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1. Introduction

In this paper we continue the investigations of [12] and [11] concerning existence

and compactness of the canonical solution operator to d on weighted L2-spaces
over C™.

Let ¢ : C* — R™* be a plurisubharmonic C2-weight function and define the
space

P(C) = {0 —C o [ [fFe i<

where A\ denotes the Lebesgue measure, the space L%o q)((C", ©) of (0, q)-forms with
coefficients in L2(C", ), for 1 < ¢ < n. Let

(f:9)e = | fge ?dA
Cn

denote the inner product and

112 = /@ FPe*

the norm in L?(C", ).
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We consider the weighted d-complex

n o n a n
L%O,q—l) ((C 790) j L?O,q) (C ’80) :) L%O,q-i—l)((c 790)a
2 2%

where for (0, ¢)-forms u = Zfﬂ:q wy dzy with coefficients in C§°(C™) we have

u=>» "' %dszdzJ,

L 5z,
[=q j=1
and
n
s , -
a@u: — E E 5kudezK,
|K|=q—1k=1
lé] lé]

Where 5k = ﬁ — B_Zi

There is an interesting connection between 0 and the theory of Schrédinger
operators with magnetic fields, see for example [5], [2], [8] and [6] for recent con-
tributions exploiting this point of view.

The complex Laplacian on (0, g)-forms is defined as

Uy =00, + 0,0,
where the symbol [, is to be understood as the maximal closure of the operator
initially defined on forms with coeflicients in C§°, i.e., the space of smooth functions

with compact support.
Oy, is a selfadjoint and positive operator, which means that

(B¢ f, f)e =0, for f e dom(0,).
The associated Dirichlet form is denoted by
Qu(f,9) = (0f,99)p + (T,1,0,9),, (1.1)

—*

for f,g € dom(9) N dom(d,,). The weighted 0-Neumann operator N, , is - if it
exists - the bounded inverse of [,.

We indicate that a (0,1)-form f = 2?21 f; dz; belongs to dom@;) if and

only if
(9492 ¢\ ¢ p2cn

and that forms with coefficients in C5°(C") are dense in dom(d) Ndom(d,,) in the
graph norm f — ([|9f 1% + [19,f]12)? (see [10]).

We consider the Levi - matrix

0%
Mo = <8Zjazk)jk
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of ¢ and suppose that the sum s, of any ¢ (equivalently: the smallest ¢) eigenvalues
of M, satisfies
liminf s,(z) > 0. (1.2)

|z| =00

We show that (2.2) implies that there exists a continuous linear operator
NQ/D : Oq)((cn’<p) —>L(Oq)((cn790)a
such that O, o Ny, qu = u, for any u € L? © q)(C",go)

If we suppose that that the sum s, of any ¢ (equivalently: the smallest ¢)
eigenvalues of M, satisfies
lim s,4(z) = cc. (1.3)

2| =00
Then the 0-Neumann operator N, : L%O7q)(C”, ) — L%O,q) (C™, ) is compact.
This generalizes results from [12] and [11], where the case of ¢ = 1 was
handled.
Finally we discuss some examples in C2.

2. The weighted Kohn-Morrey formula

First we compute
(Opu,u)p = [10ullf, + [9,ull?
for u € dom(0,).
We obtain

_ —x i X 6uJ auM _
[ull}, + 105l = D" D0 Y[ S e dA
|J|=IM|=q j.k=1 e Trg TRk

+ Z Z/ 5UJK(5]€’LL}CK€ Cd,

|K|=q—1j7,k=1

where EJJ =0ifjeJorke Morif kUM # jUJ, and equals the sign of

kM

the permutation (j J) otherwise. The right-hand side of the last formula can be

rewritten as

>3

[J|=q J=1

see [18] Proposition 2.4 for the details. Now we mention that for f,g € C5°(C™)
we have of
el — (6§
(82]9’9)@ (f7 k‘g)sﬂ
and hence

1o} - anK 8ukK o
({@,azk} UJKJLM()#7 < 9zs | 0z, >¢+(5JUJK757€UI€K)<P'

(9’(,6]

Ouji Ougr \ _
+ oy Z / (5 Uj K ORURK — 8z]k a—zj> e=? d),

¥ |K|=q—1 j,k=1
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Since
O P
j, 0z, o 8zj82k’
we get
— —% 8u] —
2 2 _
Oully, +10,ully, = z_: z:: o + 0y Z . 82]& UK T % dA.

¢ \K| =q—1 j,k=1
(2.1)
Formula (2.1) is a version of the Kohn -Morrey formula, compare [18] or [16].

Proposition 2.1. Let 1 < ¢ < n and suppose that the sum s, of any q (equivalently:
the smallest q) eigenvalues of My, satisfies
liminf s4(2) > 0. (2.2)

|z| =00
Then there exists a uniquely determined bounded linear operator
NSD q- L%O q)(cnv 90) - L%O,q)((cna Qa)a
such that O, 0 Ny, qu = u, for any u € L(o 2(C"0).

Proof. Let pip1 < ppo < -+ < iy denote the eigenvalues of M, and suppose
that M, is diagonalized. Then, in a suitable basis,

Z Z@za_ UjKUKK = Z ZN¢J|UJK|

|K|=q—1j,k=1 |K|=q—1 j=1
= Y e+ )
J:(jl»---vjq)
qu|u|2

It follows from (2.1) that there exists a constant C' > 0 such that
lully < CIoullf + 19 ull3) (2.3)
for each (0, ¢)-form u €dom (9) N dom (5;). For a given v € L%O)q)((C", ) consider

the linear functional L on dom (9) N dom (5:,) given by L(u) = (u,v),. Notice
that dom (9) N dom (5;) is a Hilbertspace in the inner product Q. Since we have
by 2.3
IL(w)] = |(u,0)g] < [lullg [0lle < CQp(u,u)? |0,

Hence by the Riesz reprentation theorem there exists a uniquely determined (0, ¢)-
form N, 4v such that

(4, ) = Qp(u, Ny qv) = (Ou, EN%QU)#7 + (5¢u,5¢N¢,qv)¢,
from which we immediately get that L, o N, qv = v, for any v € L%O,q) (C", ). If
we set u = N, 4v we get again from 2.3

||5N%qv||i + ng]\f%qvﬂi = Qp(Ny,qv, Ny,qv) = (Np,qv, )y < || Npgvlly [[v]le
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< Cl(”éN%qU”?o + ||5¢Nw¢qv||i)1/2 [Vl
hence
(HaN%qUHi + H@SDN%qui)l/Q < CQHUHCP
and finally again by 2.3
INg.qulle < Cs([ONg gvll2 + 118, No gv[12)% < Cul|v]|,

where C1,C5,C3,Cy > 0 are constants. Hence we get that N, 4 is a continuous
linear operator from L%O 0 (C", ) into itself (see also [13] or [4]). O

3. Compactness of N,

We use a characterization of precompact subsets of L2-spaces, see [1]:

A bounded subset A of L?(Q) is precompact in L?(2) if and only if for every
€ > 0 there exists a number § > 0 and a subset w CC € such that for every u € A
and h € R™ with |h| < ¢ both of the following inequalities hold:

() / |i(z 4+ h) — a(x)|?de < e, (i) / lu(x)|?dx < 2. (3.1)
Q oN\w
In addition we define an appropriate Sobolev space and prove compactness
of the corresponding embedding, for related settings see [3], [14], [15] .
Definition 3.1. Let
Wee ={ue L (C" ) = [19ull}, + [[8,ull? < oo}
with norm
lullq, = ([Bull? + 195ullZ)">.
Remark 3.2. Wg”) ¢ coincides with the form domain dom(d) N dom@;) of Q, (see
[9], [10]).

Proposition 3.3. Let ¢ be a plurisubharmonic C?- weight function. Let 1 < g < n
and suppose that the sum sq of any q (equivalently: the smallest q) eigenvalues of
M, satisfies
lim s4(z) = o0. (3.2)
|z|—o00

Then Ny g : L%&q)(C",(p) — L%O)q)((C”,gp) is compact.

Proof. For (0,q) forms one has by (2.1) and Proposition 2.1 that
Jul, + 1050l > [ s0(2) () = (). (33)

We indicate that the embedding
Jouq W;Qv - L?o,q) (C", )



6 F. Haslinger

is compact by showing that the unit ball of WqQ ¢ is a precompact subset of
L%O’q)((C", ©), which follows by the above mentioned characterization of precom-
pact subsets in L2- spaces with the help of Garding’s inequality to verify (3.1)
(i)(see for instance [7] or [4]) and to verify (3.1) (ii) : we have

2
u(z)Pe= ) dX(z) < / - sa(2)[u(z)] e~ ?FdA(2),
/(Cn\]BR| (2)] (2) Cr\Bg inf{s,(2) : |2| > R} (2)

which implies by (3.3) that

[[ull?,
lu(2)[2e=?) dA(2) < - 0 <e
/cn\mﬁ inf{s4(2) : |2| > R}

if R is big enough, see [11] for the details.
This together with the fact that N, , = j, 4075 ., (see [18]) gives the desired
result.

O

Remark 3.4. If ¢ = 1 condition (3.2) means that the lowest eigenvalue fi,, 1 of M,
satisfies
lim pg1(2) = oo. (3.4)

|z|—o00

This implies compactness of N, 1 (see [11]).

Examples: a) We consider the plurisubharmonic weight function ¢(z,w) =
|2|2|w|? + |w|* on C2. The Levi matrix of ¢ has the form

|wl|? Zw
wz  |2)? + 4|w|?

(5lwl? + |22 = VO] + 10]zP[wP +2[7)

and the eigenvalues are

DN =

:u%l(zv w) =

16]w|*
2 (5wl + |22 + /0wl + 10[Pul + [2F)

and

1
po2(zw) = 5 (5wl + |22 + VO] + 0[PP + 47
It follows that (3.4) fails, since even

lim |z|2/¢%1(z70) =0,

|z| =00
but
_1 — L 2
hence (3.2) is satisfied for ¢ = 2.
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b) In the next example we consider decoupled weights. Let n > 2 and

P21, 22,05 20) = (21) + @(22) + -+ p(2n)
be a plurisubharmonic decoupled weight function and suppose that |z¢|2Awe(2e) —
+00, as |z| — oo for some ¢ € {1,...,n}. Then the 0-Neumann operatorN,, ;
acting on L%0,1)(Cn7 ) fails to be compact (see [12], [9], [17]).

Finally we discuss two examples in C? : for ¢(z1, 22) = |21|> + |22|? all eigen-
values of the Levi matrix are 1 and N, ; fails to be compact by the above result
on decoupled weights, for the weightfunction ¢(z1, z2) = |21|* +|22|* the eigenval-
ues are 4]z1]? and 4]z22]? and N,,; fails to be compact again by the above result,
whereas N, 2 is compact by 3.3.
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