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HOLONOMY REDUCTIONS OF CARTAN GEOMETRIES

AND CURVED ORBIT DECOMPOSITIONS

A. ČAP, A.R. GOVER, M. HAMMERL

Abstract. We develop a holonomy reduction procedure for general
Cartan geometries. We show that, given a reduction of holonomy, the
underlying manifold naturally decomposes into a disjoint union of ini-
tial submanifolds. Each such submanifold corresponds to an orbit of
the holonomy group on the modelling homogeneous space and carries
a canonical induced Cartan geometry. The result can therefore be un-
derstood as a ‘curved orbit decomposition’. The theory is then applied
to the study of several invariant overdetermined differential equations
in projective, conformal and CR-geometry. This makes use of an equiv-
alent description of solutions to these equations as parallel sections of
a tractor bundle. In projective geometry we study a third order dif-
ferential equation that governs the existence of a compatible Einstein
metric. In CR-geometry we discuss an invariant equation that governs
the existence of a compatible Kähler-Einstein metric.

1. Introduction

In differential geometry great gains can be achieved when apparently unre-
lated structures are shown to be concretely linked. Well known examples
include: the Fefferman metric [Fef76] which associates to hypersurface type
CR geometries a uniquely determined conformal geometry in one greater
dimension; Poincaré-Einstein geometries [FG85], which realise a confor-
mal manifold as the boundary (at infinity in a suitable sense) for a neg-
ative Einstein Riemnannian manifold. Both structures have been the fo-
cus of considerable attention, cf. e.g. [GL91, Lee95, FG07, GQ10] and
[Lee86, Gra87, Bau99, NS03, ČG10]. More recently there has been excite-
ment surrounding the canonical association by Nurowski [Nur05] of confor-
mal geometries to certain distributional structures (generic 2 distributions in
dimension 5). These arise in the study certain ordinary differential equations
linked to Cartan’s 5-variable paper [Car10] and Bryant’s natural contruction
[Bry06] of a conformal split signature (3, 3)-structure from a given generic
rank 3 distribution, cf. also [LN11, HS09, HS11]. While the three different
constructions mentioned above appear at first sight to be unrelated, in fact
they may be viewed as special cases of a single phenomenon. Namely they
each can be understood as arising from a holonomy reduction of a certain
connection. The connection involved is not on the tangent bundle but is on
a prolonged structure, and is known as a Cartan connection.
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In Riemannian geometry the study and application of holonomy reduction
has a long history which includes Cartan’s classification of symmetric spaces
[Car26] and the de Rham decomposition theorem. The classification of pos-
sible holonomy groups of Riemannian and (torsion free) affine connections,
as well as the construction of geometries realising these groups, forms one of
the cornerstones of differential geometry [Ber53, Bry87, MS99, Bry00]. In
this setting the local geometric implications of a given holonomy reduction,
e.g. the existence of a compatible complex structure for a given Riemannian
metric, can be readily read off from the nature of the group arising since the
connections involved are on the tangent bundle. The notion of holonomy
easily generalises to principal connections on principal bundles, in which
case the holonomy group becomes a subgroup of the structure group of the
principal bundle and in this generality the Ambrose-Singer Theorem [AS53]
relates the holonomy group to the curvature form of the structure. In this
case also the local geometric implications of reductions are evident.

Recently there been considerable interest in understanding holonomy ques-
tions for those Cartan connections arising naturally in parabolic geometries;
the latter form a broad class of structures which includes conformal, CR, and
projective geometries as special cases. For the Cartan connections of pro-
jective and conformal structures the possible holonomy groups have been
studied, and partial classifications are available [Arm08b, Arm07, Lei05].
This aspect follows the treatment of principal connections. In contrast de-
termining the geometric implications of reduced holonomy in this setting is
far more subtle, since the connection which defines the holonomy lives on
a prolonged bundle. Prior to the current work there has been no general
approach for studying this problem. In cases where such geometric implica-
tions have been discussed, it was necessary to make certain non-degeneracy
assumptions, which means that typically they apply only to a dense open
subset of the original manifold. For instance, the conformal de’Rham theo-
rem discussed in [Arm07] and [Lei05] yields a decomposition of a conformal
structure with decomposoable holonomy on an open dense subset. Other
results in [Arm08a] show that reduced projective holonomy yields certain
geometric familiar structures on such subsets of the original manifold, like
certain contact, or complex projective structures. The complement of such
a non-degenerate open dense interior (when non-empty) carries geometric
structure itself, and an interesting aspect is how this relates to the ambi-
ent structure. A prominent case is that of Poincaré-Einstein metrics, which
correspond to a holonomy reduction of a conformal structure [Gov10]. Here
the open dense subset carries an Einstein metric, and the singularity set
forms a hypersurface with an induced conformal structure, that is the con-
formal infinity of the Einstein metric; the Poincaré-Einstein programme is
precisely concerned with relating the Einstein structure to the geoemtry of
the conformal hypersurface.

The purpose of this article is to develop a completely general approach to de-
termining the geometric implications of any specific holonomy reduction of a
Cartan connection. We find that the behaviour just described for Poincaré-
Einstein manifolds is typical, at least of the simplest cases. In broad terms,
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our results can be described as follows: Given a manifold equipped with a
Cartan connection we show that a holonomy reduction of this connection
determines a decomposition of the underlying manifold into a disjoint union
of initial submanifolds, so yielding a form of stratification. Each such sub-
manifold inherits a canonical geometry from the original data. What this
geometry is varies according to the type of strata; we show how to determine
this and key aspects of how it relates to the ambient structure. In many in-
teresting cases this yields an open dense piece which is canonically equipped
with an affine connection, and a stratification of the closed complement to
this piece, which in turn is endowed with geometric structure that may be
viewed as a “limit” of the structure on the distinguished open set. An im-
portant point here is that we treat all possible reductions of the connection,
not simply a reduction to the mimimal holonomy group. This means that
our results apply non-trivially to the homogenous model, and we show that
there the decomposition coincides with an orbit decomposition with respect
to the group arising in the reduction.

Remarkably, many of the nice properties of the orbit decomposition on the
homogeneous model carry over to the curved cases without essential changes,
so we call the decomposition a curved orbit decomposition in the general
case. This was first observed in the special case of almost Einstein scales
for conformal structures in [Gov10]. The basic tool to establish this in a
general setting is a comparison map between a curved geometry and the
homogenous model and we develop this here. (A version of this was intro-
duced for projective structures in our article [ČGH10].) This proves that
the curved orbits are always initial submanifolds. In addition each curved
orbit is then seen to carry a natural Cartan geometry of the same type as
the corresponding orbit on the homogeneous model.

To obtain more detailed information on the geometric structure of the curved
orbits it is necessary to study the relation between the curvature of the in-
duced Cartan subgeometry and the curvature of the original Cartan geom-
etry. This is illustrated by several examples.

Specialising to parabolic geometries there is a strong connection between
holonomy reductions, in the sense we treat here, and solutions to invariant
overdetermined linear partial differential equations. This is one of the key
motivations for our work. Parabolic geometries are canonically equipped
with such equations; they arise as the equations of the first operator in
certain invariant differential sequences known as Bernstein-Gelfand-Gelfand
(BGG) sequences [ČSS01, CD01]. These sequences have strong links to sym-
metry and representation theory; on the model they resolve finite dimension
representations and in the curved setting one such sequence controls de-
formation of structure and is connected with the existence of infinitesmal
automorphisms [Čap08]. As we shall explain, certain special solutions of
these “first BGG” equations are exactly equivalent to holonomy reductions
in our sense. Thus our results may be recast as describing the geometric
implications of the existence of such normal solutions. For example we can
show that the zero locus of such a solution cannot have worse singularities
on curved geometries than the zero loci of solutions on the homogeneous
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model. In fact related much finer data is available. This vastly generalises
the known results on the possible form of zero sets for twistor spinors and
Einstein rescalings, cf. e.g. [Fri90, BFGK90, Hab94, KR94, Gov10].

We now give a brief outline of the article: The main result will be developed
in section 2. There we begin with a short review of general Cartan geometries
in 2.1, but refer the interested reader to the extensive treatments of these
structures that can be found in [Sha97, ČS09]. We introduce the notion of
holonomy of a general Cartan geometry in 2.2 and then discuss how a given
holonomy reduction canonically induces a decomposition of the manifold
in 2.4. Our main theorem 2.6 describes the structure of the curved orbit
decomposition and the relations of the induced Cartan-subgeometries with
the ambient Cartan geometry. A particularly interesting area of applications
is formed by the solutions of BGG-equations and the study of their zero-
locus, and the general principles for this are outlined in 2.7. In section 3 we
study several concrete BGG-equations. We begin in 3.1 with a third order
differential equation that governs the existence of of an Einstein metric,
whose Levi–Civita connection is projectively equivalent to a given affine
torsion-free connection. In 3.3 we treat an equation on complex projective
structures whose solutions describe (almost) Kähler metrics on the manifold.
In section 3.4 we discuss how our general holonomy reduction results can
be applied to Fefferman-type constructions. The relation with the original
Fefferman-construction is discussed in detail. Finally we discuss the equation
governing almost Einstein scales in conformal geometry in 3.5 and give an
interesting analog of that equation in CR-geometry, 3.6.

2. Holonomy reductions of Cartan geometries

2.1. Cartan geometries. Let G be a Lie group and P ⊂ G a closed sub-
group. The Lie algebras of G and P will be denoted g and p, respectively.
We will always assume that P meets each connected component of G, so the
homogeneous space G/P is connected. Cartan geometries of type (G,P )
can be thought of as “curved analogs” of the G–homogeneous space G/P .

A Cartan geometry of type (G,P ) on a manifold M is a P -principal bundle
G → M endowed with a Cartan connection ω ∈ Ω1(G, g). Denote the
principal right action of g ∈ P on G by rg and the fundamental vector field
generated by Y ∈ p by ζY , i.e., ζY (u) =

d
dt |t=0

(u · exp(tY )). Then ω being a

Cartan connection means that the following three properties hold:

(C.1) ωu·p(Tur
pξ) = Ad(p−1)ωu(ξ) for all p ∈ P , u ∈ G, and ξ ∈ TuG.

(C.2) ω(ζY ) = Y for all Y ∈ p.
(C.3) ωu : TuG → g is a linear isomorphism for all u ∈ G.

The homogeneous model of Cartan geometries of type (G,P ) is the bundle
G → G/P with the left Maurer-Cartan form ωMC ∈ Ω1(G, g) as the Car-
tan connection. Indeed, the defining properties of a Cartan connection are
obvious weakenings of properties of the Maurer–Cartan form, which make
sense in the more general setting.
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The curvature K ∈ Ω2(G, g) of ω is defined by

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)],

which is exactly the failure of ω to satisfy the Maurer-Cartan equation. In
particular, the homogeneous model has vanishing curvature in this sense.
It is a basic fact of Cartan geometries that (G, ω) has vanishing curvature
if and only if it is locally isomorphic to the homogeneous model (G,ωMC).
It will sometimes be useful to work with the curvature function κ : G →
Λ2(g/p)∗ ⊗ g of ω, which is defined defined by

κ(u)(X,Y ) := K(ω−1
u (X), ω−1

u (Y ))(1)

for u ∈ G and X,Y ∈ g.

A Cartan geometry is called torsion–free if its curvature form K has values
in p ⊂ g, or equivalently if the curvature function satisfies κ(u)(X,Y ) ∈ p

for a all u ∈ G and X,Y ∈ g.

2.2. Holonomies of Cartan geometries and reductions. The classical
concept of holonomy can not be directly applied to a Cartan connection.
Since a Cartan connection ω restricts to a linear isomorphism on each tan-
gent space, there are no non–constant curves which are horizontal for ω in
the usual sense. There is a simple way, however, to connect to the clas-
sical concept. A Cartan connection ω ∈ Ω1(G, g) is easily seen to extend

canonically to a G–principal connection ω̂ ∈ Ω1(Ĝ, g) on the G–principal

bundle Ĝ := G ×P G. The extension is characterised by the fact that
i∗ω̂ = ω, where i : G → Ĝ is the obvious inclusion. Hence for any point
û ∈ Ĝ the holonomy group (based at u) of the G-principal connection ω̂ is
a subgroup Holû(ω̂) ⊂ G. If we forget about the choice of the point, we
obtain a conjugacy class of subgroups of G, which we denote by Hol(ω̂). We
simply define this to be the holonomy of the original Cartan connection,
i.e. Hol(ω) := Hol(ω̂).

If the holonomy Hol(ω) is not full, i.e., Hol(ω̂) ( G, the extended connec-
tion ω̂ can be reduced: For every closed subgroup H ⊂ G that contains
(any conjugate of the) holonomy group Hol(ω̂) there exists a reduction of

structure group H
j
→֒ Ĝ from G to H that preserves the connection. If M is

connected, then one simply chooses a point û ∈ Ĝ such that Holû(ω̂) ⊂ H
and defines H as the set of all points which can be written as c(1) · h for

some h ∈ H and some horizontal curve c : [0, 1] → Ĝ with c(0) = û. One im-
mediately verifies that this is a principal H–subbundle such that ω̂ restricts
to an H–principal connection on H; formulated in terms of the embedding
j, this says that

j∗ω̂ ∈ Ω1(H, h),

with h the Lie algebra of H. The holonomy group Hol(ω̂) is the smallest
subgroup of G to which the connection ω̂ can be reduced.

By standard theory, a reduction j : H →֒ Ĝ can be equivalently described
as a section of the associated fibre-bundle Ĝ ×G (G/H) = Ĝ/H. The second
description of this bundle shows that for any x ∈ M the fibre of H over x
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is mapped to a single point in the fibre of Ĝ ×G (G/H); this describes the

section corresponding to H. Conversely, the preimage of a section of Ĝ/H

under the natural projection Ĝ → Ĝ/H is an H–principal subbundle. Note
further that ω̂ induces a (non–linear) connection on the associated bundle

Ĝ ×G (G/H). It is easy to see that the section corresponding to j : H →֒ Ĝ
is parallel if and only if ω̂ restricts to an H–principal connection on H.

For our general definition in the setting of Cartan geometries, it will be very
useful to avoid having a distinguished base point. Hence we work with an
abstract G–homogeneous space O rather than with G/H. One can identify

G×P O with Ĝ×GO so this bundle carries a natural (non–linear) connection.

Definition 2.2. Let (G, ω) be a Cartan geometry of type (G,P ) and let
O be a homogeneous space of the group G. Then a holonomy reduction of
G–type O of the geometry (G, ω) is a parallel section of the bundle G ×P O.

Remark 2.2. We note here that our holonomy reductions need not be mini-
mal: the minimal holonomy reduction of (G, ω) is of type G/Hol(ω), which
reduces the structure group of the extended principal bundle connection ω̂
to Hol(ω̂). Whenever (G, ω) allows a holonomy reduction of type O = G/H
one necessarily has that Hol(ω) ⊂ H ⊂ G.

2.3. Parallel sections of tractor bundles and corresponding holo-

nomy reductions. For a G-representation V the associated bundle V =
Ĝ ×G V = G ×P V is a tractor bundle and the linear connection induced
by ω̂ is called its tractor connection. Sections of V can be identified with
G–equivariant smooth maps Ĝ → V , and such a map s : Ĝ → V corresponds
to a parallel section if and only if it is constant along any curve c : [0, 1] → G
which is horizontal in the sense that ω̂( d

dt
(c(t))) = 0.

Lemma 2.3. The image of the map s : Ĝ → V corresponding to a parallel
section of V over a connected manifold M is a G–orbit O ⊂ V .

Proof. Since M is assumed to be connected we can take a smooth curve
joining two given points x, x′ ∈M and lift it to a horizontal curve c : [0, 1] →

Ĝ. By the usual formula for an associated connection, s has to be constant
along c, so s(u) = s(u′) ∈ V , where u := c(0) ∈ Ĝx and u′ := c(1) ∈ Ĝx′ .

By G–equivariancy s(Ĝx) coincides with the G–orbit of s(u), and the same

is true for s(Ĝx′). �

Hence any parallel section of V canonically determines a G–orbit O ⊂ V ,
which we will refer to as its G–type. Of course, G ×P O is then a subbundle
of V and this inclusion is compatible with the natural connections. Thus a
parallel section of V of G-type O is the same as a holonomy reduction of
(G, ω) of this G–type.

2.4. The canonical P -type decomposition induced by a holonomy

reduction. So far our description of holonomy reductions did not take into
account that the principal G-bundle Ĝ is the extended bundle of the Cartan
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bundle G. Since Ĝ = G ×P G is the quotient of G ×G by the P -right action

(u, g) · p = (up, p−1g), u ∈ G, g ∈ G, p ∈ P,

there is a canonical embedding G →֒ Ĝ which maps u ∈ G to (u, e) · P ∈

Ĝ. This canonical P -subbundle subbundle of Ĝ gives rise to a pointwise
invariant that is specific to holonomy reductions of Cartan geometries:

Definition 2.4. Let (G → M,ω) be a Cartan geometry of type (G,P )

together with a holonomy reduction of type O described by s : Ĝ → O.
Then for a a point x ∈ M the P–type of x with respect to s is the P -orbit
s(Gx) ⊂ O.

We denote by P\O the set of P–orbits in O. Then for a Cartan geome-
try (G → M,ω) endowed with a holonomy reduction of type O, the base
manifold M decomposes into a disjoint union according to P–type as

M =
⋃

i∈P\O

Mi.

We term the components Mi curved orbits for a reason that will shortly be
obvious.

2.5. The P -type decomposition of the homogeneous model. We now
study the P -type decomposition on the homogeneous model for a given
holonomy reduction of G/P of type O. The extended bundle Ĝ = G ×P G
can be canonically trivialised via

G/P ×G→ G×P G

(gP, g′) 7→ [g, g−1g′]P .(2)

Using this, the G-equivariant map s : Ĝ → O defining a holonomy reduction
corresponds to a smooth map G/P × G → O, which by G–equivariancy
is determined by its restriction to (G/P ) × {e}. Moreover, the extended
principal connection ω̂ in this case is just the flat connection coming from
this trivialisation. In particular, any curve c : [0, 1] → G/P × G of the
form c(t) = (c̄(t), e) is horizontal, so the map s : G/P × G → O has to
be given by s(gP, g′) = (g′)−1 · α for some fixed element α ∈ O. Fixing a
holonomy reduction of G/P (of type O) thus amounts to fixing an element
α = s(eP, e) ∈ O, and we denote H = Gα ⊂ G the isotropy group of this
element. In particular, we can then identify O with G/H.

To determine the P -type of x = gP ∈ G/P with respect to s, we observe that

in the trivialisation (2) the fibre GgP ⊂ ĜgP = {gP}×G is just {gP}×{gb :
b ∈ P}. It follows by equivariancy that s(Gx) is the P–orbit Pg

−1 ·s(eP, e) =
Pg−1H ∈ P\G/H = P\O. The map G/P → P\O which sends each point
to its P–type thus factories to a bijection

H\G/P → P\O = P\G/H,(3)

HgP 7→ Pg−1H

of double coset spaces, compare with Proposition 2.13 of [ČGH10].



8 A. ČAP, A.R. GOVER, M. HAMMERL

This shows that for M = G/P , we get MPg−1H = HgP/P = H · (gP/P ) ⊂
G/P . Hence the decomposition of G/P according to P–type with respect
to the holonomy reduction determined by α ∈ O coincides with the decom-
position of G/P into orbits under the action of the subgroup H = Gα ⊂ G.
Now it is clear that each of the H-orbits naturally shows up as the homoge-
neous homogeneous model of a Cartan geometry. The stabiliser of a point
gP ∈ G/P in H of course is H∩gPg−1 and hence HgP ∼= H/(H∩gPg−1) ∼=
(g−1Hg)/(g−1Hg ∩ P ).

Remark 2.5. It looks as if there were many different holonomy reductions
of type O of the homogeneous model. This is true, but they are all related
by the action of G. For our purposes, the main difference between these
reductions is the P–type the origin eP ∈ G/P . Up to G–action, there is
only one holonomy reduction of type O of G/P , whence we will talk about
the model of holonomy reductions of type O.

2.6. Curved orbit decomposition and induced Cartan geometries.

Consider aG–homogeneous spaceO and two elements α, α′ ∈ O. If α′ = g·α,
then the stabilisers are conjugate, so Gα′ = gGαg

−1. If we in addition
assume that α and α′ lie in the same P–orbit inO, then we can choose g ∈ P ,
and thus gPg−1 = P . Consequently, putting Pα := Gα ∩ P and likewise for
α′, we see that Pα′ = gPαg

−1. Thus we see that (Gα, Pα) is isomorphic to
(Gα′ , Pα′) as pair of a group endowed with a distinguished subgroup. In
the formulation of our main result below, given a P–orbit i ∈ P\O, we will
denote by (Hi, Pi) an abstract representative of this isomorphism class of
groups with a distinguished subgroup.

Theorem 2.6. Let (G, ω) be a Cartan geometry of type (G,P ) which is
endowed with a holonomy reduction of type O. Consider a P–orbit i ∈ P\O
such that the curved orbit Mi is non–empty, and consider the corresponding
groups Pi ⊂ Hi as discussed above. Then

(i) Choose a representative α ∈ O for the Orbit i, let Gα ∈ G be its sta-
biliser and consider the holonomy reduction of the homogeneous model
G/P determined by α as in Section 2.5. Then for each x ∈ Mi there
exist neighbourhoods N of x in M , and N ′ of eP in G/P and a diffeo-
morphism ϕ : N → N ′ with ϕ(x) = eP and ϕ(Mi∩N) = (Gα ·eP )∩N

′.
In particular, Mi is an initial submanifold of M .

(ii) Mi carries a canonical Cartan geometry (Gi →Mi, ωi) of type (Hi, Pi).
Choosing a representative α for i ∈ P\O as in (i) and identifying

(Hi, Pi) with (Gα, Pα), we obtain an embedding of principal bundles
jα : Gi → G|Mi

such that j∗αω = ωi. Thus (Gi, ωi) can be realized as a
Pα–subbundle in G|Mi

on which ω restricts to a Cartan connection of
type (Gα, Pα).

(iii) For the embedding jα from (ii), the curvatures K of ω and Ki of ωi

are related as

Ki = j∗αK.

In particular, if ω is torsion free, so is ωi.
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Likewise, let κ and κi denote, respectively, the curvature functions
of the two Cartan connections. Then κ(jα(u)) maps Λ2(gα/(gα ∩ p) to
gα and its restriction to this subspace coincides with κi(u).

The proof of the theorem is based on the following comparison method.

Lemma 2.6 (Comparison). Let (p : G → M,ω) and (p′ : G′ → M ′, ω′) be
Cartan geometries of type (G,P ) that are endowed with holonomy reductions

of type O described by s : Ĝ → O, respectively s′ : Ĝ′ → O. Assume that
for some α ∈ O with P–orbit ᾱ ∈ P\O both curved orbits Mᾱ and M ′

ᾱ are
non–empty. Then for points x ∈Mᾱ and x′ ∈Mᾱ we obtain:

• A diffeomorphism φ : N → N ′ from an open neighbourhood of x in
M to an open neighbourhood of x′ in M ′ such that φ(x) = x′.

• A P -equivariant diffeomorphism Φ : p−1(N) → (p′)−1(N ′) which
covers φ and satisfies

s′ ◦ Φ = s.(4)

In particular, it follows that

φ(Mi ∩N) =M ′
i ∩N

′(5)

for all i ∈ P\O.

We remark that some of the intersections Mi ∩N may be empty.

Proof of lemma 2.6. The proof is based on an adapted version of normal
coordinates for Cartan geometries: For this we fix a linear subspace g− ⊂ g

which is complementary to the subspace p ⊂ g. For X ∈ g−, we denote by
X̃ ∈ X(G) the vector field characterised by ω(X̃) = X. Next, take a point

u ∈ Gx such that s(u) = α, and consider the flow FlX̃1 (u) of X̃ starting in u
up to time 1. This is defined for X in a neighbourhood W of zero in g− and,

possibly shrinking W , Ψ(X) := FlX̃1 (u) defines a smooth map W → G such
that ψ := p ◦ Ψ is a diffeomorphism from W onto an open neighbourhood
N of x = p(u) in M . These are the local normal coordinates around x
determined by u.

Next, we define a local section τ : N → G by τ(ψ(X)) := Ψ(X), and an

adapted local section τ̂ : N → Ĝ by τ̂(ψ(X)) := Ψ(X) · exp(−X).

Then τ̂ has the property that for fixed X ∈ g− the curve c defined by

c(t) := τ̂(ψ(tX)) = Ψ(tX) · exp(tX) = FlXt (u) · exp(−tX)

(for sufficiently small t) is horizontal for the principal connection ω̂. Indeed,
we have

ω̂(c′(t)) = Ad(exp(tX))X −X = 0.

But since s : Ĝ → O is constant along horizontal curves we conclude that
for X ∈W we get

α = s(c(0)) = s(c(1)) = s(τ̂(X)) = s(Ψ(X) · exp(−X)),

and by G-equivariancy, we obtain

(6) s(Ψ(X)) = exp(−X) · α.
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Now we can perform the same construction for (p′ : G′ → M ′, ω′) and a
point u′ ∈ G′

x′ such that s′(u′) = α. Shrinking the neighbourhoods of zero
in g− appropriately, we may assume that W ′ =W , and put φ := ψ′ ◦ ψ−1 :
N → N ′, so φ(x) = x′. Further there evidently is a unique P -equivariant
diffeomorphism Φ : p−1(N) → (p′)−1(N ′) such that Φ ◦ τ = τ ′ and by
construction, this covers φ.

Since s′(Ψ′(X)) = exp(−X) ·α = s(Ψ(X)) one immediately obtains (4). For
the last claim, recall that by definition y ∈Mi is equivalent to the fact that
s(Gy) is the orbit i. For v ∈ Gy put v′ = Φ(v) ∈ G′

ϕ(y) we then have by (4)

that s′(v′) = s(v) and therefore y and ϕ(y) have the same P–type. �

Proof of theorem 2.6. We choose a representative α for the orbit i ∈ P\O
and apply Lemma 2.6 to the case where M ′ = G/P is the homogeneous
model of type (G,P ) with the holonomy reduction determined by α ∈ O,
so eP ∈ M ′

i . Let φ : N → N ′, Φ : p−1(N) → (π′)−1(N ′) be the maps
constructed in the lemma for the given point x ∈Mi and x

′ = eP ∈ (G/P )i.

Claim (i) immediately follows from the fact the (G/P )ᾱ = Gα · eP ⊂ G/P
is a Gα-orbit (recall (3)) and formula (5). The fact that orbits are initial
submanifolds is well known, see e.g. Theorem 5.14 in [KMS93].

To prove (ii), observe first that via the inclusion j : Mi →֒ M , we can pull

back G and Ĝ to a principal P–bundle respectively a principal G–bundle
over Mi. In view of the discussion in 2.2, the reduction of Ĝ determined by
s can be described as the pre–image Ĝα = s−1(α) ⊂ Ĝ, and we define

Gα := j∗(Ĝα) ∩ j
∗G.

We claim that this is a principal bundle with structure group Pα = Gα ∩ P
over Mi. This is again proved by comparison to the homogeneous model
M ′ = G/P and its holonomy reduction determined by α: In Lemma 2.6
we (locally) constructed a P -bundle map Φ : p−1(N) → (p′)−1(N ′) such
that s′ ◦ Φ = s. Hence it clearly suffices to prove that G′

α is a Pα–principal
subbundle over M ′

ᾱ.

But on the homogeneous model we can use the trivialisation Ĝ′ = G×P G ∼=
(G/P ) × G, and there we simply have Ĝ′

α = (G/P ) × Gα. Therefore

(j′)∗(Ĝ′
α) = (Gα/Pα)×Gα and (j′)∗(Ĝ′

α) ∩ (j′)∗G′ = (Gα/Pα)× Pα. In par-

ticular this shows that the intersection (j′)∗(Ĝ′
α)∩ (j′)∗G′ is a Pα-subbundle

of the P -bundle (j′)∗G′ over M ′
ᾱ = Gα · eP .

Therefore also Gα is an Pα–principal subbundle of j∗G over Mi. We next
claim that j∗ω defines a Cartan connection of type (Gα, Pα) on Gα. For

this, first note that the extended G-principal connection form ω̂ ∈ Ω1(Ĝ, g)

has values in gα on Ĝα, and in particular (ωα)u(TuGα) ⊂ gα for all u ∈ Gα.
But since (j∗ω)u is injective on Tu(j

∗G) a simple counting of dimensions
shows that (j∗ω)u : TuGα → gα is a linear isomorphism, which yields (C.3).
The necessary equivariance (C.1) and reproduction (C.2) properties follow
immediately from those of ω by restriction.



HOLONOMY OF CARTAN GEOMETRIES 11

Now let b ∈ P and α′ = b ·α be another point in P ·α = i ∈ P\O. We know
that Gα and Gα′ are principal subbundles of G with structure group Pα and
Pα′ , respectively to which ω ∈ Ω1(G, g) restricts nicely. Then one immedi-

ately checks that the restriction of the principal right action rb
−1

induces
an isomorphism between the two principal subbundles (which is equivariant
over the isomorphism Pα

∼= Pα′ induced by conjugation). Equivariancy of ω
further implies that this isomorphism is compatible with the induced Cartan
connections (where we identify gα and gα′ via the isomorphism induced by
Ad(b−1)). Hence we can view the result of our construction as a canonical
Cartan geometry (Gi →Mi, ωi) together with an inclusion jα induced by the
choice of a representative α of i ∈ P\O as claimed in (ii), which completes
the proof of this part.

The first part of (iii) then follows immediately from the definition of the
Cartan curvature K = dω + 1

2 [ω, ω] of ω and pullback via jα, while the
second part is just the obvious restatement of this in terms of the curvature
functions. �

2.7. Parabolic geometries and normal solutions of BGG equations.

We now consider special holonomy reductions for Cartan geometries of type
(G,P ) with G a semisimple Lie group and P ⊂ G a parabolic subgroup. In
this case the Lie algebra g has a natural grading

g = g−k ⊕ · · · ⊕ g−1
︸ ︷︷ ︸

g−

⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk
︸ ︷︷ ︸

p

,

such that g−1 generates g−. This class of Cartan geometries is particu-
larly interesting from several points of view. First the class includes many
structures already studied intensively, such as conformal geometry and (hy-
persurface type) CR geometry. Second, for every structure in the class one
has canonical regularity and normality conditions on the Cartan connection
ω which lead to Cartan geometries which are equivalent (in a categorical
sense) to underlying geometric structures. Finally via the canonical Cartan
connection and related calculus the structures in the class admit the applica-
tion of efficient tools from representation theory to geometric problems; the
relevant representation theory is far from trivial, but is very well studied.
For extensive background on this class of geometries we refer to [ČS09].

For a parabolic geometry of type (G,P ), [ČSS01] introduced a construction
for a natural sequence of linear differential operators that was then simplified
in [CD01]. For each tractor bundle V = G ×P V , with V irreducible for G,
one obtains the generalised BGG-sequence

Γ(H0)
ΘV

0→ Γ(H1)
ΘV

1→ · · ·
ΘV

n−2

→ Γ(Hn−1)
ΘV

n−1

→ Γ(Hn).

Here each Hk is a certain subquotient bundle of the bundle ΛkT ∗M ⊗ V of
V–valued k–forms, and each ΘV

i is a linear differential operator intrinsic to
the given geometry.

We are mainly interested in the operator ΘV
0 , which defines an overdeter-

mined system and is closely related to the tractor connection ∇ on V . The
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parabolic subgroup P ⊂ G determines a filtration on V by P–invariant sub-
spaces. We only need the largest non–trivial filtration component V 0 ⊂ V .
ThenH0 is simply the quotient of V/V0, and we denote by Π : Γ(V) → Γ(H0)
the natural projection.

It turns out that the bundle map Π can be used to identify parallel sections
of V , with special solutions of the first BGG operator ΘV

0 , which are then
called normal solutions. More precisely, one has:

Theorem 2.7. [ČSS01] Let V be a G-irreducible tractor bundle on M . The
the bundle map Π induces an injection from the space of parallel sections of
V to a subspace of Γ(H0) which is contained in the kernel of the first BGG
operator

ΘV
0 : Γ(H0) → Γ(H1).

Let U ⊂ V be a P–invariant subspace. Then the associated bundle U is a
subbundle of V . For a normal solution σ of ΘV

0 let s ∈ Γ(V) be the parallel
section such that Π(s) = σ. Define ZU (σ) := {x ∈M : s(x) ∈ Ux ⊂ Vx}. Of
course, this is just the zero set of the section of V/U obtained by projecting
s to the quotient. Note that for U = V 0 ⊂ V , the largest proper filtration

component, we get ZV 0

(σ) = Z(σ), the zero set of σ. For other proper
filtration components U ⊂ V we have U ⊂ V 0 and hence ZU (σ) ⊂ Z(σ)
can be viewed as a space of “higher order zeros” of σ. This point of view
can be made precise using the fact that s can be described as the image of
σ under a linear differential operator [ČSS01, CD01]. More generally, for

P–invariant subspaces U ⊂ U ′ ⊂ V one has ZU (σ) ⊂ ZU ′

(σ). This typically
yields a stratification of the zero set of σ, examples of which were given in
[ČGH10].

The parallel section s of V gives rise to a holonomy reduction of type O
for some G–orbit O ⊂ V , called the G–type of s. We will also refer to the
orbit O ⊂ V as the G-type of the normal solution σ = Π(s). According to
Definition 2.4 the holonomy reduction provides a curved orbit decomposition
M =

⋃

i∈P\O

Mi. We will also refer to the P–type of x ∈ M as the P–type

with respect to σ. For a P–invariant subspace U ⊂ V , the subspace U ∩ O
is P–invariant, so it is a union of P–orbits. Clearly, we have

(7) ZU (σ) =
⋃

i∈P\(U∩O)

Mi.

As for holonomy reductions, we can describe all normal solutions on the
homogeneous model G/P for some given G–type O ⊂ V : For any element
v ∈ O, the P–equivariant function G → V defined by g 7→ g−1v defines a
parallel section of V . Via the trivialisation Ĝ = G ×P G ∼= G/P × G it is
easy to see that every parallel section of V is obtained in that way, and it
turns out that the space of parallel sections surjects onto the kernel of ΘV

0

on the homogeneous model, i.e. all solutions are normal in this case.

Our results on curved orbit decompositions now easily imply that locally, all
possible forms of the sets ZU (σ) ⊂M already show up on the homogeneous
model G/P .
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Proposition 2.7. Let σ be a normal solution of ΘV
0 on (G → M,ω) of G-

type O ⊂ V and let x ∈M be any point. Then there is a (normal) solution σ′

on (G→ G/P, ωMC) for which eP ∈ G/P has the same P–type with respect
to σ′ that x has with respect to σ. Further, there are open neighbourhoods N
of x in M an N ′ of eP in G/P and there is a diffeomorphism ϕ : N → N ′,
such that ϕ(x) = ϕ(x′) and ϕ(ZU (σ)∩N) = ZU (σ′)∩N ′ for any P–invariant
subspace U ⊂ V .

Proof. Consider the equivariant function s : G → V corresponding to the
parallel section of V which induces σ. Choose a point u ∈ Gx and put
v = s(u) ∈ O. Let σ′ be the normal solution on G/P determined by the
function g 7→ g−1 · v, the claim about P–types follows. Then the result
follows immediately from theorem 2.6, since the set ZU (σ) is a union of
curved orbits in M , while ZU (σ′) is the union of the corresponding orbits
in G/P . �

3. Examples and applications

3.1. Metrics on the projective standard tractor bundle. Let (M, [D])
be an oriented smooth n-manifold endowed with a projective equivalence
class of torsion-free affine connections. Hence the equivalence class of D
consists of all those torsion-free affine connections which have the same
geodesics as D up to parametrization. It is well known that D and D̂ are
projectively equivalent if and only if there is a 1–form Υ such that

D̂aϕb = Daϕb +Υaϕb +Υbϕa

for all ϕ ∈ Ω1(M), see e.g. [Eas08], also for the notation.

An oriented projective structure can be equivalently described as a Cartan
geometry (G, ω) of type (G,P ), where G = SL(n + 1,R) and P ⊂ G is the
stabiliser of a ray R+X ∈ Rn+1. In particular, the homogeneous model is
the projective n–sphere Sn, which is a 2-fold covering of projective n–space
RPn. The bundle associated to the standard representation of SL(n+ 1) is
the standard tractor bundle T = G ×P Rn+1. The ray stabilised by P gives
rise to a canonical oriented line subbundle E(−1) ⊂ T , whose sections are
referred to as projective (−1)–densities.

The holonomy reduction we are interested in has been studied in section 3.3
of [ČGH10], and we consider it both for comparison and for the purpose of
motivation. Namely, we want to consider the case that T is endowed with
a parallel non–degenerate metric. This can be viewed as a parallel section
of S2T ∗, which as discussed in 2.3 has a G–type. Linear algebra shows that
the decomposition of S2Rn+1∗ into orbits of SL(n+ 1) is described by rank
and signature. Since we assume our metric to be non–degenerate, O consists
of all inner products on Rn+1 which have some fixed signature (p, q) with
p + q = n + 1. As shown in 2.3, a parallel tractor metric is the same as a
holonomy reduction of (G, ω) of type O.
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Theorem 3.1. Let (M, [D]) be a projective structure endowed with a holo-
nomy reduction of type O given by a parallel metric h of signature (p, q) on
the standard tractor bundle T .

(1) The metric h determines a normal solution σ of the first BGG operator
acting on the line bundle E(2) of all metrics on E(−1) ⊂ T .

(2) The curved orbit decomposition has the form M =M+∪M0∪M−, where
M± ⊂M are open and M0 coincides with Z(σ) and (if non–empty) consists
of embedded hypersurfaces.

(3) The induced Cartan geometry on M+ (respectively M−) is given by a
pseudo–Riemannian metric g± of signature (p−1, q) (respectively (p, q−1))
whose Levi–Civita connection lies in the projective class.

(4) If M0 is non–empty then it naturally inherits a conformal structure of
signature (p− 1, q − 1) via the induced Cartan geometry.

Proof. The spaceO splits into P -orbits asO = O+∪O0∪O− according to the
restriction of an inner product to the distinguished ray R+X ∈ Rn+1. On the
homogeneous model Sn = G/P , a parallel section of S2T ∗ is determined by

an element of S2R(n+1)∗, so for the givenG–type, this is just an inner product
〈 , 〉 of signature (p, q) on Rn+1. It is easy to see (compare with section
3.3 of [ČGH10]) that the corresponding normal solution is the projective
polynomial on Sn induced by the homogeneous polynomial 〈x, x〉 of degree
two. In particular, the zero set of this polynomial is a smooth embedded
hypersurface and coincides with (Sn)0. Via Theorems 2.6 and 2.7 this carries
over to the curved case, which proves (1) and (2).

Hence we turn to the induced Cartan geometries on the curved orbits. Ac-
cording to Theorem 2.6 they have type (H,H ∩P ), where H is the stabiliser
of some element in the orbit in question. Let us start with the case h+ ∈ O+,
i.e. h+(X,X) > 0. Then of course H = Gh+

is isomorphic to SO(p, q) and
H ∩ P is the stabiliser of a positive ray. But elements of H preserve norms,
so any element of H∩P has to preserve any vector in the positive ray. Hence
H ∩ P is the isotropy group HX

∼= SO(p− 1, q) of a unit vector. A Cartan
geometry of type (SO(p, q), SO(p − 1, q)) is well known to be equivalent to
a pseudo–Riemannian metric of signature (p − 1, q) together with a metric
connection, see sections 1.1.1 and 1.1.2 of [ČS09]. Since the canonical Cartan
connection associated to a projective structure is always torsion free, part
(iii) of Theorem 2.6 implies that the induced Cartan geometries are torsion
free. Hence in each case the corresponding metric connection in question
is torsion free, and hence is the Levi-Civita connection. Since the induced
Cartan geometries are simply obtained by restricting the projective Cartan
connection, it follows that this Levi-Civita connection lies in the projective
class. The description of O− is completely parallel, so the proof of (3) is
complete.

(4): Here we again haveH ∼= SO(p, q), butH∩P ⊂ H now is the stabiliser of
an isotropic ray in the standard representation. This is a parabolic subgroup
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P of SO(p, q) and Cartan geometries of this type correspond to pseudo–
Riemannian conformal structures of signature (p− 1, q− 1), see also section
3.4 below. �

3.2. Consequences of normality. Most of the analysis of a parallel met-
ric on the projective standard tractor bundle in 3.1 is valid for an arbitrary
Cartan geometry of type (SL(n+1), P ). Only in the last part we used that
torsion freeness of the Cartan geometry implies that the induced Cartan ge-
ometries on the open orbits produce Levi-Civita connections of the induced
metric, and not just any metric connection. In the next step, we will use
the fact that we are dealing with the normal Cartan geometries associated
to the underlying projective structure, so an additional normalisation con-
dition on the Cartan curvature K ∈ Ω2(G, sl(n + 1)), respectively on the
corresponding curvature function κ : G → Λ2(g/p)∗ ⊗ g is available.

This normalisation condition on the one hand requires ω to be torsion free,
i.e., κ to have values in Λ2(g/p)∗ ⊗ p. Then for X1, X2 ∈ g/p and Y ∈ p ⊂
sl(n + 1) we have that [κ(u)(X1, X2), Y ] ∈ p, and therefore κ(u)(X1, X2)
factors to a linear map κ0(u)(X1, X2) : g/p → g/p. Via the identification
g/p ∼= Rn we can view κ0(u) as an element of Λ2Rn∗ ⊗ L(Rn,Rn). Now the
second part of the normalisation condition on ω implies that κ0 is completely
trace-free. This says that κ0(u) ∈ Λ2Rn∗ ⊗ sl(Rn) and also the Ricci-type
contraction of κ0(u) vanishes, i.e.,

tr(W 7→ κ0(u)(W,Y )Z) = 0

for all Y, Z ∈ Rn. Now we can analyse the consequences for the induced
Cartan geometries.

Proposition 3.2. (1) If the open orbitM+ (respectivelyM−) is non–empty,
then the induced metric g+ (respectively g−) is Einstein with positive (re-
spectively negative) Einstein constant, i.e. Ric(g+) is positive multiple of g+
while Ric(g−) is a negative multiple of g−.

(2) If the closed curved orbit M0 is non–empty, then the induced Cartan
geometry of type (SO(p, q), P ) is normal.

Proof. (1) We consider the case of M+ and indicate the necessary changes
for M− in the end. Throughout the proof, we work in a point u ∈ G which
is contained in the reduced Cartan subbundle. Since we are dealing with an
open orbit we get h/(h ∩ p) ∼= g/p, so part (iii) of theorem 2.6 shows that
the value κ(u) of the curvature function κ of ω coincides with the value of
the curvature function of the induced Cartan connection. This also shows
that torsion freeness of ω implies that κ(u) ∈ Λ2Rn∗ ⊗ h.

Since T is associated to a principal SL(n + 1,R)–bundle, it has a distin-
guished volume form, and rescaling the tractor metric by a constant, we
may assume that orthonormal bases have unit volume. We can thus work
in matrix representations with respect to orthonormal bases. Then so(p, q)
has the form

{(
0 −Y tIp−1,q

Y A

)

: Y ∈ Rn, A ∈ so(p− 1, q)

}

,
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where Ip−1,q is diagonal with p − 1 entries equal to 1 and q entries equal
to −1. Since the subspaces Rn and so(p − 1, q) in h are invariant under
SO(p−1, q), the components of the Cartan connection in the two subspaces
are individually equivariant. The Rn–component θ defines a soldering form
on the bundle which is used to carry over the inner product 〈 , 〉 on Rn

corresponding to Ip−1,q to the metric g+ on the tangent spaces of M+. The
so(p − 1, q)–component γ is a principal connection, which induces a metric
connection on the tangent bundle, and by torsion freeness, this is the Levi–
Civita connection of g+.

From the definition of the curvature of a Cartan connection it follows that
the curvature K+ of the induced Cartan connection is given by

(8) K+(u)(ξ, η) = R(u)(ξ, η) + [θ(ξ), θ(η)],

where R is the curvature of γ, and hence the Riemann curvature, and the last
bracket is in so(p, q). Now one immediately computes that for Y1, Y2, Z ∈
Rn ⊂ h, we get

(9) [[Y1, Y2], Z] = 〈Y1, Z〉Y2 − 〈Y2, Z〉Y1

Using this, one easily calculates that the Ricci type contraction of Y1, Y2 7→
[Y1, Y2] is given by −(n−1) times the inner product 〈 , 〉. Since the left hand
side of (8) has vanishing Ricci type contraction by normality, we conclude
that the Ricci type contraction Ric(g+) of R equals (n − 1)g+, so g+ is
positive Einstein.

In the case of M−, the first basis vector used to define the matrix represen-
tation must be chosen to be negative. But then the entries of a matrix in
Rn ⊂ so(p, q) must be Y and Y tIp,q−1. This causes a sign change in for-
mula (9) and hence in the Ricci–type contraction, so on obtains Ric(g−) =
−(n− 1)g−.

(2) Again we work in a point u ∈ G which lies in the reduced Cartan bundle
over the curved orbit, which means that we work in a basis for Tx, which
is adapted to the tractor metric. We choose this basis in such a way that
the first basis vector X spans the distinguished line (which is isotropic for
the tractor metric in this point), the last basis vector is isotropic and pairs
to one with X under the tractor metric. Then we choose an orthonormal
basis for the orthocomplement of the plane spanned by these two vectors to
complete our basis. The normalisation condition on the projective Cartan
curvature implies torsion freeness and that its g0–component has values in
sl(n). Moreover, it has to be skew symmetric with respect to the tractor
metric, so altogether it must be of the form

(10) κ(ξ, η) =





0 Z(ξ, η) 0
0 A(ξ, η) −I(Z(ξ, η))t

0 0 0



 .

Here the blocks are of size 1, n − 1, and 1 and I = Ip−1,q−1. Finally the
normalisation condition tells us, that the Ricci type contraction over the
lower right n × n–block has to vanish. This coincides with the Ricci type
contraction of A taken over X⊥/RX.
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Now we know that restricted to the tangent space of the reduced Cartan
bundle, the projective Cartan connection restricts to the reduced Cartan
connection. In particular, its soldering form must have values in X⊥/RX,
so this corresponds to h/(h ∩ p) ⊂ g/p and thus represents the tangent
spaces to M0. Moreover, by part (iii) of Theorem 2.6, (10) coincides with
the curvature of the reduced Cartan connection. Since the normalisation
condition on a conformal Cartan connection is torsion freeness plus vanishing
of the Ricci–type contraction of the g0–component of the curvature function
(which is represented by A(ξ, η)), normality of the induced Cartan geometry
follows. �

3.3. Hermitian metrics on complex projective standard tractors.

There is an almost complex version of metrics on the projective standard
tractor bundle. This is significantly more complicated than the real version
in several respects. Therefore, we will only derive some basic facts here, and
study it in more detail elsewhere.

Almost complex classical projective structures can be equivalently described
as parabolic geometries of type (G,P ), where G = SL(n+1,C) and P ⊂ G
is the stabiliser of a line in the standard representation Cn+1 of G. However,
G and P are viewed as real Lie groups and likewise one has to consider their
Lie algebras as real Lie algebras. Doing this, one obtains a geometry which
is much more general than just the obvious holomorphic analog of a classical
projective structure. As far as we know, the general theory of this geometry
is not developed in detail in the literature, a brief account can be found in
section 4.6 of [Čap05].

Explicitly, one has to consider manifolds M of real dimension 2n endowed
with an almost complex structure J : TM → TM . Then it is well known
that for a linear connection D on TM such that DJ = 0, the (0, 2)–
component of the torsion of D is (up to a nonzero factor) given by the
Nijenhuis tensor of J . On the other hand, one can always find a connection
D for which the torsion is of type (0, 2).

The notion of projective equivalence that is used here is based on the trans-
formation formula

D̃ξη = Dξη +Υ(ξ)η +Υ(η)ξ,

for all vector fields ξ, η and a fixed one–form Υ, and where the 1-form
field Υ ∈ Ω1(M) is complex linear (with respect to J). Note that this
does not imply projective equivalence in the real sense, since complex linear
combinations of ξ and η occur in the right hand side. It is still true, however,
that connections which are equivalent in this sense have the same torsion.
The use of complex linear combinations leads to the fact thatDJ = 0 implies
that D̃J = 0 for any equivalent connection.

An almost complex projective structure is then given by an almost complex
manifold (M,J) together with an equivalence class [D] of connections such
that DJ = 0 and the torsion of D is of type (0, 2). As we have noted above,
both these conditions are independent of the choice of representative in the
equivalence class.
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Now the holonomy reduction we want to consider in this case is related to
the homogeneous space O of SL(n + 1,C) which consists of all Hermitian
inner products on Cn+1 which are non–degenerate with some fixed signature
(p+1, q+1), where p+q = n−1. Starting from an almost complex projective
structure, one forms the corresponding normal parabolic geometry of type
(G,P ). Forming the associated bundle to the Cartan bundle with respect to
(the restriction to P of) the standard representation Cn+1 of G, one obtains
the standard tractor bundle T of the almost complex projective structure.
By construction, this is a complex vector bundle of complex rank n+1 and
the complex line, in the standard representation, stabilised by P gives rise
to a complex line subbundle E ⊂ T . A holonomy reduction of type O is
equivalent to a Hermitian bundle metric h on T which is non–degenerate of
signature (p+ 1, q + 1) and parallel for the canonical connection on T .

Theorem 3.3. Let (M,J, [D]) be an almost complex projective structures
and suppose that we have given a holonomy reduction of type O described
by a parallel Hermitian metric h of signature (p+ 1, q + 1) on the standard
tractor bundle T . Then we have:

(1) The metric h determines a normal solution σ of the first BGG opera-
tor acting on sections of the real line bundle of Hermitian metrics on the
(complex) density bundle E ⊂ T .

(2) The curved orbit decomposition has the form M =M−∪M0∪M+, where
the first and last curved orbits are open and given by those points where the
metric defined by σ is negative definite, respectively positive definite. If non–
empty, the curved orbitM0 is an embedded hypersurface which coincides with
Z(σ).

(3) OnM± one obtains induced Hermitian metrics of signature (p, q+1), re-
spectively (p+1, q), together with metric connections. If the initial structure
is torsion free, then the metric connections are the Levi–Civita connections,
so one actually obtains Kähler structures on M±.

(4) IfM0 6= ∅, then it inherits a Cartan geometry of type (SU(p+1, q+1), P ),
where P is the stabiliser of an isotropic line. If the initial structure is torsion
free, then this induces an (integrable) CR structure of signature (p, q) onM0.

Proof. First note that the space of all Hermitian bilinear forms on Cn+1

which vanish on the complex line stabilised by P is evidently P–invariant
and has codimension one, so it must be the maximal P–invariant subspace.
Thus part (1) immediately follows from the general theory discussed in 2.7.

The stabiliser of any Hermitian inner product from O is a subgroup of G
conjugate to SU(p+1, q+1) ⊂ SL(n+1,C). The homogeneous modelG/P of
the geometry is simply the complex projective space CPn, so according to 2.4
we can determine P–types by looking at SU(p+1, q+1)–orbits on the space
of complex lines in Cn+1. These orbits are determined by the signature of
the restriction of the Hermitian inner product to a line, so this looks exactly
as in the real case, and we have O = O+ ∪ O0 ∪ O−. This also gives us the
basic form of the curved orbit decomposition in (2). Identifying the stabiliser
H of the inner product with SU(p + 1, q + 1) the subgroups H ∩ P in the
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three cases are conjugate to S(U(1)×U(p, q+1)) ∼= U(p, q+1), a parabolic
subgroup P ⊂ SU(p + 1, q + 1), and S(U(p + 1, q) × U(1)) ∼= U(p + 1, q),
respectively.

For the P–type defined by O+, the standard way to present Q := S(U(1)×

U(p, q+1)) ⊂ SU(p+1, q+1) =: H is as matrices of the form

(
det(A)−1 0

0 A

)

with A ∈ U(p, q + 1). On the level of Lie algebras, we have

h =

{(
− tr(B) −Z∗Ip,q+1

Z B

)

: Z ∈ Cn, B ∈ u(p, q + 1)

}

,

where Ip,q+1 is the diagonal matrix of size p + q + 1 with first p entries
equal to 1 and last q + 1 entries equal to −1. The Lie algebra q of Q ⊂ H
corresponds to the block diagonal part. Hence h/q can be identified with
Cn with the representation of Q on this space given by A · Z = det(A)AZ.
In particular, the obvious complex structure on h/q as well as the standard
inner product of signature (p, q + 1) on this space are invariant under the
action of Q. Consequently, a Cartan geometry of type (H,Q) on a smooth
manifold M gives rise to an almost complex structure J and a Hermitian
(with respect to J) metric g of signature (p, q + 1). Finally, the Cartan
geometry also gives rise to a principal connection, which can be equivalently
encoded as a linear connection ∇ on the tangent bundle which is compatible
both with J and with g. Together, J , g, and ∇ completely determine the
Cartan geometry. For the orbit O−, the situation is completely parallel,
with the only difference that g has signature (p+1, q) rather than (p, q+1).
This completes the proof of the first part of (3).

For O0, we get the stabiliser of an isotropic line as the subgroup in H, and it
is well known that Cartan geometries of the corresponding type are related
to partially integrable almost CR structures of signature (p, q), see also 3.6
below. This also implies the first part of (4).

On the homogeneous model CPn, a parallel metric on the standard trac-
tor bundle corresponds to a fixed Hermitian inner product h of signature
(p+1, q+1) on Cn+1. The orbit decomposition is just given by the signature
of the restriction of h to the complex line determined by a point in CPn as
described above. It is well known that the spaces of positive, respectively
negative, lines are open and they are the complex hyperbolic spaces of signa-
ture (p, q+1) and of signature(p+1, q), respectively. The space of isotropic
lines is a quadric and in particular as smooth embedded hypersurface, which
is the homogeneous model of (partially integrable almost) CR structures of
hypersurface type, which are non–degenerate of signature (p, q). Since O0

is exactly the zero set of the normal solution σ determined by h, we obtain
(2).

To complete the proof, let us assume that the initial Cartan geometry (p :
G → M,ω) is torsion free (which is equivalent to the fact that we deal
with a holomorphic projective structure, see [Čap05]). Then by part (iii) of
theorem 2.6 also the induced Cartan geometries are torsion free. It is well
known that torsion free Cartan geometries of type (SU(p+ 1, q+ 1), P ) are
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equivalent to (integrable) non–degenerate CR structures of signature (p, q),
so the proof of (4) is complete.

For the curved orbits M± torsion freeness of the induced Cartan geometries
implies that the induced metric connections are torsion free as in the real
case. Since these connections preserve the Hermitian metrics, these metrics
actually must be Kähler. �

Analysing the consequences of normality is similar to the real case, but
significantly more complicated, in particular if one drops the assumption of
torsion freeness. Thus we just indicate some basic facts here, and pick up the
detailed discussion elsewhere. First one has to analyse the relation between
the Cartan curvatures of the initial Cartan connection of type (G,P ) and
the induced Cartan connections. For the open orbits, this is similar to the
discussion in the proof of Proposition 3.2, and one verifies that actually gets
Kähler–Einstein metrics on M±. Moreover, parallel to [ČGH10, Theorem
3.3] one shows that these metrics are complete if one starts from a complex
projective structure on a compact manifold. Hence in the torsion free case,
one obtains a compactification of a complete Kähler–Einstein manifold by
adding a CR structure at infinity.

If one does not assume the original structure to be torsion free, the induced
connection on M± will differ (in a controlled way) from the Levi-Civita
connection, and also the normalisation condition for the Cartan connection
of type (G,P ) becomes significantly more involved. To describe the induced
geometry onM0, one first has to check when the induced Cartan connection
of type (SU(p + 1, q + 1), P ) is regular, since then it induces a partially
integrable almost CR structure on M0.

3.4. Fefferman-type constructions. We next outline examples of holo-
nomy reductions for conformal structures. Let M be a smooth manifold of
dimension n ≥ 3. Then a conformal structure of signature (p, q) on M is
given by an equivalence class [g] of pseudo–Riemannian metrics of signature
(p, q) on M . Here two metrics g and ĝ are considered equivalent if there
is a positive smooth function f : M → R such that ĝ = fg. It is a clas-
sical result going back to E. Cartan that an oriented conformal structure
can be equivalently described as a parabolic geometry of type (G,P ), where
G = SO(p + 1, q + 1) and P ⊂ G is the stabiliser of an isotropic ray in
the standard representation Rp+1,q+1 of G. The corresponding grading on
the Lie algebra g of G has the form g = g−1 ⊕ g0 ⊕ g1, with g0 = co(p, q)
(the Lie algebra of the conformal group of signature (p, q)), g−1

∼= Rp,q and
g1 ∼= (Rp,q)∗ as representations of g0.

The first group of examples we discuss is one in which the curved orbit
decomposition is trivial, since there is only one P–type in this case. This
does not mean that our results are vacuous in these cases, however. On the
one hand, we may conclude from just looking at the homogeneous model that
also in curved cases the solutions obtained from such a restriction cannot
have any zeroes. On the other, we immediately see that in this case we get
an reduced Cartan geometry over the whole manifold.
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The most classical example of this situation comes up when both p and q
are odd, say p = 2p′ + 1 and q = 2q′ + 1. Then we have the subgroup
U(p′ + 1, q′ + 1) ⊂ SO(2p′ + 2, 2q′ + 2), which looks like a good candidate
for a holonomy group. In the language of section 2, we have to look at the
homogeneous space O of G which consists of all complex structures J on
R(2p′+2,2q′+2), which are orthogonal (or equivalently skew–symmetric) with
respect to the standard inner product. This exactly means that the standard
inner product can be extended to a Hermitian inner product with respect
to J .

We can also deduce immediately what a holonomy reduction of type O
means in the curved case. Given the Cartan bundle determined by a con-
formal structure, we can form the associated bundle with respect to the
(restriction to P of the) standard representation R2p′+2,2q′+2 of G. This
is the standard tractor bundle and it inherits a canonical linear connection
from the conformal Cartan connection. By construction, this carries a natu-
ral bundle metric h of signature (2p′+2, 2q′+2), the tractor metric, and the
isotropic line stabilised by P gives rise to a line subbundle T 1 ⊂ T , whose fi-
bres are isotropic with respect to h. The orthogonal spaces to these preferred
isotropic lines fit together to form a subbundle T 0 ⊂ T of corank one, so
we obtain a filtration T 1 ⊂ T 0 ⊂ T of the tractor bundle. Now a holonomy
reduction of type O is equivalent to the choice of a complex structure J on
the bundle T , which is skew symmetric with respect to h and parallel with
respect to (the connection induced by) the standard tractor connection.

The best way to view J is as a section of the bundle so(TM). This is the
adjoint tractor bundle AM , which is induced by (the restriction to P of)
the adjoint representation so(2p′ + 2, 2q′ + 2) of G. The natural quotient
H0 in this case is the tangent bundle TM , and the corresponding first BGG
operator is the conformal Killing operator, whose kernel consists of all in-
finitesimal conformal isometries. In this case, also the condition of being
a normal solution is particularly easy for formulate, it just means that the
conformal Killing field has to insert trivially into the Weyl curvature and
into the Cotton–York tensor, compare with [Čap08].

The homogeneous modelG/P of conformal geometry is the space of isotropic

rays in R2p′+2,2q′+2, which is diffeomorphic to S2p′+1 × S2q′+1. Since the
group U(p′+1, q′+1) evidently acts transitively on the space of real isotropic

rays in Cp′+1,q′+1, we conclude that indeed there is only one P–type in
this case. In particular, this implies that the conformal Killing vector field
underlying J is nowhere vanishing (since it cannot be identically zero). We
also conclude that on all of M , we obtain an induced Cartan geometry of
type (U(p′ + 1, q′ + 1), P ′

U ), where P
′
U is the stabiliser of an isotropic real

ray in Cp′+1,q′+1.

On could now go on an study this Cartan geometry in more detail, but the
geometric meaning of this holonomy reduction has already been completely
clarified in [ČG10]. First of all, it turns our that the holonomy always
reduces further to SU(p′+1, q′+1), at least on an infinitesimal level. Thus,
one is already close to the setting of CR–structures, see section 3.6 below.
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Indeed, it turns out that one may consider a local leaf space for the one–
dimensional foliation defined by the nowhere vanishing conformal Killing
field underlying J . One can then descend the Cartan geometry to this local
leaf space to obtain a geometry of type (SU(p′+1, q′+1), PSU ), where PSU

is the stabiliser of a complex null line. This Cartan geometry turns out to
be torsion free, thus inducing a CR structure of hypersurface type, which is
non–degenerate of signature (p′, q′). Indeed, it is even normal and hence the
canonical Cartan geometry associated to this CR structures. The original
space is then locally conformally isometric to the Fefferman space of the
CR structure on the local leaf space. The fact that the canonical Cartan
connections associated to a CR structure agrees with the one associated to
its Fefferman space has rather strong consequences, see [ČG08].

There are variants of this situation in which one obtains similar results. For
example, let us consider conformal structures of signature (2, 3) in dimension
five. Then the basic group governing this geometry is SO(3, 4). It is well
known that letting this group act on the space Λ3R3,4 of three forms, there
is a unique open orbit and the stabiliser of an element in this orbit has a
Lie algebra which is a split real form of the exceptional Lie algebra of type
G2. In particular, this orbit defines a class of holonomy reductions for split
signature conformal structures in dimension five. Such a reduction is given
by a section of the third exterior power of the standard tractor bundle, which
has the right G–type (i.e. lies in the open orbit) in each point. As before it
is well known that the split real form of G2 acts transitively on the space of
isotropic lines in its seven–dimensional representation, so there is only one
P–type in this case.

Our results imply that such a holonomy reduction gives rise to a Cartan ge-
ometry of type (G2, Q) over all ofM , where Q is the stabiliser of an isotropic
line in the seven–dimensional irreducible representation ofG2. Analysing the
curvatures (see [HS09]) one concludes that this geometry is regular, thus
giving rise to a generic rank two distribution on M . This Cartan geometry
coincides with the geometry introduced in Cartan’s famous “five–variables–
paper” [Car10]. The initial conformal structure then is the one associated
to the generic distribution via Nurowski’s construction, see [Nur05] and
[ČS07]. Again the fact that the canonical Cartan connections coincide has
strong consequences, see [HS09].

A very similar construction applies to split signature conformal structures
in dimension 6, where the relevant subgroup is Spin(8) ⊂ SO(4, 4), and one
has to consider the fourth exterior power of the standard tractor bundle
rather than the third one. A holonomy reduction then gives rise to a generic
distribution of rank three, to which the initial conformal structure is canon-
ically associated as first shown in R. Bryant’s thesis, see [Bry06, HS11] for
recent accounts.

3.5. Almost Einstein scales. We next study the simplest example of a
holonomy reduction for conformal structures, namely the existence of a par-
allel section s of the standard tractor bundle T of a conformal structure
(M, [g]). This was actually the first case in which the zeroes of a solution
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of a first BGG operator were studied using parabolic geometry methods,
see [Gov10] and this motivated many of the developments that led to this
article. We treat this case here to illustrate how it fits into the more general
machinery (the latter also simplifying many aspects).

Recall from Section 3.4 above that for a conformal structure of signature
(p, q) the standard tractor bundle has rank p + q + 2 and is endowed with
a canonical parallel metric h of signature (p + 1, q + 1), as well as a line
subbundle T 1 ⊂ T whose fibres are isotropic with respect to h. Following
a standard convention in conformal geometry, we shall write E [1] := (T 1)∗.
Note that for a parallel section s of T , the function h(s, s) must be constant,
and up to a constant rescaling of s, the possible G types in this case are dis-
tinguished by the fact that h(s, s) is positive, zero, or negative, respectively.

Theorem 3.5. Suppose that (M, [g]) is an oriented conformal pseudo–Rie-
mannian structure of signature (p, q) and that s is a parallel section of the
standard tractor bundle T of M . Then s projects onto a normal solution
σ ∈ Γ(E [1]) of a first BGG operator.

(1) Suppose that h(s, s) > 0 (respectively h(s, s) < 0). Then the curved orbit
decomposition has the form M = M+ ∪M0 ∪M−, where M+ and M− are
open and M0 coincides with the zero locus of σ and (if non–empty) consists
of embedded hypersurfaces. Moreover, on M±, there is an Einstein metric
in the conformal class, whose Einstein constant is negative if h(s, s) > 0 and
positive if h(s, s) < 0. The curved orbit M0 is empty if p = 0 (respectively
q = 0), otherwise it inherits a conformal structure of signature (p − 1, q)
(respectively (p, q− 1)). The induced Cartan geometry on M0 is the normal
Cartan geometry determined by this conformal structure.

(2) Suppose that h(s, s) = 0. Then the curved orbit decomposition has the
formM =M+

1 ∪M−
1 ∪M2∪M

+
3 ∪M−

3 , whereM±
1 are open,M2∪M

±
3 = Z(σ),

M2 (if non–empty) consists of smoothly embedded hypersurfaces and M±
3 (if

non–empty) consists of isolated points. If p = 0 or q = 0, then M2 must be
empty, so σ can only have isolated zeros in this case. Otherwise, if M+

3 or
M−

3 is non–empty, then also M2 has to be non–empty.

OnM±
1 there is a Ricci–flat metric in the conformal class. If non–empty, the

curved orbit M2 locally naturally fibres with one–dimensional fibres over a
smooth manifold N which inherits a natural conformal structure of signature
(p− 1, q − 1).

Proof. (1) Let us assume that h(s, s) > 0. Then the stabiliser H of s is
isomorphic to SO(p, q + 1) ⊂ SO(p + 1, q + 1). There are three possible
P–types in this case, defined by the fact that the inner product of s(x) ∈
Tx with a generator of the distinguished isotropic ray is positive, zero, or
negative. (Note that s(x) cannot lie in the distinguished isotropic line.) The
irreducible quotient of T for conformal structures is a density bundle usually
denoted by E [1] which is realized as T /(T 1)⊥. Hence we conclude that the
curved orbit defined by s(x) ⊥ T 1

x is exactly the zero set of the induced
normal solution σ = Π(s). On the homogeneous model, s is determined by
a fixed positive vector in Rp+1,q+1 so the orbit in question is the subspace
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of isotropic lines contained in a hyperplane, and thus a smoothly embedded
hypersurface in G/P . This gives the description of curved orbits in (1). If
p = 0, then the restriction of h to s(x)⊥ is negative definite, and hence this
subspace does not contain any isotropic lines, so M0 = ∅.

To describe the induced Cartan geometry on M±, we have to understand
the stabiliser of the isotropic ray in H ∼= SO(p, q + 1), and we know that
this ray is transversal to the hyperplane s(x)⊥ stabilised by H and different
from the line R · s(x). If we project T 1

x orthogonally into s(x)⊥ we thus
obtain a line. This line has to be negative, since together with the positive
line R ·s(x) it spans a plane which contains the isotropic line T 1

x . A moment
of thought shows that the stabiliser of this negative line in H coincides with
the stabiliser of the isotropic ray in that group, so H ∩ P = SO(p, q) ⊂
SO(p, q + 1).

Thus we are in the same situation as in the example of the parallel metric on
the projective standard tractor bundle. The induced Cartan geometry on
the open curved orbit is equivalent to a pseudo–Riemannian metric of signa-
ture (p, q) together with a metric connection on the tangent bundle. Using
torsion freeness of the initial conformal Cartan connection, one concludes
that the metric connection must be the Levi–Civita connection. From the
normality of the conformal Cartan connection one then deduces that the in-
duced metric is Einstein, with the sign of the Einstein constant determined
by h(s, s).

The type of the induced Cartan geometry onM0 is even easier to determine,
since here H ∩ P simply is the stabiliser of an isotropic ray in the standard
representation of H = SO(p, q + 1). Hence the induced Cartan geometry
on the closed curved orbit determines an oriented conformal structure of
signature (p − 1, q). It is straightforward to prove that normality of the
initial conformal Cartan connection implies that also the induced Cartan
connection over the closed curved orbit is normal. Since the discussion for
h(s, s) < 0 is completely parallel, this completes the proof of (1).

(2) If h(s, s) = 0, then s spans an isotropic line subbundle in the standard
tractor bundle. In this case, the stabiliser H is the stabiliser of an isotropic
vector in Rp+1,q+1 and thus isomorphic to SO(p, q)⋊Rp,q (so it is isomorphic
to a codimension one subgroup in the parabolic subgroup P ). It is also clear
that there are five possible P–types, according to the cases that s(x) lies
in the preferred isotropic ray or its negative, respectively that s(x) is not
in the preferred line and the inner product of s(x) with a generator of the
preferred ray is zero, positive, and negative respectively. Notice however,
that if either p = 0 or q = 0, the initial vector space Rp+1,q+1 is Lorentzian
and hence does not contain two perpendicular isotropic lines. Thus in this
special case only the first two and the last two P–types are there.

In the homogeneous model G/P , our parallel section is determined by an
isotropic vector in Rp+1,q+1, and it is evident that the first two and the
last two of the five P–orbits consist of isolated points, and open subsets,
respectively. For the middle P–type, we observe that taking the tractor
inner product of s with the preferred ray defines the solution σ ∈ Γ(E [1])
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underlying s. The orbit under consideration consists of the zero set of this
section except for the single point where s lies in T 1. But it is evident that
this single point is the only one in which the hypersurface orthogonal to s
is not transversal to the tangent space of the null–cone, which implies that
our orbit is a smooth hypersurface in the homogeneous model. Hence we
obtain the claimed form of the curved orbit decomposition.

To discuss the induced Cartan geometry on M±
1 , we have seen that H ∼=

SO(p, q)⋊Rp,q, and H∩P is the stabiliser of an isotropic line in there, which
is not perpendicular to the vector stabilised by H. A moment of thought
shows that the isomorphism H ∼= SO(p, q) ⋊ Rp,q can be chosen in such a
way that H ∩P = SO(p, q) viewed as a subgroup in the obvious way. Hence
it is again clear that a Cartan geometry of type (H,H ∩ P ) is a pseudo–
Riemannian metric of signature (p, q) together with a metric connection. In
contrast to the situation in the proof of theorem 3.1 the Cartan curvature
here simply agrees with torsion and curvature of that connection. Torsion
freeness then implies that the connection is the Levi–Civita connection of
the induced metric, and normality of the initial conformal Cartan connection
shows that we actually get a Ricci flat metric in the conformal class.

Hence it remains to discuss the induced Cartan geometry on M2. Here it is
easiest to describe the Lie algebras h and h ∩ p in a basis which starts with
the distinguished isotropic vector v, next a perpendicular isotropic vector
spanning the line stabilised by P and then completing this appropriately to
a basis. Then we get














0 0 Z z′ 0
0 a W 0 −z′

0 0 A −IW t −IZt

0 0 0 −a 0
0 0 0 0 0















⊂















0 z Z z′ 0
0 a W 0 −z′

0 X A −IW t −IZt

0 0 −XtI −a −z
0 0 0 0 0















.

Here X,Zt,W t ∈ Rp−1,q−1, a, z, z′ ∈ R, and A ∈ so(p − 1, q − 1) and
I = Ip−1,q−1. Hence h/(h ∩ p), which models the tangent space, can be
identified with R ⊕ Rp−1,q−1, with the summands spanned by z and X,
respectively. The line spanned by z is invariant under h and will thus give
rise to a natural line subbundle. Forming the quotient by this subspace
one obtains Rp−1,q−1 with the standard action of the conformal Lie algebra
defined by a and A. Hence locally M2 fibres as claimed. �

Remark 3.5. (1) The fact that the orbit M2 fibres as claimed in the the-
orem is nicely visible on the homogeneous model. Here the orbit consists
of isotropic lines contained in v⊥ and different from the line spanned by v.
Now the quotient v⊥/Rv inherits a natural inner product of signature (p, q)
and we can project our isotropic lines to isotropic lines in this quotient with
one–dimensional fibres.

(2) It is worth noticing that the natural metrics over the open orbits which
show up in the theorem are determined by the normal solution σ ∈ Γ(E [1])
underlying the parallel tractor s in a rather simple way. Recall that a con-
formal class of metrics can be viewed as a canonical section g of the bundle
S2T ∗M ⊗ E [2]. Hence outside the zero set of σ, one obtains a metric in
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the conformal class as 1
σ2g and these are the Einstein metrics over the open

curved orbits.

(3) If h(s, s) 6= 0, then it is shown in [Gov10] that locally around M0,
one actually obtains a Poincaré–Einstein metric, and any Poincaré–Einstein
metric arises in this way.

(4) We want to point out here that both a parallel metric on a projective
standard tractor bundle and a parallel section of a conformal standard trac-
tor bundle give rise to Einstein metrics on open curved orbits and conformal
structures on closed curved orbits, which are embedded hypersurfaces. In
particular, if one considers either of the two cases on a compact manifold
with boundary for which the closed curved orbit coincides with the bound-
ary, one obtains a compactification of a (non–compact complete) Einstein
manifold by adding a conformal structure at infinity. However, this leads
to two different types of compactifications, see [ČGH10] for more details on
this.

3.6. A CR–analog. We conclude this article by looking at a complex ana-
log of almost Einstein scales in the realm of CR geometry. Since this case
is significantly more complicated than the conformal one, we restrict to el-
ementary aspects of the description here, and we will take this topic up in
more detail elsewhere. We discuss this example on the one hand because
it gives rise to a CR version of the Einstein condition, which is of intrinsic
interest. On the other hand there are strong indications that it will lead to a
notion of compactifying a non–compact complete Kähler–Einstein manifold
by adding an infinity carrying a CR structure, which is different from the
one discussed in Section 3.3.

We have already briefly discussed the description of CR structures as para-
bolic geometries in Section 3.3. The basic group here is G = SU(p+1, q+1)
and the parabolic subgroup P ⊂ G is the stabiliser of an isotropic (complex)
line in the standard representation Cp+q+2. Regular normal parabolic ge-
ometries of this type turn out to be equivalent to partially integrable almost
CR structures of hypersurface type, which are non–degenerate of signature
(p, q) together with the choice of a certain root of the canonical bundle,
compare with [ČG10]. Forming the associated bundle corresponding to the
standard representation, one obtains the standard tractor bundle. This is a
complex vector bundle T of rank p + q + 2 endowed with a canonical Her-
mitian metric h of signature (p + 1, q + 1), a complex line–subbundle with
isotropic fibres, and a canonical Hermitian connection. We want to study
holonomy reductions determined by a parallel section of the standard trac-
tor bundle. As in 3.5, for a parallel section s of this bundle the function
h(s, s) is constant, and up to constant rescalings of s, the basic G–types are
distinguished by the sign of h(s, s). We will only analyse the case h(s, s) < 0
here, the case h(s, s) > 0 is closely parallel, and these are the cases related
to compactifications as discussed above.

The homogeneous model G/P is the space of isotropic lines in Cp+q+2, and
the parallel standard tractor is determined by a negative vector v ∈ Cp+q+2.
The stabiliser H of v in G is isomorphic to SU(p+1, q) via the action on the
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orthocomplement v⊥. Evidently, there are two H–orbits in G/P , consisting
of the lines contained in v⊥ and the lines transversal to v⊥, respectively.
The latter orbit is clearly open, while the former forms a smooth embedded
submanifold of real codimension two if q > 0 and is empty if q = 0. The
normal solution σ corresponding to v is obtained by interpreting the inner
product with v as a homogeneous function on the null cone in Cp+q+2, and
thus as a section of a (complex) density bundle on the space G/P of isotropic
lines. Consequently, the closed H–orbit coincides with the zero set Z(σ).

Via Theorem 2.6 this description readily carries over to a parallel standard
tractor s with h(s, s) < 0 on general curved geometries. The curved orbit
decomposition has the form M = M+ ∪M0, where M+ is open, and M0

coincides with the zero set of the underlying normal solution and, if non–
empty, consists of smoothly embedded submanifolds of real codimension
two. Note that M0 must be empty if q = 0.

Let us next describe the induced Cartan geometries. In the case of M0,
the distinguished isotropic line is contained in v⊥, so we can simply identify
H ∩ P with the stabiliser of a complex isotropic line in the standard repre-
sentation Cp+q+1 of H ∼= SU(p+1, q). It is straightforward to verify directly
that this induced Cartan geometry is automatically regular, thus giving rise
to a partially integrable almost CR–structure on M0 of hypersurface type,
which is non–degenerate of signature (p, q − 1).

In the case of M+, we have to determine the stabiliser in H of an isotropic
line ℓ which is transversal to v⊥. Now elementary linear algebra shows that
there is a unique vector w ∈ v⊥ such that v + w ∈ ℓ. Clearly, any element
of H which stabilises ℓ, also has to stabilise w, and the converse also holds.
Since v is negative and v + w is null, w must be positive, and we see that
H ∩ P ∼= SU(p, q). Passing to the Lie algebra level, we get a similar matrix
presentation to that in Section 3.3:

H ∩ P =

{(
0 0
0 A

)}

⊂

{(
ix −Z∗I

Z A− ix
p+q

id

)}

= H,

where x ∈ R, Z ∈ Cp+q, A ∈ su(p, q), and I = Ip,q. It is easy to see that
the component in h/(h ∩ p) determined by Z corresponds the contact dis-
tribution HM+ (equipped with the complex structure), while projecting to
the component determined by x gives rise to a distinguished contact form.
This also determines a Hermitian metric on HM+ which is extended to a
Riemannian metric on TM+. In addition, the induced Cartan geometry
of type (H,H ∩ P ) on M+ determines a linear connection on TM+ which
is compatible with all these structures. However, the discussion of conse-
quences of normality is much more complicated here than in the real case,
in particular if the initial structure has torsion, and we will not go into this.

Compared to the real case, there is an entirely new feature here, however.
Namely, the parallel section s ∈ Γ(T ) determines a parallel section of the
bundle su(T ), which is given by the tracefree part of s̃ 7→ h(s̃, s)Js. Now
su(T ) is the adjoint tractor bundle associated to the CR structure, so a par-
allel section of this bundle determines a normal infinitesimal automorphism
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of the geometry. It is easy to see, that on M+, this infinitesimal auto-
morphism is nowhere vanishing, and it is even transversal to the contact
distribution there. Hence the flow lines of this infinitesimal automorphism
determine a foliation of M+ with leaves of real dimension one, and one can
form local spaces of leaves.

Now one can show that M0 can be interpreted as a CR infinity for the
local leaf spaces. Moreover, since the leaves of the foliation are transversal
to the contact distribution, any tangent space of such a leaf space can be
identified with the contact subspaces along the leaf. It turns out that one
gets an almost complex structure on the leaf space. Again, all that can
be dealt with by comparison to the homogeneous model using Theorem 2.6.
Indeed, it turns out that on each local leaf space, one gets an induced Cartan
geometry of type (SU(p+1, q), S(U(1)×U(p, q))). This can then be analysed
in a similar way to the structure in Section 3.3. If the initial Cartan geometry
is torsion free (i.e. if the initial structure is CR), then away from M0 this is
precisely the setting considered by [Lei07] and so it be expected that in fact
this recovers the Kähler–Einstein metric found there. A detailed discussion
of this example will entail considerably more work, and we expect this to
yield an alternative notion of compactifying a Kähler–Einstein manifold by
adding an infinity which carries a CR structure. It is anticipated that this
will be a genuinely different compactification to that found in Section 3.3
(cf. the discussion of Klein-Einstein structures in [ČGH10]).
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[Čap08] A. Čap. Infinitesimal automorphisms and deformations of parabolic geometries.
J. Eur. Math. Soc. (JEMS), 10(2):415–437, 2008.
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[MS99] S. Merkulov and L. Schwachhöfer. Classification of irreducible holonomies of
torsion-free affine connections. Ann. of Math. (2), 150(1):77–149, 1999.

[NS03] P. Nurowski and G.A. Sparling. Three-dimensional Cauchy-Riemann struc-
tures and second-order ordinary differential equations. Classical Quantum
Gravity, 20(23):4995–5016, 2003.

[Nur05] P. Nurowski. Differential equations and conformal structures. J. Geom. Phys.,
55(1):19–49, 2005.

[Sha97] R.W. Sharpe. Differential Geometry - Cartan’s Generalisation of Klein’s Er-
langen Program. Springer-Verlag, 1997.
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