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Rayleigh-type isoperimetric inequality with ahomogeneous magnetic �eldL�aszl�o Erd}osForschungsinstitut f�ur MathematikETH-ZentrumCH-8092 Z�urichE-mail: erdoes@math.ethz.chJune 20, 1995AbstractWe prove that the two dimensional free magnetic Schr�odinger operator, with a �xedconstant magnetic �eld and Dirichlet boundary conditions on a planar domain with agiven area, attains its smallest possible eigenvalue if the domain is a disk. We also givesome rough bounds on the lowest magnetic eigenvalue of the disk.AMS Subject Classi�cation: 35J10, 35J20Running title: Magnetic Rayleigh-type inequality.1 IntroductionIn his classical work [R] Lord Rayleigh conjectured three inequalities for basic physical quan-tities related to planar domains. The statements are that, among all planar domains with a�xed area, the disk minimizes: (i) the principal eigenvalue of the Dirichlet Laplacian (mem-brane); (ii) the principal eigenvalue of the Dirichlet biharmonic Laplacian (clamped plate);and (iii) the electrostatic capacity. 1



In the twenties, the membrane problem was solved independently by Faber ([F]) andKrahn ([K]); P�olya and Szeg}o gave a proof of the capacity problem twenty years later ([P-S]).The clamped plate problem remained open up to Nadirashvili's recent solution (see [N] andreferences therein for further backgrounds).In this paper we propose a new isoperimetric statement, analogous to Rayleigh's problemsabove. The Laplacian in the membrane problem can be viewed as a free Schr�odinger operator(with Dirichlet boundary conditions), and, therefore, the same question naturally arises if weconsider the magnetic Laplacian (with a homogeneous magnetic �eld). Let B > 0 and let
 � R2 be a bounded domain (connected open set with smooth boundary), and let us denoteby �(B;
) the principal eigenvalue of the magnetic Schr�odinger operator (�ir� A)2 on 
with Dirichlet boundary conditions. The vectorpotential (gauge) A : 
 ! R2 generates theconstant magnetic �eld with strength B (i.e. rotA = B). It is well known that the spectrumis discrete and independent of the gauge choice. The area of 
 is denoted by j
j. Our theoremis the following:Theorem 1.1 For any planar domain 
 and B > 0 we have�(B;
) � �(B;D); (1)where D is the disk with jDj = j
j. Equality occurs only if 
 = D.We are not aware of any appearance of this, to our opinion quite natural, question inthe literature. Nevertheless, we think that both the statement and some ideas of the proof(especially Lemma 3.1 about the monotonicity of the principal eigenvalue of a special onedimensional quadratic form) are interesting. 2



2 Reduction to a radially symmetric problemConsider the usual coordinate system in the plane and let A(x; y) = (�By=2; Bx=2) be thelinear gauge. Since C10 (
) is a form core for our operator, by variational principle�(B;
) = inff2C10 (
);kfk=1 Z
 j(�ir�A)f j2; (2)where kfk := kfkL2(
).We shall also need to consider the magnetic Schr�odinger operator on a disk with a radiallysymmetric magnetic �eld (and Dirichlet boundary conditions). Let D be a disk with center atthe origin and consider a bounded radial function b(r) � 0 (magnetic �eld). The corresponding(unique) radial gauge is given (in polar coordinates) byArad = a(r)(� sin'; cos'); (3)where a(r) = (1=r) R r0 b(%)%d%, i.e. a0(r) + a(r)=r = b(r).By standard elliptic theory it is clear that the in�mum in (2) is attained, and the minimizeris a C1(
) eigenfunction of the corresponding Schr�odinger operator(�ir�A)2f = �(B;
)f; f j@
 = 0: (4)Moreover, since the coe�cients are analytic functions, f 2 A(
), where A(
) denotes the setof analytic functions (in two variables) on 
. Let us call a set analytic if it is the union of�nitely many points and analytic line segments (level sets of a nonconstant analytic function).Obviously, ff = 0g \ 
 is analytic (we exclude the f � 0 solution). Let 
0 := 
 n ff = 0g.Write f =  exp(i') with  : 
0 ! (0;1), ' : 
0 ! S1 smooth functions. In addition, 2 2 A(
),  6� const, therefore fr = 0g \ 
 is analytic. Clearlyj(�ir�A)f j2 = jr j2 + j(r'�A) j2; (5)3



and let w = (w1; w2) := A�r', with rotw = B on 
0. Considering that jrf j2 = jr'j2 2+jr j2, one obtains that w2 2 is bounded on 
. In particular, w 2 vanishes on the setff = 0g � f = 0g.Let v = (v1; v2) := (w2;�w1), then by a simple integration by parts on each connectedcomponents of 
0 we obtainZ
 jr + v j2 = Z
 jr j2 + v2 2 �  2div v: (6)Here we used that  2v vanishes on the boundaries of the connected components of 
0. Sincediv v = rotw = B, we have, by (5) and (6),�(B;
) � B + E(B;
) (7)with E(B;
) := inf �Z
 jr + v j2 :  2 C1(
) \A(
); 
0 := 
 n f = 0g (8) � 0;  j@
 = 0; Z
  2 = 1; v 2 C1(
0;R2); divv = B on 
0� :Note that E(B;
) is the lowest eigenvalue of the half of the Pauli operator, (�ir�A)2�B.The goal of this section is to prove the followingProposition 2.1 Let D(0; R) be the disk, centered at the origin, with jDj = �R2 = j
j. ThenE(B;
) � inf (2� RR0 (q0(r) + a(r)q(r))2rdr2� RR0 q2(r)rdr : (9)q(r) 2 H1((0; R); rdr); q(R) = 0; q(r) � 0; 0 � a(r) � Br2 for a.a. r� :Remark. The expression in the nominator on the right hand side of (9) is justZ
 j(�ir�Arad)~qj2 � ~b~q2 (10)4



where ~q(x; y) := q(px2 + y2) and similarly for ~b. This is the quadratic form of the corre-sponding two dimensional Pauli operator, ((�ir�Arad)2�~b), on the spin-up subspace and inthe zero angular momentum sector. The proposition tells us that the lowest eigenvalue of thePauli operator on 
 with a constant �eld B can be minorized by that of the Pauli operator onthe disk D with a (possibly nonhomogeneous) magnetic �eld whose 
ux on each disk D(0; r)(0 � r � R) is not bigger than that of the constant B �eld (i.e. 2�a(r)r � B�r2). Moreover,it also shows that the lowest eigenvalue of the Pauli operator on the disk is attained in thezero angular momentum sector. In the next section we show (Lemma 3.1) that this lowesteigenvalue, in fact, decreases if we pointwise increase the radial gauge (i.e we increase the 
uxon each D(0; r)). This will �nish the proof of Theorem 1.1.Proof of Proposition 2.1. The key idea is that we shall minimize the functional (8) on alarger set of admissible pairs of functions ( ; v). Namely, we do not require div v to be equalto B at every point, we only require that the integral of div v on the level sets of  be equalB-times the area of this set. Therefore, obviously,E(B;
) � inf �Z
 jr + v j2 :  2 C1(
) \A(
); 
0 := 
 n f = 0g; (11) � 0;  j@
 = 0; Z
  2 = 1; v 2 C1(
0;R2); Zf >cg div v = Bjf > cgj for a.a. c) :The set f > cg � 
 consists of �nitely many open sets with piecewise smooth (evenanalytic) boundary. By Stokes theorem, Rf >cg div v = � Rf =cg v � n, where n := r =jr j isthe inner unit normal vector to the curve f = cg (in fact, this set can be a union of �nitelymany curves, but for simplicity, we refer to them as level curves). Since  2 is analytic, anyof these curves shrink to a point only for �nitely many c values (this can happen only whenr = 0), and since fr = 0g is analytic, the unit normal vector is well de�ned and given byr =jr j along all but �nitely many curves with a possible �nitely many exceptional points.Let 
1 := 
0 n fr = 0g. 5



Fix  for the moment and notice that replacing v by (v �n)n does not e�ect the divergencecondition in (11), the integral does not increase (in fact, it decreases unless v were parallelwith r at almost all points), and the vector�eld (v �n)n is smooth on 
1. Thus, it is enoughto consider v = �'r with some real smooth function ', which is, perhaps, unde�ned on ananalytic set. ThereforeE(B;
) � inf �Z
 jr � ' r j2 :  2 C1(
) \A(
); 
1 := 
 n (f = 0g [ fr = 0g); � 0;  j@
 = 0; Z
  2 = 1; ' 2 C1(
1;R); Zf =cg 'jr j = Bjf > cgj for a.a. c) ; (12)where the divergence condition is rewritten using Stokes theorem.By the co-area formula and H�older inequalityZ
 jr j2(1� ' )2 = Z 10 dc Zf =cg(1� 'c)2jr j � (13)� Z 10 dc �Rf =cg(1� 'c)jr j�2Rf =cg jr j = Z 10 dc �Rf =cg jr j � cBjf > cgj�2Rf =cg jr j ;and equality occurs only if ' is constant on each f = cg (for almost all c). Therefore theenergy functional does not increase if we replace ' by'0(x) := Bjf > cgjRf =cg jr j (14)on the set fx :  (x) = cg, which is an admissible function in (12) (notice that the level curvesin 
1 are genuine curves, not points). Let �(c) := '0( �1(c)). Let C1� be the set of realvalued functions on R which are well de�ned and smooth with the exception of �nitely manypoints; clearly �(c) 2 C1� . ThereforeE(B;
) � inf �Z
 jr � �( ) r j2 :  2 C1(
) \A(
);6



 � 0;  j@
 = 0; Z
  2 = 1; �(c) := Bjf > cgj Zf =cg jr j!�1 for a.a. c9=; : (15)Using the isoperimetric inequality (between the area and the perimeter of a domain, whichis valid even if the domain has several components) and co-area formula again, we havej
j � jf > cgj = Z 1c d� Zf =�g 1jr j � Z 1c L2(f = �g)Rf =�g jr j d� � Z 1c 4�jf > �gjRf =�g jr j d�; (16)which shows, in particular, that � is integrable (L(�) denotes the length of the correspondingone dimensional level curve). Therefore, we can set �(c) := R1c �(�) d�, �0 = ��, and wearrive at E(B;
) � inf �Z
 jr( e�( ))j2e�2�( ) :  2 C1(
) \A(
); (17) � 0;  j@
 = 0; Z
  2 = 1; �(c) := Z 1c Bjf > �gj Zf =�g jr j!�1 d�9=; :Note that, by de�nition, � 2 C1� is a nonnegative, strictly monotone decreasing, continuousfunction on the range of  .Let h := �( ), then rh = �0( )r . Clearly, for any b > 0 (with �nitely many exceptions)Zfh<bg divh � Zfh=bg jrhj = � Zf =��1(b)g�0( )jr j = Bjf > ��1(b)gj = Bjfh < bgj: (18)Let �(x) := ��1(x)ex, de�ned on the range of �( ). Since  is bounded, � is so. ThenZ
 jr( e�( ))j2e�2�( ) = Z
 jr(�(h))j2e�2h = Z
(�0(h))2e�2hjrhj2 (19)= Z 10 db (�0(b))2e�2b Zfh=bg jrhj = B Z 10 (�0(b))2e�2bF (b) db;with F (b) := jfh < bgj (in the last step we used (18)). We can also express R
  2 with thehelp of the functions � and F as follows:Z
  2 = Z
(��1(h))2 = Z
(�(h)e�h)2 (20)7



= Z 10 db e�2b�2(b) Zfh=bg 1jrhj = Z 10 e�2b�2(b)F 0(b) db;where, in the last step, the co-area formula was used againF (b) = jfh < bgj = Z b0 d� Zfh=�g 1jrhj (21)to calculate F 0(b).Now we determine the constraints for � and F . Starting from  , by construction, �and F are smooth functions (with possible �nitely many exceptional points), F is strictlymonotonically increasing (notice that h 2 C1� is continuous) and F (0) = 0. Moreover, weclaim, that if F (b) < j
j, then F 0(b) � 4�=B. For, similarly to (16), by (21), a H�olderinequality and (18) F 0(b) = Zfh=bg 1jrhj � L2(fh = bg)Rfh=bg jrhj � 4�jfh < bgjBjfh < bgj : (22)This means that there exists a smallest value of b = b0, such that F (b0) = j
j, b0 � Bj
j=(4�).Since  = 0 at the boundary of 
, �(0) = b0, therefore �(b0) = 0.Putting all these information together, we obtain thatE(B;
) � inf (B R b00 (�0(b))2e�2bF (b) dbR b00 �2(b)e�2bF 0(b) db : F; � 2 C1� ; � � 0; � bounded (23)F strictly monotone; F 0(b) � 4�B for a.a. 0 < b < b0; F (0) = 0; F (b0) = j
j; �(b0) = 0� :Now we consider the disk D = D(0; R) with jDj = j
j. For any admissible (F;�) pair (forwhich the energy integral in (23) is �nite), we shall construct admissible functions q(r) anda(r) for the right hand side of (9), which give a lower (or equal) energy.Let h�(r) := F�1(�r2), a(r) := (h�)0(r), then (for almost all r)0 � a(r) = (h�)0(r) = 2�rF 0(F�1(�r2)) � Br2 : (24)8



Next, we de�ne q(r) := �(h�(r)) exp(�h�(r)). Clearly h�(0) = 0, h�(R) = b0, q(R) = 0 and2�Z R0 (q0(r) + a(r)q(r))2rdr = 2�Z R0 j(q(r)eh�(r))0j2e�2h�(r)rdr = 2�Z R0 j(�(h�(r)))0j2e�2h�(r)rdr(25)= ZD(�0(h�))2e�2h�jrh�j2 = Z b00 db (�0(b))2e�2b Zfh�=bg jrh�j � Z b00 B(�0(b))2e�2bF (b) db;where, in the last step, we used that Rfh�=bg jrh�j � B�r2 = BF (b) by (24) and the de�nitionof h�. In particular, we obtain from (25) that q 2 H1((0; R); rdr) (notice that q is bounded).Similarly, we calculate the norm of q(r):2� Z R0 q2(r) r dr = ZD �2(h�)e�2h� (26)= Z b00 db�2(b)e�2b Zfh�=bg 1jrh�j = Z b00 �2(b)e�2bF 0(b) dbusing (24) in the last step. This completes the proof of Proposition 2.1. 23 Comparison lemma for the radial caseIn this section we prove the following comparison result which, in addition to Proposition 2.1will complete the proof of Theorem 1.1.Lemma 3.1 Let 0 � a1(r) � a2(r) � Cr be two functions on [0; R] with some constantC > 0. Then, forE(a(r);D) := inf (2� Z R0 (q0(r) + a(r)q(r))2 rdr : q 2 H1((0; R); rdr); (27)2� Z R0 q2(r) rdr = 1; q(R) = 0; q � 0) ;we have E(a2(r);D) � E(a1(r);D). Equality occurs if and only if a1(r) = a2(r) almosteverywhere. 9



Remark. In terms of the Pauli operator (see (10)) the statement of this lemma is quite natural.The Pauli operator on R2 in the radial gauge has a positive, zero-energy eigenfunction whichis well localized around the origin. The localization is stronger if the �eld is larger. Thereforethe spectral shift due to imposing Dirichlet boundary conditions on the boundary of the diskis smaller in case of a stronger �eld (see Appendix).Proof of Lemma 3.1. We shall prove that in�nitesimally increasing the function a(r), theeigenvalue E(a(r);D) strictly decreases. Let q be the minimizer of the variational problemfor E(a(r);D), let h(r) := R r0 a(s) ds and p(r) := q(r)eh(r). Note that p minimizes the Dirich-let integral RR0 jrpj2d�(r) with respect to the measure d�(r) = e�2h(r)rdr (with Neumannboundary condition at 0 and Dirichlet b.c. at R), in particular p > 0 and q > 0 on [0; R).Clearly q satis�es the corresponding Schr�odinger equation in a weak sense�q00 � q0r + �a2 � a0 � ar� q = Eq; (28)(with E = E(a(r);D) > 0, where the positivity of E follows from the fact that it could be zeroonly if p were constant, but then q(R) = 0 were impossible). This implies that the functionp = qeh satis�es the following equation (in a weak sense)p00 + �1r � 2h0(r)� p0 = �Ep (29)Since q0 is square-integrable with respect to the measure rdr, there is a sequence rn !0 such that jq0(rn)jrn ! 0. By the bound on a(r) = h0(r) and jq(r)j � RRr jq0(s)jds �kqkH1(r dr)(RRr s�1ds)1=2 � (const)(j log rj)1=2, we have jp0(rn)jrn ! 0 along the same sequence.Consider the function t(r) := p0(r)re�2h(r). By (29), this function has a negative distributionalderivative, and it goes to zero along a sequence rn converging to zero. Therefore, t(r) < 0 forr > 0, i.e. 0 > p0 = (q0 + aq)eh on (0; R). 10



Now consider a(") := a + "� with some 0 � �(r) � (const)r, � 6� 0 and small ". Using qas a trial function in the variational problem for E(a(")(r);D), a short calculation gives, thatE(a(")(r);D) � E(a(r);D) + 2" Z R0 �(r)q(r)(q0(r) + a(r)q(r)) rdr +O("2): (30)Since the coe�cient of " is strictly negative, we obtain that pointwise increasing a(r) strictlydecreases E(a(r);D). This completes the proof of Lemma 3.1. 2Proof of Theorem 1.1. Proposition 2.1 and Lemma 3.1 proves (1) (choose a1(r) = a(r)and a2(r) = Br=2 in Lemma 3.1). For equality in (1), according to Lemma 3.1, one needsa(r) = Br=2, which, in turn (see (24)), implies that F 0(b) = 4�=B (for almost all b). Butthen we have equality in (22), i.e. the level curves of fh = bg must be circles, so are those of (almost all b). Since  2 A(
), if almost all of its level curves are circles, then all of themare so, therefore @
 = f = 0g is a circle. 2AppendixA Estimates on the spectral shiftWe supplement our theorem by giving some rough bounds on �(B;D). Let �(B;R) :=�(B;D(0; R)), then, by scaling, �(B;R) = L2�(BL�2; RL) (for any L � 0), i.e. there is onlyone e�ective parameter in the problem: BR2. So from now on we consider only �(R) :=�(1; R).Proposition A.1 The following bounds hold for the rescaled eigenvalue:1 + C1R�2e�R2 � �(1; R) � 1 + C2(R�2 +R2)e�R2=8 (31)with some universal, explicit constants. 11



Remark. As it is easy to see from the following proof, the lower bound can be improved to1 + C1(")R�2 exp (�(12 + ")R2).Proof. Consider the radial gauge with a(r) = Br=2 with B = 1 (see (3)). Proposition2.1 and Lemma 3.1 show that �(R) is the smallest eigenvalue of the Schr�odinger operatorH0 = �@2r � 1r@r + r2=4 on L2((0; R); rdr) with Dirichlet boundary condition at r = R (andfree b.c. at the origin). This is the same as the lowest eigenvalue of the two dimensionalharmonic oscillator, �� + r2=4 on D(0; R), which is 1 + 2E(R), where E(R) is the lowesteigenvalue of the one dimensional shifted harmonic oscillator H = �@2x + x2=4 � 1=2 on[�R;R] with Dirichlet b.c.The upper bound on E(R) is easy; we simply take a trial function f constructed fromthe Gaussian eigenfunction (2�)�1=4 exp(�x2=4) of the unrestricted oscillator by cutting ito� using straight line segments on R=2 � jxj � R. Simple calculation shows that E(R) �(const)(R�2 +R2) exp(�R2=8).For the lower bound, we use the Birman-Schwinger principle. Let U be a potential whichis zero on [�R;R] and in�nite otherwise, then, instead of the Dirichlet b.c., we can considerH + U on the whole space.Suppose we can show that for some � > 0 the number of eigenvalues of H + U below � issmaller than 1 (i.e. zero). Then the lowest eigenvalue of H + U is at least �. For E > 0, letK�;E := jU � � � Ej1=2� 1H + E jU � � �Ej1=2� (32)be the Birman-Schwinger kernel (j � j� denotes the negative part), then#f ev's of H + U below �g = #f ev's of H + U � � � 2E below � 2Eg� #f ev's of K�;E above 1g � Tr (K�;E)N (33)for any N � 1. But, using a well known trace inequality (Tr(A1=2BA1=2)N � Tr(ANBN)),Tr (K�;E)N � Tr jU � � � EjN� � 1H + E�N (34)12



= 1Xn=0 1(n+ E)N (� + E)N Z R�R j'n(x)j2dx;where 'n's are the normalized eigenfunctions of H (with eigenvalue n). We know that '0(x) =(2�)�1=4 exp (�x2=4), thus Z R�R '20(x)dx � 1� 2cR�1� e�R2=2 (35)with some absolute constant c and R� := max(1; R). For n > 0, we simply estimate RR�R j'nj2by one.Therefore Tr (K�;E)N � �� + EE �N (1� 2cR�1� e�R2=2) + 1Xn=1�� + En+ E�N : (36)Choose E := c0�N exp (R2) with a large enough c0 (depending on c), such that e�=c0 �1 + c�=100 for any 0 � � � 1. Then (1 + �=E)N is smaller than than exp (c�10 exp (�R2)) �1 + c exp (�R2)=100 � 1 + cR�1� exp (�R2=2), so the �rst term on the right hand side of (36)is smaller than 1 � cR�1� exp (�R2=2). The second term is smaller than cR�1� exp (�R2=2) if� � (1 + c0N exp (R2))�1 and N � c1 � max(R2; 1) with c1 depending on c0. Therefore, if� � c2R�2 exp (�R2), with some universal constant, then Tr (K�;E)N < 1 for some suitableN , which completes the proof. 2Acknowledgement: This problem was originated in the Erwin Schr�odinger Institute, Vi-enna, where the author got interested in isoperimetrical problems under the in
uence of Pro-fessor Nadirashvili. The work was done in the stimulating environment and with the �nancialsupport of the Forschungsinstitut f�ur Mathematik, ETH, Z�urich. The author is especiallygrateful to Professors A.-S. Sznitman and Y. Pinchover for fruitful discussions.13
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