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GENERATORS OF SOME NON-COMMUTATIVE STOCHASTIC PROCESSES

MICHAEL ANSHELEVICH

ABSTRACT. A fundamental result of Biane (1998) states that a procésfieely independent in-
crements has the Markov property, but that there are tweskiridree Levy processes: the first kind
has stationary increments, while the second kind has statiaransition operators. We show that
a process of the first kind (with mean zero and finite variahes)the same transition operators as
the free Brownian motion with appropriate initial condit®) while a process of the second kind has
the same transition operators as a monoto@eylprocess. We compute an explicit formula for the
generators of these families of transition operators,ims$eof singular integral operators, and prove
that this formula holds on a fairly large domain. We also catapghe generators for thieBrownian
motion, and for the two-state free Brownian motions.

1. INTRODUCTION

A Lévy processis arandom procdsg(t) : t > 0} whose increment& (¢) — X (s) are independent
and stationary, in the sense that the distribugignof X (¢) — X (s) depends only o — s,

Hst = Ht—s-
A Lévy process is a Markov process, and its transition opex#itor defined via

E[f(X@)ls] = (Ks1 f)(X(s))

are also stationaryc, ; = K;_,; in fact

Kool ) (@) = /R £+ ) dpe_ay).

HereE [-|s] is the conditional expectation onto time The maps{; : t > 0} form a semigroup,
which has a generatot. In fact A = ¢(—i0,), where/ is the cumulant generating function of the
process. It can also be expressed in terms of #ivylmeasure of the process. See Section 3 for
more details.

In a groundbreaking paper [Bia98], Biane showed that prosesgé freely independent incre-
ments, in the context of free probability [VDN92, NS06], atso Markov processes. He also noted
that there are two distinct classes of such processes whitlhe called (additive) freeévy pro-
cess (Biane also investigated multiplicative processeshwiie will not study here). Freedvy
processes of the first kind (FL1) have stationary incremémtie sense that each(t) — X (s) has
distribution ;. Then{u, : t > 0} form a semigroup with respect to free convoluti@n These
processes are Markov, but their transition operators §ffgiare not stationary. Freeelvy processes
of the second kind (FL2) have stationary transition opesd@, which form a semigroup, but their
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increments are typically not stationary:Xf(¢) — X (s) has distribution., ., then we only have the
propertyu . B u:., = s, (SO that the measures form a free convolution hemigroup).

In this paper we compute the generators of frégy processes with finite variance. Since for FL1,
the transition operators do not form a semigroup, they hdaendy of generatord A, : ¢ > 0}. In
the case of FL2, there is a genuine generdtolf the distribution of the process has finite moments,
using the free f formula from [Ans02], one can express the generators ims@f theRR-transform,
the free analog of. However, it is unclear whether such an expression can lignessa meaning

in the absence of moments. But there is an alternative déiscrig-or a measure, denote

L) = [ A= ),

a singular integral operator. A free convolution semigremih finite variance is characterized by
the free canonical paik, p), wherea € R, and (with appropriate normalizatiop)s a probability
measure. Further, denote fythe semicircular distribution at timeso thatpfH~; is the free analog
of heat flow started at. Then the generator of the corresponding frégy_process of the first kind
is

1) a0y + 0p Ly,

In fact, we show that forr = 0, the full Markov structure of this process coincides withttf
the free Brownian motiogY; : ¢t > 0} with Y; having distributiorp. This statement clearly has no
classical analogue.

In addition to free probability theory, there are only twbet “natural” non-commutative probabil-
ity theories [Mur03], the Boolean and the monotone. Theserteg do not, at least at this point,
approach the wealth of structure of free or classical pritbatiHowever, one reason to study them
is that they turn out to have unexpected connections to frelegbility. Indeed, we show that the
generator of a free &vy process of the second kindd$), + 0, L,, wherep now is themonotone
canonical measure. In fact, Biane in [Bia98] already notetl¢hah FL2 is associated to a semi-
group of analytic maps, and Franz in [Fra09] observed thattiksuch semigroups are associated
with monotone [evy processes: the measurgs do not form a free semigroup, but they do form a
semigroup under monotone convolution. In the monotoneitsséthere is no distinction between
the Lévy processes of the first and second kind (so the free casallig special in this respect), and
the generator of a monoton&\ky process is related to its monotonevly measure in the expected
way [FMO5].

We also compute the generators of gi@8rownian motion. This non-commutative process was
constructed in [BS91], and investigated in detail in [BKS9BLuilding on the work of [DMO03],
we prove a functional & formula for it (for polynomial functions), from which theifmulas for
generators easily follow.

We note that the study of “time-dependent generators”, aerasually the inverse problem—how
to reconstrucf{C, ;} from {A;}—goes back to [Kat53]. This is typically formulated at theelar
non-autonomous Cauchy problem, and a significant amount reérgeresults on its solution is
known, see for example Section VI.9 of [ENO0O], [NZ09], andittextensive references. We do not
use these general results in the paper, but this may be arrfmatferther study.

The paper is organized as follows. After the introductiod aome general results in Section 2,
in Section 3 we give a short overview of the generators fassital processes. The next section,
covering free levy processes, is the main part of the paper. We show thatticanoperators for
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such a process form a strongly continuous contractive femnil.? (R, dx), and that their generators
are given by formula (1) on large domainsii(R, dz) andC(R). In Section 4.5 we find the
closures of these generators. We also compute the gereaditeL.2 processes. In section 4.6, we
show that the operatar, itself is an isometry between certairt spaces, and compute the “carr
du champ” corresponding 1@,L,. In Section 5, we compute thedlformula and generators for
the g-Brownian motion, and in a short final section we apply siméaalysis to the two-state free
Brownian motions from [Ans11b].

Acknowledgements.This work was prompted by a discussion with Witodek Bryc abositaiper
[Bry10]; I am grateful to Wtodek for showing me an early versmfrthat paper. | have discussed
various aspects of this article with a large number of peopleanks to Dominique Bakry, Todd
Kemp, Michel Ledoux, Conni Liaw, Alex Poltoratski, and Sergeeil for helpful comments. Fi-
nally, | am grateful to the Erwin Sctdinger Institute, and to the UniversiPaul Sabatier, where
part of this work was completed.

2. PRELIMINARIES

2.1. Generalities and definitions. Let (M, E) be a tracial non-commutative probability space,
where M is a von Neumann algebra afitlis a tracial normal state on it. Possibly unbounded

random variables are self-adjoint elements of the aIgﬁNklraf operators affiliated tov1.

A processs a family of (possibly non-commutative) random varialfléS(¢) : ¢ > 0} in a (possibly
non-commutative) probability spa¢a1, E).

We will assume thatfX'(0) = 0, and will denote byu,. the distribution ofX (¢) — X(s) with
respect toE (for s < t), u = wo, the distributionX (¢), andu = uy. If x is a convolution
operation corresponding to some non-commutative indegrere] and the increments 6K (¢)}
are independent in that sense, then

st * Uty = Usu-

For an unbounded operatdr, we will denote byD(X) its domain, and by X, D) its restriction to
a smaller domairD.

Definition 1. For a family of distributions{,; }, we say that the functiondl, is its generator at
time ¢ with domainD(L,) if

a/fm¢mm=mm

R
for f € D(L,). Frequently,

Lifl = [ ()@ dputa)

R

for an operator4,. If { X (¢)} is a process with distributiong., }, this is equivalent to
@) GE[f(X(1)] = E[(Af)(X ()]

Note however that this property does not deterndpeeven orD(L,).

For operatorg K, ; } on a Banach spacé, we write

0

a ICs,t = As

t=s
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if

% (ICS,S-I—hf - le,sf) - Asf

In this case we say that; is the generator of the familf/iC; ; } at times. Its domainD(A;) C A
consists of allf € A for which the limit (3) holds.

(3) lim

h—0t

o

Now suppose that the proce§X (¢)} is a Markov process. That is, denotifiy-| < s| the E-
preserving conditional expectation onto the von Neumagalah generated byX, : v < s}, for
any f € L™(R, dz), E[f(X(¢))| < s] is in the von Neumann algebra generatedXbfs). (See
the Introduction and Section 4 of [Bia98] for more detailsd aiso for a weaker requirement,
sufficient for our purposes, that the classical versiogft)} is a Markov process.) In this case,
the corresponding transition operators are determined by

E[f(X)] < s] = (Ksu /)X (5))

We say that the operatet, is the generator of the process at tigiéit is the generator of its family
of transition operators. Note thatAf; exists, it has the property in equation (2).

Proposition 1. Let (A, ||-||) be a Banach spacg/C, .} a family of contractions ot such that
’Cs,t o ICt7’l} = ’Cs,v

and/C; ; is strongly continuous in Let{A,} be the generators dfC, ; } in the sense of equatidB),
and consider a subspad@® C (), D(A,) such that for anyf € D, A, f is a continuous function af

(a) EachA; is dissipative and closable.
(b) LetB C A be another subspace such tifatc 3, and||-|| ; be another norm o such that
Dis|-||z-denseins, || f|| < ||f|lz, and for f € D,

(4) [AI < 1flls-
Then equatior3) holds for f € B, so that3 C D(A,) for all ¢.
(c) The closurdd' 4 of D in the sup-graph norm

114 = W1+ sup ([ A

isinD(A,) for all ¢.

Remark 1. Note that strong continuity of; , does not imply continuity of A, }. Indeed, already
in one dimension, itC, ; = /W=7 thenA, = f(¢).

Proof. For part (a), recall from Section X.8 of [RS75] that fpre A, a normalized tangent func-
tional ¢, is an element ofd* such that|y,|| = || f|| andy,[f] = || f]|>. For any such functional,

.1 1
Reop[Asf] = Jim =R [Kosinf — f1 < Jim — (o Kasen ]l = 1/17)

1 2
< lim = (I ICssenfll = 1F17) <O

sincelC; s+, IS @ contraction, sal; is dissipative. Combining this with Theorem 11.3.23 and Rrop
sition 11.3.14(iv) of [ENOQO], it follows thatA; is closable.
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For part (b), we first note that for < ¢, sincelC, ; is a contraction, foif € D,

) 1 ) 1
Tim || (i — Kuef) - ics,t<Atf>‘ = 1 K., (E (Kovenf — ) — Atf) H
. 1
< h11>I(I)1+ 'ﬁ (Kepanf = f) = Acf ‘ =0,

SO
atlcs,t(f) = ’Cs,t(Atf)'

Also, sincek’;, is a contraction/C; , A, f is continuous inv. Therefore we have the Riemann
integral identity

Kaalf) = [ + / Koo Ay ) do.

Since forf € D, (4) holds, 4, has a continuous extensid¢, ||-|| ;) — A satisfying the same
property. We will show that this continuous extensibncoincides withA;.

Fix ¢ € B and a timet. For eache > 0, we can find af € D such that|f — g||; < ¢, so that
If =gl <e
IKsef — Ksagll <e,
and
‘/Cs,v(flvf) - /Cs,v(flvg)H < ’ A f = Aug

<

forall s < v <t. Then

t
‘ Ksig—9— / Ksv(Aypg) dv ‘ <2+ (t— s)e.

So
t ~
(5) ICS,t(g) =g+ / ICS,U(Avg) dv
(in particular, the integral is well defined), and
Arg o K 9="%"wyg
tY — 4§, st — At
8t t=s
Finally, for part (c) we takeé8 = plla and||-||; = ||-|| ,, and apply part (b). O
Remark 2. Under the assumptions of the preceding proposition, froonaggn (5) we also get
0
— =—-A
Ds|_, Kstg s,

As’Cs,t (g) = _as’Cs,t (g>7
which in turn implies

t
’Cs,t<g) =g +/ AUICv,t<g) dv.
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Lemma 2. Let{ X (¢)} be a non-commutative Markov process, with transition ofmest\C, . } and
distributions{.,}. Let(A,|||) be either(C(R), ||-||..) or L*(R, dz), and suppose th&{/C, ,;},
their generatorg A, }, andD C A satisfy the hypotheses of Proposition 1. Thenffar D,

©) rxw - | (A ) (X () do

is a martingale. Conversely, suppoB} is another family of operators strongly continuous®n
such that(6) is a martingale. Then fof € D, A, f = B;f in the restriction of4 to supp(js).

Proof. As shown in Proposition 1, under these assumptionsf ferD

Ksi(f) = f+ / Kso(Auf) dv.

:

— (K () (X (5)) - / (A (X () dv— / Kon(Aof) (X (5)) du

It follows that

E [f(X(t)) - / (A f)(X(v)) do

—JXE) - [ (DX de
0
and the process is a martingale.

Conversely, suppose thg{ X (¢)) — fg(vi)(X(s))dv is a martingale. The last equality then
implies that

Ker(£)(X(5) = F(X(5)) + / Ko Bof)(X(s)) do.
It follows that inC', (supp(ps)) or LP(supp(ps), dx),
Kaalf) = [+ / Ko(Bof) do,

and therefore in this space

g

2.2. Cumulants. Let{u;} be a convolution semigroup with respect to some convolugfmeration
=. In all cases we will consider,, = dg, p[z] = t- p[z], and{u. } is weakly continuous. Almost by
definition (see Property (K1’) in Section 3 of [HS11]), thexawiant functional ofu corresponding
to the convolution operatioris

0
= o t:OMt[f]-

This approach works for all the convolutions associatedatoinal types of independence (tensor,
free, Boolean, monotone), but also for other operations as¢heg-convolution from [Ans01].

(7) Culf]
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Proposition 3. Assume that. has finite moments of all orders. Then, at least on the sgacé
polynomials,

@®) 1) = af'(0) + /R o)~/ (53 —vI'O) 4

for a finite measure.

Proof. First note that”,[1] = 0 andC,,[z] = u[z] = « for somea. Since eachy, is positive, it
follows thatC), is a conditionally positive function on polynomials, so &shthe canonical repre-
sentationC,[z"] = p[z"?] for n > 2, wherep is a finite measure, the canonical measure of the
semigroup. We compute, fgi(z) = ="

=0
and this formula is also valid fof (z) = 1 andz. d

3. CLASSICAL LEVY PROCESSES

See Section 1.2 of [Ber96] (except for a small misprint) fa fibllowing results.

Theorem. Let{ X (¢)} be a Levy process corresponding to the convolution semigfeup. Denote

0(0) =logE [¢"*] = log / e dp(x)
R

the cumulant generating function of the process. Then thergéor of the process is the pseudo-
differential operator/(—i0,,) with dense domain

{f € L'(Ruda) s [ |6 |70

In other words, if the process has théuy-Khintchine representation

2

d9<oo}.

0(0) =il — 1V¢92 + / (eiye —-1- iy91|y|<1)H(dy),
2 R\{0}
then

Af(@) =afe) + VI @)+ [ (Fo+9) = F) = Ly (@) (dy).

R

If » has mearnv and finite variance, we also have the Kolmogorov representat

0(0) = iad + / (e — 1 —iyf)y > dp(y),

R
wherep is the canonical measure. In this case the generator is

© R R

If the process has (say) finite exponential moments, we haweaver
o
(o) =>" (i),

n=1
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where{c,} are the cumulants [Shi96] of (the distribution of) the psgeSo the generator of the
process is

e}

1 n
Z ECna‘r .

n=1

Cn :/:U"_2 dp(x)
R

Note also that; = o and

forn > 2.

4. FREELEVY PROCESSES

4.1. Background. Let u be a probability measure dR. Its Cauchy transform is the analytic
functionG,, : C* — C~ defined by

Gu(e) = [ = duto)

Z—X

We will also denote, (z) = %

G, is invertible in a Stolz angle near infinity, and Voiculescii-transform is defined by

_ 1
Ru(z) =Gz - .
A free convolutionu; B p, of two probability measures, , 1 is characterized by the property that
G (2) = G (2) + Ry (2).
w1 is BB-infinitely divisible if and only it can be included as= ., in a free convolution semigroup
{pe -t >0}, ps B iy = psiy. This is the case if and only iR, extends to an analytic function
R, : C* — C*. In this case, we have the freé&ly-Khintchine representation (Theorem 5.10 of
[BV9I3])

Ru(z):oz—i-/ Frr

1—2z2
R
Moreover, if i, has finite variance, we also have the free Kolmogorov reptatien,

dv(z).

R,(2)=a+ /]R 1 —zxz dp(z).

Here« is the mean ofu, p is a finite measure, the free canonical measure for the seupdy:, },
and(a, p) is the free canonical pair. For convenience, throughout widhie paper we will rescale
time so that the variance

(10) Varlp = ) = 1
in which casep is a probability measure.

We will also encounter two other convolution operationg thonotone convolution and the
Boolean convolutiory, determined by

Fu1l>u2(z) = Fm(Fuz (2))
and
FMLHMQ(Z) = F,ul (Z) + FMQ(Z) - <.
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We will denote
1
dy(x) = 57V 4t — 2?2 dx
e

the semicircular distributions, the analogs of the nornmgthidbutions in free probability. They form
a free convolution semigroup with the free canonical P@id).

Remark 3. If v is a probability measure, there exists a probability mesagus ®,[v] with mean
zero and variancesuch that

Fo,(2) = 2 — tG,(2).
In particular, for the ma@ = ®,, see [BN09] and Proposition 2.2 of [Maa92], and
P, [v] = d[]*".

Conversely, ifi. is a probability measure with meanand variance? > 0, there exists a probability
measurer = J[u] such that

(11) Fu(2) =2z —a—BG ().

Note thatJ o &, = Id, while ;[ J[u]] = p if © has mean zero and varianteIf v has finite
moments of all orders, its Cauchy transform has a continwedién expansion

1

Gu(z) = B

Z— Qg —

B

Z— Q1 —

Bs

Z — Qg —

Here g, = 1, oy is the mean ofy, 5 is the variance ofi, and in general«,, 5,} are its Jacobi
parameters. Then for = &, [u],

A

Z— Qo —

B

zZ— 01 —

Ps

Z— ...

Z — Qg —

while 7 is the inverse map, namely coefficient stripping [DKS10]td&that there are also related
maps which involve finite rather than only probability me@s, but because of normalization (10),
we will not need to consider them.

4.2. Transition operators. The following is a reformulation of Theorem 3.1 of [Bia98].

Theorem. Let X andY be freely independent. Then the transition operdtatefined via
E[f(X +Y)|X] = (Kf)(X)

is a map o’ (R) (which extends to a map ai™ (R, dz)) such that for any € C \ R

Klzix} :F(z)l—x:Fy(zl)—x'
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Here F'(z) = F,(z) for some probability measure and F' is uniquely determined by

Gx.v(z) = Gx(F(z)).
Proposition 4. For processes with freely independent increments, theitranperatorskC have

the form
/f d(0, > v)(y).

For the free leévy processes of the second kind,fpwe have/, = ;. For the free [evy processes
of the first kind, foilC; ;, v, ; is determined by

Glf«t(z) = Gus (FVs,t(Z))'
In other wordsy = v, = u:—s[FH s, the subordination distribution, s¢een07, Nic09]

Proof. According to Theorem 3.1 of [Bia98],

1 1 1 1 1
* L_l‘} N F(z) -z B F(2)—x B Fio0(2) = Gouwn(2) = /]R Z_yd(5$l>1/)(y),

and, still according to [Bia98], this property entirely deténesX. For FL2, F,; = F;_, and
F,, =F, oF,_, sofors =0,

Fﬂt :F(SOOE:E:FW'
For FL1,v,, = pu—s[Hus by definition. Il
Remark 4. Note that

K(z,dy) = (0. >v)(y) = (6. Wv)(y) = (v & &) (y).

In fact, measures, > v are well-known in classical spectral theory. IndeedXifis an operator
with cyclic vector¢ and corresponding distributian thend, > v is the distribution with respect
to ¢ of the rank-one perturbatioN — z (-, £) £. Finally, note that for the classical processes and
convolution, we can also write

/f ) dyu(y — ) /f a8, * p)(y)

Proposition 5. I is a contraction on eacli” (R, dx) for 1 < p < oc.
Proof. For f € L>(R, dx),

1L f] —esssup/ |f ()] d(d.>v)(y )<esssup|]f\| = |1l

z€R

so K is a contraction orL>°(R, dx). On the other hand, Alexandrov’s averaging theorem (Theo-
rem 11.8 from [Sim05)) states that fgre L!(R, dz)

/R/q da:—/(/f d(s, w)(y)) da::/f(x)da:

so that||Cf||, = || f|l, for f > 0, andK is a contraction oi.' (R, dz). Forl < p < oo, the result
now follows by Riesz-Thorin interpolation, see Section X@m [RS75]. O
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Remark 5. Unless stated otherwise, we will work in the Banach sgagcéR) of continuous func-
tions converging to zero at infinity, with the maximum nornmis@, again until stated otherwise, we
will denote

(12) D:Span{L:zEC\R}.
z—x

We will also denote by’ (R) the compactly supported continuous functions, an@liie polyno-
mials.

Forl < p < oo, denote
k
1l = D IFON ~ 1FPN + 111,
=0

the Sobolev norm. Fop < oo, denote byiW*?(R) the corresponding Sobolev space, while for
p = oo we will denote byi*> the corresponding subspace®@f,(R). Note that we will identify

the Lipschitz norm
f(x) — fy) ‘
sup | ————

xFy r—y
with || f'|| ., since a Lipschitz function is differentiable almost ewengre.

Finally, we abbreviate
W ={f € Cx(R)|f" € Cx(R)}
with norm [ 7l + [|./"]l.. and
WP =Wwenwhr
with norm

(13) LA = 0 oo + 0 Mo + AN, + 11, -

The following argument is reminiscent of Section 2.3 from(QR].

Lemma 6. D is dense inW?, 1 < p < oo, LP(R, dx), 1 < p < oo, and C(R), with their
respective norms.

Proof. We will prove thatD is dense id/'?; the other arguments are similar, and more standard.
Step 1.By an elementary “cut-off plus smoothing” argument,

(14) C(R)NWP = C(R) n W™

is dense id/? with respect to the norm (13). So it suffices to check thatyegksment of this space
can be approximated by elementsiof

Step 2.For
1 ¢
Fe(z) = a2 + g2
the Poisson kernel anflin the set (14), we know that
(15) (Pe*fy/:Pe*f”:P!*f‘

Moreover, ag — 0", (P. x f) — fand(P. x f)” — f” uniformly, and so (since the support pf
is compact) also in norm (13).
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Step 3.For afixedz, if
1 €
S o fla)A

m(x —a;) + €2
is a Riemann sum fofP.  f), then by (15)

Z% (my/f(ai)&

is a Riemann sum fofP. x f)”. Sincef is uniformly continuous, both sets of Riemann sums
converge uniformly, s@. x f is a limit of such Riemann sums in the norm (13).

It remains to note that

b1 11 D
(x—a)+b02 2i\a+bi—z a-bi—zx '
U

Proposition 7. For a free Levy process of the first kind, on eafh(R, dz), 1 < p < oo and on
(Co(R), ||-]])s KCs¢ is strongly continuous ia, ¢.

Proof. SinceD is dense inL”(R, dz) andK, is a contraction on it, it suffices to prove continuity
for f € D. Indeed,
_ Fyp(z) = Fou(2)

1 1
Koy —Ker | — || = .
! L—x] ! L—x] ‘(Fsctf(?:) — ) (Fou(2) — @)
It remains to note that for a fixedl (Fy »(z) — Fs:(2)) — 0ass’ — s, t’ — t, and that for any

z,w ¢ R,
1 1
1
(16) ‘u—wa—xﬂp EEDERE
forall p > 1. O

4.3. Free Lévy processes of the first kind.

Lemma 8. Let {1} be a free convolution semigroup, where= 1; has meany and variancel.
Then

Ru(Gp(2) = a+ G, (2),
wherey;, = J[pu)-

Proof. By definition (11),

=i (-t gm) =i (o)

One the other hand, by definition of tligtransform

Gl (z) = é L R(2),

Mt
SO
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Putting these together, it follows that
a+ Gy (2) = Ru(Gp,(2))
on a domain, and hence, by analytic continuation(Con O

Remark 6. In [BNO8], Belinschi and Nica defined a family of transformaiso
B,[v] = (VEE(Ht))L“ﬁt _
They showed that these transformations form a semigrouprwwamposition, an@®, = B is the
Boolean-to-free Bercovici-Pata bijection, defined via
2z —F,(2) = 2Rgp(1/2).

The domain ofB consists of all probability measures, while its image aleha freely infinitely
divisible measures. Moreover, they proved the followingletton equation:

Dp B ] = B;[®[p]].

We found this equation quite mysterious. We now re-intdrfiras follows: a single coefficient
stripping, applied to a free convolution semigroup (withténvariance), produces a semicircular
evolution started at the free canonical measure of the seopg

Proposition 9. Let p be a probability measure oR. Then

e = Py[p B ]

is a free convolution semigroup with mean zero and finite venéasuch thap is the corresponding
free canonical measure. Moreover, each such free coneolwiemigroup withVar[u,] = 1 arises
in this way. In particular, for any such free convolution sgraup,

Twe] = p B .

Proof. We compute
e = C[pBy]*" = B,[P[p]]*" = B,.[B[2[p]]]* = B[®[p]]™,
so{u;} form a free convolution semigroup, with= p; = B[®[p]]. Also,
Tlp] = T[@elpBw]] = pB .
If R, is theR-transform corresponding ..}, then
Gomy (2) = G (2) = Ru(Gp,(2))

by the Lemma 8. In particular, singg = 6, andG,,(z) = %

1
G(e) = Ru(1/2) = [ dpto)
RZ—T
sop is the free canonical measure fgi,}. Finally, such a representation holds precisely for any
free convolution semigroup with mean zero and|u,] = 1. O

Corollary 10. For {u;} a free convolution semigroup satisfyirf§0), with free canonical pair
(a,p),
R (Gu.(2)) = a+ Gy, (2)-
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Definition 2. For a finite measure, we denote by, the operator

1= [P 0w~ w v,

whereo is the difference quotient operator. Such operators werdied in [Ansl1la], but also in
other sources, for example [LT09].

Lemma 11. For p, {x;} as in the preceding corollary,

1 1
(oﬁx + 8$L,,53%)Z— = Ru(Gus(Z))

-z (z —x)?

and this is a continuous function einto L*(R, dz).

Proof. Using the preceding corollary,

1 1 1 1
(a0, + aszaays)m = 04(2 Y + Gz —a)? G omr. (2) = Ru(Gus<z))

Continuity follows from equation (16). O

Proposition 12. Let A; be a generator of a free@vy process corresponding to the free convolution
semigroup{ u; } with free canonical paif«, p). Then forD from equation(12), D C D(A;), and
on this domain

(17) Af@) = adufa) + [0S =IY qipem)),

which we will abbreviate as

(18) Ay = a0, + 0, Ly, .

Proof. For any free convolution semigroyp, }, the following evolution equation holds:
(19) %G (2) = —Ru(G,(2)) G;Lt(z)7

see equation (3.18) in [VDN92]. Also according to Theorefind.[Bia98], the transition operators
of a free Lévy process (of the first kind) have the property that

1 1
K, = )
! L—x} For —x

where

This implies that
0G,(2)  GLE)R(GL(2))

O Fs4(2) = Gl (Fou(2)) B G, (Fsi(2))
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So using Lemma 11, we compute

E(Kw%;jz—z_m)—Oﬁa+@gﬂw;t_'
a E <Fss+h(2) —x B z —x) - (Z _x>2RM(Gus(Z))
1 Fysin(z) — Fs(2) 1

h(F, S+h( ) 2)(z—1z) (2— I)zRM<Gus(Z))

|G g rmEas e )
" us+u( z) 1 (Grgpa (2 G (2
::<%A (HWQDR(( é$%w>U§H£@—xf_@ix)V%giéww

. . Glgrn(?)  Ru(Gu, ., (2) i
A Hstu AT gy -
Now using equation (16) an P () BaCra() 1 asu — 0, the difference above con

verges to zero irl?(R, dz), 1 < p < oo. The result follows. O

The appearance of the semicircular distributions in theeggior formula above is explained by the
following theorem.

Theorem 13.Let{X; : t > 0} be a centered freeédvy process of the first kind with finite variance,
normalized so thaVar[X;| = 1. Letp be the canonical measure for the corresponding free con-
volution semigroud 1. }. Finally, let{Y; : ¢t > 0} be the free Brownian motion started ¥ with
distribution p. Then the transition operators of the proces§éas} and{Y;} coincide.

Proof. It suffices to check the equality of transition operatordyin other words we need to verify
the equality of analytic functions; ;. We check that indeed,

Gl 0 Gu(2) = (Gl = (L= )Ry ) 0 Gpu(2) = 2 = (1 = )Ry 0 Gy, (2)
= 2= (t = 5)Gymn,(2) = (Goam — (= )2) 0 Gy, (2) = Gigh, 0 Gmn, (2).
O

Remark 7. For readers familiar with the properties of the subordoratlistribution, we provide
an alternative proof, see [Nic09] for the results used. Wamate

_s s —s s)(t—s s\ W(1/s)
mﬂEMZWE%F“)ZWW”EMF&):M%W”W):Bhﬁ) }

= (Bo By [u)™* ™ = (B, o B[2[])) "™ = (B o B.[®[p]))*"
— B{ofp @)% = (1B(pEY) " = BB ).

Note also that the preceding theorem is false for a procabswn-zero mean; indeed, the generator
of a free Brownian motion with drift is not (18) but rathed, + 0, L m-,ms.. -

B(t—s)

Proposition 14. Letv be a finite measure. Then

102 L flloe < v(R) /"]l
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and forl < p < oo,
100 L flIy < Cov(R)LF oo + I1LF11,)-
It follows thato, L, is a bounded operatdi’>* — C(R) andW? — LP(R, dz).

Proof. By Taylor’s theorem,

5 L@ = fW)| _ ‘f(y) —f(&) = (y—2)f"(x)
Tor—y (y — =)
|t/ — ) f"(u) du wp |22 .
s [ < s P2 <
So
(20) 102 L flloo < v(R) "]l

Since 0, L,(D) C C4(R), D is dense inlW*>, and C(R) is closed, it follows that in fact
0. L, (W) C Cx(R).

Next, (20) implies that fop > 1 andq the dual exponent,

10, Lo £, = //yaw] ;:2”() vty
by f(x - F I sty

< [t ww+ fun, (o 1y)qu)”q avly)
//[HW CE 2</y du>/ (1 ()" du)"'? dz du(y)

_ 1/q
< 200(®) |, + EE om0, 4 2wy 11,

So
0. L0 1l < Cor(®) (11 + 1571,) -
A similar argument works fop = 1. The final result follows by interpolation. g
Theorem 15. Let p be a probability measurey € R, {1, } the free convolution semigroup with the
free canonical pair(«, p), {X(¢)} the corresponding freeévy process, anflA;} its generators.
Then onC(R), (A, W) equals
At = Oé&x + 8wLp53%.

and onLP(R, dz), (A, WP) is given by the same formula.

Proof. Use the estimates in Proposition 14, and Lemma 6, and applyoBition 1 with. A =
Cw(R), B = W=, respectively,A = LP(R, dx), B = WP, to show that these sets are in the
domain of the generators. Since the same estimate showsdhat 0, Lz, continuously extends
to B, the result follows. O
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Example 1. A free Meixner dlstrlbutlomft is the probability measure with Jacobi parameters
Qp = Oaan - byﬂl :taﬁn :t+C

For ¢ > 0, these distributions form a free convolution semigroughwéspect to the parameter
Clearly the corresponding = j[u,??i] = 0, H v, are the semicircular distributions with me&an
and variancét + c¢); thus we recover a weaker version of the result of [Bry10]. @ndther hand,
for u = 1. we also have

Ru(2) = 2 (1 +bR,(2) + c(Ru(2))?)

Ru(:) = [ 1= dola)

for p = ¢, H . the semicircular with meahand variance. So the free canonical measure in this
case is also semicircular. The reason for this coincidest®ai, as pointed out in Proposition 9,

which implies that

v =pBy = (0 Bv) By =0 By
Example 2 (Generator of the Cauchy proces$he mean of the Cauchy distribution is undefined.
Nevertheless, we can still compute the generator of theGaaechy process, because the Cauchy
distributions form both a free and a usual convolution seaup. Indeed, the Fourier transform of
the standard Cauchy distributionds!*!, so the generator of the corresponding proce$sid, | =
— |0,|. Note that|z| = sgn(z)z and
F(H[)(x) = —isgn(z) F(f)(z),

whereF is the Fourier transform anH is the Hilbert transform. We conclude that the generator is

Af(z) = —i0,(H f)(x).
This is consistent with the relatiaf, (z) = —i and

0iG (2) = =i, (2).

Remark 8. The generator of a classical process is a pseudo-diffategerator. The generator of
the free process can be given a similar interpretation.ddgdeote first that

z)— f(0
Lot = 110
This operator is the crucial object in [Ans09]; note alsd thd.;, is the generator, but only at time
zero, of the free Brownian motion. Suppose now that all the erdsm,, () of v are finite, and let

z) = Z my(v)z
n=0
be its moment generating function. Then, at least for patyiabf,
L,f =M,(Ls,)Ls, f.
Indeed, forf(x) = 2",
n—1 n __ ,n
M, (Lsy)Ls, f( Zm LkJrl "= ka(u)x”_k_l = / — dv(y) = L, f(x).
R

=Y

By writing L, = G, (L ) we can interpret it as a pseudo-differential-type operaten if the
moments of are not flnlte
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Remark 9. Suppose: is compactly supported. In particular, we can expand

o0
= E a2
n=1

where{r,} are the free cumulants @f. Then it follows from Proposition 12, Lemma 8, and the
preceding remark that the generator of the correspondimcess is

AS - C\(ax + 8mLpEE’ys = aﬂ? (Oé + GPEE'YS (L(;Ol)>

(21) S
= 0, (G(L5)) = 0 Ry(Ly,) = Y rnde LT

n=1

On the other hand, by Lemmas 2 and 3 of [Ans02], in this caskititeer diagonal measures
t
A0 = [ @xty
are defined, antl [A,,(t)] = r,t. Moreover, by Corollary 12 of the same paper, for polynonial
00 t
FEO) =Y [(9Ee. . 0E8 D@ X)X ()10 (),
n=1 0

whereo" is defined recursively by
r=I%.. 010"
(this notation differs by a factor of! from [Ans02]), and

/0 (A(z) @ B(s))4dX(s) = /0 Az) dX(s) B(s).

In other words,
= E OL™ ' )X A, (s).
n:1/0( s f)( (5))ﬁd (3)

It follows that for the generator (21), the martingale froenma 2 can be written explicitly as

FX (1) - / (ALF)(X(s)) ds
_2/8[/"1 SN dA( Z/O aL'rLl X(s)) ds
= [ OL DO 280 (5) )

It would be interesting to find such a representation for ngyanmeeral..

Remark 10. A matricial interpolation between classical and frea/i, processes was constructed
in [CDO5], where the generator of such a matricial procests®@mputed.
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4.4. Free Lévy processes of the second kindThe semigroud K;} of transition operators corre-
sponding to a free &vy process of the second kind is characterized by

1 1
. L’—:J N Fm<z) -’

and{F),, } form a semigroup with respect to composition.

The transition operators for a monotonewy process corresponding to the familly,} are exactly
the same, and in fadtu;} form a monotone convolution semigroup, see Corollary 5.3cd(9].
According to Theorem 5.1 of [FMO05], at least for the compastipported case, on bounded con-

tinuous functions
/f A5 > ) (1),

Since{K,} form a semigroup, we only need to compute the gener&ttrzero. By Proposition 5.1
of [FMO5], the generator is

(22) Af(x) = a0, f(x /a 9 dp(y).

where

) , 0
- a 0 Fﬂt(z) 8t

G<>=a+42ixww»

so that(«, p) is the monotone canonical pair (note our choice of signsésthposite of [FMO5]).
As pointed out in Theorem 4.5 of [Bia98], only certairtorrespond to processes with free incre-
ments in this way (note that unlike Biane, we have assumed ;). We repeat Biane’s question
(Section 4.7): it would be interesting to have a more direstodiption of whichp do so appear.

Remark 11. Let { X (¢)} be a process whose increments are stationary and indefiémdesertain
sense{K, .} the corresponding transition operators, dpgl «} be the corresponding convolution
semigroup. Sincgg = dy, we observe that

pe[f] = E[f(X(8))] = E[(Kot/)(X(0))] = po[Koef] = (Ko f)(0).
Therefore the corresponding cumulant functional (7) is

0

Culfl = &

51| peldl = (o))

We note that indeed, if we sét= 0 andz = 0 in formulas (9), (17) and (22), in all three cases
we get formula (8). Note that in these three cagas,interpreted as the classical, free, and mono-
tone canonical measure, respectively. In particular, litha¢e cases, the cumulant functionals are
defined at least on the domain of the corresponding gensrd@orthe other hand, fer> 0

Lilf] = Ouulf] = (Kot Acf)(0) = e[ Ay f]

will depend on the type of semigroup considered.
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4.5. Semigroups for generators of the free [evy processes of the first kind.We noted before
that for a Levy process of the first kind,A;, D(A,)) is closable. We now show explicitly that its
closure generates a contraction semigroup.

Leta € R, andp be a probability measure. For each- 0, denote{Ft(s) it > 0} the solution of

—OF{(2) = a+ Gy, (F(2))
which, by Theorem 4.5 of [Bia98], exists and moreover sasisfie
F9(2) = F o(2)

for a probability measurq(s). In factFt( o F( ) = Ft(fit , and the corresponding measures form a
monotone convolution semigroup. Denote now

£ /f d(6, 5 77)(y).

At least in the compactly supported case, as noted abows Hre transition operators for the cor-
responding process with monotone independent incremautsyill not use this property directly.
Instead, we note the following.

Theorem 16. Let {ﬁ } be as above, andC,;}, {A,} be as in Theorem 15.

(a) For eachs, the operators{ﬁ } form a strongly continuous semigroup of contractions on
Cx(R) and LP(R, dx).
(b) The generatoi3, of this semigroup is a closed operator for whibhis a core.
(c) For f €D, Bsf = Ay f = (a0, + OrLymy, ) [-
(d) OnC(R) and L*(R, dx).
(23) lim (]Cs,s-l—t/n)n - £§S)

n—oo
strongl_y.
(e) B, = A,, andD is a core forA,.

Proof. The proofs are very similar to the results fG¢;, and are mostly omitted. For part (a), see
Propositions 5 and 7. For the semigroup property, we compute

Ce L) f( / ( / F(2)d(8, > 7, ><z>) d(d,> 7)) (y)

/f a6, 5 7)o 7))
/ f(2)d(d, > Tt1+t2)(z) = nglmf(@»

sincer is associative and distributive in the first variable.

The generator of a strongly continuous semigroup is cloBad.dense and invariant under Elﬁs),

so by Theorem X.49 of [RS75] it is a core f6Y,. The proof of part (c) is similar to Proposition 12.
Part (d) follows from Chernoff Product Formula, Theorem3I2 of [ENOO], applied td A5, D) =
(Bs, D) (the density of the range condition is satisfied siBcgenerates a contraction semigroup).
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Finally, for part (e), we apply Chernoff Product Formula(t,, D(A;)). The density of the range
condition holds since it was already satisfied fronD. The theorem implies that, generates
precisely the same semigroup (23). Theretdre= B,. O

Remark 12. A alternative general approach to the non-autonomous Caudjem is via evolu-
tion semigroups, see Section V1.9(b) of [ENOOQ]. We brieflgciébe this approach in our case. Let
[ € C(R?), and denote;(z) = f(t,z). Then operators

(T3f)(s,2) = (Ks st fs41) (@)
form a contraction semigroup with respect|tdj _. Its generator is a closed, dissipative operator.
At least formally, it is related to the generators of the figndiC, .} by

(Af)(t, x) = Afi(z) + O fi().
We also note thaA f = 0 if f is fixed byT;, in other words if
Ks,s+tfs+t = fs-
But this is precisely the condition fgf(X;) to be a martingale.

4.6. Further remarks on the properties of L, and 9,.L,,.

Proposition 17. Let i be a probability measure with meanand variance3. Denoter = 7 [u].
ThenL,, is a multiple of a unitary operator

{fe () : plf] =0} — L2(v),
with inverser — o — SL,,.

Note that if polynomials are dense irf(u), this result follows from the proof of Proposition 10 in
[Anslla], and the statement about the inverse from thatgsitpn and Corollary 11.

Proof. First we show thaD is dense in?(:). Indeed, iff € D+, then
1 flx
<f > = [ LY ) = Gz =0
o

'Z—=x RZ—T
for all z € C\ R. By Stieltjes inversion, it follows that = 0 u-a.e.
By density ofD, it suffices to show that for resolvents,

(-6 - Guw)) =] ] - a6

Z—T w—2 u Z—TW—T

(6@ - o) - GG




22 MICHAEL ANSHELEVICH

independently ofv. Also

zZ—XT

(@ a= Lol | | = (e -0)+ 2 ma - 56, -

and the proof of the opposite equality is similar. O

We noted in Proposition 1 combined with Theorem 15 that a iggoeof the transition operator
family for a free Lévy process is dissipative, and that 6, it coincides withad, + 9,L,. We
now give a more explicit proof of this result fpr= 2, which may be of interest in itself.

Proposition 18. Letv be a finite measure, and denote= a0, + 9, L, and

D(f.9) = [ @0)w.4)(09) (o) dvly).
R
ThenD is well-defined forf, g € Wt n W2, while for f,g € W?

D(f,9) = A(fg) — fA(g9) — A(f)g

for all o, so thatD is the caré du champ operator corresponding 4o It follows that for suchy,

R(Af, f) <0
soad, + d,L, onW? is L2-dissipative.
Proof. We compute
2
[ onas= [[ PR a0 a0
R R2 -
2
// f(y dx dv(y // fl) = 1) dx dv(y)
[y—a,y+a] z— [y— ay—i—a]c r—y
< [ 20l av / / waa| deaviy)
R [y—a,y+al° (x—y

< 2|15 v(®) + /11 / ~du(y) = 2(R) ( 17115+~ uf'nl) -
Fora = 1, we get

ID(. £)ll < 20R) (Il + 1711,)

By polarization,D( f, g) is well defined forf, g € Whe nWwhi,
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Next, we compute

_ ['(@)g(x) — flx)g'(z)  [lx)g(z) — f(y)g(y) y
(A(fa) - FA() ~ A(F)g) (2) = / Hoet = D=L
3 (z ) (2) o y9@) —9(y)]
/R[ -y ~ /) (z —y)? ]d(y)
+a((fg) = fg' = f'9)(x)
_ [ f@) _f(y)g( )_g(y) ().
R r—y r—y
Moreover,
1 r 1
Ln@i= [ [ rmaew s [ o ) du| dv(y)
< | fllov(fz —a,x +a)
1 z 12| o 1/2
" /[w—a,x—l—a]c |$’ - yl </ du) / ‘f <U)| du dy(y)
<|fllov(fz —a,x+a]) + \/—||f||2
So fora = 1/¢2,
lim sup 1L, (H)@)] <ellfll,
as long ag| f'||., < oo. Thus forf € Whe nWwt2,
(24) lim sup L (f)(@)] = 0.
Therefore forf € W2,
IRUALS) = (AL)+ (A7) = [ [AUSP)@) = DU ()] do
@5) — [ [ (LAl P)@) + af@) - DO Pa)] da
__//R2 f<:1)3:y dv(y)dz < 0.
O
Note this the Dirichlet form from [Bia03] i®(f, g) = [, D dv(z), which is not the same

as the right-hand-side in equation (25).
Proposition 19. a0, + 0, L, is C.-dissipative ol >,
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Proof. For f € C(R) such that|f(zo)| = max,cr |f(z)|, @ normalized tangent functional is
©1(9) = f(x0)ds,. Thenforf € W,

R0+ 0ubf] = W [Tl ) + T [ (L1 - S0 )
- % (ﬁ / finl =gl “")__yf ) )
>2 =
sincef’(xy) = 0 (which follows from(|f(x0)\ ) = (f(z0)f(x0)) = 0). O

5. THE ¢-BROWNIAN MOTION

Letq € (—1,1). Theg-Brownian motion is a non-commutative stochastic processtracted in
[BS91]. The distribution of eacl () is a very classicaj-Gaussian distribution

(26) dyiq(y) = ;\/_Eq sin(0)(¢; 9)oo | (4¢*”; 0)oc|” dy

i 2
= (; @)oo |(4€°"; O)s| dre(v/1 = qy)
supported on the interval

ey
VI—d Vi—al’
Here we have used the change of variable (27) ang-fdechhammer symbol

o0

(@;0)o = [ (1 = ag’)-
=0
According to Corollary 3.10 of [BKS97], the-Brownian motion is a Markov process, and more-
over theg-Hermite polynomials are martingale polynomials with mspto it. Here the (Rogers)
continuous;-Hermite polynomialg H,,(y, ¢; ¢) } are the monic orthogonal polynomials with respect
to the measure (26). They also satisfy the three-term rigcurslation

yHu(y,t;q) = Hupa(y, 5.0) + [nlgt Ho 1 (y, £ ),
where[n], =1+q¢+...+q¢" "
Lemma 20. The transition operators

Kol (2 /f a2 dy)

of theg-Brownian motion are

V31— : ; 5/t5q)oo
Ks,t;q(xa dy) = —q(Q7 q)oo SIH(Q) ‘(QGQ 9; q>oo |2 ( / q> 2 dg?
vt (/e /afieie-0:q).
5/t:4)
q qOO‘ QOO‘ ( / Q) Qd%f( 1_qy)7

‘ \/8/teiet0) /s [teile=0); q)
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where
= & COS = Q—ﬂ COS ™

See Theorem 4.6 of [BKS97] for the proof.
Remark 13. According to [DMO3], the Id product formula for the-Brownian motion has the

form
([T veraxw) ([ vieraxo) = [~ amaxe (s | t V(X () )

(28) + /0 N < /0 t U(s)]jdX(s)) C(t)dX (t)D(t)

T /O h AT, [B(t)C(t)}D(t)dt,

whereU = A® B,V = C ® D are adapted biprocesses satisfying a technical conditiame

I', is a certain positive map on the von Neumann algébra{ X (¢),t > 0}). In this paper we are
only interested in the action of this map on the von Neumagelah generated by a single operator
X (t). This algebra is commutative and isomorphic to

2 2

_\/1 —q¢ V1—q¢q
On this algebra, the map is determined by the property that
(29) Ug[Hn(z, 15 q)] = ¢"Hy(x, 15 ),
that is, it is a multiplier for the-Hermite polynomials. We can use theMehler formula
=1 (1% @) oo
30 r"Hy(z;9)Hy(y; q) = —— — ;
= 2 G s ) = T

with the change of variables (27) for= 1, to see that this map is an integral operator

vI—g¢ |(ge**; q)o|”

- . 2, .
Ft?‘l('r? dy) - 7]'\/]_f Sln(@)(q ) Q)Oo<q7 Q)OO |(qei(@+9)7 qei((pfe); q>oo

|(qe*?; q)o|”

5 dy

= (01 @)oo (% D)oo T —— zdn (V1 = qy).
We note in particular that
(31) Lz, dy) = Kpap (2, dy).
Proposition 21 (Functional 16 formula) Let f be a polynomial. Then
@2) FX0) = [ ODXE) X)) + [ el X5,
Here

B = [ (aw) Caaledy) = [ (0.00)(0) (. )

=Y
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Proof. First we show that all the terms in the functiond formula satisfy the technical condition
of Theorem 3.2 from [DMO03]. All the integrands are polynofsim X (s). So it suffices to show all
the properties for the proce$(¢)}. It is clearly adapted and uniformly bounded on the interval
[0,¢]. Now let

IT={0=ty<t;<...<t,=t}
be a subdivision 00, t], andd(Z) be the length of the largest interval in this subdivisiont Le
n—1
XI(S) = Z X(ti>1[ti,t¢+1)(s)‘
Then

[ ) =Xl as =3 [ X - Xl ds

But || X (s) — X (t:)|3, = [IX (s — )13, = 1% (s — t;). Therefore the preceding sum is

o

tisn 4 9 X 2
Z_O/t 1—g l—g=" 1—q

asié(Z) — 0.

The rest of the proof proceeds by induction. Assuming foe§82) for f, and using the & product
formula (28), we get

FXWIXD = [ @D (). X(6) 30 X)X () + [ X0
+ [0 TN s+ [ Al NIXEIX6)ds
- [0nx(e). X i e X(e)sax(s) + [ 70X6)
-/ (@ T)ONXE) ds + [ 108 T)@NIK )X () ds

0

The result now follows for: f (=) by observing that

@)@, y)y + fz) = (0(xf))(z,y).

and

(Of )@, y) + 0(0f)(z,y)x = 0u(x(0f)(2,y)) = 0u(O(xf))(z,y) — fy)) = 00(xf)(2,y).
O

Corollary 22. On the domairP of polynomials, the generators of theBrownian motion are

Af(x) = Apof(z) = / (0u0)(r,y)Tig (),
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More explicitly,

Atf(gc):/(axf(x)—f(y)) (¢* @) ()

T=y ) (g0, gee0); q) |
; 2
f@) —fWY - (46} q)oo|
= Op ————— 14)00(q5 q) oo d 1-
[ (022 oo T
with the change of variablg27).

Proof. It follows from the 16 product formula in Proposition 21 that for polynomjal

X)) - / A f(X(5)) ds

is a martingale. Therefore by Lemmaaz, , is the generator of the process at timeNote that
since the support of,,, is infinite, polynomials are determined by their values oriltie explicit
formula follows. OJ

Theorem 23. The operatorA,., described in Corollary 22 is the generator of theBrownian
motion at timet on the domairiV> C C(R).

Proof. First, using the beginning of the proof of Proposition 14,

Bt = [ (axaf)(x,y)ﬂ;q(x,dy)’ <170 | [ rt;q@,dy)' <170

where in the last step we used equation (29)for 0. Itis also clear thaftC, ;,, is a contraction
on L>*(R, dz). By a standard argument, polynomials are dense with respebedl > norm in

C [ 2V 2V1 ] Finally, the strong continuity of, ;., andI';,, on polynomials follows from the

V1ma" VI . . _ .
martingale property of the-Hermite polynomials, and formula (29). It remains to apphpposi-
tion 1. 0

Remark 14. Settingg = 0 in the formula in Theorem 23, we get
) —
At = [ (2591 ),
r—y
as expected. On the other hand, setting 1 in formula (31) we see thadt,,(z,dy) = d(x —y) dy
is the identity operator. So in this case,

afe) = [ (2H2=10) s -y = o)
again as expected.

6. TWO-STATE FREEBROWNIAN MOTIONS

In [Ans11b], we considered Brownian motions in the contextved-state free probability the-
ory (A, E, E). A priori, any process with two-state freely independerdréments whosé--
distributions are a free convolution semigroup} and whoséE-distributions satisfy

Tl] = ve,  pulr] =0, pufa®] = ¢
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can be considered a two-state free Brownian motion. We prdvedever, that if we requir&
to be a faithful normal state anél be normal, then, has to be the semicircular distribution with
possibly non-zero meamt and variance. Such a process is not Markov (in fd€tis not tracial,
andE-preserving conditional expectations do not exist), havets classical version is. We now
construct generators of these process.

Proposition 24. The generator of the two-state free Brownian motjof(¢) } with parametei at
timet is

(0 — LMt) + O0p Lo,
on the domairiv .

Proof. This result was proved in [Ans11b] for polynomigl Also,
(0 = Ly,) + QL) fIl < 2al [/l + 11/l < 2lal [ fllo + (2]a] + D) 1/ -
Since the measuregs, v, are all uniformly compactly supported, the full result éalis as in Theo-

rem 23. U
Remark 15 (Itd formula) By the same methods as in [BS98] and [Ans02], for sufficientberfi,
33) FX) = 10 + [ 0f(X(e)2ax () + [ (0.0 B)FX(9)ds.

Using Lemma 2.1 of [BLS96] and the observation that the po¢éSt)} is E-centered (see Re-
mark 6 of [Ans11b] for more details), we see that

t
E[f(X ()] = f(0) + / E [(aagc —a(1®E)d+ (9, ® E)@)f(X(s)ﬂ ds.
0
This result is consistent with the generator formula in trecpding proposition.
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