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HEAT KERNEL ESTIMATES FOR THE ∂̄-NEUMANN
PROBLEM ON G-MANIFOLDS

JOE J. PEREZ AND PETER STOLLMANN

Abstract. We prove heat kernel estimates for the ∂̄-Neumann
Laplacian � acting in spaces of differential forms over noncompact
manifolds with a Lie group symmetry and compact quotient. We
also relate our results to those for an associated Laplace-Beltrami
operator on functions.
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1. Introduction

1.1. Description of the problem and principal results. In this
paper, we derive bounds on the heat kernel of the ∂̄-Neumann Lapla-
cian on manifolds with boundary possessing a Lie group symmetry.
Heat kernel bounds are studied intensively and an attempt to describe
only the most important works would go well beyond the scope of the
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2 JOE J. PEREZ AND PETER STOLLMANN

present article. Instead we refer to [29] and point out the peculari-
ties of the model we are dealing with before completely introducing
the setup. The operator we deal with is the natural Laplacian coming
from the PDE of several complex variables. It acts on complex-valued
differential forms on a manifold with boundary and has non-coercive
boundary conditions. Despite these differences from the usual situa-
tion treated in the theory of Dirichlet forms, some techniques from that
discipline remain applicable in obtaining heat estimates. Due to the
complications in our model, it comes as a nice surprise that these usual
tools (particularly the intrinsic metric) remain useful. Apart from the
results that will soon be described, this surprise is certainly a message
we want to pass along. Since we would like to communicate our results
to at least two communities, we will take our time to explain certain
basics that might be familiar to some readers. We ask those to please
bear with us.
Let M be a complex manifold, n = dimCM , and assume that M has

a smooth boundary bM such that M̄ =M ∪ bM . Assume further that

M̄ is contained in a slightly larger complex manifold M̃ of the same
dimension. The space of holomorphic functions on M under various

complex-geometric conditions on bM ⊂ M̃ has been investigated from
various standpoints, beginning with Hartogs and Levi [34, 43, 44] and,
with Stein theory and sheaf-theoretic methods, culminating in the Oka-
Grauert theorem, [27].
An approach to problems in several complex variables using partial

differential equations was also developed by Morrey, Spencer, Andreotti-
Vesentini, Kohn, Nirenberg, Hörmander, and others ([21, 62, 68]) and,
for our purposes, bearing fruit in Kohn’s solution to the ∂̄-Neumann
problem, [40, 41, 42]. This method heavily involves the analysis of a
self-adjoint Laplace operator � on differential forms in Λp,q, the subject
of this article, which we describe here.
For any integers p, q with 0 ≤ p, q ≤ n denote by C∞(M,Λp,q) the

space of all C∞ forms of type (p, q) on M . These are the differential
forms which can be written in local complex coordinates (z1, z2, . . . , zn)
as

(1) φ =
∑

|I|=p,|J |=q

φI,J dz
I ∧ dz̄J

where dzI = dzi1 ∧ · · · ∧ dzip , dzJ = dz̄j1 ∧ · · · ∧ dz̄jq , I = (i1, . . . , ip),
J = (j1, . . . , jq), i1 < · · · < ip, j1 < · · · < jq, and the φI,J are smooth
functions in local coordinates. For such a differential form φ, the value
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of the antiholomorphic exterior derivative ∂̄φ is

∂̄φ =
∑

|I|=p,|J |=q

n∑

k=1

∂φI,J

∂z̄k
dz̄k ∧ dzI ∧ dz̄J ,

so ∂̄ = ∂̄p,q defines a linear map ∂̄ : C∞(M,Λp,q) → C∞(M,Λp,q+1).
With respect to a smooth measure on M and a smoothly varying

Hermitian structure in the fibers of the tangent bundle, define the
spaces L2(M,Λp,q). Let us extend the above ∂̄ to the corresponding
maximal operator in L2 (and still call it ∂̄) and let ∂̄∗ be its adjoint
operator (the differential forms in the domain of ∂̄∗ will have to satisfy
certain boundary conditions). Then, on

dom(Qp,q) := dom(∂̄) ∩ dom(∂̄∗),(2)

Qp,q(φ, ψ) := 〈∂̄φ, ∂̄ψ〉L2(M,Λp,q+1) + 〈∂̄∗φ, ∂̄∗ψ〉L2(M,Λp,q−1)(3)

defines a closed formQp,q on L2(M,Λp,q); we will frequently omit the su-
perscripts indicating the type of forms and simply write Q and dom(Q)
instead. By standard theory (see details in Section 2.3 below) there is
a unique self-adjoint operator � = �p,q corresponding to Q = Qp,q that
we can write as

� = �p,q = ∂̄∗∂̄ + ∂̄∂̄∗.

This Laplacian � is elliptic but its natural boundary conditions are not
coercive, thus, in the interior of M , the operator gains two degrees in
the Sobolev scale, as a second-order operator, while in neighborhoods
of the boundary it gains less. The gain at the boundary depends on
the geometry of the boundary, and the best such situation is that in
which the boundary is strongly pseudoconvex, a condition already seen
to be important in [34, 43, 44]; see [62]. In that case, the operator
gains one degree on the Sobolev scale and so global estimates including
both interior and boundary neighborhoods gain only one degree. More
precisely, one obtains a priori (called Kohn-type) estimates of the form

(4) ‖u‖Hs+1(M,Λp,q) . ‖�u‖Hs(M,Λp,q) + ‖u‖L2(M,Λp,q),

uniformly for u ∈ dom(�)∩C∞ when the boundary is strongly pseudo-
convex and q > 0. Such estimates are usually called subelliptic as the
gain of the operator is less than its order. Geometric situations exist in
which the gain is less than one as in the estimate (4); see particularly
[10, 9].
Assuming for the moment that M̄ is compact, under various well-

investigated conditions on bM , the Laplacian satisfies a pseudolocal
estimate with gain ǫ > 0 in L2(M,Λp,q). That is, if U ⊂ M̄ is a neigh-
borhood with compact closure, ζ, ζ ′ ∈ C∞

c (U) for which ζ ′|supp(ζ) = 1,



4 JOE J. PEREZ AND PETER STOLLMANN

and α|U ∈ Hs(U,Λp,q), then ζ(� + 1)−1α ∈ Hs+ǫ(M̄,Λp,q) and there
exists a constant Cs,ζ,ζ′ > 0 such that

(5) ‖ζ(�+ 1)−1α‖Hs+ǫ(M,Λp,q) ≤ Cs,ζ,ζ′(‖ζ ′α‖Hs(M,Λp,q)+‖α‖L2(M,Λp,q))

uniformly for all α satisfying the assumption. Still assuming that M̄
is compact, Rellich’s theorem provides that (� + 1)−1 is a compact
operator and thus there exists an orthonormal basis of L2(M,Λp,q)
consisting of eigenforms of �, [21, Prop. 3.1.11]. With the eigenvalues
and eigenforms of �, one can construct the heat operator and study it
directly. In our case of noncompact M , this is not true and so we will
take a different approach.
Still, to us, the most important result from the PDE of several com-

plex variables remains the pseudolocal estimate (5), which holds even
without assuming the compactness of M , as shown relatively recently
in [18].
Finer methods have been developed with which to treat the ∂̄-Neumann

problem, originating in [22] and involving various pseudodifferential
calculi, but these do not seem easily to alleviate the difficulty in going
from the compact to the noncompact manifold case. Accordingly, one
sees that the literature of the ∂̄-Neumann problem rarely deals with
noncompact manifolds.

Principal results: Though our results hold in somewhat greater
generality, we will assume throughout this article that M is a complex
manifold with smooth, strongly pseudoconvex boundary bM . Assume
also that M̄ = M ∩ bM is contained in the interior of a slightly larger

complex manifold M̃ , of the same dimension, on which a Lie group
G acts freely and properly by holomorphic transformations. Finally,
assume that restriction of the orbit space X̄ = M̄/G is compact.
The first of our principal results is a Nash-type inequality, cf. [50]:

Theorem 1. (Nash inequality) Let M be a strongly pseudoconvex
G-manifold on which G acts freely by holomorphic transformations with
compact quotient M̄/G. For integer s > dimCM

‖u‖2+
1

s

L2(M,Λp,q) . Q(u)‖u‖
1

s

L1(M,Λp,q), (u ∈ dom(Qp,q) ∩ L1(M,Λp,q)).

Defining the heat semigroup by Pt = e−t�, we obtain operator norm
estimates in Lp spaces as well as Sobolev spaces:

‖Pt‖L2→L∞ , ‖Pt‖L1→L∞ , ‖Pt‖Hr→Hs ,

valid for t > 0, r, s ∈ R. This last property can be used to obtain that
the Schwartz kernel of the heat operator is smooth for t > 0 and that
Pt is Fredholm in a generalized sense, which we will describe later.
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We also obtain an off-diagonal estimate for the heat semigroup in
terms of the intrinsic metric d� induced by ∂̄ : C∞(M,R) → C∞(M,Λ0,1)
and a G-invariant Hermitian structure on Λ0,1. It turns out that d� is
equivalent to the intrinsic metric dLB induced by the Laplace-Beltrami
operator of a Riemannian metric simply related to the metric on Λ0,1.
The off-diagonal estimate is

Theorem 2. (Off-diagonal heat kernel estimate) Let M be as
above. For measurable subsets A,B of M it follows that the heat semi-
group satisfies

‖1BPt 1A‖L2→L2 ≤ exp

[
−d�(A;B)2

4t

]
.

1.2. Discussion of the assumptions. We take the assumption that
M̄ possess a Lie group symmetry and compact quotient M̄/G partly
because G-invariant metrics on such M are all equivalent. A nice con-
sequence is that, in Theorem 2, modulo a constant, we may replace d�
with the ordinary Riemannian distance on M . More importantly, M
satisfying our assumptions possesses natural invariant Hilbert spaces
and Sobolev structures and so our results involving metric properties
have natural meaning. Additionally, on such M , there is a good gen-
eralized Fredholm theory for � based on the harmonic analysis of G,
which, together with generalized Paley-Wiener theorems, provides an
effective framework for understanding the solvability of equations in-
volving �. These are worked out in [51, 52, 53, 54, 14, 71]. In addition,
we have recently established in [55] that the Laplacian in this setting is
essentially self-adjoint and possesses generalized eigenforms with good
properties. The treatment there depends heavily on our present treat-
ment of the intrinsic metric.
For some of our results, the exact symmetries that we assume could

be relaxed, say, to that of bounded geometry with an added assump-
tion guaranteeing that the estimate (4) stay well-behaved at infinity.
Geometric sufficient conditions for this latter property have not been
worked out to our knowledge.
Our assumption that M be strongly pseudoconvex implies that a

pseudolocal estimate holds with gain ǫ = 1 in L2(M,Λp,q) for all q > 0.
All the bundles constructed in [35] and which are treated in [33] are
strongly pseudoconvex; we will briefly describe these later. In our
results, one can revert to the more general setting, in which 0 < ǫ < 1,
making inessential changes.

1.3. Discussion of the results. When M̄ is compact, as we have
suggested, the pseudolocal estimate (5) holds with the supports of the
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cutoff functions containing M̄ . Thus, by our method, for example, one
could have demonstrated the validity of a Nash inequality with the
machinery of [42] long before the appearance of [18]. To obtain Nash’s
inequality in the noncompact case, it seems that one would have to use
substantially different methods. We are unaware of previous results
like our off-diagonal estimate but long-distance asymptotics are not
very meaningful in the compact case.
Our results contain the following peculiarity: as already pointed out,

the ∂̄-Neumann problem is not elliptic in the sense that inverse of �
does not gain two degrees in the Sobolev scale. This is due to the
boundary conditions, which, even in the strong pseudoconvex case,
give a gain of only one order of differentiability.
Our method of proof of the Nash inequality does not make use of the

better estimates that are valid in the interior, where the gain is two as
in [21, Thm. 2.2.9]. The resulting Sobolev estimates make our Theorem
1 somewhat weaker than what would be true for an elliptic operator
with coercive (e.g. Dirichlet or Neumann) boundary conditions. In
addition, the pseudolocal estimate that we use is given in terms of
isotropic Sobolev norms while the problem is inherently anisotropic.
In the compact case, finer anisotropic estimates have been worked out
[22, 28] and it happens that the Laplacian actually does gain two orders
of differentiability in all directions except for one “bad” direction in the
boundary in which it gains one.
On the other hand, the off-diagonal bound, Theorem 2, is not affected

at all by this. The intrinsic metric gives just the kind of decay that
one would expect for an elliptic problem.

1.4. Related work. The pseudolocal and Kohn-type estimates that
we use here were developed in the noncompact case in [18, 51] and
applied in [52, 14] (with a group symmetry) to construct L2 holomor-
phic functions in some cases, in a manner analogous to that of Kohn
and Gromov, Henkin, Shubin, [40, 41, 21, 33]. This last reference
contains other examples (regular covering spaces of compact, strongly
pseudoconvex complex manifolds and two nonunimodularG-manifolds)
to which our methods here apply.
The spectral theory of the ∂̄-Neumann problem has been previously

investigated in [48, 23, 24] in the compact situation and in [63, 66,
2, 3, 4], methods involving pseudodifferential operators are brought to
bear on the problem, still in the compact case. In [57], a weighted
∂̄-operator on C

n is treated and in [7, 8] the authors prove heat kernel
estimates for the related but different �b-operator.
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Superficially, the work closest to ours is [64, 65], in that the manifolds
studied are noncompact and there is a group acting by holomorphic
transformations. In these papers, the ∂̄-Neumann problem and its
heat equation have been solved explicitly in regions in C

n called Siegel
domains.
In [16], heat kernel asymptotics are developed for subelliptic opera-

tors on noncompact groups. In [46], an asymptotic expansion is devel-
oped for the heat kernel of a general elliptic operator with noncoercive
boundary conditions.
Our work is also related to that of [15, 58], which treat the Hodge

Laplacian on compact manifolds with boundary. The heat estimates
there are derived for Dirichlet or Neumann boundary conditions on
forms of all degrees independent of the degree, as are ours. But for
the ∂̄-Neumann problem, the antiholomorphic form degree (i.e. q) in-
fluences the boundary condition and the operator’s character depends
strongly on the degree of forms in which it is acting. See particularly
the case of a Z(q) boundary in [21, §3.2]. Still, in the strong pseudo-
convex case, we show the estimates to be insensitive to the type of the
form as long as q > 0, perhaps analogous to the setting in [15, 58].
The contents of the rest of this article are as follows. In Section 2

we will describe the basic constructions on M and review the principal
properties of the ∂̄-Neumann problem relevant to our investigation.
Also, we will draw the more directly accessible conclusions of these
properties. In Section 3 we describe the intrinsic geometry carried by
M and derive the heat estimates for the ∂̄-Neumann Laplacian. Section
4 provides examples on which our results hold.

2. The ∂̄-Neumann problem

2.1. Invariant structures. We will need to describe smoothness of
functions and differential forms using G-invariant Sobolev spaces which
we describe here. We begin with an invariant Riemannian structure
with respect to which all these objects will be given a scale.

Lemma 2.1. There exists a G-invariant Riemannian metric g on M
and any two such metrics are equivalent.

Proof. Let (Ok)
N
1 be an open cover of X̄ such that, for every k, the

G-subbundle G→ π−1(Ok) → Ok is trivial. Taking the direct product
of a right-invariant metric on G with any metric on Ok, we obtain
a G-invariant metric on G × Ok, hence on π−1(Ok). Let (φk)

N
1 be a

partition of unity onX subordinate to the covering (Ok)k and lift the φk

to obtain an invariant partition of unity (ϕk)k with ϕk := φk ◦ π. Now
glue the metrics on the trivial bundles π−1(Ok) together with (ϕk)k.
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The equivalence follows from the fact that any G-invariant metric is
uniquely determined by its restriction to the compact quotient. �

In Λp,q we may thus introduce a G-invariant pointwise Hermitian
structure 〈·, ·〉Λp,q . We denote by C∞(M,Λp,q) the space of smooth
(p, q)-forms on M , by C∞(M̄,Λp,q) the subspace of those forms that
can be smoothly extended to M̄ , and by C∞

c (M̄,Λp,q) the subspace of
the latter consisting of those smooth forms with compact support. In
terms of the G-invariant, pointwise Hermitian structure

C∞(M̄,Λp,q) ∋ u, v 7−→ 〈u(x), v(x)〉Λp,q
x

∈ C, (x ∈ M̄),

we define the Lp-spaces Lp(M,Λq,r) of differential forms as the comple-
tions of C∞

c (M̄,Λq,r) in the norms

‖u‖Lp(M,Λq,r) =

[∫

M

〈u, u〉p/2Λq,r

]1/p
,

where the integral is taken with respect to an (invariant) Riemannian
volume element. As in [30, 60] we may construct appropriate par-
titions of unity and, by differentiating componentwise with respect to
local geodesic coordinates, assemble G-invariant integer Sobolev spaces
Hs(M,Λp,q), for s = 0, 1, 2, . . . . By Lemma 2.1, the spaces Hs(M,Λp,q)
do not depend on the choices of an invariant metric on M or of an in-
variant inner product on Λp,q. The usual duality relations for Lp spaces
hold (polarizing the above norm) as well as the Sobolev lemma, etc.
Background on this is provided in [26].

2.2. The complexified cotangent space. We will introduce some
complex-geometric concepts in this section, basically following [21]; see
also [38, 39]. On a real, 2n-dimensional C∞ manifold M , an almost
complex structure on M is a splitting of the complexification TM ⊗RC

of the real tangent bundle TM ,

TM ⊗R C = T1,0M ⊕ T0,1M,

with the following property; denoting the projections onto T1,0M and
T0,1M by Π1,0 and Π0,1, respectively:

(6) Π0,1ζ = Π1,0ζ̄ ,

where ¯ denotes complex conjugation.
We can also describe an almost complex structure by a fibrewise

linear mapping J : TM → TM with J2 = −1. These two descriptions
are related via:

(7) T1,0M = {X − iJX | X ∈ TM} = ker(J − i)



HEAT ESTIMATES ON G-MANIFOLDS 9

and

(8) T0,1M = {X + iJX | X ∈ TM} = ker(J + i),

see [38, Chapter I, §7]. For a vector field X ∈ TM , a complex vector
field in TM ⊗R C of the form X − iJX ∈ T1,0 is called a holomorphic
vector field while one of the form X + iJX ∈ T0,1 is called antiholo-
morphic.
Dually, the projections Π0,1, Π1,0 induce a splitting of the exterior

powers of the complexified cotangent bundle, ΛkT ∗M ⊗R C into holo-
morphic and antiholomorphic parts so that Λk =

⊕
p+q=k Λ

p,q. The

exterior derivative in ΛkT ∗M can be combined with the splittings of
the complexified cotangent bundle ofM to obtain holomorphic and an-
tiholomorphic exterior derivatives ∂ and ∂̄, respectively. The relations
among these operators are given by

∂̄ : C∞(M̄,Λp,q) → C∞(M̄,Λp,q+1), ∂̄φ = Πp,q+1dφ

and

∂ : C∞(M̄,Λp,q) → C∞(M̄,Λp+1,q), ∂φ = Πp+1,qdφ

for φ ∈ C∞(M̄,Λp,q).
On a complex manifold, it is true that d = ∂+ ∂̄, see [21, Prop. 1.2.1]

and that ∂̄2 = 0, which gives rise to the ∂̄-complex,

0 → C∞(M̄,Λp,0)
∂̄→ C∞(M̄,Λp,1)

∂̄→ · · · ∂̄→ C∞(M̄,Λp,n) → 0

which is the starting point for various cohomology theories due to Dol-
beault, Hodge-Kodaira, and unified by Spencer, cf. [42]. See also [51]
for some results related to our current setting.

2.3. Operators and forms. As we said in the introduction, � will be
defined in terms of an associated quadratic form. Good references for
background on the general concept of closed forms and their associated
operators are [19, 36, 56], among others. Here we will give more details
concerning the case at hand and also describe certain subsets of smooth
forms that belong to the respective form and operator domains. We
begin by collecting some information concerning the building blocks of
�, the operators ∂̄ and ∂̄∗.

Remark 2.2. Let M be as above.

(1) The maximal operator ∂̄ in L2(M,Λp,q) is given by: α ∈ dom(∂̄)
whenever ∂̄α ∈ L2(M,Λp,q+1) in the distributional sense. It acts
from L2(M,Λp,q) to L2(M,Λp,q+1) and is a closed operator.
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(2) The operator ∂̄∗ in L2(M,Λp,q) is the adjoint of ∂̄ (in L2(M,Λp,q−1));
it is given by: α ∈ dom(∂̄∗) whenever there exists β ∈ L2(M,Λp,q−1)
so that

〈∂̄γ, α〉L2(M,Λp,q) = 〈γ, β〉L2(M,Λp,q−1)

for all γ ∈ L2(M,Λp,q−1) and ∂̄∗α = β.
(3) Since ∂̄ is closed, the form

dom(∂̄)× dom(∂̄) ∋ (α, β) 7→ 〈∂̄α, ∂̄β〉L2(M,Λp,q+1)

is a closed form in L2(M,Λp,q); cf [19, 36].
(4) Since ∂̄∗ is closed, the form

dom(∂̄∗)× dom(∂̄∗) ∋ (α, β) 7−→ 〈∂̄∗α, ∂̄∗β〉L2(M,Λp,q−1)

is a closed form in L2(M,Λp,q), provided, q ≥ 1.
(5) Q = Qp,q is the sum of the closed forms defined in (3), (4) above

and therefore a closed form as well for q ≥ 1. Qp,0 is the form
defined in (3).

Recall that a closed operator is one whose graph is closed, while a
form Q is closed whenever its domain dom(Q) is a Hilbert space with
respect to the form inner product (· | ·)Q := Q(·, ·) + 〈·, ·〉.
The stage is now set for the first form representation theorem, cf. [36],

that asserts that for every semibounded closed form there is a unique
self-adjoint operator associated with the form. In our case, there is a
unique self-adjoint operator �p,q associated with Qp,q, meaning that

dom(�p,q) ⊂ dom(Qp,q) and Q(α, β) = 〈�α, β〉,
whenever α ∈ dom(�p,q) and β ∈ dom(Qp,q). In fact, more is known:

dom(�p,q) = {α | ∃γ ∈ L2(M,Λp,q) ∀β ∈ dom(Qp,q) : Qp,q(α, β) = 〈γ, β〉}
and, obviously, γ = �p,qα is uniquely determined. Moreover, defining

the square root �
1

2
p,q by the functional calculus, we have that

dom(Qp,q) = dom(�
1

2
p,q) and Q(α, β) = 〈� 1

2α,�
1

2β〉.
We note that � can be seen as the form sum of the operators ∂̄∗∂̄ and
∂̄∂̄∗. In fact, the former operator is the self-adjoint operator associated
with the form in part (3) of the preceding remark and the latter is
the self-adjoint operator associated with the form in part (4) of the
preceding remark. In that sense, the formula

� = ∂̄∗∂̄ + ∂̄∂̄∗

has now a precise meaning, interpreting the plus sign as the form sum,
cf. [19, 36].
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In principle, all domain questions are settled now and we have defined
the forms and operators we will be dealing with. However, the results
above give a rather implicit description so it is quite useful to have
explicit subspaces of the operator and form domains given above.
We speak of a core of a form meaning a subspace of its domain that

is dense in the domain with respect to the form norm. Similarly, a core
of an operator is a subspace of its domain that is dense with respect to
the graph norm.
The following lemma is from [33, Lemma 1.1] and [21, Lemma 2.3.2].

It serves to get our hands on the smooth elements of certain form and
operator domains.

Lemma 2.3. Let M be as above, let ϑ be the formal adjoint operator
to ∂̄, and denote by σ = σ(ϑ, ·) its principal symbol.

(i) {u ∈ C∞
c (M̄,Λ•) | σ(ϑ, dρ)u|bM = 0} is a core for ∂̄∗ and on this

space ∂̄∗ agrees with ϑ.
(ii) Dp,q := {u ∈ C∞(M̄,Λ•) | σ(ϑ, dρ)u|bM = 0} is a core for Qp,q.
(iii) The domains of ∂̄∗ and Q are preserved by multiplication by cutoff
functions.

Remark 2.4. In [55] we go into much more detail about the domains
of Q and �, so we abbreviate the discussion here.

2.4. Estimates for the Laplacian. In this section we give our re-
quirements on the boundary geometry and state the pseudolocal es-
timate in more precise language than in the introduction. As before,
assume M to be a complex manifold with nonempty smooth boundary
bM , M̄ =M ∪ bM , so that M is the interior of M̄ , and dimC(M) = n.

Recall that we also assume that M̄ is a closed subset in M̃ , a complex

neighborhood of M̄ so that the complex structure on M̃ extends that

of M , and every point of M̄ is an interior point of M̃ . Let us choose a

smooth function ρ : M̃ → R so that

M = {z | ρ(z) < 0}, bM = {z | ρ(z) = 0},
and for all x ∈ bM , we have dρ(x) 6= 0. In local coordinates near any
x ∈ bM define the holomorphic tangent plane to the boundary at x by

TC

x (bM) = {w ∈ C
n |

n∑

k=1

∂ρ

∂zk

∣∣∣∣
x

wk = 0}

and define the Levi form Lx by

Lx(w, w̄) =
n∑

j,k=1

∂2ρ

∂zj∂z̄k

∣∣∣∣
x

wjw̄k, (w ∈ TC

x (bM)).



12 JOE J. PEREZ AND PETER STOLLMANN

Then M is said to be strongly pseudoconvex if for every x ∈ bM , the
form Lx is positive definite.
The following theorem will be our principal tool from the PDE of

several complex variables.

Theorem 2.5. (Pseudolocal estimate) Let M be strongly pseu-
doconvex, U an open subset of M̄ with compact closure, and ζ, ζ ′ ∈
C∞

c (U) for which ζ ′| supp (ζ) = 1. If q > 0 and α|U ∈ Hs(U,Λp,q), then
ζ(�+ 1)−1α ∈ Hs+1(M̄,Λp,q) and there exist constants Cs > 0 so that

(9) ‖ζ(�+ 1)−1α‖Hs+1(M,Λp,q) ≤ Cs(‖ζ ′α‖Hs(M,Λp,q) + ‖α‖L2(M,Λp,q)).

Proof. This is [21, Prop. 3.1.1] extended to the noncompact case in
[18]. �

Remark 2.6. Boundary geometries giving more general subelliptic
estimates than does strong pseudoconvexity are harder to define, so we
refer the interested reader to [21, §3.2], [10, 9] instead of pursuing this
issue here. For completeness, we mention that the theorem holds when
M satisfies these weaker estimates, mutatis mutandis [18].
A word on notation: For two functions A and B on a set S, we

write A . B to mean that there exists a constant C > 0 such that
|A(φ)| ≤ C|B(φ)| for φ in S.

Corollary 2.7. For s ∈ N, q > 0, and ζ ∈ C∞
c (M̄),

(10) ‖ζ(�+ 1)−sα‖Hs(M,Λp,q) . ‖α‖L2(M,Λp,q), (α ∈ L2(M,Λp,q)).

Proof. By induction. Putting s = 0 in the theorem, we have

‖ζ(�+ 1)−1α‖H1 . ‖ζ ′α‖L2 + ‖α‖L2 . ‖α‖L2 , (α ∈ L2(M)).

Assuming the result for s− 1, it follows that (�+ 1)1−sα ∈ Hs−1
loc (M)

for all α ∈ L2(M). Applying the theorem to this form, we have

‖ζ(�+ 1)−1(�+ 1)1−sα‖Hs . ‖ζ ′(�+ 1)1−sα‖Hs−1+‖(�+ 1)1−sα‖L2 ,

and ‖ζ(�+ 1)−sα‖Hs . ‖(�+ 1)1−sα‖L2 . ‖α‖L2 . �

Corollary 2.8. LetM be a strongly pseudoconvex G-manifold on which
G acts freely by holomorphic transformations with compact quotient
M̄/G. For integer s > dimCM and q > 0 we have the estimate

(11) ‖(�+ 1)−sα‖L∞(M,Λp,q) . ‖α‖L2(M,Λp,q), (α ∈ L2(M,Λp,q)).

Proof. Choose B ⊂ M̄ compact and sufficiently large so that B · G
covers M̄ . This is possible since X̄ is compact. Choose ζ ∈ C∞

c (M̄)
such that supp ζ ⊃ B in (10). Now, the Sobolev lemma provides that if
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s > k+m/2, then Hs(Rm) ⊂ Ck(Rm) and there is a constant C = Cs,k

such that

(12) sup
|α|≤k

sup
x∈Rm

|∂αu(x)| ≤ C‖u‖Hs(Rm),

thus, if we take s > k + 1/2 dimRM = k + dimCM , we have

‖(�+ 1)−sα‖Ck(M̄) . ‖ζ(�+ 1)−sα‖Hs . ‖α‖L2 , (α ∈ L2(M))

by the G-invariance of M and our choice of local geodesic coordinates.
�

Remark 2.9. The exact invariances furnished by the group action
assumed here are not essential and can be relaxed to assumptions on
the uniformity of the estimates in (5), etc.

3. Heat kernel estimates and intrinsic geometry

Definition 3.1. Let � =
∫∞

0
λdEλ be the spectral resolution of the

Laplacian and for t > 0 put

Pt =

∫ ∞

0

e−tλdEλ.

That is, Pt = e−t�, and we would write P p,q
t = e−t�p,q to be completely

explicit.

Remark 3.2. The semigroup (e−tH ; t ≥ 0) of a self-adjoint operator H
contains a wealth of information about its generator H and satisfies the
semigroup property e−(t+s)H = e−tHe−sH ; see [11, 25] for the general
theory and [61] for the case of Schrödinger operators. In the case
at hand, where H ≥ 0, the semigroup consists of contractions, i.e.,
‖e−tH‖L2→L2 ≤ 1. The symbol ‖ · ‖L2→L2 denotes the operator norm of
an operator from L2 to L2. Similar to what is known for the Laplacian,
the semigroup of the ∂̄-Neumann Laplacian � is ultracontractive. That
is, it maps L2 into L∞ continuously. This is equivalent to the validity
of a Nash-type inequality and will be discussed below.

3.1. Ultracontractivity and Nash inequalities. The heat opera-
tor’s ultracontractivity (i.e. boundedness from L2 → L∞) follows im-
mediately from the Sobolev estimate in Cor. 2.8 above. The proof is
formally very similar to that from Davies [12]. The difference between
the two cases is that our basic spaces consist of vector-valued functions
and so certain concepts and manipulations are not available. For ex-
ample, we cannot identify nonnegative elements or take the absolute
value in a naive way.
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Proposition 3.3. Let M be a strongly pseudoconvex G-manifold on
which G acts freely by holomorphic transformations with compact quo-
tient M̄/G. For integer s > dimCM and q > 0, we have

(13) ‖Ptα‖L∞(M,Λp,q) . max(1, t−s)‖α‖L2(M,Λp,q), (α ∈ L2(M,Λp,q)).

Proof. We plug (�+ 1)sPtα into the inequality (11) and obtain:

‖Ptα‖L∞ = ‖(�+ 1)−s(�+ 1)sPtα‖L∞

. ‖(�+ 1)sPtα‖L2

. t−s‖α‖L2

for any 0 < t ≤ 1, by functional calculus, since the maximum of the
function λ 7→ (λ+ 1)se−λt goes like t−s for t > 0. This gives the result
for arbitrary t ≥ 0, as the semigroup is a contraction on L2. �

Recall that the usual duality properties of the Lp spaces hold in our
setting, Sect. 2.1.

Corollary 3.4. Let M be as in the previous proposition. Then, for
integer s > dimCM and q > 0 we have

(14) ‖Ptα‖L∞(M,Λp,q) . max(1, t−2s)‖α‖L1(M,Λp,q),

uniformly for α ∈ L1 ∩ L2(M,Λp,q).

Proof. Since Pt is symmetric, ‖Pt‖L2→L∞ = ‖Pt‖L1→L2 by duality, and

‖Pt‖L2→L∞ . max(1, t−s),

from the previous statement, we have

‖Pt‖L1→L∞ ≤ ‖Pt‖L2→L∞‖Pt‖L1→L2 ≤ ‖Pt/2‖2L2→L∞ .
1

t2s

by the semigroup property. �

Remark 3.5. The basic tool in the estimates to come is the funda-
mental theorem of calculus applied to the function t 7→ ‖Ptu‖2L2 or
variants thereof. This rests on the following immediate consequence of
functional calculus: For any u ∈ dom(�),

Ptu ∈ dom(�) and
d

dt
[Ptu] = −�Ptu.

Proposition 3.6. Let M be as in the previous proposition. For any
real-valued function w ∈ C∞(M̄) ∩ L∞(M) for which 〈∂̄w, ∂̄w〉Λ0,1 is
bounded in M and u ∈ L2(M,Λp,q),

d

dt
‖ewPtu‖2L2(M,Λp,q) = −2ReQ(Ptu, e

2wPtu).
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In particular, for w = 0 we get:

d

dt
‖Ptu‖2L2(M,Λp,q) = −2Q(Ptu).

Proof. For any t > 0 we have

d

dt
‖ewPtu‖2L2 = lim

h→0

1

h

[
〈Pt+hu, e

2wPt+hu〉 − 〈Ptu, e
2wPtu〉

]

= lim
h→0

[
〈1
h
(Pt+hu− Ptu), e

2wPt+hu〉+ 〈e2wPtu,
1

h
(Pt+hu− Ptu)〉

]

= 〈−�Ptu, e
2wPtu〉+ 〈e2wPtu,−�Ptu〉

= −Q(Ptu, e
2wPtu)−Q(e2wPtu, Ptu),

where, in the last step we used that e2wu is in the domain of Q, by
part (iii) of Lemma 2.3. �

Proof of Theorem 1. From Prop. 3.3 and duality we get

t−2s‖u‖2L1 ≥ 〈Ptu, Ptu〉L2 = ‖Ptu‖2L2 .

We use the fundamental theorem of calculus and the above Prop. 3.6
in

. . . = ‖u‖2L2 − 2

∫ t

0

Q(Psu)ds

≥ ‖u‖2L2 − 2tQ(u)(15)

where, in the last inequality we use the following straightforward con-
sequence of functional calculus:

Q(Psu) = ‖� 1

2 e−s�u‖2L2 ≤ ‖� 1

2u‖2L2 .

Putting t = Q(u)−
1

2s+1‖u‖
2

2s+1

L1(M,Λp,q) in (15) gives the assertion. �

3.2. The intrinsic metric. We will measure the bounds on off-diagonal
terms in the heat kernel with respect to the metric given by

Definition 3.7. We define the G-invariant pseudo-metric d� on M by

d�(x, y) = sup{w(y)− w(x) | w ∈ L∞ ∩ C∞(M̄,R), 〈∂̄w, ∂̄w〉Λ0,1 ≤ 1}.
The distance between sets is given by

d�(A;B) := sup{inf
B
w−sup

A
w | w ∈ L∞∩C∞(M̄,R), 〈∂̄w, ∂̄w〉Λ0,1 ≤ 1}

for arbitrary A,B ⊂ M̄ .
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The definition above is geared to the intrinsic metric of Dirichlet
forms, as used in slightly different versions, e.g. in [6, 13, 17, 69, 70, 67]
as well as the metrics considered in [20, 37, 49] and see [31, 32] as
well. Note however, that our application of this concept is somewhat
nonstandard. We use this metric, defined on functions, to estimate the
heat kernels acting on forms! We now show that the metric above is
equivalent to an associated Riemannian distance. To this end, let us
describe the metric structure of M in more detail, in the notation of
Sect. 2.2 above.
On the tangent bundle TM of the 2n-dimensional real G-manifold

underlying M , we have a G-invariant almost complex structure J :
TM → TM , induced by the complex structure on M . Assume that
we also have a G-invariant Riemannian metric g on TM so that J is
an isometry with respect to g; g(X, Y ) = g(JX, JY ). Such a metric
exists because a metric obtained from Lemma 2.1 can be averaged over
the action of J . Note that with respect to any such metric, X ⊥ JX.
Indeed,

g(X, JX) = g(JX,−X) = −g(JX,X) = −g(X, JX) = 0.

We may extend any Riemannian structure for which J is an isometry
by complex sesquilinearity (linear in the first slot, conjugate-linear in
the second slot) to obtain Hermitian inner products which we say are
associated to g in T1,0, T0,1 ⊂ TM ⊗R C:

〈X − iJX, Y − iJY 〉T1,0
:= g(X, Y ) + ig(X, JY ),

〈X + iJX, Y + iJY 〉T0,1
:= g(X, Y ) + ig(JX, Y ).

By duality, these structures extend naturally to Λ1,0 and Λ0,1 and by
tensoriality to each of the spaces Λp,q. We will also metrize the bundle
of complex k-forms as an orthogonal sum

(16) Λk =
⊕

p+q=k

Λp,q, (k = 0, 1, . . . , n).

Let us describe the (0, 1)-forms in terms of J analogously to our vector
fields in (7), (8). Since Λ0,1 is the dual of T0,1 in the Hermitian metric
above, we have ξX ∈ Λ0,1, the dual of X + iJX ∈ T0,1, naturally of the
form

ξX(Y + iJY ) =〈Y + iJY,X + iJX〉T0,1
(17)

=g(Y,X) + ig(JY,X) = g(X, Y )− ig(JX, Y ).

We compute the last term in coordinates. Since by assumption we have
g(X, Y ) = g(JX, JY ), it is true that

gklJ
k
i J

l
j = gij,
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with the convention that repeated indices be summed over. Multiplying
this identity by J and using J l

jJ
j
k = −δlk, the Kronecker δ, we get

gkjJ
j
i = −gijJ j

k ,

from which it follows that g(JX, ·) = −Jg(X, ·) since
g(JX, ·) = gijJ

j
kX

kdxi and Jg(X, ·) = J j
i gjkX

kdxi.

Going back to (17) and writing Jg(X, ·)|Y too simply “Jg(X, Y ),” we
see that

ξX(Y + iJY ) = g(X, Y ) + iJg(X, Y )

thus Λ0,1 ∋ ξX = φX+iJφX for the real 1-form φX = g(X, ·). Similarly,
a form Λ1,0 ∋ ξX = φX − iJφX again for the real 1-form φX = g(X, ·)
Now we return to the description of the intrinsic metric. For w ∈

C∞(M̄,R), consider the following computation:

〈dw, dw〉Λ1 = 〈(∂̄ + ∂)w, (∂̄ + ∂)w〉Λ1 = 〈∂̄w, ∂̄w〉Λ0,1 + 〈∂w, ∂w〉Λ1,0

since ∂̄w ∈ Λ0,1 and ∂w ∈ Λ1,0 are orthogonal by the decomposition
(16).
Now, w is real so ∂̄w is the complex conjugate of ∂w by (6), thus

there is a single real 1-form φ such that ∂̄w = φ+iJφ and ∂w = φ−iJφ.
In fact, φ = 1

2
dw since d = ∂ + ∂̄. Computing the inner products,

〈∂̄w, ∂̄w〉Λ0,1 = 〈∂w, ∂w〉Λ1,0 = 2g(φ, φ)

since g(φ, Jφ) = 0. Thus 〈dw, dw〉Λ1 = 2〈∂̄w, ∂̄w〉Λ0,1 = 4g(φ, φ) in our
metric.
Since the Laplace-Beltrami operator on functions is induced by the

quadratic form w 7→
∫
〈dw, dw〉Λ1 , cf. [59, 70], we have shown

Proposition 3.8. For a J-invariant Riemannian structure g, let ∆LB

be the corresponding Laplace-Beltrami operator. Given the Hermitian
structure on Λ0,1 associated to g, the intrinsic metric d� is equivalent
to the one induced by the intrinsic metric of −∆LB on functions.

Remark 3.9. (1) At least in the case of complete manifolds without
boundary it is well-known, cf. [70] that the intrinsic metric dLB of
the Laplace-Beltrami operator coincides with the Riemannian distance,
i.e.,

dLB(x, y) = inf{L(γ) | γ : I →M a curve joining x, y ∈M}.
In view of [1, 67], the presence of a boundary should not change this
picture and Lemma 2.1 together with the intrinsic metric’s manifest
G-invariance provide the equivalence of all these structures.
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(2) For Kähler manifolds, � = 1
2
∆, cf. [38, Chap. III, §2], acting

componentwise on forms, therefore it is clear in this case that we recover
the intrinsic metric of the Laplacian up to a factor of

√
2.

(3) These properties of d� are important for the method of [55].

3.3. Off-diagonal heat kernel estimates. Here, we basically use the
proof from [17], pointing out once more that our setup is substantially
different as our spaces are spaces of differential forms rather than func-
tions. Let us also remind the reader that multiplication by functions
preserves the domain of Q and this is crucial to our treatment.

Lemma 3.10. For w ∈ L∞ ∩ C1(M̄,R), we have

Q(u, u) = Q(e−ǫwu, eǫwu)−2iǫ Im
{
〈∂̄u, ∂̄w ∧ u〉L2 + 〈⋆(∂w ∧ ⋆u), ∂̄∗u〉L2

}

+ ǫ2
{
‖∂̄w ∧ u‖2L2 + ‖∂w ∧ ⋆u‖2L2

}

for all u ∈ dom(Q).

Proof. By definition,

Q(e−ǫwu, eǫwu) = 〈∂̄e−ǫwu, ∂̄eǫwu〉+ 〈∂̄∗e−ǫwu, ∂̄∗eǫwu〉.
The first term simplifies as follows

〈∂̄e−ǫwu, ∂̄eǫwu〉 = 〈∂̄u, ∂̄u〉+ 2iǫ Im〈∂̄u, ∂̄w ∧ u〉 − ǫ2〈∂̄w ∧ u, ∂̄w ∧ u〉.
For the second term, note that ∂̄∗ = − ⋆ ∂⋆ where ⋆ is the Hodge
operator and ∂ = d− ∂̄, (cf. Prop. 5.1.1, [21]). Thus

∂̄∗e−wu = − ⋆ ∂ ⋆ (e−wu) = − ⋆ [∂e−w(⋆u)] = − ⋆ [∂e−w ∧ ⋆u+ e−w∂ ⋆ u]

= − ⋆ [∂e−w ∧ ⋆u] + e−w∂̄∗u = e−w ⋆ [∂w ∧ ⋆u] + e−w∂̄∗u.

With the corresponding expression

∂̄∗ewu = −ew ⋆ [∂w ∧ ⋆u] + ew∂̄∗u,

we obtain

〈∂̄∗e−wu, ∂̄∗ewu〉 =〈∂̄∗u, ∂̄∗u〉+ 2i Im 〈⋆(∂w ∧ ⋆u), ∂̄∗u〉
− 〈(∂w ∧ ⋆u), (∂w ∧ ⋆u)〉,

where we have used the fact that the Hodge ⋆ is an isometry. �

Corollary 3.11. Assuming 〈∂̄w, ∂̄w〉Λ0,1 ≤ 1, we have

−ReQ(e−wu, ewu) ≤ 2‖u‖2L2(M,Λp,q).

Proof. The previous assertion implies

−ReQ(e−ǫwu, eǫwu) = ǫ2
{
‖∂̄w ∧ u‖2 + ‖∂w ∧ ⋆u‖2

}
−Q(u, u)

and since we have assumed 〈∂w, ∂w〉Λ1,0 = 〈∂̄w, ∂̄w〉Λ0,1 ≤ 1, (see Sect.
3.2) we have the result by Cauchy-Schwarz and again the fact that the
Hodge ⋆ is an isometry. �
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Proof of Theorem 2. For arbitrary f ∈ dom(Q), the computation
in Prop. 3.6 gives

‖ewPtf‖2L2 − ‖ewf‖2L2 =

∫ t

0

d

ds
‖ewPsf‖2L2ds

=− 2Re

∫ t

0

ds Q(Psf, e
2wPsf).(18)

Writing

Q(Psf, e
2wPsf) = Q(e−wewPsf, e

wewPsf)

and applying Cor. 3.11, the integrand in (18) satisfies

(19) −ReQ(Psf, e
2wPsf) ≤ ‖ewPsf‖2L2 ,

as usual, assuming that 〈∂̄w, ∂̄w〉Λ0,1 ≤ 1. It follows that

‖ewPtf‖2L2 − ‖ewf‖2L2 ≤ 2

∫ t

0

ds ‖ewPsf‖2L2 .

Gronwall’s inequality implies that

‖ewPtf‖2L2 ≤ e2t‖ewf‖2L2

and replacing w by δw we obtain ‖eδwPtf‖L2 ≤ eδ
2t‖eδwf‖L2 by inspec-

tion in (19). This implies that

‖eδwPte
−δw‖L2→L2 ≤ eδ

2t

since f was arbitrary in the domain.
Now, for arbitrary α, β ∈ L2

|〈1BPt 1Aα, β〉| =
∣∣〈eδwPte

−δweδw 1Aα, e
−δw 1Bβ〉

∣∣

≤ ‖eδwPte
−δweδw 1Aα‖L2(M)‖e−δw 1Bβ‖L2(M)

≤ ‖eδwPte
−δw‖L2→L2‖eδw 1Aα‖L2(M)‖e−δw 1Bβ‖L2(M).

≤ eδ
2t‖eδw 1Aα‖L2(M)‖e−δw 1Bβ‖L2(M).

For ε > 0 choose a weight function w as in the definition of d�(A;B)
above, with 〈∂̄w, ∂̄w〉Λ0,1 ≤ 1 and so that

d�(A;B)− ε ≤ inf
B
w − sup

A
w and sup

A
w = 0

(we can achieve the latter by adding a suitable constant). This gives

inf
B
w ≥ d�(A;B)− ε.

Inserting gives

|〈1BPt 1Aα, β〉| ≤ eδ
2te−δ(d�(A;B)−ε)‖α‖‖β‖
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so that (since ε is arbitrary)

‖1BPt 1A‖ ≤ eδ
2te−δd�(A;B).

For d�(A;B) <∞, choose δ = d�(A;B)/(2t). �

Remark 3.12. In light of Prop. 3.8, we may replace d� with dLB,
making the necessary changes.

3.4. Sobolev estimates for the heat operator. Here we extend
some Lp results from the preceding treatment to Sobolev spaces. First
note that for t > 0 and k ∈ N arbitrary, we have Pt : L

2 → dom(�k).

Proposition 3.13. For t > 0 and q > 0 we have

Pt : L
2(M,Λp,q) → C∞(M̄,Λp,q).

Proof. We will proceed by induction and use the Sobolev lemma, (12)
above. Fix t > 0. For any α ∈ L2, since im(Pt) ⊂ dom(�), and
(�+ 1)−1 : L2 → dom(�) is onto, we may apply Thm. 2.5 to the form
α = (�+ 1)Ptβ, β ∈ dom(�), to obtain

‖ζPtβ‖H1 . ‖ζ ′(�+ 1)Ptβ‖L2 + ‖(�+ 1)Ptβ‖L2 . ‖β‖L2 ,

and conclude that im(Pt) ∈ H1
loc. Furthermore, since Pt is a function

of �, they commute and we also have

(�+ 1)Ptβ = Pt(�+ 1)β ∈ H1
loc (α ∈ L2).

Assuming now that (�+ 1)Ptβ ∈ Hs−1
loc , the same theorem provides

‖ζPtβ‖Hs . ‖ζ ′(�+ 1)Ptβ‖Hs−1 + ‖(�+ 1)Ptβ‖L2 ,

so Ptβ ∈ Hs
loc. �

We will need the following a priori estimate for �, proven in our
setting by a small variation on the methods of [42, 21], in [51, Thm.
4.5].

Lemma 3.14. (Kohn inequality) If M is a strongly pseudoconvex
G-manifold on which G acts freely by holomorphic transformations with
compact quotient M̄/G and q > 0, then for every integer s ≥ 0 there
exists a positive constant Cs so that

‖u‖Hs+1 ≤ Cs(‖�u‖Hs + ‖u‖L2), (u ∈ dom(�) ∩ C∞(M̄,Λp,q))

uniformly.

Corollary 3.15. For t > 0 and q > 0 we have im(Pt) ⊂ H∞(M,Λp,q).
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Proof. Combining the results of Prop. 3.13 and Lemma 3.14, we have

‖u‖Hs+1 ≤ Cs(‖�u‖Hs + ‖u‖L2) (u ∈ im(Pt))

but im(Pt) ⊂ dom(�k) for all powers of the Laplacian, so this estimate
can be iterated. Thus the estimates

(20) ‖�k−su‖Hs+1 . ‖�k−s+1u‖Hs + ‖�k−su‖L2 , (s = 1, 2, . . . , k)

hold for u ∈ im(Pt) and these imply the result. �

Proposition 3.16. If M is as above, t > 0, and q > 0, then the
heat operator Pt is bounded from H−s(M̄,Λp,q) → Hs(M,Λp,q) for any
positive integer s.

Proof. First recall the following fact about Sobolev spaces on manifolds
with boundary from Remark 12.5 of [45]. For s > 0, the dual space

of Hs(M), denoted H−s(M̄), consists of elements of H−s(M̃) whose
support is in M̄ . Now, from Cor. 3.15 we have that for all s > 0,
Pt : L

2 → Hs(M) continuously. Since Pt is self-adjoint, its domain can
be extended to the dual of Hs(M) so that Pt : H

−s(M̄) → L2(M). The
semigroup law P 2

t = P2t holds on C
∞
c (M̄) ⊂ L2(M), a dense subspace

of all the Hs(M̄), (s ∈ R) so we may conclude that Pt : H
−s(M̄) →

Hs(M) for all s > 0. �

Remark 3.17. These results have three easy consequences.

1) For an operator norm estimate, we can put u = Ptα in the estimates
(20) and telescope them to find that for s ∈ N,

‖Ptα‖Hs .

s∑

k=0

‖�kPtα‖L2 .

s∑

k=0

t−k‖α‖L2 ,

which yields an estimate analogous to that in Prop. 3.3.

2) Combining Cor. 3.15 with Gagliardo-Nirenberg-Sobolev embeddings,
e.g.

Hs(Rn) ⊂ Lp(Rn), p =
2n

n− 2s
, 0 ≤ s <

n

2
,

[5], one obtains results overlapping those of the previous sections in Lp

spaces. With other such embeddings can obtain results for Lp-Sobolev
spaces.

3) One can continue the treatment in Sect. 6 of [51] to obtain that, for
t > 0, the heat operator’s Schwartz kernel Kt ∈ C∞(M̄ × M̄) and

(21)

∫

M×M
G

|Kt|2 <∞, (t > 0),



22 JOE J. PEREZ AND PETER STOLLMANN

noting that � and thus Kt are G-invariant. When G is unimodular,
(21) means that von Neumann’s G-trace of P2t is finite.

4. Examples

Let us describe some classes of complex manifolds to which our results
apply. As in [33], let X be a strongly pseudoconvex, complex manifold
with compact closure X̄ = X ∪ bX. Assume also that the fundamental
group π1(X) is infinite. It follows that π1(X) acts properly discontinu-

ously on the universal cover X̃ =M of X by deck transformations, and
estimates involving the boundary are uniform as they are determined
on the compact X̄. Covers of X corresponding to subgroups of π1 will
share this uniformity property.
For Lie group symmetries, in [35] a large class of manifolds was con-

structed which also satisfy our assumptions: Suppose that a Lie group
G acts freely and properly by Cω transformations on a Cω manifold Y ,
for example the underlying manifold of G itself. It turns out that the
action of G on Y can be extended to a complexification Y C of Y in such
a way that the action of G on Y C is by holomorphic transformations.
In addition, there exists a strictly plurisubharmonic function ϕ in a
neighborhood of Y in Y C such that ϕ is constant on the orbits of G.
It follows that for ǫ > 0 sufficiently small, the tube M = {ϕ < ǫ} is
a strongly pseudoconvex complex G-manifold and if Y/G is compact,
then M̄/G is too.
Whenever the group in the setting of [35] contains a cocompact lat-

tice, of course the present situation reduces to (roughly) that of [33].
However, even for the restricted class of unimodular Lie groups, it is
generically not the case that a Lie group G possess such a subgroup,
[47]. We should note that the methods of [35] are predominantly Stein-
theoretic and their results extend to proper actions.
A concrete example of a tube of a matrix group can be found in [14],

constructed explicitly by the abstract technique of [35]. For K = R or
C, define the three-dimensional Heisenberg group

H3(K) =

{(
1 z1 z3
0 1 z2
0 0 1

)
| zk ∈ K

}
.

The function ϕ : H3(C) → R given by

ϕ(Z) = (Imz1)
2 + (Imz2)

2 + (Imz3 −Rez2 Imz1)
2

is invariant under right multiplication by matrices in H3(R). An easy
calculation shows that Mǫ = {ϕ < ǫ} ⊂ C

3 is strongly pseudoconvex
as long as ǫ < 1, and it is true that M1 satisfies a pseudolocal estimate
though it is not strongly pseudoconvex. Since H3(R) contains lattices,
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the manifolds Mǫ are examples of the setting of the discrete structure
group as well as that of a bundle.
Finally, [33, §3] contains a remarkable example of a G manifold (G

is a nonunimodular matrix group here) in C
2 which is not a tube but

satisfies all of our requirements. This manifold has a trivial Bergman
space though the ∂̄-Neumann problem is somewhat tractable, as shown
in [53]. Our present treatment is valid there as well.
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