomology
QH(X; Λ0) of X and the Jacobian ring Jac(PO) of the potential function PO,
which goes back to Givental [Gi1, Gi2] and Batyrev [B1, B2] in the case when X
is Fano. We remark that the rank of QH(X; Λ0) is the Betti number of X and the
rank of Jac(PO) is the number of critical points of PO counted with multiplicity.

The isomorphism QH(X; Λ0) ∼= Jac(PO) is a ring isomorphism. In the case
QH(X; Λ) is semi-simple, the ring QH(X; Λ) splits to the product of the copies of
the field Λ and each of the factors corresponds to a critical point of PO. (Propo-
sition 11.8.)

Thus we associate a non-displaceable Lagrangian submanifold L(u) to each of
the direct factor of QH(X; Λ). Entov-Polterovich [E, EP1, EP2, EP3] and others
[Os, Us] associated a Calabi quasi-homomorphis to each of the direct factors of
QH(X; Λ) and also a non-displaceable Lagrangian submanifold L(u) to such Calabi
quasi-homomorphism. The non-displaceable Lagrangian submanifold associated by
the theory of Entov-Polterovich coincides with one associated by Lagrangian Floer
theory, as we prove in [FOOO7]. (Our construction and proof are very different
from Entov-Polterovich’s however.)

The ring isomorphism QH(X; Λ0) ∼= Jac(PO) is generalized to the case when we
consider big quantum cohomology in the left hand side and the potential function
in Lagrangian Floer theory with bulk deformation in the right hand side. Moreover
it intertwines the pairings which is the Poincaré duality pairing in the left hand
side and is (a version of) residue pairing in the right hand side. This implies the
coincidence of two Frobenius manifold structures. One is the Frobenius manifold
structure induced by big quantum cohomology which is due to Dubrovin [Dub],
and the other is one associated to the isolated singularity by Saito [Sa, MSa]. This
isomorphism is regarded as a version of mirror symmetry between Toric A model
and Landau-Ginzburg B model. It is closely related to the story of Hori-Vafa [HV]
and also of Givental.
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The mirror symmetry between toric manifold and singularity theory have been
studied by many mathematicians. Besides those already mentioned above, here is
a list of some of them (this list is not exhaustive).

In this paper we focus on the case in which we study A model (symplectic
geometry and pseudo-holomorphic curve) on toric manifold and the B model (de-
formation theory and complex geometry) on singularity theory side. The papers
[Aur1, Aur2, Bar, CL, CO, Gro1, Gro2, GPS, Iri1, Iri2, Iri3, OT, Ta, W] also deal
with that case.

There have been more works in the other side of the story namely B model in
toric side and A model in singurality theory side. [Ab1, AKO, FLTZ, Se2, Ue, UY]
are some of the papers on this side.

2. Preliminary

2.1. Notations and terminologies. The universal Novikov ring Λ0 is the set of
all formal sums

∞∑

i=0

aiT
λi (1)

where ai ∈ C and λi ∈ R≥0 such that limi→∞ λi = ∞, and T is a formal parameter.
We allow λi ∈ R in (1) (namely negative λi) to define Λ which we call universal
Novikov field. It is a field of fraction of Λ0. We require λi > 0 in (1) to define Λ+,
which is the maximal ideal of Λ0.

We define a valuation vT on Λ by

vT

( ∞∑

i=0

aiT
λi

)
= inf{λi | ai 6= 0}. (2)

(Here we assume λi 6= λj for i 6= j.) Λ,Λ0,Λ+ are complete with respect to vT and
(Λ0,Λ+) is a valuational ring with valuation vT .

Remark 2.1. In [FOOO1] a slightly different Novikov ring Λ0,nov which contains
another formal parameter e is used. The role of e is to adjust all the operators
appearing in the story so that they have well-defined degree. (e has degree 2.)
In [FOOO3, FOOO4, FOOO5] and this paper we use Λ0 since ring theoretical
properties of Λ0 is better than one of Λ0,nov. As a drawback only the parities of
various operators are well-defined.

Let Z1, . . . , Zm be variables. We define the strongly convergent power series ring

Λ0〈〈Z1, . . . , Zm〉〉
as the set of all formal sums

∞∑

k1=0

· · ·
∞∑

km=0

Ck1...km
Zk1

1 · · ·Zkm
m

where Ck1...km
∈ Λ0 such that

lim
k1+···+km→∞

vT (Ck1...km
) = ∞.

We define strongly convergent Laurent power series ring

Λ0〈〈Z1, Z
−1
1 , . . . , Zm, Z−1

m 〉〉
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as the set of all formal sums
∑

k1∈Z

· · ·
∑

km∈Z

Ck1...km
Zk1

1 · · ·Zkm
m

where Ck1...km
∈ Λ0 such that

lim
|k1|+···+|km|→∞

vT (Ck1...km
) = ∞.

See [BGR] about those rings.
We also define

Λ〈〈Z1, Z
−1
1 , . . . , Zm, Z−1

m 〉〉 = Λ0〈〈Z1, Z
−1
1 , . . . , Zm, Z−1

m 〉〉 ⊗Λ0
Λ.

The definition of Λ〈〈Z1, . . . , Zm〉〉 is similar.
Let C be a graded free Λ0 module. The valuation vT induces a norm on C

in an obvious way, by which C is complete. We define its degree shift C[1] by
C[1]k = Ck+1. The shifted degree deg′ is defined by

deg′ x = deg x − 1.

We put

BkC = C ⊗ · · · ⊗ C︸ ︷︷ ︸
k times

. (3)

Let B̂C =
⊕̂∞

k=0BkC be the completed direct sum of them. Let Sk be the sym-
metric group of order k!. It acts on BkC by

σ · (x1 ⊗ · · · ⊗ xk) = (−1)∗xσ(1) ⊗ · · · ⊗ xσ(k) (4)

where ∗ =
∑

i<j:σ(i)>σ(j) deg xi deg xj . We define EkC as the subset of Sk invariant

element of BkC and put ÊC =
⊕̂∞

k=0EkC its completed direct sum.
On BC we define a coalgebra structure ∆ : BC → (BC)⊗2 by

∆(x1 ⊗ · · · ⊗ xk) =

k∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xk). (5)

(Note the summand in the case i = 0 is 1 ⊗ (x1 ⊗ · · · ⊗ xk).) ∆ is coassociative.
We can define ∆ : EC → (EC)⊗2 by restriction. It is coassociative and graded

cocomutative.
We also consider a map ∆k−1 : BC → (BC)⊗k

∆k−1 = (∆ ⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
k−2

) ◦ (∆ ⊗ id ⊗ · · · ⊗ id︸ ︷︷ ︸
k−3

) ◦ · · · ◦ ∆.

For an indecomposable element x ∈ BC, it can be expressed as

∆k−1(x) =
∑

c

xk;1
c ⊗ · · · ⊗ xk;k

c (6)

where c runs over some index set. We use the same notation for EC.
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2.2. Moduli spaces of pseudo-holomorphic disks. Lagrangian Floer theory is
based on the moduli space of pseudo-holomorphic disks. We recall its definition
below. See [FOOO1] subsection 2.1.2 for detail.

Let X = (X,ω) be a symplectic manifold and L its Lagrangian submanifold. We
pick a compatible almost complex structure J on X. Let β ∈ H2(X,L; Z).

The moduli space Mmain
k+1;ℓ(β) is the compactified moduli space of the genus zero

bordered holomorphic maps u : (Σ, ∂Σ) → (X,L), in class β ∈ H2(X,L(u); Z)
with k + 1 boundary marked points and ℓ interior marked points. This means the
following:

Conditions 2.2. (1) Σ is a connected union of disks and spheres, which we
call (irreducible) components. We assume the intersection of two different
irreducible components is either one point or empty. The intersection of
two disk components is if nonempty, a boundary point of both of the com-
ponents. The intersection of a disk and a sphere component is an interior
point of the disk component. We assume that intersection of three different
components is empty. We also require Σ to be simply connected. A point
which belongs to two different components is called a singular point.

(2) u : Σ → X is a continuous map which is J-holomorphic on each of the
components. u(∂Σ) ⊂ L. Here ∂Σ is the union of the boundary of disk
components.

(3) There are k + 1 points z0, . . . , zk on ∂Σ. (We call them boundary marked
points.) They are mutually distinct. None of them are singular point. We
require the order of k + 1 boundary marked points to respect the counter-
clockwise cyclic order of the boundary of Σ.

(4) There are ℓ points z+
1 , . . . , z+

ℓ on Σ \ ∂Σ. (We call them interior marked
points.) They are mutually distinct. None of them are singular point.

(5) For each of the components Σa of Σ, one of the following conditions hold :
(a) u is not a constant map on Σa.
(b) Σa is a disk component. We have 2nint + nbdry ≥ 3. Here nint is

the sum of the numbers of the interior marked points and the interior
singular points. nbdry is the sum of the numbers of the boundary
marked points and the boundary singular points.

(c) Σa is a sphere component. The sum of the numbers of the marked
points and the singular points on Σa is ≥ 3.

The condition 5) is called the stability condition. It is equivalent to the condition
that the automorphism group of this element is a finite group.

In case ℓ = 0 we write Mmain
k+1 (β) in place of Mmain

k+1;0(β).
We define the evaluation maps

ev : Mmain
k+1;ℓ(β) → Xℓ × Lk+1 (7)

where we put
ev = (ev+, ev) = (ev+

1 , . . . , ev+
ℓ ; ev0, . . . , evk),

as follows:
evi(Σ, u) = u(zi)

where zi is the i-th boundary marked point as in 3).

ev+
i (Σ, u) = u(z+

i )

where z+
i is the interior marked point as in 4).
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Our moduli spaces Mmain
k+1;ℓ(β) has a Kuranishi structure in the sense of [FO]

section 5 and [FOOO1] section A1.
Its boundary is described by using fiber product. For example, in case ℓ = 0 we

have the equality

∂Mmain
k+1 (β) =

⋃

k1+k2=k+1

⋃

β1+β2=β

k1⋃

i=1

Mmain
k1+1(β1) ev0

×evi
Mmain

k2+1(β2). (8)

as spaces with Kuranishi structures. ([FOOO1] subsection 7.1.1.)

3. A quick review of Lagrangian Floer theory

Let X = (X,ω) be a symplectic manifold and L its Lagrangian submanifold. We
assume L is oriented and spin. (Actually relative spinness in the sense of [FOOO1]
Definition 1.6 is enough.)

In [FOOO1] Theorem A, we defined a structure of gapped unital filtered A∞
algebra {mk | k = 0, 1, . . . } on the cohomology group H(L; Λ0) of L with Λ0

coefficient.
Namely there exists a sequence of operators

mk : BkH(L; Λ0)[1] → H(L; Λ0)[1]

of odd degree1 (for k ≥ 0).

Theorem 3.1. (1)

∑

k1+k2=k+1

k2∑

i=1

(−1)∗mk2
(x1, . . . ,mk1

(xi, . . . , xi+k2−1), . . . , xk) = 0, (9)

where ∗ = deg′ x1 + · · · + deg′ xi−1.
(2) m0(1) ≡ 0 mod Λ+.
(3) (Unitality) e = PD[L] ∈ H0(L; Λ0) is the strict unit. (Here PD : Hk(L) →

Hn−k(L) is the Poincaré duality.) Namely

mk+1(x1, · · · , e, · · · , xk) = 0 for k ≥ 2 or k = 0.

and
m2(e, x) = (−1)deg xm2(x, e) = x.

(4) (G-gappedness) There exists an additive discrete submonoid G = {λi | i =
0, 1, 2, . . . } (λ0 = 0 < λ1 < λ2 < · · · , limi→∞ λi = ∞) of R≥0 such that
our structure is G-gapped. Namely mk is written as

mk =

∞∑

i=0

Tλimk,i

where mk,i : BkH(L; C)[1] → H(L; C)[1] is C-linear.
(5) m2,0 coincides with cup product up to sign.

The triple (C, {mk}, e) that satisfies 1)-4) of Theorem 3.1 (with H(L; Λ0) being
replaced by C) is called a G-gapped unital filtered A∞ algebra.

The operator mk is constructed by using the moduli spaces Mmain
k+1 (β) as follows.

(Here we use de Rham cohomology, following [FOOO3, FOOO4, FOOO5, Fu2, Fu3].
In [FOOO1] singular homology is used. Morse homology version is in [FOOO2].)

1See Remark 2.1. Only the parity of the degree is well-defined in Floer cohomology over Λ0.
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Let h1, . . . , hk be differential forms on L. We define a differential form mk,β(h1, . . . , hk)
on L as follows:

mk,β(h1, . . . , hk) = ev0!(ev1, . . . , evk)∗(h1 × · · · × hk) (10)

for (k, β) 6= (1, 0). We use evaluation maps (7) in (10). We put

m1,0(h) = (−1)n+deg h+1dh,

where d is the de Rham differential. (See [FOOO1] Remark 3.5.8.)
Here we regard h1 × · · · × hk as a differential form on Lk. Then the pull back

(ev1, . . . , evk)∗ defines a differential form on Mmain
k+1 (β). The symbol ev0! denotes

the integration along the fiber associated to the map ev0 : Mmain
k+1 (β) → L. We

remark that Mmain
k+1 (β) itself is not necessarily transversal. So it may have wrong di-

mension. However we can use general theory of Kuranishi structure to obtain a mul-
tisection s ([FO] section 5, [FOOO1] section A1) so that the perturbed moduli space
Mmain

k+1 (β)s (that is the zero point set of the multisection s) has a virtual fundamen-

tal chain (over Q). However still after perturbation, the map ev0 : Mmain
k+1 (β)s → L

may not be a submersion on the perturbed moduli space Mmain
k+1 (β)s . So we take a

continuous family of perturbations written as {sw}w∈W parametrized by a certain
smooth manifold W so that

evW
0 :

⋃

w∈W

(
Mmain

k+1 (β)sw × {w}
)
→ L

is a submersion.2 So we can justify (10) as

mk,β(h1, . . . , hk) = evW
0! ((ev1, . . . , evk)∗(h1 × · · · × hk) ∧ ωW ) .

Here ωW is a smooth form of degree dim W on W that has compact support and
satisfies

∫
W

ωW = 1. We pull it back to
⋃

w∈W

(
Mmain

k+1 (β)sw × {w}
)

in an obvious

way. The fiberwise evaluation map evW
0 is ev0 on Mmain

k+1 (β)sw × {w}.
We omit the detail of this construction and refer [FOOO4] section 12 or [Fu2]

section 13. In the toric case, which is the case of our main interest in this article, this
construction can be simplified in most of the cases. Namely ev0 : Mmain

k+1 (β)s → L
it self can be taken to be a submersion (without using continuous family). See
Section 5.

We now put

mk =
∑

β∈H2(X,L;Z)

T (β∩[ω])/2πmk,β .

We can use various properties of the moduli space to check Theorem 3.1. In fact,
for example, Theorem 3.1 1) is a consequene of Formula (8) and Theorem 3.1 4) is
a consequence of Gromov compactness.

Thus we obtain a structure of G-gapped unital filtered A∞ algebra on de Rham
complex of L. Then it induces one on cohomology H(X,L; Λ0), by a purely algebraic
result. ([FOOO1] Theorem 5.4.2.)

The filtered A∞ algebra (H(X,L; Λ0), {mk | k = 0, 1, . . . }) is independent of the
choices (such as compatible almost complex structures and perturbations etc.) up
to an isomorphism of a gapped unital filtered A∞ algebra, (that is gapped unital
filtered A∞ homorphism which has an inverse). We omit the precise definition of
this notion and refer readers [FOOO1] Definition 3.2.29 and Proposition 5.4.5.

2Actually the parameter space W is defined only locally. See [FOOO4] section 12.
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Let (C, {mk | k = 0, 1, . . . }, e) be a unital filtered A∞ algebra. We define its

weak Maurer-Cartan scheme M̂weak(C) as the set of solutions of the equation

∞∑

k=0

mk(b, · · · , b) ≡ 0 mod Λ0e, (11)

for b ∈ Codd, with b ≡ 0 mod Λ+. (Here and hereafter e denotes the unit.)
For b ∈ Codd, with b ≡ 0 mod Λ+, we define mb

k by

mb
k(x1, . . . , xk) =

∞∑

m0=0

· · ·
∞∑

mk=0

mk(b, . . . , b︸ ︷︷ ︸
m0

, x1, b, . . . , b︸ ︷︷ ︸
m1

, . . . , xk, b, . . . , b︸ ︷︷ ︸
mk

).

The right hand side converges in vT topology. We can show that (C, {mb
k | k =

0, 1, . . . }, e) is a filtered A∞ algebra.
In our geometric situation, where C = H(L; Λ0), we can remove the assumption

b ≡ 0 mod Λ+ using a trick due to Cho [Cho3] and can define mb
k for any b ∈

Hodd(L; Λ0). (See [FOOO3] section 12 for toric case and [Fu2] section 13, [Fu3]
section 5 for the general case.) Moreover the right hand side of (11) makes sense
for any b ∈ Hodd(L; Λ0). In case we need to distinguish it from the case b ∈
Hodd(L; Λ+), we denote the former by M̂weak(H(L; Λ0); Λ0).

It is easy to see that mb
0(1) coincides with the left hand side of (11). Therefore

if b ∈ M̂weak(C) then mb
0(1) = ce for some c ∈ Λ+. It follows that

(mb
1 ◦ mb

1)(x) = −c
(
m2(e, x) + (−1)deg′ xm2(x, e)

)
= 0.

Here we use Properties 3.1 1) in the first equality and Properties 3.1 3) in the
second equality. Now we define

Definition 3.2. Let b ∈ Hodd(L; Λ0). We define Floer cohomology by:

HF ((L, b), (L, b); Λ0) =
Ker(mb

1)

Im(mb
1)

.

HF ((L, b), (L, b); Λ) is defined by taking ⊗Λ0
Λ.

It is proved in [FOOO1] Proposition 3.7.75 and the discussion right after that
(general case, singular homology version) [FOOO4] section 8 (toric case, de Rham
homology version) that HF ((L, b), (L, b); Λ) 6= 0 implies that L is Hamiltonian
non-displacable.3 Namely for any Hamiltonian diffeomorphism F : X → X we
have F (L) ∩ L 6= ∅.

Let b ∈ M̂weak(C). Then there exists PO(b) ∈ Λ+ such that

∞∑

k=0

mk(b, . . . , b) = PO(b)e.

Definition 3.3. We call PO : M̂weak(C) → Λ+, the potential function.

In the geometric situation we have PO : M̂weak(H(L; Λ0); Λ0) → Λ+.

3We need to take Λ (not Λ0) for the coefficient ring for this statement. Actually

HF ((L, b), (L, b); Λ0) = 0 never occurs when Floer cohomology is defined.
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4. A quick review of toric manifold

In this section we review a very small portion of the theory of toric variety. We
explain only the points we use in this article. See for example [Ful] for an account
of toric variety.

Let (X,ω, J) be a Kähler manifold, where J is its complex structure and ω is
its Kähler form. Let n be the complex dimension of X. We assume n dimensional
real torus Tn = (S1)n acts efffectively on X such that J and ω are preserved by
the action. We call such (X,ω, J) a Kähler toric manifold if the Tn action has a
moment map in the sense we describe below. Hereafter we simply say (X,ω, J) (or
X) is a toric manifold.

Let (X,ω, J) be as above. We say a map π = (π1, . . . , πn) : X → Rn to be a
moment map if the following holds. We consider the i-th factor S1

i of Tn. (Here
i = 1, . . . , n.) Then πi : X → R is the moment map of the action of S1

i . In other
words, we have the following indentity of πi

dπi(X) = ω(X, t̃),

where t̃ is the Killing vector field associated to the action of the cirlce S1
i on X.

Let u ∈ IntP . Then the inverse image π−1(u) is a Lagrangian submanifold which
is an orbit of the Tn action. We put

L(u) = π−1(u). (12)

This is a Lagrangian torus. The main purpose of this article is to study Lagrangian
Floer cohomology for such L(u).

It is well-known that P = π(X) is a convex polytope. We can find a finitely
many affine functions ℓj : Rn → R (j = 1, . . . ,m) such that

P = {u ∈ Rn | ℓj(u) ≥ 0, ∀j = 1, . . . ,m}. (13)

We put ∂jP = {u ∈ P | ℓj(u) = 0} and Dj = π−1(∂jP ). (dimR ∂jP = n − 1.)
D1 ∪ · · · ∪ Dm is called the toric divisor.

Moreover we may choose ℓj so that the following holds.

Conditions 4.1. (1) We put

dℓj = ~vj = (vj,1, . . . , vj,n) ∈ Rn.

Then vj,i ∈ Z.
(2) Let p be a vertex of P . Then the number of faces ∂jP which contain p is

n. Let ∂j1P, . . . , ∂jn
P be those faces. Then ~vj1 , . . . , ~vjn

(which is contained
in Zn by item 1)) is a basis of Zn.

The affine function ℓj has the following geometric interpretation. Let u ∈ IntP .
There exists m elements βj ∈ H2(X,L(u); Z) such that

βj ∩ Dj′ =

{
1 j = j′

0 j 6= j′.
(14)

Then we have

2πℓj(u) =

∫

βj

ω. (15)

The existence of such ℓj and the property above is proved in [Gu] Theorem 4.5.
(See [FOOO3] section 2 also.)
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Example 4.2. We consider the complex projective space CPn. Using homogeneous
coordinate [x0 : x1 : · · · : xn] we define Tn action by

(t1, . . . , tn) · [x0 : · · · : xn] = [x0 : e2π
√
−1t1x1 : · · · : e2π

√
−1tnxn].

(Here we identify R/Z ∼= S1.) The moment map π = (π1, . . . , πn) is given by

πi([x0 : · · · : xn]) =
|xi|2

|x0|2 + · · · + |xn|2
.

Its moment polytope P0 is a simplex that is:

P0 = {(u1, . . . , un) | 0 ≤ ui, i = 1, . . . , n,

n∑

i=0

ui ≤ 1}.

We have

ℓi(u1, . . . , un) =

{
ui i 6= 0

1 −∑n
j=0 uj i = 0.

(16)

Example 4.3. We consider CP 2 as above. For 1 > α > 0, let us consider

P (α) = P0 \ {(u1, u2) ∈ P0 | u2 > 1 − α} = {(u1, u2) ∈ P0 | u2 ≤ 1 − α}.

The inverse image π−1({(u1, u2) ∈ P0 | u2 > 1 − α}) is a ball of radius
√

α/2
centered at [0 : 1 : 0]. The boundary of π−1(P (α)) has an induced contact
form which is identified with the standard contact form of S3. We identify two
points on ∂π−1(P (α)) if they lie on the same orbit of Reeb flow. After this
identification we obtain from π−1(P (α)) a symplectic manifold which we write

X(α) = CP 2#CP
2
(α).

It is well-known (see for example [MS] section 6.2) and can be proved from the
above description that X(α) is a blow up of CP 2 with Kähler form ω such that the
symplectic area of the exceptional divisor is α.

The T 2 action on CP 2 induces a T 2 action on X(α) so that it becomes a toric
manifold. The moment polytope is P (α).

There are 4 faces of P (α) and 4 affine functions ℓi (i = 0, 1, 2, 3). Three of them
are ℓ0, ℓ1, ℓ2 as in (16). The fourth one is given by

ℓ3(u1, u2) = 1 − α − u2. (17)

Example 4.4. We can blow up again and may regard a two points blow up of CP 2

as a toric manifold. For α, α′ > 0, with α + α′ < 1 we consider the polytope

P (α, α′) = {(u1, u2) ∈ P0 | u2 ≤ 1 − α, u1 + u2 ≥ α′}.

There exists a toric manifold X(α, α′) that is a two points blow up of CP 2 and
whose moment polytope is P (α, α′).

P (α, α′) has 5 faces. There are 5 affine functions ℓ0, . . . , ℓ4 associated to each of
the faces. ℓ0, ℓ1, ℓ2 are as in (16) and ℓ3 is as in (17). ℓ4 is given by

ℓ4(u1, u2) = u1 + u2 − α′. (18)
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5. Floer cohomology and potential function of the Tn orbits

In this section we give a description of Floer cohomology of the Tn orbit L(u)
of the toric manifold X. Here u ∈ IntP and P is the moment polytope of X.

In this toric case the calculation of the Floer cohomology becomes significantly
simpler. This is because in this case the calculation of Floer cohomology is reduced
to the calculation of the potential function. Moreover the leading order term of the
potential function is calculated by the work of Cho-Oh [CO]. We will explain those
points in this section.

We first fix a basis of H1(L(u); Z) as follows. In Section 4 we fix a splitting Tn =
(S1)n and the associated coordinate (t1, . . . , tn) ∈ (R/Z)n. Let ei ∈ H1(Tn; Z) be
the element represented by dti in de Rham cohomology, where ti is the coordinate
of the i-th factor of (S1)n. (Here we identify S1 with R/Z.) The elements ei,
i = 1, . . . , n form a basis of H1(Tn; Z) ∼= Zn. Since the Tn action on L(u) is free
and transitive, we may identify H1(Tn; Z) = H1(L(u); Z). Hence we have a basis
ei, i = 1, . . . , n of H1(L(u); Z).

Let b ∈ H1(L(u); Λ0). We can write b =
∑n

i=1 xiei. Hence we take (x1, . . . , xn)
as a coordinate of H1(L(u); Λ0). We also put yu

i = exi .

Remark 5.1. The expression exi determines an element of Λ0 in case xi ∈ Λ0 as
follows. We write xi = xi,0 + xi,+ where xi,0 ∈ C and xi,+ ∈ Λ+. Then we put

yu
i = exi = exi,0

∞∑

k=0

xk
i,+/k!.

Note exi,0 ∈ C is defined as usual. The sum
∑∞

k=0 xk
i,+/k! converges in vT -topology.

Now we consider a toric manifold X with its moment polytope P . We consider
affine functions ℓj (j = 1, . . . ,m). We define vj,i ∈ Z as in Properties 4.1 1). We
define

zj = T ℓj(u)(yu
1 )vj,1 . . . (yu

n)vj,n . (19)

Theorem 5.2. (1) H1(L(u); Λ0) is contained in M̂weak(H(L; Λ0); Λ0).
(2) Let b =

∑
xixi ∈ H1(L(u); Λ0). Then we have

PO(b) = z1 + · · · + zm +
N∑

k=1

T ρkPk(z1, . . . , zm). (20)

Here N ∈ Z≥0 or N = ∞ and ρk > 0. In case N = ∞, the sequence of
numbers ρk goes to ∞ as k goes to ∞. Pk(z1, . . . , zm) are monomials of
z1, . . . , zm of degree ≥ 2 with Λ0 coefficient. We remark that zj is defined
from yu

i = exj by (19).
(3) If X is Fano then Pk are all zero.
(4) The monomials Pk and the numbers ρk are independent of u and depends

only on X.

Item 1) is [FOOO3] Proposition 4.3 plus the last line of [FOOO3] section 4.
Item 2) is [FOOO3] Theorem 4.6 in the form (slightly) improved in [FOOO4]

Theorem 3.4. In [FOOO3, FOOO4] this formula is written using yu
i in place of zj .

But it is easy to see that they are the same by the identification (20). We use the
result of Cho-Oh [CO] to calculate the term z1 + · · ·+ zm in the right hand side of
(20).
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Item 3) is [FOOO3] Theorem 4.5.
Item 4) follows from [FOOO3] Lemma 11.7.

Sketch of the proof. The linear terms zj in (20) come from the contribution (that
is mk,βj

(b, · · · , b)) of Mmain
1 (βj) to mk(b, · · · , b), where βj ∈ H2(X,L(u); Z) is as

in (14). Its coefficient 1 is the degree of the map

ev0 : Mmain
1 (βj) → L(u), (21)

which is calculated by [CO].
The term T ρkPk is a contribution of Mmain

1 (β) for some β. We will assume β 6= 0
in the rest of the argument.

We can use a Tn equivariant multisection to define virtual fundamental chain.
To see this we first observe that the Tn action on Mmain

1 (β) is free. This is because
Tn action on L(u) is free and (21) is Tn equivariant. Therefore to find a transversal
multisection we can proceed as follows. We first take the quotient with respect to
Tn action, next find transversal multisection on the quotient space and then lift it.

Let s be a Tn equivariant multisection which is transversal to 0. Then Tn acts
freely on its zero set Mmain

1 (β)s. Therefore the dimension of Mmain
1 (β)s is not

smaller than n if it is nonempty. We can show

dimMmain
1 (β)s = n + µ(β) − 2

where µ : H2(X,L(u); Z) → Z is the Maslov index. It implies that µ(β) ≥ 2 if
Mmain

1 (β)s 6= ∅.
This is the key point of the proof.

Remark 5.3. In case X is Fano, µ(β) ≥ 2 automatically holds if Mmain
1 (β) 6= ∅.

But in non-Fano case this holds only after taking Tn equivariant perturbation.

Moreover Tn equivariance implies that ev0 : Mmain
1 (β) → L(u) is a submersion

if Mmain
1 (β) 6= ∅. Therefore we may use this s to define mk,β . Namely we do not

need to use continuous family of multisections in this case.
Now if deg b = 1 then

deg mk,β(b, . . . , b) = 2 − µ(β) ≤ 0.

Namely mk,β(b, . . . , b) is 0 or is proportional to the unit. This proves item 1).
To study mk,β(b, . . . , b) for β 6= βj , we again use the classification of J holomor-

phic disks in [CO] to find that the element of Mmain
1 (β) is decomposed to a union

of disks in Mmain
1 (βj) and sphere bubble. Therefore

β = βj1 + · · · + βje
+ α1 + · · · + αf

where bjk
is one of bj ’s and αi ∈ H2(X; Z) is represented by J-holomorphic sphere.

We put
cβ = deg[ev0 : Mmain

1 (β)s → L(u)].

Here the right hand side is the mapping degree of the map ev0. It is well-defined
since in case µ(β) = 2 the boundary of Mmain

1 (β)s is empty. (This is because
Mmain

1 (β′)s is empty if µ(β′) ≤ 0, β′ 6= 0.)
Then we can show that

∞∑

k=0

mk,β(b, . . . , b) = cβT
Pf

i=1(αi∩ω)/2πzj1 . . . zje
.

Item 2) follows from this formula.
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Item 3) follows from the fact that in the Fano case, Mmain
1 (β) 6= ∅ and µ(β) = 2

imply β = βj for some j.
Item 4) follows from the fact that cβ is independent of u. �

Remark 5.4. In the genral situation, the filtered A∞ structure associated to a
Lagrangian submanifold is well-defined only up to isomorphism. In particular po-
tential function PO is well-defined only up to a coordinate change. (Namely it
may depend on the choice of perturbation etc.) However in our toric case we can
use a Tn equivariant perturbation s and then PO is well-defined as a function on
H1(L(u); Λ0) without ambiguity. This is a consequence of well-definedness of cβ

and is [FOOO3] Lemma 11.7.

We have the following useful criterion which reduces computation of Floer coho-
mology to the critical point theory of potential function.

Theorem 5.5. Let b =
∑

xiei ∈ H1(L(u); Λ0). Then the following three condi-
tions are equivalent.

(1) For each of i = 1, . . . , n we have:

∂PO

∂xi

∣∣∣∣
b

= 0

(2)
HF ((L(u), b), (L(u), b); Λ0) ∼= H(Tn; Λ0).

(3)
HF ((L(u), b), (L(u), b); Λ) 6= 0.

Sketch of the proof. By definition

PO(b)e =

∞∑

k=0

mk(b, . . . , b). (22)

We differentiate (22) by xi. Then using ∂b/∂xi = ei we obtain:

∂PO

∂xi

∣∣∣∣
b

e =
∞∑

k1=0

∞∑

k2=0

mk1+k2+1(b, . . . , b︸ ︷︷ ︸
k1

, ei, b, . . . , b︸ ︷︷ ︸
k2

) = mb
1(ei). (23)

Here the second equality is the definition of mb
1.

Now we assume item 2). Then we have mb
1(ei) = 0. Therefore (23) implies item

1).
We next assume item 1). Then (23) implies mb

1(ei) = 0. We use it together with
the fact that ei generates H(L(u); Λ0) by cup product, and A∞ formula to prove
that mb

1 = 0. (See [FOOO3] proof of Lemma 13.1.) Item 2) follows.
The equivalence between item 2) and item 3) is proved in [FOOO3] Remark

13.9. �

To apply Theorems 5.2 and 5.5 for the calculation of Floer cohomology of Tn,
we need some algebraic discussion, which is in order.

Let y1, . . . , yn be n formal variables. We consider the ring Λ[y1, . . . , yn, y−1
1 , . . . , y−1

n ]
of Laurent polynomials of n variables with Λ coefficient. We write it as Λ[y, y−1]
for simplicity.

Let u = (u1, . . . , un) ∈ P . We put

yu
i = T−uiyi ∈ Λ[y, y−1]. (24)
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By an easy computation we have

T ℓj(u)(yu
1 )vj,1 . . . (yu

n)vj,n = T ℓj(u
′)(yu′

1 )vj,1 . . . (yu′

n )vj,n . (25)

for u,u′ ∈ P . Therefore (19) defines an elements zj ∈ Λ[y, y−1] in a way indepen-
dent of u ∈ P .

We next introduce a family of valuations vu
T on Λ[y, y−1] parametrized by u ∈ P .

Let F ∈ Λ[y, y−1]. Then for each u ∈ Int P there exists Fu
i1...in

∈ Λ for
i1, . . . , in ∈ Zn such that

F =
∑

i1,...,in∈Zn

Fu
i1...in

(yu
1 )i1 · · · (yu

n)in .

Here only finitely many of Fu
i1...in

are nonzero. So the right hand side is actually a
finite sum.

Definition 5.6.

vu
T (F ) = inf{vT (Fu

i1...in
) | Fu

i1...in
6= 0},

if F 6= 0 and vu
T (0) = +∞.

vu
T defines a valuation on Λ[y, y−1].

We denote the completion of Λ[y, y−1] with respect to vu
T by Λu〈〈y, y−1〉〉.

By definition we have

vu
T (zj) = ℓj(u) ≥ 0

for u ∈ P . The following lemma is its immediate consequence.

Lemma 5.7. The right hand side of (20) converges with respect to vu
T for any

u ∈ P .

We remark that according to the general theory described in section 3, the
potential function PO associated to a Lagrangian submanifold L(u) is a Λ+ val-

ued function on M̂weak(L(u); Λ0). By Theorem 5.2 (1), we have the inclusion

H1(L(u); Λ0) ⊂ M̂weak(L(u); Λ0). Since x1, . . . , xn ∈ Λ0 forms a coordinate
of H1(L(u); Λ0) with respect to the basis ei, we may regard PO restricted to
H1(L(u); Λ0) as a function on (x1, . . . , xn) ∈ Λn

0 .
Then by Theorem 5.2 2) we have

PO(x1, . . . , xn) = PO(x′
1, . . . , x

′
n)

if xi − x′
i ∈ 2π

√
−1Z for each i. In other words, we may regard PO as a function

of yu
i = exi . Note xi ∈ Λ0 implies that yu

i − 1 ∈ Λ+. We next extend the domain
of PO by using Theorem 5.2 2).

We put λj = ℓj(0). Then it is easy to see from definition that

zj = Tλj y
vj,1

1 . . . yvj,n
n . (26)

Lemma 5.8. Let (y1, . . . , yn) ∈ (Λ \ {0})n. We assume

(vT (y1), . . . , vT (yn)) ∈ P. (27)

We put zj = Tλj y
vj,1

1 . . . y
vj,n
n . Then

z1 + · · · + zm +

N∑

k=1

T ρkPk(z1, . . . , zm) ∈ Λ

converges as N → ∞ with respect to the valutation vT .
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Proof. (27) implies vT (zj) = ℓj(u) ≥ 0. The lemma then follows easily from
limk→∞ ρk = ∞ in the statement of Theorem 5.2 (20). �

We define

A(P ) = {(y1, . . . , yn) ∈ (Λ \ {0})n | (vT (y1), . . . , vT (yn)) ∈ P}. (28)

By Lemma 5.8 we may regard PO as a function

PO : A(P ) → Λ0.

We remark that A(P ) is not a manifold. So we can not define differentiation of PO

in the sense of usual calculus. Instead we will define it as follows. We remark that
zj and Pk(z1, . . . , zm) are Laurent monomials of y1, . . . , yn with Λ0 coefficient. So
we can differentiate it by yi in an obvious way. Moreover

yi
∂

∂yi
Pk(z1, . . . , zm)

is again a monomial of z1, . . . , zm with Λ0 coefficient. Therefore for y = (y1, . . . , yn) ∈
A(P ) the limit

lim
N→∞

(
yi

∂z1

∂yi
(y) + · · · + yi

∂zm

∂yi
(y) +

N∑

k=1

T ρkyi
∂Pk

∂yi
(z1, . . . , zm)

)

converges. (Here we put zj = Tλj y
vj,1

1 . . . y
vj,n
n .) We write its limit as

yi
∂PO

∂yi
(y).

Thus we have defined

yi
∂PO

∂yi
: A(P ) → Λ0.

We now have the following:

Theorem 5.9. For u ∈ IntP the following two conditions are equivalent.

(1) There exists b ∈ H1(L(u); Λ0) such that

HF ((L(u), b), (L(u), b); Λ0) ∼= H(Tn; Λ0).

(2) There exists y = (y1, . . . , yn) ∈ A(P ) such that

yi
∂PO

∂yi
(y) = 0 (29)

for i = 1, . . . , n and that

(vT (y1), . . . , vT (yn)) = u.

Definition 5.10. We say that L(u) is a strongly balanced if the Condition 1) (=
Condition 2)) in Theorem 5.9 is satisfied.

Proof. 2) =⇒ 1): Let y be as in 2). We put yu
i = T−uiyi. Then vT (yu

i ) = 0.
Therefore there exist yu

i,0 ∈ C and yu
i,+ ∈ Λ+ such that yu

i = yu
i,0 + yu

i,+. We put
xi,0 = log(yu

i,0) and

xi,+ = log(1 + (yu
i,0)

−1yu
i,+)).

Note (yu
i,0)

−1yu
i,+ ∈ Λ+. Therefore we can define the right hand side by the Taylor

expansion of log(1 + z).
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We put xi = xi,0 + xi,+ and b =
∑m

i=1 xie1. Then using Theorem 5.5 it is easy
to see that 1) is satisfied.

1) =⇒ 2): Let b =
∑

xiei be as in 1). We put yi = Tuiexi . It is easy to see that

y = (y1, . . . , yn) satisfies yi
∂PO
∂yi

(y) = 0. �

Remark 5.11. It is easy to see that y0
i = yi, where 0 ∈ Rn is the origin. Note that

the moment polytope P is well-defined only up to parallel translation. Namely we
can replace it by P + u for any u ∈ Rn, then P + u corresponds to the same toric
manifold as P .

Thus the choice y0
i = yi is quite ad-hoc, and we may take any yu

i in place of yi in
our story. In fact the ring Λ[y, y−1] can be canoncally identified with the Laurent
polynomial rings over yu

i (i = 1, . . . , n) using yu
i ∈ Λ[y, y−1].

On the other hand, the valuation vu
T and the completion Λu〈〈y, y−1〉〉 is canoni-

cally assciated to the Lagrangian submanifold L(u).
The variables yu

i also is defined in a way independent of the choice of the origin
of the affine space in which P is embedded.

In some reference such as [Aur1, HV] ‘renormalization’ is discussed. It seems that
this process depends on the choice of the origin in the affine space Rn. Namely it
is related to the homothetic transformation yi 7→ Cyi where C → ∞.

As we mentioned above the choice of 0 is not intrinsic. More canonical way seems
to be as follows. We consider each of u0 such that HF ((L(u0), b), (L(u0), b); Λ) 6= 0
for some b. We then replace P by P − u0, so this orbit L(u0) becomes L(0). We
now use yi 7→ Cyi to ‘renormalize’.

Thus there exists a ‘renormalization’ for each such u0. This process of ‘renor-
malization’ seems to be related to the study of leading term equation, which we
discuss in section 8.

6. Examples 1

Example 6.1. We first consider the case of CPn. We use (16) and Theorem 5.2
2), 3) to obtain

PO = z1 + · · · + zn + z0 = y1 + · · · + yn + T (y1 · · · yn)−1.

Therefore the equation (29) becomes

0 = yi
∂PO

∂yi
= yi − T (y1 · · · yn)−1.

The solutions are

y1 = · · · = yn = T 1/(n+1) exp(2π
√
−1k/(n + 1))

where k = 0, 1, . . . , n. The valuation of yi are 1/(n + 1). Thus u0 = (1/(n +
1), . . . , 1/(n + 1)) is the unique strongly balanced fiber.

Example 6.2. We next consider X(α), one point blow up of CP 2 as in Example
4.3. Using the discussion in Example 4.3 and Theorem 5.2 2), 3) we obtain

PO = y1 + y2 + T (y1y2)
−1 + T 1−αy−1

2 .

The equation (29) becomes

1 − Ty−2
1 y−1

2 = 0, 1 − Ty−1
1 y−2

2 − T 1−αy−2
2 = 0.
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By eliminating y2 = Ty−2
1 we obtain

y4
1 + Tαy3

1 − Tα+1 = 0. (30)

We put u1 = vT (y1).

(Case 1) u1 < α.
We take vT of (30) and obtain 4u1 = α + 1. Namely u1 = (α + 1)/4. u1 < α

then implies α > 1/3.
Conversely if α > 1/3 and u1 = (α + 1)/4 we put y1 = Tu1y then (30) becomes

y4 + T (3α−1)/4y3 − 1 = 0.

Since (3α − 1)/4 > 0, this equation has 4 simple roots y which are congruent to
±1,±

√
−1 modulo Λ+, respectively.

(Case 2) u1 > α.
We take vT of (30) and have 3u1 + α = α + 1. Namely u1 = 1/3. u1 < α then

implies α < 1/3.
Conversely if α < 1/3 and u1 = 1/3 we put y1 = T 1/3y then (30) becomes

T 1/3−αy4 + y3 − 1 = 0.

This equation has 3 simple roots y which are congruent to 1, e2π
√
−1/3, e4π

√
−1/3

modulo Λ+, respectively.

(Case 3) u1 = α.
We put y1 = Tu1y. Then vT (y) = 0 and we have

y3(1 + y) − T 1−3α = 0. (31)

(Case 3-1) α = 1/3.
In this case there exists exactly 4 roots y ∈ C of (31).

(Case 3-2) α 6= 1/3.
By (31) α < 1/3. Then vT (1 + y) = 1 − 3α. We put y = T 1−3αw − 1. Then

vT (w) = 0. Then (31) becomes

(1 − T 1−3αw)3w + 1 = 0.

There is one root of this equation with w ≡ −1 modulo Λ+. Three other roots
do not satisfy vT (w) = 0. Thus there exists one solution in this case such that
u1 = vT (y) = 0.

In sum we have the following.
If α < 1/3 there exists one solution with u1 = vT (y1) = α and three solutions

with u1 = 1/3. Note u2 = vT (y2) = 1−2u1. Therefore L(α, 1−2α) and L(1/3, 1/3)
are the strongly balanced fibers.

If α ≥ 1/3 we have 4 solutions with u1 = (α + 1)/4, u2 = (1 − α)/2. Namely
there are exactly one strong balanced fiber L((α + 1)/4, (1 − α)/2).

In this section we discuss the Fano case only, where we can explicitly calculate
PO. The non-Fano case will be discussed in section 10.

In the case of Example 6.1 and 6.2, McDuff [Mc] proved that all the Tn orbits
where Floer cohomology vanish for all choices of b, are displaceable by Hamiltonian
diffeomorphism.

However there is an example of toric surface and its T 2 orbit, such that one can
not displace it from itself by the method of [Mc] but all the known versions of Floer
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cohomology over Λ vanish for this T 2 orbit. (See [Mc] Lemma 4.4.) We do not
know whether they are displaceable or not.

7. Open-closed Gromov-Witten theory and operators q

In this section, we discuss the operator q introduced in [FOOO1] section 3.8. Let
(X,ω) be a symplectic manifold and L its Lagrangian submanifold as in section 3.
Let h1, . . . , hk be differential forms on L and g1, . . . , gℓ differential forms on X. Let
β ∈ H2(X,L; Z). We define

qℓ,k,β(g1, . . . , gℓ;h1, . . . , hk)

=
1

ℓ!
ev0!

(
(ev+

1 , . . . , ev+
ℓ , ev1, . . . , evk

)∗
(g1 × · · · × gℓ × h1 × · · · × hk).

(32)

We also put

q0;1;0(h) = (−1)ndh.

We remark that g1 × · · · × gℓ × h1 × · · · × hk is a differential form on Xℓ × Lk and
its pull back is a differential form on Mmain

k+1;ℓ(β). The map ev0! is integration along

fiber by the map ev0 : Mmain
k+1;ℓ(β) → L. More precisely we use a continuous family

of perturbations in the same way as we defined mk in section 3.
We then put

qℓ,k =
∑

β∈H2(X,L;Z)

T (β∩ω)/2πqℓ,k,β .

It defines a map

qℓ;k : Eℓ(Ω(X)[2] ⊗ Λ0) ⊗ Bk(Ω(L)[1] ⊗ Λ0) → Ω(L)[1] ⊗ Λ0.

This operator has the following properties. We omit the suffix ℓ, k in qℓ;k and
write q in the formula below. We use the convention (6) introduced at the end of
subsection 2.1.

Theorem 7.1. (1) Let x ∈ Bk(Ω(L)[1]⊗Λ0), y ∈ Eℓ(Ω(X)[2]⊗Λ0). Suppose
y is a linear combination of the elements of the form y1 ⊗ · · · ⊗ yℓ where
each of yi are closed forms. We then have the following:

0 =
∑

c1,c2

(−1)∗q(y2;1
c1

;x3;1
c2

⊗ q(y2;2
c1

;x3;2
c2

) ⊗ x3;3
c2

) (33)

where ∗ = deg′ x3;1
c2

+ deg′ x3;1
c2

deg y2;2
c1

+ deg y2;1
c1

.
(2) If y = 1 ∈ E0(Ω(X)[2] ⊗ Λ0) = Λ0 then

q0,k(1,x) = mk(x). (34)

(3) Let e = PD([L]) be the Poincaré dual to the fundamental class of L. Let
xi ∈ B(Ω(L)[1]⊗Λ0) and we put x = x1 ⊗e⊗x2 ∈ B(Ω(L)[1]⊗Λ0). Then

q(y;x) = 0 (35a)

except the following case:

q(1; e ⊗ x) = (−1)deg xq(1;x ⊗ e) = x, (35b)

where x ∈ Ω(L)[1] ⊗ Λ0 = B1(Ω(L)[1] ⊗ Λ0).
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(4) There exists a discrete submonoid G = {λi | i = 0, 1, 2, . . . } such that

qℓ,k =
∞∑

i=1

Tλiqℓ,k,i

where qℓ,k,i : Eℓ(Ω(X)[2]) ⊗ Bk(Ω(L)[1]) → Ω(L)[1].
(5) Let i : L → X be the inclusion and y ∈ Ω(X) ⊗ Λ0. Then

q1,0(y, 1) ≡ i∗(y) mod Ω(L) ⊗ Λ+.

This is de Rham version of [FOOO1] Theorem 3.8.32. Namely item 1) is [FOOO1]
(3.8.33), Item 2) is [FOOO1] Theorem 3.8.32 (3). Item 3) is [FOOO1] (3.8.34.2).
Item 4) follows immediately from definition. Item 5) follows from [FOOO1] (3.8.34).

Let b ∈ Ωeven(X) ⊗ Λ+ and b ∈ Ωodd(L) ⊗ Λ+. Suppose db = 0. We put
b = (b, b) and define

mb
k : Bk(Ω(L)[1] ⊗ Λ0) → Ω(L)[1] ⊗ Λ0

by

mb
k (x1, . . . , xk)

=

∞∑

ℓ=0

∞∑

m0=0

· · ·
∞∑

mk=0

qℓ,k(bℓ; b, . . . , b︸ ︷︷ ︸
m0

, x1, b, . . . , b︸ ︷︷ ︸
m1

, . . . , xk, b, . . . , b︸ ︷︷ ︸
mk

).
(36)

It is easy to see that {mb
k | k = 0, 1, 2, . . . } defines a unital and gapped filtered A∞

structure.
We define M̂def,weak(L) as the set of all b = (b, b) such that

mb
0 (1) = ce. (37)

Here e = 1 ∈ Ω0(L).

If b ∈ M̂def,weak(L) then we have

mb
1 ◦ mb

1 = 0.

Definition 7.2. For b ∈ M̂def,weak(L), we define Floer cohomology with bulk de-
formation by

HF ((L,b), (L,b); Λ0) ∼=
Ker mb

1

Im mb
1

. (38)

HF ((L,b), (L,b); Λ) is defined by taking ⊗Λ0
Λ.

We define potential function PO : M̂def,weak(L) → Λ+ by the equation

POe = mb
0 (1). (39)

We also put POb(b) = PO(b, b).

If HF ((L,b), (L,b); Λ) 6= 0 then L is non-displaceable. This is [FOOO4] Propo-
sition 3.15 which is proved in [FOOO4] section 8.
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8. Floer cohomology with bulk deformation in the toric case

Now we apply the construction explained in the last section to the case of toric
manifolds. In this section we use cycles (submanifolds) rather than differential
forms to represent the (co)homology classes of ambient manifold X, by a reason we
will mention in Remark 8.3.

Let D1, . . . ,Dm be the irreducible components of toric divisors. Let J = {j1, . . . , jk} ⊆
{1, . . . ,m}. If DJ = Dj1 ∩ · · · ∩ Djk

is non-empty, it is a (real) codimension 2k
submanifold of X. We include the case J = ∅. In that case DJ = X. We denote
by A the free abelian group generated by DJ . We put cohomology degree on it.
Namley deg DJ = 2k if codimension of DJ is 2k. We define A(Λ0) = A⊗ Λ0.

There is an obvious homomorphism

A → H∗(X; Z) (40)

which is surjective but not injective. We write the generator of A as pi, (i =
0, . . . , B), where p0 = X and pi = Di for i = 1, . . . ,m are degree 2 classes. For
I = (i1, . . . , iℓ) ∈ {1, . . . , B}ℓ we put

pI = pi1 ⊗ · · · ⊗ piℓ
, [pI ] =

1

ℓ!

∑

σ∈Sℓ

piσ(1)
⊗ · · · ⊗ piσ(ℓ)

∈ EℓA[2].

Here Sℓ is the symmetric group of order ℓ!.
Let u ∈ IntP , β ∈ H2(X,L(u); Z) and I ∈ {1, . . . , B}ℓ. We define:

Mmain
k+1,ℓ(β,pI) = Mmain

k+1,ℓ(β)(ev+
1 ,...,ev+

ℓ ) ×Xℓ pI . (41)

Note ev+
i are evaluation maps at interior marked points. We then still have evalu-

ation maps at boundary marked points:

ev = (ev0, . . . , evk) : Mmain
k+1,ℓ(β,pI) → Lk+1. (42)

We use it to define an operator

qℓ,k;β : EℓA[2] ⊗ BkH(L(u); C)[1] → H(L(u); C)[1]

as follows. We remark that there is a transitive and free action of Tn on L(u). We
put a Tn invariant metric on L(u). Harmonic forms with respect to this metric are
nothing but the Tn invariant differential forms. We identify the cohomology group
H(L(u); C) with the set of the Tn invariant forms on L(u) from now on.

Let h1, . . . , hk ∈ H(L(u); C). The pull-back

(ev1, . . . , evk)∗(h1 × · · · × hk)

is a differential form on Mmain
k+1,ℓ(β,pI). We use integration along fiber of the eval-

uation map ev0 : Mmain
k+1,ℓ(β,pI) → L and define:

qℓ,k;β([pI ];h1 × · · · × hk) = ev0!(ev1, . . . , evk)∗(h1 × · · · × hk). (43)

We can perform all the constructions in a Tn equivariant way. So the right hand
side is a Tn equivariant differential form, which we identify with an element of
cohomology group.

Remark 8.1. To define integration along the fiber, we need the map ev0 : Mmain
k+1,ℓ(β,pI) →

L to be a submersion. We also need the moduli space to be transversal after taking
an appropriate perturbation.

We can do so by using multisection in the same way as section 5 as follows.
We remark that the fiber product moduli space Mmain

k+1,ℓ(β,pI) has a Kuranishi



LAGRANGIAN FLOER THEORY ON COMPACT TORIC MANIFOLDS 21

structure. The group Tn acts on it. Moreover the Tn action is free. (This is
because ev0 is Tn equivariant and the Tn action on L(u) is free.) Thus by the same
argument as we explained during the proof of Theorem 5.2, we can take multisection
s which is Tn equivariant and transversal to 0. Then ev0 : Mmain

k+1,ℓ(β,pI)
s → L(u)

automatically becomes a submersion if Mmain
k+1,ℓ(β,pI)

s is nonempty.
We can also choose our perturbation so that it is invariant under the permutation

of the interior marked points so descents to EℓA[2]. Therefore the right hand side
of (43) depends only on [pI ] rather than on pI .

We now define

qℓ,k : EℓA(Λ0)[2] ⊗ BkH(L(u); Λ0)[1] → H(L(u); Λ0)[1]

by

qℓ,k =
∑

β∈H2(X;L(u);Z)

T (ω∩β)/2πqℓ,k;β .

In case we consider elements of EℓA(Λ0)[2] which contain p0, the Poincaré dual to
[X], we define qℓ,k as follows:

q1,0(p0; 1) = e, q1,2(p0;h1, h2) = (−1)deg h1(deg h2+1)h1 ∧ h2. (44)

In all the other cases, qℓ,k is zero if the first factor EℓA(Λ0)[2] contains p0.
Then our qℓ,k satisfies the conclusion of Theorem 7.1.
For b = (b, b) ∈ A(Λ+) × Hodd(L(u); Λ+), we define mb

k by (36). It defines a
unital gapped filtered A∞ structure on H(L(u); Λ0).

Now we define

M̂def,weak(L(u); Λ+) ⊂ A(Λ+) × Hodd(L(u); Λ+)

as the set of all b = (b, b) ∈ A(Λ+) × Hodd(L(u); Λ+) such that mb
0 (1). In other

words it is the set of (b, b) such that

∞∑

ℓ=0

∞∑

k=0

qℓ;k(bℓ; bk) ≡ 0 mod Λ+e. (45)

We define the potential function PO : M̂def,weak(L(u); Λ+) → Λ+ by

∞∑

ℓ=0

∞∑

k=0

qℓ;k(bℓ; bk) = PO(b; b)e. (46)

Using a similar trick as the one used in section 5 we can extend the story to the
cohomology groups with Λ0 coefficient. Namely we obtain a Maurer-Cartan scheme

M̂def,weak(L(u); Λ0) ⊂ A(Λ0) × Hodd(L(u); Λ0)

and Floer cohomology parametrized thereover. We also have a potential function

PO : M̂def,weak(L(u); Λ0) → Λ+.

Most of the stories in section 5 can be generalized to the current situation.

Theorem 8.2. (1) A(Λ0)×H1(L(u); Λ0) is contained in M̂def,weak(H(L; Λ0); Λ0).
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(2) Let b =
∑

xixi ∈ H1(L(u); Λ0) and b ∈ A(Λ+). Then we have

PO(b, b) = z1 + · · · + zm +
∞∑

k=1

T ρkPk(b; z1, . . . , zm). (47)

Here ρk > 0 goes to ∞ as k goes to ∞. Pk(b; z1, . . . , zm) are monomials
of z1, . . . , zm of degree ≥ 2 with Λ0 coefficient. (Here degree means that of
monomials of zi.) We remark that zj is defined from yu

i = exj by (19).
(3) Let b =

∑
xixi ∈ H1(L(u); Λ0) and b ∈ A(Λ0).

PO(b, b) = c1z1 + · · · + cmzm + P0(b; z1, . . . , zm)

+

∞∑

k=1

T ρkPk(b; z1, . . . , zm).
(48)

P0(b; z1, . . . , zm) is a formal power series of z1, z2, . . . , zm with Λ0 coeffi-
cient such that each term has degree ≥ 2. The numbers cj are defined as
follows. Let b =

∑
wjpj. We put wj ≡ wj mod Λ+ and wj ∈ C. Then

cj = ewj ∈ C \ {0}. Other notations are the same as in (47).
(4) The monomials Pk and the numbers ρk are independent of u and depends

only on X and b.

Item 1) is [FOOO4] Proposition 3.1. (In [FOOO4] Proposition 3.1 it is assumed
that b ∈ A(Λ+). It holds also for b ∈ A(Λ0). See [FOOO4] section 11.)

Item 2) is [FOOO4] Theorem 3.4.
Item 3) follows from [FOOO4] sections 8 and 11. (Formulas (9.3), (11.1) etc.)
Item 4) follows from [FOOO4] Lemma 6.8.
The proof of Theorem 8.2 is similar to the proof of Theorem 5.2. We here

mention only a few points. Let I = (i1, . . . , iℓ) ∈ {1, . . . , B}ℓ. We have

dimMmain
1,ℓ (β;pI) = n − 2 + µ(β) −

ℓ∑

i=1

(deg pi − 2). (49)

Here dim is the virtual dimension that is the dimension in the sense of Kuranishi
structure. As we explained in Remark 8.1 the perturbed moduli space Mmain

1,ℓ (β;pI)
s

is emty if (49) < n.

Remark 8.3. This is the reason why we use cycles pi rather than differential forms
on X to represent cohomology classes of X. This point is crucial to prove item 1)
in Theorem 8.2.

In the case (49) = n we define

c(β; I) = deg[ev0 : Mmain
1,ℓ (β;pI)

s → L(u)] ∈ Q. (50)

Here and hereafter Mmain
1,ℓ (β;pI)

s denotes the perturbation of the moduli space

Mmain
1,ℓ (β;pI). Namely it is the zero set of the multisection s. The zero set has a

triangulation such that each simplex of maximal degree comes with a weight ∈ Q.
Thus it has a virtual fundamental cycle. See [FOOO1] Section A1.

The number (50) is well-defined. Namely it is independent of the perturbation
s as far as it is Tn equivariant. It is also independent of u. ([FOOO4] Lemma 6.8.)

The potential function is calculated by using c(β; I) as follows. Let ~ℓ = ℓ1, . . . , ℓB ∈
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ZB
≥0. We put

I(~ℓ) = (1, . . . , 1︸ ︷︷ ︸
ℓ1

, . . . , B, . . . , B︸ ︷︷ ︸
ℓB

) ∈ {1, . . . , B}
PB

i=1 ℓi ,

and

c(β; ~ℓ) = c(β; I(~ℓ)).

Let b =
∑B

i=0 wipi.
We define ∂i(β) ∈ Z by

∂i(β) = 〈∂β, e∗i 〉,
and put

(yu)∂β = (yu
1 )∂1β · · · (yu

n)∂nβ = T−〈∂β,u〉y∂1β
1 · · · y∂nβ

n .

Now we have

PO(b, b) = w0 +
∑

β∈H2(X,L(u);Z)

∞∑

ℓ1=0

· · ·
∞∑

ℓB=0

T (β∩ω)/2π

ℓ1! · · · ℓB !
c(β; ~ℓ)wℓ1

1 · · ·wℓB

B (yu)∂β .

(51)

For the proof of (51) see [FOOO4] section 9.
(47) follows from (51) and c(βj ; (0, . . . , 0)) = 1. This follows from [CO]. (See

[FOOO4] section 7.)

Theorem 5.5 is generalized to our situation without change. Namely we have
the following theorem. Hereafter we put POb(b) = PO(b, b).

Theorem 8.4. Let b =
∑

xiei ∈ H1(L(u); Λ0) and b ∈ A(Λ0). Then the following
three conditions are equivalent.

(1) For each of i = 1, . . . , n we have:

∂POb

∂xi

∣∣∣∣∣
b

= 0

(2)

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

(3)

HF ((L(u), (b, b)), (L(u), (b, b)); Λ) 6= 0.

The proof is the same as the proof of Theorem 5.5 except some technical points,
which we omit and refer [FOOO4].

The discussion in section 5 on the domain of the function PO as a function of
yi is also generalized.

We put:

A(
◦
P ) = {(y1, . . . , yn) ∈ Λn | (vT (y1), . . . , vT (yn)) ∈ IntP}. (52)

We remark that by Theorem 8.2 POb may be regarded as a function of y1, . . . , yn.
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Lemma 8.5. Let (y1, . . . , yn) ∈ A(
◦
P ). We put zj = Tλj y

vj,1

1 . . . y
vj,n
n . Then

z1 + · · · + zm + P0(b; z1, . . . , zm) +

N∑

k=1

T ρkPk(b; z1, . . . , zm) ∈ Λ+

converges as N → ∞ with respect to the valutaion vT .
In case b ∈ A(Λ+) where the term P0(b; z1, . . . , zm) is absent, we may relax the

assumption to (y1, . . . , yn) ∈ A(P ).

Thus we may regard POb as a function either : A(
◦
P ) → Λ+ or : A(P ) → Λ+.

We can define

yi
∂POb

∂yi

in the same way as section 5. It defines either a function : A(
◦
P ) → Λ+ or : A(P ) →

Λ+. Theorem 5.9 can be generalized as follows:

Theorem 8.6. For u ∈ IntP , b ∈ A(Λ0), the following two conditions are equiv-
alent.

(1) There exists b ∈ H1(L(u); Λ0) such that

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

(2) There exists y = (y1, . . . , yn) ∈ A(P ) such that

yi
∂POb

∂yi
(y) = 0 (53)

for i = 1, . . . , n and that

(vT (y1), . . . , vT (yn)) = u.

This is [FOOO4] Theorem 3.12.

9. Leading term equation

Theorem 8.6 provides a means of determining the Floer cohomology in terms of
the potential function. The main obstacle to directly apply the theorem in practice
is that we do not know how to calculate the extra terms Pk(b; z1, · · · , zn) unless X
is Fano and b has degree 2. (There has been some computation carried out in this
direction for the nef case. See e.g. [CL].)

Fortunately to determine all the Tn orbits L(u) for which some Floer cohomology
with bulk does not vanish, we do not need to calculate those terms. We will explain
it in this section.

In this and the next sections we fix b and u and consider POb as a function of
variables yu

i . In this section we write yi instead of yu
i . We remark that vu

T (yu
i ) = 0

and

zj = T ℓj(u)y
vj,1

1 · · · yvj,n

1 .

Definition 9.1. We denote the sum of linear terms zj ’s in POb by

POb
0 = c1z1 + · · · + cmzm =

m∑

j=1

T ℓj(u)cjy
vj,1

1 · · · yvj,n
n
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and call the leading order potential function. Here cj is defined as in Theorem 8.2
3).

Note this function appears frequently in the literature (see [Gi1, HV, Iri1]), is
denoted as W , and is called the (Landau-Ginzburg) superpotential.

Remark 9.2. Note in our situation of toric manifold, superpotential in physics
literature is basically the same as our potential function. However in other situation
they may be different. For example in the case of Calabi-Yau 3 fold X and its special
Lagrangian submanifold L, our potential function is identically 0. (In other words,
if b is a weak bounding chain then it is a bounding chain automatically.) On the
other hand, the physisists’ superpotential coincides with the invariant introduced
in [Fu4].

We remark that the leading order potential function POb
0 is explicitly read off

from the moment polytope P and u. The leading term equation we will define
below depends only on leading order potential function and so is also explicitly
calculable.

We renumber the values ℓi(u) according to its order. Namely we take j(l, r) ∈
{1, . . . ,m} for l = 1, . . . ,K0, r = 1, . . . , a(l) with the following conditions.

Conditions 9.3. (1) {j(l, r) | l = 1, . . . ,K0, r = 1, . . . , a(l)} = {1, . . . ,m}.
(2) a(1) + · · · + a(K0) = m.
(3) ℓj(l,r)(u) = ℓj(l,r′)(u) for 1 ≤ r, r′ ≤ a(l).
(4) ℓj(l,r)(u) < ℓj(l′,r′)(u) if l < l′.

We put
Sl = ℓj(l,r)(u). (54)

This is independent of r. Set

~vl,r = ~vj(l,r) = (vj(l,r),1, . . . , vj(l,r),n) ∈ Zn. (55)

It is an element of the dual vector space of A(Q) = A ⊗ Q, which we denote by
A(Q)∗. Let A⊥

l is a vector space A(Q)∗ generated by {~vl′,r | l′ ≤ l, r = 1, . . . , a(l′)}.
We denote by K ≤ K0 the smallest integer such that A⊥

K = A(Q)∗. We have a
filtration

0 ⊂ A⊥
1 ⊂ A⊥

2 ⊂ · · · ⊂ A⊥
K = A(Q)∗. (56)

We put
d(l) = dimA⊥

l − dimA⊥
l−1. (57)

We have
d(1) + · · · + d(K) = n = dimA(Q)∗. (58)

Note A ∼= Zn ⊂ A(Q) = Qn. So Zn ⊂ A(Q)∗ is determined canonically. (We
remark that Zn ⊂ A(Q)∗ is generated by ~vj , j = 1, . . . ,m.) Let {e∗i | i = 1, . . . , n}
be the standard basis of Zn ⊂ A(Q)∗. We take e∗l,s for l = 1, . . . ,K,s = 1, . . . , d(l)
satisfying the following conditions.

Conditions 9.4. (1) {e∗l′,s | l′ ≤ l, s = 1, . . . , d(l′)} is a Q basis of A⊥
l .

(2) ~vl,r is contained in the Z module generated by {e∗l′,s | l′ ≤ l, s = 1, . . . , d(l′)}.
We define bl′,s;j ∈ Q by

e∗l′,s =
m∑

j=1

bl′,s;je
∗
j
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and put

yl′,s =

m∏

j=1

y
bl′,s;i
j = exp




m∑

j=1

bl′,s;jxj



 .

(Note yi = exi .) Since bl′,s;i may not be an integer, yl′,s may not be contained in

the Laurent polynomial ring Λ0[y, y−1] of the variables yj (j = 1, . . . ,m). But it is

contained in the finite extention of it. Let Λ0[y∗∗, y−1
∗∗ ] be the Laurent polynimial

ring of the variables yl,s, l = 1, . . . ,K, s = 1, . . . , d(l).
By Condition 9.4 2),

zj(l,r) = TSly
vj(l,r),1

1 · · · yvj(l,r),n
n

is contained in Λ0[y, y−1]. Moreover it is contained in the Laurent polynomial ring
of the variables yl′,s, l′ = 1, . . . , l, s = 1, . . . , d(l′).

We define cl,r;l′,s ∈ Z by

zj(l,r) = TSl

∏

l′≤l

∏

s≤d(l′)

y
cl,r;l′,s
l′,s . (59)

In other words

~vl,r =
∑

l′≤l

∑

s≤d(l′)

cl,r;l′,se
∗
l′,s.

We put

(
POb

0

)

l
=

a(l)∑

r=1

cj(l,r)zj(l,r) =

a(l)∑

r=1

cj(l,r)

∏

l′≤l

∏

s≤d(l′)

y
cl,r;l′,s
l′,s . (60)

The numbers cj(l,r) ∈ {c ∈ Λ0 | vT (c) = 0} are defined in Definition 9.1.

We remark
(
POb

0

)

l
is a Laurent polynomial of variables yl′,s, l′ ≤ l, s =

1, . . . , d(l′) with coefficient in complex number.

Definition 9.5. The leading term equation is a system of n equations of n variables
yl,s with complex number coefficient. We define it by






y1,s

∂
(
POb

0

)

1

∂y1,s

= 0 s = 1, . . . , d(1),

y2,s

∂
(
POb

0

)

2

∂y2,s

= 0 s = 1, . . . , d(2),

· · ·

yl,s

∂
(
POb

0

)

l

∂yl,s

= 0 s = 1, . . . , d(l),

· · ·

yK,s

∂
(
POb

0

)

K

∂yK,s

= 0 s = 1, . . . , d(K).

(61)

Note the first equation in (61) contains y1,s s = 1, . . . , d(1), the second equation
in (61) contains y1,s s = 1, . . . , d(1) and y2,s s = 1, . . . , d(2) etc.
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If b − b′ ∈ A2(Λ+) ⊕⊕k 6=2 Ak(Λ0) then
(
POb

0

)

l
=
(
POb′

0

)

l
. So the leading

term equation is the same for such b and b′.
One of the main results of [FOOO4] is as follows.

Theorem 9.6. Let u ∈ Int P and b ∈ A(Λ0). Then the following two conditions
are equivalent.

(1) The leading term equation (61) has a solution yl,s ∈ C \ {0}.
(2) There exists b ∈ H1(L(u); Λ0) and b′ ∈ A(Λ0) with b − b′ ∈ A2(Λ+) such

that

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

This is [FOOO4] Theorem 4.7 and Proposition 11.3. We omit the proof and refer
[FOOO4].

Definition 9.7. We say that L(u) is strongly bulk balanced if there exists b ∈ A(Λ0)
and b ∈ H1(L(u); Λ0) such that

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0).

See [FOOO4] Definition 3.13 for a related definition.
Theorem 9.6 gives a way to locate strongly bulk balanced L(u) in terms of the

leading term equation.

10. Examples 2

Example 10.1. We consider Hirzebruch surface Fn, n ≥ 2. We take its Kähler
form so that the moment polytope is

P = {(u1, u2) | 0 ≤ u1, u2, u1 + nu2 ≤ n, u2 ≤ 1 − α} ,

0 < α < 1. The leading order potential function is

PO0 = y1 + y2 + Tny−1
1 y−n

2 + T 1−αy−1
2 .

We put
ℓ1(u1, u2) = u1, ℓ2(u1, u2) = u2,

ℓ3(u1, u2) = n − u1 − nu2, ℓ4(u1, u2) = 1 − α − u2.

We put S1(u1, u2) = inf{ℓj(u1, u2) | j = 1, 2, 3, 4}.
Suppose the first of the leading term equation (61) has a nonzero solution. Then

it is easy to see that d(1) ≥ 2. Namely

#{j | S1(u1, u2) = ℓj(u1, u2)} ≥ 2.

This is satisfied on the 5 line seguments l1, . . . , l5, where

l1 : u1 = u2 ≤ (1 − α)/2, l2 : u1 = 1 − α − u2 ≤ (1 − α)/2,

l3 : u1 = n − (n + 1)u2 ≥ n − (n + 1)(1 − α)/2

l4 : u1 = n − 1 + α − (n − 1)u2 ≥ n − (n − 1)(1 − α)/2,

l5 : u2 = (1 − α)/2, (1 − α)/2 ≤ u1 ≤ n − (n − 1)(1 − α)/2.

Note
v1 = (1, 0), v2 = (0, 1), v3 = (−1,−n), v4 = (0,−1).

Let u = (u1, u2) ∈ l5. Then A⊥
1 (1) is Q · (0, 1) and

(POu
0 )1 = y2 + y−1

2 (62)
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(Here b = 0 and so we do not write b in the above notation. We put yi = yu
i )

(0,1−α)

(0,(1−α)/2)

l2

l
1 l

3

l
4

l5

(n,0)(0,0)

Figure 10.1

We also have

(POu
0 )2 =






y1 If u1 < (1 + α)n/4

y−1
1 y−n

2 If u1 > (1 + α)n/4

y1 + y−1
1 y−n

2 If u1 = (1 + α)n/4

(63)

(62) gives the first leading term equation 1− y−2
2 = 0 whose solutions are y2 = ±1.

Then (63) gives the second of the leading term equation which are 1 = 0,
−(±1)−ny−2

1 = 0, 1 − (±1)−ny−2
1 = 0, where u1 < (1 + α)n/4, u1 > (1 + α)n/4

and u1 = (1 + α)n/4, respectively.
The solution y1 6= 0 exists only in the case u1 = (1 + α)n/4. In that case the

solutions of leading term equations are (1,±1) and (−1,±(−1)n/2). Thus L((1 +
α)n/4, (1 − α)/2) is strongly bulk balanced.

We can check that there are no other strongly bulk balanced T 2 orbit. (This
follows from Theorem 11.9 also.)

See [FOOO3] Example 8.2 where the same coclusion is proved by basically the
same but a slightly different calculation.

Remark 10.2. For the case of Example 10.1 we can actually prove that L((1 +
α)n/4, (1 − α)/2) is strongly balanced. Namely some Floer cohomology without
bulk deformation is non-zero. This follows from [FOOO3] Theorem 10.4.

Example 10.3. ([FOOO4] section 5, [FOOO3] Example 10.17.) We consider two
points blow up X(α, α′) of CP 2. (Example 4.4.) We consider the case α > 1/3,
α′ = (1 − α)/2. The moment polytope is

P = {(u1, u2) | 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 − α, (1 − α)/2 ≤ u1 + u2 ≤ 1}.
We consider

u(t) = (t, (1 − α)/2), t ∈ ((1 − α)/2, (1 + α)/4). (64)

We have

PO = T (1−α)/2(y2 + y−1
2 ) + T t(y1 + y1y2) + T (1+α)/2+t(y1y2)

−1
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where

(1 − α)/2 < t < (1 + α)/2 + t.

Therefore

(PO)1 = y2 + y−1
2 , (PO)2 = y1 + y1y2.

Thus the leading term equation is

1 − y−2
2 = 0, 1 + y2 = 0.

This has a solution y2 = −1 (y1 is any number ∈ C \ {0}.)
Theorem 9.6 implies that all of L(u(t)) as in (64) are strongly bulk balanced. In

particular they are non-displaceable.

(0,1−α)

(0,(1−α)/2)

(1,0)((1−α)/2,0)

u(t)

Figure 10.2

Remark 10.4. In the toric case, for each given b, the number of L(u) with non-
trivial Floer cohomology for a pair (b, b) for some b ∈ H1(L(u); Λ0) is finite. (It is
smaller than the Betti number of X by Theorem 11.6.) So to obtain infinitely many
L(u) with nontrivial Floer cohomology we need to include bulk deformations.

In the examples we discussed in this section, we do not need to change the
vaiables from yj to yl,s. An example where we need this change of variables is given
in [FOOO3] Example 10.10.

In Example 10.3 we obtain a continuum of non-displaceable Lagrangian torus in
certain two points blow up of CP 2. ([FOOO4]). We can also use bulk deformation
to obtain a continuum of Lagrangian tori in S2 × S2. They are not of the type
of T 2 orbit but is obtained from the T 2 orbit of singular Hirzebruch surface F2(0)
by deforming the singularity, that is of orbifold of A2-type. ([FOOO6].) Closely
related construction is in [NNU1, NNU2]

11. Quantum cohomology and Jacobian ring

11.1. Jacobian ring over Novikov ring. In this section we discuss the isomor-
phism between the Jacobian ring of POb and the quantum cohomology ring of X
deformed by b. We start with defining Jacobian ring precisely.

Usually Jacobian ring is studied in the case of (Laurent) polynomial or holo-

morphic function germ. Our function POb is neigher a Laurent polynimial and



30 KENJI FUKAYA, YONG-GEUN OH, HIROSHI OHTA, KAORU ONO

nor a holomorphic function. So we first define a function space in which POb is
contained.

We consider the Laurent polynomial ring Λ[y, y−1] of n variables with Λ coeffi-
cients. We defined a valuation vu

T for each u ∈ Rn in section 5 Definition 5.6. Let
P be a compact subset of Rn. (We use the case when P is a convex polytope only
in this article.)

Definition 11.1. For F ∈ Λ[y, y−1] we define

vP
T (F ) = inf{vu

T (F ) | u ∈ P}.
This is not a valuation but is a norm. Therefore it defines a metric on Λ[y, y−1] by

dP (F1, F2) = e−vP
T (F1−F2). We denote the completion of Λ[y, y−1] with respect to

dP by ΛP 〈〈y, y−1〉〉. It is a normed ring.
We define ΛP

0 〈〈y, y−1〉〉 as the set of all F ∈ ΛP 〈〈y, y−1〉〉 such that vP
T (F ) ≥ 0.

Let P be a moment polytope of our toric manifold X. We take ℓj (j = 1, . . . ,m)
as in Condition 4.1 and put

Pǫ = {u ∈ Rn | ℓj(u) ≥ ǫ, j = 1, . . . ,m}
for ǫ > 0.

Definition 11.2. We define a metric d ◦
P

on Λ[y, y−1] by

d ◦
P

(F1, F2) =

∞∑

k=1

2−k min(dP1/k
(F1, F2), 1).

Let Λ
◦
P 〈〈y, y−1〉〉 be the completion of Λ[y, y−1] with respect to d ◦

P
.

It is easy to see that an element of ΛP 〈〈y, y−1〉〉 may be regarded as a function

: A(P ) → Λ and an element of Λ
◦
P 〈〈y, y−1〉〉 may be regarded as a function : A(

◦
P ) →

Λ.

Lemma 11.3. If b ∈ A(Λ0) then

POb ∈ Λ
◦
P
0 〈〈y, y−1〉〉, yi

∂POb

∂yi
∈ Λ

◦
P
0 〈〈y, y−1〉〉. (65)

If b ∈ A(Λ+) then

POb ∈ ΛP
0 〈〈y, y−1〉〉, yi

∂POb

∂yi
∈ ΛP

0 〈〈y, y−1〉〉. (66)

We omit the proof, which follows from Theorem 8.2. See [FOOO5] Lemma 2.6.
Now we define

Definition 11.4.

Jac(POb) =
Λ

◦
P
0 〈〈y, y−1〉〉

Closd◦
P

(
yi

∂POb

∂yi
: i = 1, . . . , n

) .

(We may replace We may Λ
◦
P
0 〈〈y, y−1〉〉 by ΛP

0 〈〈y, y−1〉〉 in the above formula in
case b ∈ A(P ).)
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Here the denominator is the closure of the ideal generated by yi
∂POb

∂yi
: i =

1, . . . , n. The closure is taken with respect to the metric d ◦
P

.

11.2. Big quantum cohomology: a quick review. We next review briefly the
well established story of deformed quantum cup product. Let (X,ω) be a symplectic
manifold. For α ∈ H2(X; Z) let Mℓ(α) be the moduli space of stable maps from
genus zero semi-stable curves with ℓ marked points and of homology class α. There
exists an evaluation map

ev : Mℓ(α) → Xℓ.

Mℓ(α) has a virtual fundamental cycle and hence defines a class

ev∗[Mℓ(α)] ∈ H∗(X
ℓ; Q).

(See [FO].) Here ∗ = 2n + 2c1(X) ∩ α + 2ℓ− 6. Let Q1, . . . , Qℓ be cycles such that
∑

codim Qi = 2n + 2c1(X) ∩ α + 2ℓ − 6. (67)

We define Gromov-Witten invariant by

GWℓ(α : Q1, . . . , Qℓ) = ev∗[Mℓ(α)] ∩ (Q1 × · · · × Qℓ) ∈ Q.

We put GWℓ(α : Q1, . . . , Qℓ) = 0 when (67) is not satisfied.
We now define

GWℓ(Q1, . . . , Qℓ) =
∑

α

T (α∩ω)/2πGW (α : Q1, . . . , Qℓ). (68)

The formula (68) extends to a Λ0 module homomorphism

GWℓ : H(X; Λ0)
⊗ℓ → Λ0.

Definition 11.5. Let b ∈ H(X; Λ0) be given. For each given pair c, d ∈ H(X; Λ0),
we define a product c ∪b d ∈ H(X; Λ0) by the following formula

〈c ∪b d, e〉PDX
=

∞∑

ℓ=0

1

ℓ!
GWℓ+3(c, d, e, b, . . . , b). (69)

Here 〈·, ·〉PDX
denotes the Poincaré duality pairing. The right hand side converges

if b ∈ H2(X; Λ+)⊕⊕k>2 Hk(X; Λ0). We can extend it to arbitrary b ∈ H∗(X; Λ0).
(This is well-known. See for example [FOOO5] section 2.)

∪b defines a graded commutative and associative ring structure on H(X; Λ0).
We call ∪b the deformed quantum cup product.

11.3. The isomorphism ‘Jacobian ring = quantum cohomology’ and its

applications.

Theorem 11.6. There exists a ring isomorhism

(H(X; Λ0),∪b) ∼= Jac(POb)

This is [FOOO5] Theorem 1.1 (1). We explain some parts of the proof later in
this section. We first discuss some applications.
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Definition 11.7. Let Crit(POb) be the set of all y ∈ A(
◦
P ) such that

∂POb

∂yi
(y) = 0

for i = 1, . . . , n. An element of Crit(POb) is said to be a critical point of POb.

A critical point y of POb is said to be non-degenerate if the matrix
[
yiyj

∂2POb

∂yi∂yj
(y)

]i,j=n

i,j=1

is invertible, as an n × n matrix with Λ entries.
The function POb is said to be a Morse function if all of its critical points are

non-degenrate.

We put

M(X; b) =

{
(u, b)

∣∣∣∣∣
u ∈ Int P, b ∈ H1(L(u); Λ0)/H1(L(u); 2π

√
−1Z),

HF ((L(u), (b, b)), (L(u), (b, b)); Λ0) ∼= H(Tn; Λ0)

}
.

Theorem 8.6 implies the following.

#M(X; b) = #Crit(POb). (70)

Proposition 11.8. There exists a direct product decomposition

Jac(POb) ⊗Λ0
Λ =

∏

y∈Crit(POb)

Jac(POb; y), (71)

as a ring.
The factor Jac(POb; y) in the right hand side is a local ring.

The ring Jac(POb; y) is one dimensional if and only if y is non-degenerate.

This is a standard result in the case, for example, when the function (POb in
our case) is a polynomial or a holomorphic function. We can prove Proposition
11.8 in a similar way to those cases. It is proved in [FOOO5] section 5.

Theorem 11.6 and Proposition 11.8 imply that (H(X; Λ),∪b) is semi-simple if

and only if POb is a Morse function.
Theorem 11.6 together with Proposition 11.8 and Formula (70) imply the fol-

lowing:

Theorem 11.9. (1) If POb is a Morse function then

rankH(X; Q) = #M(X; b).

(2) If POb is not a Morse function then

0 < #M(X; b) < rankH(X; Q).

This is [FOOO5] Theorem 1.3. Some of the earlier partial results is given in
[FOOO3] Theorems 1.9 and 1.12.

Remark 11.10. Theorem 11.9 in particular implies that there exists at least one
non-displaceable Tn orbit. This fact also follows from an earlier result by Entov-
Polterovich [EP2, EP3].

Another application is the following:
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Theorem 11.11. ([FOOO5] Theorem 1.4.) Assume b ∈ H2(X; Λ0). The set of
eigenvalues of the map x 7→ c1(X) ∪b x : H(X; Λ) → H(X; Λ) coincides with the

set of critical values of POb, with multiplicities counted.

Remark 11.12. Theorem 11.11 was conjectured by M. Kontsevich. See also
[Aur1].

Proof. The proof uses the following:

Lemma 11.13. Let us consider the situation of Theorem 11.11. Then, by the
isomorphism in Theorem 11.6, the first Chern class c1(X) ∈ H2(X; C) is sent to

the equivalence class of POb in Jac(POb).

This is [FOOO5] Proposition 15.1.
Now we consider x 7→ c1(X) ∪b x. We use Thoerem 11.6 and Proposition 11.8

then it is identified to the direct sum of maps

[F ] 7→ [PObF ], Jac(POb; y) → Jac(POb; y).

The eigenvalue of this map is POb(y). This implies Theorem 11.11. �

11.4. Construction of the homomorphism ksb. In various applications of Tho-
erem 11.6 it is also important to know the way how the isomorphism is defined,
which we describe in this subsection.

Let pi be the basis of A as in section 8. We write an element b ∈ A(Λ0) as

b =

B∑

i=0

wipi.

We put wi = ewi for i = 1, . . . ,m. (Note pi, i = 1, . . . ,m are degree 2 classes.) We
define Pj0...jB

(y) by

PO(b; y) =
∞∑

j0=0

· · ·
∞∑

jB=0

Pj0...jB
(y)wj0

0 w
j1
1 · · ·wjm

m w
jm+1

m+1 . . . wjB

B (72)

We can show that

Pj0...jB
(y) ∈ T ρj0...jB Λ

◦
P
0 〈〈y, y−1〉〉

with
lim

j0+···+jB→∞
ρj0...jB

= ∞.

Therefore the right hand side of

∂

∂wi
PO(b; y)

=






∞∑

j0=0

· · ·
∞∑

jB=0

jiPj0...jB
(y)wj0

0 · · ·wji−1
i · · ·wjB

B i 6= 1, . . . ,m

∞∑

j0=0

· · ·
∞∑

jB=0

jiPj0...jB
(y)wj0

0 · · ·wji

i · · ·wjB

B i = 1, . . . ,m

(73)

makes sense and is contained in Λ
◦
P 〈〈y, y−1〉〉 for each b ∈ A(Λ0).

We define the map

k̃sb0
: A(Λ0) → Λ

◦
P
0 〈〈y, y−1〉〉
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by

k̃sb0
(pi) =

∂

∂wi
PO(b; y)

∣∣∣∣
b=b0

. (74)

Theorem 11.14. There exists a Λ0 module homomorphism ksb such that the fol-
lowing diagram commutes:

A(Λ0)
eksb−−−−→ Λ

◦
P
0 〈〈y, y−1〉〉

y
y

H(X; Λ0)
ksb−−−−→ Jac(POb).

(75)

The map ksb is the isomorphism mentioned in Theorem 11.6.
Theorem 11.14 is [FOOO5] Theorem 7.1.

Sketch of the proof. By definition, we have

PO(b; y) =
∞∑

k=0

∞∑

ℓ=0

∫

L(u)

qℓ;k(bℓ, bk). (76)

Here b =
∑n

i=1 xiei and yi = exi . Using ∂b/∂wi = pi we have

∂PO(b; y)

∂wi
=

∞∑

k=0

∞∑

ℓ1=0

∞∑

ℓ2=0

∫

L(u)

qℓ;k(bℓ1pib
ℓ2 , bk). (77)

The homomorphism

pi 7→
∞∑

k=0

∞∑

ℓ1=0

∞∑

ℓ2=0

qℓ;k(bℓ1pib
ℓ2 , bk) (78)

induces a homomorphism

H(X; Λ0) → HF ((L(u), (b, b)), (L(u), (b, b)); Λ0). (79)

This fact was proved in [FOOO1] Theorem 3.8.62 for arbitrary L ⊂ X.
Note that to define (79) by (78) we fix b, b and regard the right hand side of (78)

as an element of H(L(u),Λ0). When we define k̃sb, we regard b =
∑n

i=1 xiei, as a
(H(L(u),Λ0) valued function of xi. So the right hand side of (77) is a function of
yi = exi .

In other words we need to study the ‘family version’ of the well-definedness of
(79).

We consider the boundary operator

a ∈ H(L(u),Λ0) 7→ m
b,b
1 (a) =

∞∑

k1=0

∞∑

k2=0

∞∑

ℓ=0

qℓ;k(bℓ, bk1abk2).

The well-definedness of (79) means the following Claim 11.15. Let i∗qm,(b,b)(pi) be

the right hand side of (78).

Claim 11.15. If
∑B

i=0 cipi is zero in H(X; Λ0), then
∑B

i=0 cii
∗
qm,(b,b)(pi) lies in

the image of m
b,b
1 .
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We can prove the same claim when we regard b as a function of xi. By the proof

of Theorem 5.5 (especially by Formula (23)), the image of m
b,b
1 (where b is regarded

as a function of xi) is in the Jacobian ideal (the ideal generated by yi∂POb/∂yi).

Thus the kernel of A(Λ0) → H(X; Λ0) is mapped to the Jacobian ideal by k̃sb.
This implies the theorem. �

Before closing this subsection, we state Theorem 11.17 which is a nonlinear
version of Theorem 11.14.

The potential function with bulk POb is parametrized by b ∈ A(Λ0). Theorem
11.17 says that it depends only on the cohomology class b up to appropriate change

of variables. Λ
◦
P
+〈〈y, y−1〉〉 denotes the set of elements R of Λ

◦
P
0 〈〈y, y−1〉〉 such that

T−ǫR ∈ Λ
◦
P
0 〈〈y, y−1〉〉 for some ǫ > 0.

Definition 11.16. We consider n elements y′
i ∈ Λ

◦
P 〈〈y, y−1〉〉 (i = 1, . . . , n).

(1) We say that y′ = (y′
1, . . . , y

′
n) is a coordinate change converging on IntP

(or a coordinate change on IntP ) if

y′
i ≡ ciyi mod yiΛ

◦
P
+〈〈y, y−1〉〉 (80)

ci ∈ C \ {0}.
(2) We say that the coordinate change is strict if ci = 1 for all i.
(3) We say that the coordinate change converges on P if y′

i ∈ ΛP 〈〈y, y−1〉〉
(i = 1, . . . , n) in addition. Its strictness is defined in the same way. We also
say that y′ is a coordinate change on P .

The set of all coordinate changes forms a group. It is regarded as a kind of group
of self automorphisms of the filtered A∞ algebra associted to L(u). (The domain
of convergence assumed in Definition 11.16 requires that it converges not only by
the norm vu

T but also by vu′

T with any u′. This is the reason we write “a kind of”
in the above sentence.) A closely related group appears in [KS2] and [GPS].

Theorem 11.17. Let b, b′ ∈ A(Λ0). We assume that [b] = [b′] ∈ H(X; Λ0).
Then there exists a coordinate change y′ on IntP , such that

POb(y′) = POb′
(y). (81)

If b − b′ ∈ A(Λ+), then y′ can be taken to be strict.
If both b, b′ ∈ A(Λ+), then y′ can be taken to be a strict coordinate change on

P .

This is [FOOO5] Theorem 8.7.

We remark that Λ
◦
P
0 〈〈y, y−1〉〉 parametrizes the deformation of the potential func-

tion. Then the Jacobian ideal corresponds to the part induced by the coordinate
change. Thus Theorem 11.17 follows from Theorem 11.14 by some ‘integration’
(that is solving appropriate ordinary differential equation.) See [FOOO5] section
8.
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11.5. The homomorphism ksb is an isomorphism. The main geometric input
to the proof of Theorem 11.6 is the following:

Theorem 11.18. The map ksb : (H(X; Λ0),∪b) → Jac(POb) is a ring homomor-
phism.

Theorem 11.18 is [FOOO5] Theorem 9.1.
Note this theorem is a version of a result which holds in greater generality.

Namely there exists a ring homomorphism

QH(X; Λ0) → HH(Fuk(X,ω)), (82)

where the right hand side is the Hochschild cohomology of the Fukaya category (see
[Fu1, FOOO8] for its definition.) The existence of such homomorphism was first
suggested by [Ko] and conjectured explicitly by [Se3] etc. See [FOOO5] section 31
and the reference therein for some of the related works.

We remark that HH(Fuk(X,ω)) parametrizes the deformation of the Lagrangian

Floer theory on X. The Jacobian ring Jac(POb) parametrizes the deformation of
a part of the structures, that is the part described by mb

0(1). So there is a natural

ring homomorphism HH(Fuk(X,ω)) → Jac(POb) in the toric case. Combining
them we obtain the ring homomorphism in Theorem 11.18.

More precise and down-to-earth proof of Theorem 11.18 is given as follows.
We recall that the map ksb : (H(X; Λ0),∪b) → Jac(POb) is induced from the

map

pi 7→
∞∑

k=0

∞∑

ℓ1=0

∞∑

ℓ2=0

∫

L(u)

qℓ;k(bℓ1pib
ℓ2 , bk) : A → ΛP

0 〈〈y, y−1〉〉. (83)

(See (78).) Note b =
∑

xiei and the right hand side is a function of xi. It then
turns out to be a function of yu

i = exi . Moreover by changing the variables to yi

by the formula yi = Tuiyu
i , the right hand side becomes a function of yi and is an

element of ΛP
0 〈〈y, y−1〉〉.

We consider the case b = 0 for simplicity.
We consider the moduli space Mk+1;2(β) of J-holomorphic disks with k + 1

boundary and ℓ interior marked points, (See subsection 2.2.) and take a fiber
product

Mmain
k+1;2(β)(ev+

1 ,ev+
2 ) × (p × p′)

where p,p′ ∈ A. We denote this fiber product by

Mmain
k+1;2(β;p,p′).

Let M1;2 be the moduli space of bordered Riemann surface of genus 0 with two
interior and one boundary marked points. This moduli space is a two dimensional
disk. We consider two points [Σ1], [Σ2] ∈ M1;2 as in the figure below.
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X

X

Σ
1

Σ
2

Figure 11.1

We have a forgetful map

forget : Mmain
k+1;2(β) → M1;2. (84)

Namely we put

forget([Σ; z0, . . . , zk, z+
1 , z+

2 , u]) = [Σ; z0; z
+
1 , z+

2 ].

It induces a map

forget : Mmain
k+1;2(β;p,p′) → M1;2.

For i = 1, 2, we denote by

Mmain
k+1;2(β;p,p′; Σi)

the inverse image of {[Σi]} in Mmain
k+1;2(β;p,p′).

Let hj ∈ H1(L(u); C) (j = 1, . . . , k). (Note we identify the cohomology group
with the set of Tn invariant forms.) We pull back h1×· · ·×hk to Mmain

k+1;2(β;p,p′; Σi)

by (ev1, . . . , evk) and consider the ingegration along fiber by ev0 !. We denote it by

Corr(h1 × · · · × hk;Mmain
k+1;2(β;p,p′; Σi)).

More precisely we take a Tn invariant multisection s so that the zero set Mmain
k+1;2(β;p,p′; Σi)

s

is transversal to zero. Then integration along the fiber is well-defined. This is be-
cause ev0 on Mmain

k+1;2(β;p,p′; Σi)
s must become a submersion by the Tn equivari-

ance.
We put

Corr(h1 × · · · × hk;Mmain
k+1;2(p,p′; Σi))

=
∑

β

T (β∩ω)/2πCorr(h1 × · · · × hk;Mmain
k+1;2(β;p,p′; Σi)).

and extend Corr(· · · ;Mmain
k+1;2(p,p′; Σi)) to

H1(L(u); Λ0)
⊗k → Λ0.

We then can prove the following two formulas :

Corr(b, . . . , b︸ ︷︷ ︸
k

;Mmain
k+1;2(p,p′; Σ1)) = q1;k(p ∪Q p′; bk) (85)
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Corr(b, . . . , b︸ ︷︷ ︸
k

;Mmain
k+1;2(p,p′; Σ2)) =

∑

k1+k2=k

q1;k1
(p; bk1)q1;k2

(p′; bk2). (86)

Note the sum over k of the right hand sides of (85) and (86) are

ks0(p ∪Q p′) and ks0(p)ks0(p′)

respectively. (Note we are studying the case b = 0.)
We finally use cobordism argument to show that the left hand side of (85) coin-

cides with the left hand side of (86) modulo elements in the Jacobian ideal. This
is an outline of the proof of Theorem 11.18. See [FOOO5] section 9 for detail.

The outline of the rest of the proof of Theorem 11.6 is as follows.
We first prove the surjectivity of ksb. For this purpose we consider the map ob-

tained by reducing the coefficient to C = Λ0/Λ+. Then the quantum cohomology
of the domain becomes ordinary cohomology. We can calculate the C = Λ0/Λ+

reduction of the Jacobian ring using Cho-Oh’s result (namely by studying the lead-
ing order term z1 + · · ·+ zm. See Theorem 8.2.) Then the C-reduction of ksb is an
isomorphism by a classical result of Stanley which calculates the cohomology ring
of toric manifold. (See for example [Ful].) It implies that ksb itself is surjective.

We remark that the fact that C-reduction of ksb is an isomorphism does not
imply that ksb is isomorphism. In fact we need to eliminate the possibility that
Jac(POb) has a component such as Λ0/(Tλ). Note that the (quantum) cohomology
H(X; Λ0) is a free Λ0 module. Therefore to prove the injectivity of ksb and complete
the proof of Theorem 11.6 it suffices to prove the following inequality.

rankΛ(Jac(POb) ⊗Λ0
Λ) ≥ rankQH(X; Q). (87)

We remark that in many explicit examples we can prove the equality (87) directly

by finding critical points of POb, for example by solving leading term equation.
However the proof of (87) in general more involved, which we briefly describe now.
We consider the case b = 0, for simplicity.

We prove (87) in two steps. We first use McDuff-Tolman [MT] (which is based
on Seidel’s work [Se1]), to find elements z′1, . . . , z

′
m ∈ HQ(X; Λ0) with the following

properties.

(1) z′1, . . . , z
′
m satisfies quantum Stanley-Reisner relation.

(2) There exists Pi(Z1, . . . , Zm) =
∑m

j=1 vj,iZi +
∑∞

k=1 T ρkPi,k(Z1, . . . , Zm)
such that

Pi(z
′
1, . . . , z

′
m) = 0 (88)

and ρk → ∞, ρk > 0, Pi,k ∈ C[Z1, . . . , Zm]. (We recall dℓj = (vj,1, . . . , vj,n) ∈
Zn.)

(3) The relations in the above (1),(2) are all the relations among z′i. Moreover
z′i generates HQ(X; Λ0).

Let us explain the above statement briefly. By putting Zi = Tλiy
vi,1

1 · · · yvi,n
n we

obtain a surjective ring homomrphism

Λ[Z1, . . . , Zm] → Λ[y1, y
−1
1 , . . . , yn, y−1

n ].

The quantum Stanley-Reisner relationa are the generator of the kernel of this ho-
momorphism. (See [FOOO3] Definition 6.4.) Quantum Stanley-Reisner relation
appeared in the Batyrev’s work on quantum cohomology of toric manifold and is
given explicitly by using moment polytope P .
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We put zi = Tλiy
vi,1

1 · · · yvi,n
n ∈ Jac(PO0). Then (47) implies that it satisfies

the formula
m∑

j=1

vj,izi +

∞∑

k=1

T ρk
∂Pk

∂xi
(z1, . . . , zm) = 0. (89)

(Note we put yi = exi so (89) is ∂Pk

∂xi
= yi

∂Pk

∂yi
.) We remark that the first term of

the left hand side of (89) is

∂PO0

∂xi
(z1, . . . , zm).

We also remark that the left hand side of (88) is similar to (89). Namely their
leading order terms coincide.

The element z′i is the invariant of [Se1] associated to the Hamiltonian S1 action.
Here S1 is the component of Tn which fixes Di. The fact that they satisfy the
quantum Stanley-Reisner relation is proved in [MT] using the relation between
those S1 actions and basic properties of Seidel invariant. The property (2) can be
proved using the fact z′i ≡ [Di] mod Λ+.

Let (QSL) ⊂ Λ0〈〈Z1, . . . , Zm〉〉 be the ideal generated by the quantum Stanley-
Reisner relations. Then (1), (2) above imply the existence of homomorphism

Λ0〈〈Z1, . . . , Zm〉〉
Clos((QSR) ∪ {Pi : i = 1, . . . ,m}) → QH(X; Λ0). (90)

here Clos means a closure with respect to an appropriate topology. By reduction
to C = Λ0/Λ+ we can show that (90) is an isomorphism. (We use the fact that
QH(X; Λ0) is torsion free here.)

Now the proof of (87) goes as follows. For s ∈ Λ we put

Ps
i = s

∂PO0

∂xi
+ (1 − s)Pi.

We remark Ps
i has the form

Ps
i (Z1, . . . , Zm) =

m∑

j=1

vj,iZi +
∞∑

k=1

T ρkP s
i,k(Z1, . . . , Zm).

We define the ring Rs by

Rs =
Λ0〈〈Z1, . . . , Zm〉〉

Clos((QSR) ∪ {Ps
i : i = 1, . . . ,m}) ⊗Λ0

Λ.

We have
R0

∼= QH(X; Λ)

since (90) is an isomorphism. On the other hand

R1
∼= Jac(PO0) ⊗Λ0

Λ.

Thus it sufficies to show that dimΛ Rs is independent of s. We regard ∪s∈ΛSpec(Rs)
as a family of affine schemes parametrized by s ∈ Λ. If we can prove that this family
is flat and proper then the independence of dimΛ Rs is a standard result of algebraic
geometry.

We prove the properness using the fact that the valuation of the solution of the
equation Ps

1 = · · · = Ps
m = 0 can not escape from moment polytope. The flatness

is a consequence of the fact that our scheme is a local complete intersection and
also of standard facts about the regular sequence of Cohen-Macauley ring.
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In general Ps
i is an infinite series rather than a polynomial. So we first need to

change the coordinate yi so that Ps
i becomes a polynomial. Such a process is known

in algebraic geometry as a algebraization of singularity. See [FOOO5] section 12.
This is an outline of the proof of (87). See [FOOO5] especially its section 14 for

details. �

Remark 11.19. We regard
⋃

b∈H(X;Λ0)

Spec(POb) (91)

as a H(X; Λ0) parametrized ‘family of schemes’ 4

The same argument to show the flatness and properness of the family ∪s∈ΛSpec(Rs)
seems to be applicable to show that the family (91) is also flat and proper.

In the study of K. Saito theory of Laurent polynomials (such as one described in
[Sab]), the properness of the family of the critical point sets is an important issue.
When one works over C the properness is not necessarily satisfied. When we work
over a Novikov ring in place of C, properness of the family of the critical point
sets (that is the geometric points of Spec(POb) is always satisfied at least for the
potential function appearing as the mirror of a toric manifold. The authors believe
that this is an important advantage of working with Novikov ring over working with
C.

Remark 11.20. Let us consider the family (91). For the H2(X; Λ0) part of b it
is natural to replace the coordinate wi by its exponential wi = ewi . Then we may
extend the domain {wi | vT (wi) = 0} to wi ∈ Λ. Note in POb the leading order
term is

∑
wizi. So if we extend wi and allow for example wi = T c, we have a term

T czi. We may regard this insertion wi = T c as changing the moment polytope.
Namely appearance of the term T czi is equivalent to moving ∂iP = {u | ℓi(u) = 0}
to {u | ℓi(u) = −c}5.

Thus for this extended family the flatness and properness still hold as far as the
corresponding moment polytope is homeomorphic to the original one.

There is some flavor of this kind of arguments in [FOOO5] subsection 14.2.

12. Poincaré duality and Residue pairing

In this section we explain that the isomorphism in Theorem 11.6 can be enhanced
to give an isomorphism between two Frobenius manifold structures.

12.1. Big quantum cohomology and Frobenius manifold.

Definition 12.1. A Frobenius manifold structure on a manifold M is a quintet
(〈·〉,∇, ◦, e,Φ) with the following properties.

(1) 〈·〉 is a nondegenerate inner product on the tangent bundle TM .
(2) ∇ is a connection of TM .

4It is proved in [FOOO5] that each of POb can be transformed to a Laurent polynomial by

change of variables. So we can define its Spec. It is not verified that the whole family can be
regarded to be a scheme. So we put quotation mark.

5In other words the parameter vT (wi) corresponds to the Kähler cone of our toric manifold
X. This is similar to the fact that the valuation of yi corresponds to the parameter u of the

Lagrangian submanifold L(u)
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(3) ∇ is a metric connection. Namely :

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉.
(4) ∇ is flat and torsion free. Namely :

∇X∇Y −∇Y ∇X −∇[X,Y ] = 0,

∇XY −∇Y X − [X,Y ] = 0.

(5) ◦ defines a ring structure on TpM which depends smoothly on p and satisfies

〈X ◦ Y,Z〉 = 〈X,Y ◦ Z〉. (92)

An associative algebra with unit which satisfies (92) is called a Frobenius
algebra.

(6) e is a section of TM such that e(p) is the unit of (TpM, ◦,+) for each p.
Moreover

∇e = 0.

(7) Φ is a function on M such that
〈

∂

∂xi
◦ ∂

∂xj
,

∂

∂xk

〉
=

∂3Φ

∂xi∂xj∂xk
. (93)

Here xi (i = 1, . . . ,dim M) is a local coordinate of M such that ∇ ∂
∂xi

( ∂
∂xj

) =

0. We call Φ the potential.

In some case we have a vector field E on M that satisfies the following

E〈X,Y 〉 − 〈[E,X], Y 〉 − 〈X, [E, Y ]〉 = d1〈X,Y 〉,
[E,X ◦ Y ] − [E,X] ◦ Y − X ◦ [E, Y ] = d2X ◦ Y,

[E, e] = d3e,

(94)

where d1, d2, d3 ∈ Q. We call E the Euler vector field.

Remark 12.2. In various situations, where a Frobenius manifold arises the tangent
space TpM appears as either a C vector space or a Λ vector space. In that case
the inner product 〈·〉 is bilinear over C or Λ. (In case 〈·〉 is required to be complex
symmetric not hermitian.) Moreover Φ is a C or Λ valued function.

We do not try to define what connection, funciton, coordinate etc. mean in case
TM is a Λ vector space. At the present stage of development, we do not meet
the situation where we need to seriously study it. In the main example of our
consideration, M is a Λ affine space, hence we can easily make sense out of them.

This structure first appeared in K. Saito’s work [Sa] (see the next subsection).
Dubrovin [Dub] discovered the structure in Gromov-Witten theory, which we recall
below.

Let X be a symplectic manifold. We take M = Hev(X; Λ0) the even degree
cohomology group of X with Λ0 coefficient. (We may include odd degree part
by regarding X as a supermanifold. Since in the case of our main interest (toric
manifold), there is no cohomology class of odd degree, we do not discuss odd degree
part.)

In subsection 11.2 we associate a deformed quantum cup product ∪b on H(X; Λ)
for each b ∈ Hev(X; Λ0). We regard TbM = H(X; Λ) and put ◦ = ∪b there. It is
associative.
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Remark 12.3. Note Hev(X; Λ0) is not an open set of Hev(X; Λ). So TbHev(X; Λ0) =
H(X; Λ) do not make sense in a usual sense of manifold. This is regarded only as
a convention here.

We have Poincaré duality pairing

Hd(X; Λ) ⊗Λ H2n−d(X; Λ) → Λ.

The inner product 〈·〉 is the Poincaré duality pairing. We remark that then the Levi-
Civita connection, that is the connection which is a torsion free metric connection
of the metric 〈·〉, is the standard affine connection of the vector space Hev(X; Λ0).
It is obviously flat.

(92) follows from

〈c ∪b d, e〉PDX
=

∞∑

ℓ=0

1

ℓ!
GWℓ+3(c, d, e, b, . . . , b).

(See (69).) and the fact that GWℓ(Q1, . . . , Qℓ) is independent of the permutation
of Qi.

The element e is the unit of the cohomology group that is the Poincaré dual to
the fundamental homology class [X].

The potential Φ is defined by

Φ(b) =
∞∑

ℓ=0

1

ℓ!
GWℓ(b, . . . , b) (95)

for which the formula (93) can be easily checked. The potential Φ in (95) is called
the Gromov-Witten potential.

The Euler vector field E is defined by the vector field:

E =
∂

∂w0
+

m∑

i=1

ri
∂

∂wi
+

B∑

i=m+1

(
1 − degpi

2

)
∂

∂wi
, (96)

where c1(X) =
∑m

i=1 ripi. We remark that pi, i = 0, . . . , B are basis of Hev(X; Q)
such that degp0 = 0, degpi = 2 for i = 1, . . . ,m and degpi > 2 for i > m.

By using the dimension formula

dimC Mℓ(α) = n + ℓ − 3 + c1(X) ∩ α

of the moduli space Mℓ(α) of pseudo-holomorphic sphere with ℓ interior marked
points and of homology class α, we can prove (94), where d1 = 2 − n, d2 = 1,
d3 = 0. Thus we have:

Theorem 12.4. (Dubrovin) (〈·〉,∇,∪b,Φ, e) is a structure of Frobenius manifold
on H(X; Λ0). (96) is its Euler vector field.

12.2. A fragment of K. Saito theory. Let

F (x1, . . . , xn;w0, w1, . . . , wB) : U × V → C (97)

be a holomorphic function on U × V ⊂ Cn × CB+1. Here U and V are small
neighborhoods of origin in Cn and CB+1, respectively.

We assume F is of the form

F (x1, . . . , xn;w0, w1, . . . , wB) = w0 + F (x1, . . . , xn; 0, w1, . . . , wB).
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We put

F ~w(x1, . . . , xn) = F (x1, . . . , xn;w0, w1, . . . , wB),

for ~w = (w0, . . . , wB). We assume that F
~0(x1, . . . , xn) has ~x = ~0 as an isolated

critical point. Namely (dF
~0)(0, . . . , 0) = 0, and (dF

~0)(~x) 6= 0 for ~x ∈ U \ {~0}.

Definition 12.5. We define the Jacobian ring Jac(F ~w) by

Jac(F ~w) =
O(U)(

∂F ~w

∂xi
; i = 1, . . . , n

) (98)

Here O(U) is the ring of holomorphic functions on U and the denominator is its

ideal generated by ∂F ~w

∂xi
, i = 1, . . . , n.

We define the Kodaira-Spencer map ks~w : T~wV → Jac(F ~w) by

ks~w

(
∂

∂wi

)
≡ ∂F

∂wi
(x1, . . . , xn; ~w) ∈ Jac(F ~w). (99)

F is called a universal unfolding of F
~0 if ks~0 : T~0V → Jac(F

~0) is an isomorphism.

We remark that if F is a universal unfolding of F
~0 then by shrinking V if nec-

essary we may assume that ks~w is an isomorphism for any ~w ∈ V . We assume it in
the rest of this subsection.

We remark that Jac(F ~w) is a ring. On the other hand T~wV do not have a ring
structure a priori. We define

X ◦ Y = (ks~w)−1(ks~w(X)ks~w(Y )), (100)

for X,Y ∈ T~wV . Thus (T~wV, ◦,+) forms a ring. Note ∂/∂w0 ∈ T~wV is sent to
[1] ∈ Jac(F ~w). Therefore

e(~w) = ∂/∂w0 ∈ T~wV

is a unit.

Theorem 12.6. (K.Saito-M.Saito) There exists a C valued metric 〈·〉 on TV ,
its Levi-Civita connection ∇ and a holomorphic function Φ : V → C such that
(〈·〉, ◦, e,∇,Φ) is a Frobenius manifold.

K. Saito [Sa] constructed a Frobenius manifold structure assuming the existence
of a primitive form. We do not explain the notion of primitive form here. (See
[SaTa] for its description in a way closely related to the discussion here.) Exis-
tence of primitive form for a universal unfolding of a germ of isolated singularity
is established in [MSa]. We remark that Theorem 12.6 had been proved before
Gromov-Witten theory started.

The metric 〈·〉 is called a residue paring. Since ∇ is flat there exists a local coordi-
nate t0, t1, . . . , tB of V so that ∇∂/∂ti

(∂/∂tj) = 0. Such a coordinate (t0, t1, . . . , tB)
is called a flat coordinate. (t0 = w0.)

For some F associated to an ADE singularity, the primtive form takes a simple
form dx1∧dx2∧dx3. In such a case we have the following description of the residue
pairing.

We put

Crit(F ~w) = {y ∈ U | dF ~w(y) = 0}.
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Let Oy be the ring of germs of holomorphic functions at y ∈ U . We put

Jac(F ~w; y) =
Oy(

∂F ~w

∂xi
; i = 1, . . . , n

) (101)

The following fact is standard:

Proposition 12.7. We have

Jac(F ~w) ∼=
∏

y∈Crit(F ~w)

Jac(F ~w; y).

Jac(F ~w; y) is one dimensional if and only if the critical point y is non-degenerate.

Let ~w be a vector such that F ~w is a Morse function. Let 1y ∈ Jac(F ~w; y) be the
unit. Then Proposition 12.7 implies that {1y | y ∈ Crit(F ~w)} forms a C basis of
the vector space Jac(F ~w). If y 6= y′ we obtain

〈1y, 1y′〉 = 〈1y, 1y′ ◦ 1〉 = 〈1y ◦ 1y′ , 1〉 = 0,

from the equation 1y ◦ 1y′ = 0 and (92). Namely {1y | y ∈ Crit(F ~w)} is an
orthogonal basis with respect to the residue pairing.

Lemma 12.8. If the primitive form is dx1 ∧ · · · ∧ dxn and F ~w is a Morse function
then we have

〈1y, 1y〉 =

(
det

[
∂2F ~w

∂xi∂xj

]i=n,j=n

i=1,j=1

(y)

)−1

.

This lemma follows from the definition. We remark that in general the primitive
form is not necessarily equal to dx1 ∧ · · · ∧ dxn.

12.3. Residue pairing on Jac(POb). We now consider the case F (x1, . . . , xn, ~w) =

POb(y1, . . . , yn) where b =
∑

wipi and exi = yi.
We however remark that our situation is different from that of subsection 12.2

in the following two points.

(1) The tangent space Tb(H(X; Λ0)) is a Λ vector space and is not a C vector
space.

(2) The ‘open set’ on which POb is defined is the set A(
◦
P ) which is not a

‘small’ neighborhood of a point.

However, many parts of the story are directly translated to the case POb. (See
however Remark 12.26.) Note V in subsection 12.2 corresponds to H(X; Λ0).

In this subsection we describe a pairing on Jac(POb) which we expect to be the
version of residue pairing in our situation.

Definition 12.9. Let C be a Z2 graded finitely generated free Λ module. A
structure of unital Frobenius algebra of dimension n is 〈·, ·〉 : Ck ⊗ Cn−k → Λ,
∪ : Ck ⊗ Cℓ → Ck+ℓ, 1 ∈ C0, such that:

(1) 〈·, ·〉 is a graded symmetric bilinear form which induces an isomorphism
x 7→ (y 7→ 〈x, y〉), Ck → HomΛ0

(Cn−k,Λ).
(2) ∪ is an associative product on C. 1 is its unit.
(3) 〈x ∪ y, z〉 = 〈x, y ∪ z〉.
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The cohomology group of an oriented closed manifold becomes a unital Frobenius
algebra in an obvious way.

Definition 12.10. Let (C, 〈·, ·〉,∪, 1) be a unital Frobenius algebra. We take a basis
eI , I ∈ I of C such that e0 is the unit. Let gIJ = 〈eI , eJ〉 and let gIJ be its inverse
matrix. We define an invariant of C by

Z(C) =
∑

I1,I2,I3∈I

∑

J1,J2,J3∈I

(−1)∗gI1J1gI2J2gI30gJ30

〈eI1
∪ eI2

, eI3
〉〈eJ1

∪ eJ2
, eJ3

〉
(102)

where ∗ = deg eI1
deg eJ2

+ n(n−1)
2 . We call Z(C) the trace of unital Frobenius

algebra C.

It is straightforward to check that Z(C) is independent of the choice of the basis.
This invariant is an example of 1-loop partition function and can be described by
the following Feynman diagram.

ee

Figure 12.1

Let us consier u ∈ IntP and b ∈ H1(L(u); Λ0) such that the Floer cohomology
HF ((L(u), (b, b)), (L(u), (b, b)); Λ) is isomorphic to H(Tn; Λ).

We have a binary operator m
c,b,b
2 on it. The Poincaré duality induces a Λ valued

non-degererate inner product 〈·〉PDL(u)
of it.

We define

x ∪c,b,b y = (−1)deg x(deg y+1)m
c,b,b
2 (x, y), (103)

〈x, y〉cyc = (−1)deg x(deg y+1)〈x, y〉PDL(u)
. (104)

Then (H(L(u); Λ), 〈·, ·〉cyc,∪c,b,b,PD[L(u)]) becomes a unital Frobenius algebra.

Remark 12.11. We remark that the operation m
c,b,b
2 is slightly different from the

operation m
b,b
2 which is obtained from the operation qℓ,k by (36). In fact qℓ,k may

not satisfy the cyclic symmetry:

〈qℓ;k(y;h1, . . . , hk), h0〉cyc

= (−1)deg′ h0(deg′ h1+···+deg′ hk)〈qℓ;k(y;h0, h1, . . . , hk−1), hk〉cyc.
(105)

This is because the way how we perturb the moduli space Mmain
k+1;ℓ(β), which we

described in sections 3 and 7, breaks cyclic symmetry.
However we can modify the construction of qℓ;k to obtain qc

ℓ;k for which (105) is

satisfied. Using it in place of qℓ;k we define m
c,b,b
2 , which appears in (103). Then

Definition 12.9 3) is satsified for ∪b,b.
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This point is quite technical and delicate. So we do not discuss its detail in
this survey and refer readers to [FOOO5] sections 18-19. However it is inevitable
and essential, especially in the non-Fano case. It might be related to the fact that
primitive form may be different from dx1 ∧ · · · ∧ dxn in general.

We put

Z(b, b) = Z((H(L(u); Λ), 〈·, ·〉cyc,∪c,b,b,PD([L(u)])). (106)

Definition 12.12. Assume that POb is a Morse function. We then define a residue
pairing

〈·, ·〉res : (Jac(POb) ⊗Λ0
Λ) ⊗ (Jac(POb) ⊗Λ0

Λ) → Λ

by

〈1y, 1y′〉res =

{
0 if y 6= y′,

(Z(b, b))
−1

if y = y′.
(107)

We remark that we use the decomposition (11.8) and 1y is the unit of Jac(POb; y).
u = (u1, . . . , un) is defined by the valuation of y = (y1, . . . , yn). Namely ui =
vT (yi). b ∈ H1(L(u); Λ0) is defined from yi by b =

∑n
i=1 xiei, Tuiexi = yi.

The name ‘residue pairing’ is justified by the following Theorem 12.13 and
Lemma 12.8.

Theorem 12.13. (1) Assume that y is a nondegenerate critical point of POb.
Suppose b =

∑n
i=1 xiei, Tuiexi = yi as above. Then

Z(b, b) ≡ det

[
yiyj

∂2POb

∂yi∂yj

]i,j=n

i,j=1

(y) mod TλΛ+. (108)

Here λ = vT (Z(b, b)) and y = (ex1 , . . . , exn).
(2) If dimC X = 2, then we have

Z(b, b) = det

[
yiyj

∂2POc,b

∂yi∂yj

]i,j=n

i,j=1

(y). (109)

(3) If X is nef and degb = 2, then we have

Z(b, b) = det

[
yiyj

∂2POb

∂yi∂yj

]i,j=n

i,j=1

(y). (110)

Remark 12.14. We use m
c,b
k in place of mb

k to define POc,b by

POc,b(b) =

∞∑

k=0

∫

L(u)

m
c,b
k (b, . . . , b︸ ︷︷ ︸

k

).

POc,b appears in (109).

Theorem 12.13 is Theorem 2.24 [FOOO5].

Sketch of the proof. We discuss only the case X is nef and b = 0. We will prove
that the algebra (H(L(u); Λ),∪b) is a Clifford algebra, modifying the proof of a
related result by Cho [Cho2]. More precisely we prove the following Proposition
12.15.
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Let e′1, . . . , e
′
n be formal variables and di ∈ Λ \ {0} (i = 1, . . . , n). We consider

relations {
e′ie

′
j + e′je

′
i = 0, i 6= j

e′ie
′
i = di1.

(111)

We take a free (non-commutative) Λ algebra generated by e′1, . . . , e
′
n and divide it

by the two-sided ideal generated by (111). We denote it by CliffΛ(n; ~d), where we

set ~d = (d1, . . . , dn).
Let I = (i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ n. We write the set of such I’s by

2{1,...,n}. We put

e′I = e′i1e
′
i2 · · · e′ik−1

e′ik
∈ CliffΛ(n; ~d).

It is well-known and can be easily checked that {e′I | I ∈ 2{1,...,n}} forms a basis of

CliffΛ(n; ~d) as a Λ vector space.
Assume moreover that there exists a Λ valued non-degenerate inner product 〈·〉

on CliffΛ(n; ~d) such that CliffΛ(n; ~d) becomes a Frobenius algebra. We say that e′i
forms a cyclic Clifford basis if

〈e′I , e′J 〉 =

{
(−1)∗(I) J = Ic,

0 otherwise.
(112)

Here Ic = {1, . . . , n} \ I and ∗(I) = #{(i, j) | i ∈ I, j ∈ Ic, j < i}.
Proposition 12.15. Suppose X is nef and deg b = 2. We also assume that L(u)
and b ∈ H1(L(u); Λ0) satisfy HF ((L(u), (b, b)), (L(u), (b, b)); Λ) ∼= H(Tn; Λ).

Then there exists a basis (e′1, . . . , e
′
n) of H1(L(u); Λ) such that the algebra ((H(L(u); Λ),∪c,b,b)

is isomorphic to the Clifford algebra CliffΛ(n; ~d) where (d1, . . . , dn) are the set of
eigenvalues (counted with multiplicity) of the Hessian matrix

Hessy(POb) =

[
yiyj

∂2POb

∂yi∂yj

]i,j=n

i,j=1

(y).

Moreover (e′1, . . . , e
′
n) is a cyclic Clifford basis.

Furthermore ∫

L(u)

e′1 ∪b,b · · · ∪b,b e′n = 1.

This is [FOOO5] Theorem 22.2. Once Proposition 12.15 is established we can
prove Theorem 12.13 by a direct calculation. (See [FOOO5] section 23.) �

Sketch of the proof of Proposition 12.15. Note

POb(b) =

∞∑

k=0

∫

L(u)

mb
k(b, . . . , b︸ ︷︷ ︸

k

).

Its first derivative at y is zero since y is a critical point. We calculate its second
derivative ∂2POb/∂xi∂xj = yiyj∂

2POb/∂yi∂yj . Then we have

m
b,b
2 (ei, ej) + m

b,b
2 (ej , ei) =

((
yiyj

∂2POb

∂yi∂yj

)
(y)

)
1 (113)

Here 1 ∈ H0(L(u); Q) is the unit and {ei} is the basis of H1(L(u); Q) which we
fixed before. (Note b =

∑
xiei.)
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We take basis (e′1, . . . , e
′
n) of H1(L(u); Λ) so that the Hessian matrix becomes the

diagonal matrix and
∫

L(u)
e′1∪· · ·∪e′n = 1. Then (113) implies that (e′1, . . . , e

′
n) sat-

isfies the Clifford relation (111). Using this fact we can prove that ((H(L(u); Λ),∪b,b)
is a Clifford algebra. (We do not use the assumption X is nef and b is degree two,
up to this point.)

The proof of (112) is as follow. We use the assumption that X is nef and b is
degree two to show

a ∪c,b,b a′ − a ∪ a′ ∈
⋃

k<deg a+deg a′

Hk(Tn; Λ) (114)

for a, a′ ∈ HF ((L(u), (b, b)), (L(u), (b, b)); Λ) ∼= H(Tn; Λ). Here the second term is
the usual cup product. We use cyclic symmetry to show

〈e′I , e′J〉PDL(u)
= 〈e′I ∪c,b,b e′J , 1〉PDL(u)

=

∫

L(u)

e′I ∪c,b,b e′J .

Using (114) and Clifford relation, we can see that e′I ∪c,b,b e′J has no Hn(L(u); Λ)
component unless Ic = J . This implies Proposition 12.15. �

12.4. Residue pairing is Poincaré duality.

Theorem 12.16. Let X be a compact toric manifold and b ∈ A(Λ0). Suppose

POb is a Morse function. Then for each a1, a2 ∈ H(X; Λ) we have

〈a1, a2〉PDX
= 〈ksba1, ksba2〉res. (115)

Here the pairing in the right hand side is defined in Definition 12.12 and the map
ksb is the isomorphism in Theorem 11.14. The pairing in the left hand side is the
Poincaré duality.

Theorem 12.16 is [FOOO5] Theorem 1.1 (2) and is proved in [FOOO5] sections
17-21. Before explaining an outline of its proof, we mention some of its conse-
quences.

Corollary 12.17. (1) The inner product 〈·〉res, whose definition was given

only in case POb is a Morse function (in Definition 12.12), extends to
arbitrary b’s.

(2) The Levi-Civita connection ∇ of this extended 〈·〉res is flat.
(3) (H(X; Λ0), 〈·〉res, ◦,∇,Φ, 1) is a Frobenius manifold.
(4) The Frobenius manifold structure of Item 3) above is equal to one in The-

orem 12.4.

Proof. 1) is an immediate consequence of Theorem 12.16 and the fact that the
Poincaré duality pairing is independent of b and is obviously extended.

The Levi-Civita connection of the Poincaré duality pairing is the canonical affine
connection of H(X; Λ0) and hence is flat. 2) follows.

3) then follows from Theorem 12.4.
4) is obvious. �

Remark 12.18. The Frobenius manifold in Corollary 12.17 3) has an Euler vector
field (96). We also have

E(PO) = PO, (116)
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here PO is a function of b =
∑

wipi and yi. The formula (116) is proved in
[FOOO4] Theorem 10.2.

Remark 12.19. Corollary 12.17 first appeared as a conjecture in [Ta], where the
case of CP 1 was checked. It was further studied in [Bar]. See the papers mentioned
at the end of the introduction for some of the other related works.

The above proof of the coincidense of the two Frobenius manifold structures is
not so satisfactory since the proof of Items 1), 2) uses the isomorphism of Item 4).
It is preferable that we construct Frobenius manifold structure on H(X; Λ0) using

the family of functions POb and without going to the quantum cohomology theory
side, and then prove Item 4) for that Frobenius manifold structure.

Problem 12.20. Develop an analogue of K. Saito theory for our family of Λ valued
functions POb.

Define the notion of primitive form for it and prove its existence.
Construct the Frobenius manifold structure on H(X; Λ0) using primitive form

and prove that it is isomorphic to one obtained in Theorem 12.4.

Another corollary of Theorem 12.16 is the following. Let Crit(POb) be the

critical point set of POb. For y = (y1, . . . , yn) ∈ A(P ) we put

yi = Tuiexi , b =
n∑

i=1

xiei ∈ H1(L(u),Λ0). (117)

Here u = (u1, . . . , un) and xi ∈ Λ0. Note ui = vT (yi). In this way we may regard

Crit(POb) as a set of pairs (uc, bc), c = 1, . . . , B. Here we put B = #Crit(POb).

Corollary 12.21. Suppose POb is a Morse function. Then we have

0 =

B∑

c=1

1

Z(b, bc)
. (118)

Proof. Let 1X ∈ H0(X; Λ) be the unit. Then 〈1X , 1X〉PDX
= 0. By Proposition 11.8

we have 1X =
∑

y∈M(X,b) 1y where 1y is the unit of the Jacobian ring Jac(POb; y).

Corollary 12.21 now follows from (107) and Theorem 12.16. �

12.5. Operator p and the Poincaré dual to ksb. In this and the next subsec-
tions we sketch a proof of Theorem 12.16. We assume POb is a Morse function in
this and next subsections. Let y ∈ Crit(POb). It defines u, b by (117). We define
a homomorphism

i#qm,(b,b,u) : H(X; Λ0) → HF ((L(u), (b, b)); (L(u), (b, b)); Λ0). (119)

by

i#qm,(b,b,u)(Q) =

∞∑

k=0

∞∑

ℓ1=0

∞∑

ℓ2=0

qc
ℓ1+ℓ2;k(bℓ1Qbℓ2 , bk). (120)

(See (78) and [FOOO1] Theorem 3.8.62.)
Here qc

ℓ;k is a cyclically symmetric version of the operator qℓ;k. (See Remark

12.14.)
We define

i#,qm,(b,b,u) : HF ((L(u), b, b); (L(u), b, b); Λ) → H(X; Λ) (121)
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by

〈i#qm,(b,b,u)(Q), P 〉PDL(u)
= 〈Q, i#,qm,(b,b,u)(P )〉PDX

. (122)

The main part of the proof of Theorem 12.16 is the proof of Theorem 12.22 below.
Let volL(u) ∈ Hn(X; Q) be the degree n cohomology class such that

∫
L(u)

volL(u) =

1. Let {eI | I ∈ 2n} be a basis of

Hn(L(u); Λ) ∼= HF ((L(u), (b, b)); (L(u), (b, b)); Λ).

We put gIJ = 〈eI , eJ〉PDX
. Let gIJ be the inverse matrix of gIJ .

Theorem 12.22. We have:

〈i#,qm,(b,b,u)(volL(u)), i#,qm,(b,b,u)(volL(u))〉PDX

=
∑

I,J∈2{1,...,n}

(−1)
n(n−1)

2 gIJ 〈mc,b,b
2 (eI , volL(u)),m

c,b,b
2 (eJ , volL(u))〉PDL(u)

.

This is [FOOO5] Theorem 20.1.

Theorem 12.22 ⇒ Theorem 12.16. Let Qy ∈ H(X; Λ) be an element such that

ksb(Qy) = 1y, where 1y is the unit of the factor Jac(POb; y) of Jac(POb). Let
b,u corresponds to y by (117).

Then we have

i#qm,(b,b,u)(Qy′) =

{
1 if y′ = y

0 if y′ 6= y.

Here 1 ∈ H0(L(u); Λ) is the unit. This is a consequence of the definition of ksb.
Therefore

〈Qy, i#,qm,(b,b,u)(volL(u))〉PDX
= 1. (123)

We remark 〈Qy, Qy′〉 = 〈Qy ∪ Qy′ , 1〉 = 0 if y 6= y′. Therefore

i#,qm,(b,b,u)(volL(u)) =
1

〈Qy, Qy〉PDX

Qy. (124)

Theorem 12.22 implies

〈i#,qm,(b,b,u)(volL(u)), i#,qm,(b,b,u)(volL(u))〉PDX
= Z(b, b). (125)

(See [FOOO5] subsection 26.2 for sign.) Theorem 12.16 follows from (124) and
(125). �

To prove Theorem 12.22 we need a geometric description of the homomorphism
i#,qm,(b,b,u). We use the operator p introduced in [FOOO1] section 3.8, for this
purpose. To simplify the notation we consider only the case b = 0. Let C be a
filtered A∞ algebra and define an automorphism cyc : BkC[1] → BkC[1] by

cyc(x1 ⊗ · · · ⊗ xk) = (−1)deg′ xk×(
Pk−1

i=1 deg′ xi)xk ⊗ x1 ⊗ · · · ⊗ xk−1.

It induces a Zk action on BkC[1]. Let Bcyc
k C[1] be the invariant set of the Zk action

and BcycC[1] =
⊕̂

kBcyc
k C[1] the completed direct sum of them. We call Bcyc

k C[1]
the cyclic bar complex.

Theorem 12.23. For a relatively spin Lagrangian submanifold L there exists a
sequence of operators

pk : Bcyc
k H(L; Λ0)[1] −→ H(X; Λ0)

(k = 0, 1, 2, . . . ) of degree n + 1 with the following properties.
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Let p : BcycH(L; Λ0)[1] −→ H(X; Λ0) be the operator whose restriction on
Bcyc

k H(L; Λ0)[1] is pk. We denote by mc
k the cyclically symmetric version of mk

and write mc in stead of mc
k.

(1)

p1 ≡ i! mod Λ+.

Here i! = Hk(L; Λ0) → Hk+n(X; Λ) is the Gysin homomorphism.
(2) ∑

c

p(x3;1
c ⊗ mc(x3;2

c ) ⊗ x3;3
c ) = 0 (126)

for x ∈ Bcyc
k H(L; Λ0)[1], k > 0. We use the notation (6).

(3)

(p1 ◦ mc
0)(1) + GW1(L) = 0.

Here the second term is defined by 〈GW1(L), Q〉PDX
= GW2(L,Q), where

the right hand side is as in (68).

This is [FOOO1] Theorem 3.8.9. (Here we use cohomology group instead of
appropriate chain complex. The latter is used in [FOOO1] Theorem 3.8.9. We also
omit the statement on the unit in [FOOO1] Theorem 3.8.9.) See also [FOOO5]
section 17-19.

The operator pk is constructed as follows. We consider the moduli space Mmain
k;1 (β)

described in section 2.2. Note the number of interior marked point is 1 and the
number of exterior marked points is k. We have an evaluation map

(ev1, . . . , evk, ev+) = (ev, ev+) : Mmain
k;1 (β) → Lk × X.

Let h1, . . . , hk be differential forms on L. We consider the pull back ev∗(h1 × · · · ×
hk), which is a differential form on Mmain

k;1 (β). We use integration along fiber by

the map ev+ to obtain a differential form on X, which we put pk,β(h1, . . . , hk).
Namely

pk,β(h1, . . . , hk) = ev+
! (ev∗(h1 × · · · × hk)).

This is a map between differential forms. By an algebraic argument it induces a
map between tensor products of the de Rham cohomology groups of L and of X.
Thus obtain the operator

pk =
∑

β∈H2(X,L)

T (β∩ω)/2πpk,β .

We can prove (126) by studying the stable map compactification of Mmain
k;1 (β). In

case k = 0 the compactification of M0;1(β) is slightly different from the case of
k > 0. The second term of Item 3) appears by this reason. In our case of toric
manifold and Tn orbit L, this term drops since L is homologous to 0 in X. So we
do not discuss it here but refer to [FOOO1] subsections 3.8.3 and 7.4.1 for more
detail.

Now we go back to the case where X is a toric manifold and L = L(u) is a Tn

orbit. Let b ∈ H1(L(u); Λ0). For P ∈ H(L(u); Λ0) we put

[Peb] =

∞∑

k1=0

∞∑

k2=0

b ⊗ · · · ⊗ b︸ ︷︷ ︸
k1

⊗P ⊗ b ⊗ · · · ⊗ b︸ ︷︷ ︸
k2

.

Suppose H(L(u); Λ) ∼= HF ((L(u), (0, b)); (L(u), (0, b)); Λ).
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Proposition 12.24. Let P ∈ H(L(u); Λ0), Q ∈ H(X; Λ0). Then we have:

i#,qm,(0,b,u)(P ) = p([Peb]). (127)

Remark 12.25. We remark that [Peb] is an element of BcycH(L(u); Λ0) if b ≡ 0
mod Λ+. So p([Peb]) is defined in that case. Otherwise we write b = b0 + b+ such
that b0 ∈ H1(L(u); C) and b+ ∈ H1(L(u); Λ+), and define

p([Peb]) =
∑

β∈H2(X,L:Z)

T (β∩ω)/2π exp(b0 ∩ ∂β)pβ([Peb+ ]).

We omit the discussion of this point. See [FOOO4] section 9 and [FOOO5] section
19.

Sketch of the proof. We remark that i#,qm,(0,b,u)(P ) is defined by (122). Therefore
it suffices to prove

∞∑

k=0

〈qc
1,k(Q; bk), P 〉PDL(u)

= 〈Q, p([Peb]〉PDX
. (128)

This is [FOOO5] Theorem 19.8. Let us sketch its proof for the case b = 0. In case
b = 0, Formula (128) reduced to

〈qc
1,0(Q; 1), P 〉PDL(u)

= 〈Q, p1(P )〉PDX
. (129)

We take ρ and h which are closed forms on X and L(u), representing the cohomology
class Q and P , respectively. Then it is easy to see that the left and the right hand
sides of (129) both become

∑

β∈H2(X,L(u);Z)

T (β∩ω)/2π

∫

M1;1(β)

(ev+)∗ρ ∧ ev∗h. (130)

Here (ev, ev+) : M1;1(β) → L(u) × X is evaluation maps at marked points. (129)
follows. �

Remark 12.26. In fact, we need to perturb M1;1(β) appropriately so that the
integration in (130) makes sense. It is a nontrivial thing to prove that after pertur-
bation (129) still holds. Actually we need to consider cyclically symmetric version
of the operator q for this purpose. (See [FOOO5] Remark 19.12.) We omit the
discussion about perturbation and refer the reader to [FOOO5] section 19.

12.6. Annulus argument. We continue the sketch of the proof of Theorem 12.22.
We assume b = 0 in this subsection for simplicity. We consider the class volL(u).
(It is the Poincaré dual to the point class.) Then the left hand side is

∑

β1,β2∈H2(X,L(u);Z),
β=β1+β2

T ((β1+β2)∩ω)/2π
〈
pβ1

([volL(u)e
b], pβ2

([volL(u)e
b]
〉
PDX

. (131)

We show that (131) can be regarded as an appropriate integration of the differential
form volL(u) × volL(u) on a moduli space of pseudo-holomorphic annuli, as follows.
For simplicity we assume b = 0.

We consider a pair ((Σ; z1, z2), u) with the following properties.

(1) Σ is a bordered curve of genus zero such that ∂Σ is a disjoint union of two
circles, which we denote by ∂1Σ, ∂2Σ.
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(2) The singularity of Σ is at worst the interior double point.
(3) zi ∈ ∂iΣ for i = 1, 2.
(4) u : Σ → X is a pseudo-holomorphic map. u(∂Σ) ⊂ L(u).
(5) u∗([Σ]) = β ∈ H2(X,L(u); Z).
(6) The set of maps v : Σ → Σ which is biholomorphic, v(zi) = zi for i = 1, 2,

and u ◦ v = u is finite.

We denote by M(1,1);0(β) the totality of such ((Σ; z+
1 , z+

2 ), u). There exists an
evaluation map

ev = (ev1, ev2) : M(1,1);0(β) → L(u)2,

which is defined by

ev((Σ; z1, z2), u) = (u(z1), u(z2)).

We consider the set of all (Σ; z1, z2) which satisfies 1), 2), 3) above and

7) The set of all biholomorphic maps v : Σ → Σ with v(zi) = zi for i = 1, 2 is
finite.

We denote it by M(1,1);0. There is a forgetful map

forget : M(1,1);0(β) → M(1,1);0, (132)

which is obtained by forgetting the map u.
We can show that M(1,1);0 is homeomorphic to a disk and so is connected. We

take two points (Σ(j); z
(j)
1 , z

(j)
2 ) ∈ M(1,1);0 (j = 1, 2) which we show in the figure

below.

X

Σ
1

Σ
2

X

X
X

Figure 12.2

We denote by M(1,1);0(β; Σ(j)) the inverse image of {(Σ(j); z
(j)
1 , z

(j)
2 )} by the

map (132).
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Lemma 12.27.
∑

β1,β2∈H2(X,L(u);Z),
β=β1+β2

〈p1,β1
(P ), p1,β2

(P )〉PDX
=

∫

M(1,1);0(β;Σ(1))

ev∗
1volL(u) ∧ ev∗

2volL(u).

Geometic origin of this lemma is clear from Figure 12.2. To prove the lemma rig-
orously we need to work out the way to perturb our moduli space M(1,1);0(β; Σ(1))
so that the integration of the right hand side makes sense and the lemma holds.
The detail is given in [FOOO5] section 20 as the proof of Lemma 20.8.

Lemma 12.28.
∑

I,J∈2{1,...,n}

(−1)
n(n−1)

2 gIJ 〈mc,0,0
2 (eI , volL(u)),m

c,0,0
2 (eJ , volL(u))〉PDL(u)

=

∫

M(1,1);0(β;Σ(2))

ev∗
1volL(u) ∧ ev∗

2volL(u).

Geometric origin of this lemma is also clear from Figure 12.2 and the equality

[{(x, x) | x ∈ L(u)}] =
∑

I,J

(−1)deg eI deg eJ gIJeI × eJ

∈ Hn(L(u) × L(u); Z).

(133)

The detail is given in [FOOO5] section 20 as the proof of Lemma 20.11. (The sign
in (133) is proved in [FOOO5] Lemma 26.7.)

Now we can use the fact that M(1,1);0 is connected to find a cobordism between

M(1,1);0(β; Σ(1)) and M(1,1);0(β; Σ(2)). The differential form ev∗
1volL(u)∧ev∗

2volL(u)

extends to this cobordism. Therefore Lemmas 12.27 and 12.28 imply Theorem 12.22
in case b = b = 0. The general case is similar. �

Remark 12.29. According to E. Getzler, the fact M(1,1);0(β; Σ(1)) is cobordant

to M(1,1);0(β; Σ(2)) is called the Cardy relation.

Remark 12.30. A similar trick using the annulus is used in [Ab2, BC1] for a
similar but a slightly different purpose.

13. Examples 3

Example 13.1. We consider the case of CPn and b = 0. The moment polytope
P is a simplex {(u1, . . . , un) | 0 ≤ ui,

∑
ui ≤ 1} and the potential function is

PO0 =

n∑

i=1

yi + T (y1 · · · yn)−1.

The critical points are y(k) = T
1

n+1 e
2π

√
−1k

n+1 k = 0, . . . , n which are all nondegener-
ate. The isomorphism Jac(PO0) ⊗Λ0

Λ ∼=
∏n

k=0 Λ1y(k) . is induced by

P 7→
n∑

k=0

P (y(k))1y(k) .

We put fk = π−1({(u1, . . . , un) ∈ P | ui = 0, i = n − k + 1, . . . , n}). We derive

POwp1(y) = PO0(y) + (ew − 1)Tunyn
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from Proposition 4.9 [FOOO4] and hence

ks0(p1) = [Tunyn] = T
1

n+1

n∑

k=0

e
2π

√
−1k

n+1 1y(k) (134)

by definition of ks0. Using the fact that ks0 is a ring homomorphism, we have

ks0(pℓ) = T
ℓ

n+1

n∑

k=0

e
2π

√
−1kℓ

n+1 1y(k) . (135)

Note this holds for ℓ = 0 also since f0 is a unit and ks0 is unital.
The Hessian of PO0 is given by

Hessy(k)PO0 =

[
T

1
n+1

∂2

∂xi∂xj

(
ex1 + · · · + exn + e−(x1+···+xn)

)]i,j=n

i,j=1

(x(k))

with x(k) = exp
(

2π
√
−1k

n+1

)
. Therefore

Hessy(k)PO0 = T
1

n+1 e
2π

√
−1k

n+1 [δij + 1]
i,j=n
i,j=1 .

It is easy to see that the determinant of the matrix [δij + 1]
i,j=n
i,j=1 is n+1. Therefore

the residue pairing is given by

〈1y(k) , 1y(k′)〉res = T− n
n+1 e−

2π
√

−1kn
n+1

δkk′

1 + n
. (136)

Combining (135) and (136), we obtain

〈ks0(pℓ), ks0(pℓ′)〉res =
1

n + 1
T− n

n+1

n∑

k=0

e−
2π

√
−1kn

n+1 T
ℓ+ℓ′
n+1 e

2π
√

−1(ℓ+ℓ′)k
n+1 . (137)

It follows that (137) is 0 unless ℓ + ℓ′ = n and

〈ks0(pℓ), ks0(pn−ℓ)〉res = 1 = 〈pℓ,pn−ℓ〉PDCP n .

Thus Theorem 12.16 holds in this case.

Remark 13.2. There are various works in the case of CPn. See [Ta, Bar, Gro1].

Example 13.3. We consider the Hirzebruch surface F2(α). We use the notation
of Example 10.1. In this case the full potential function for b = 0 is calculated in
[Aur2], [FOOO5] section 19 and [FOOO6] section 5 as follows.

PO0 = y1 + y2 + T 2y−1
1 y−2

2 + T 1−α(1 + T 2α)y−1
2 . (138)

The valuation of the critical points are

(vT (y1), vT (y2)) = ((1 − α)/2, (1 + α)/2) = u.

It is the same for 4 critical points. Then using the variables yi = yu
i we have

PO0 = T (1−α)/2(y2 + (1 + T 2α)y−1
2 ) + T (1+α)/2(y1 + y−1

1 y−2
2 ). (139)

(See Example 10.1.) (We remark vT (yi) = 0.) The critical point equation is

0 = 1 − y−2
1 y−2

2 . (140)

0 = 1 − 2Tαy−1
1 y−3

2 − (1 + T 2α)y−2
2 . (141)

This has 4 solution.



56 KENJI FUKAYA, YONG-GEUN OH, HIROSHI OHTA, KAORU ONO

The Hessian matrix of (139) is



T (1+α)/2(y1 + y−1
1 y−2

2 ) 2T (1+α)/2y−1
1 y−2

2

2T (1+α)/2y−1
1 y−2

2

T (1−α)/2(y2 + (1 + T 2α)(y−1
2 )

+ 4T (1+α)/2y−1
1 y−2

2




We can easily calculate the determinants of this matrix at the four solutions of
(140), (141). The determinants are 4T, 4T,−4T,−4T . (See [FOOO5] section 16 for
the detail of the calculation.)

The Hirzebruch suface F2(α) is symplectomorphic to S2(1−α)×S2(1−α), where
S2(1 − α) is the sphere S2 with total area 1 − α. This fact is proved in [FOOO6]
Proposition 5.1.

The quantum cohomology of S2(1−α)×S2(1−α) is generated by x, y that cor-
respond to the fundamental class of the factors S2(1−α) and S2(1+α) respectively.
The fundamental relations among them are

x2 = T 1−α1, y2 = T 1+α1, xy = yx.

We put

e± =
1

2
T−(1−α)/2(T (1−α)/2 ± x), f± =

1

2
T−(1+α)/2(T (1+α)/2 ± y).

Then e−f−, e−f+, e+f−, e+f+ are the units of the 4 direct product factors of
QH(S2(1 − α) × S2(1 + α); Λ). We have

∫

S2(1−α)×S2(1+α)

e−f−e−f− =
1

4T

Hence

〈e−f−, e−f−〉PDS2(1−α)×S2(1+α)
=

1

4T
.

We obtain −1/4T,−1/4T, 1/4T from e−f+, e+f−, e+f+ in the same way. Thus,
Theorem 12.16 holds in this case also.

Example 13.4. We take the monotone toric blow up of CP 2 at one point, whose
moment polytope is {(u1, u2) | 0 ≥ u1, u2, u1 + u2 ≤ 1, u1 ≤ 2/3}. Its unique
monotone fiber is u = (1/3, 1/3). We put y1 = yu

1 , y2 = yu
2 . Then the potential

function (for b = 0) is:

PO0 = T 1/3(y1 + y2 + (y1y2)
−1 + y−1

1 ). (142)

The condition for (y1, y2) to be critical gives rise to the equation

1 − y−2
1 y−1

2 − y−2
1 = 0, 1 − y1y

2
2 = 0. (143)

We put y2 = z. Then y1 = 1/z and

z4 + z3 − 1 = 0. (144)

By Theorem 12.13 (3) we have

Z(0, (y1, y2)) = T 2/3det

[
y1 + (y1y2)

−1 + y−1
1 (y1y2)

−1

(y1y2)
−1 y2 + (y1y2)

−1

]
= T 2/3 4 − z3

z
.
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Let zi (i = 1, 2, 3, 4) be the 4 solutions of (144). Then the left hand side of (118)
becomes:

T−2/3
4∑

i=1

zi

4 − z3
i

. (145)

We can directly check that (145)= 0. (See [FOOO5] Example 2.35.) Thus we
checked that Corollary 12.21 holds in this case.
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