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Abstract
We prove that the two dimensional free magnetic Schrédinger operator, with a fixed
constant magnetic field and Dirichlet boundary conditions on a planar domain with a
given area, attains its smallest possible eigenvalue if the domain is a disk. We also give
some rough bounds on the lowest magnetic eigenvalue of the disk.
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1 Introduction

In his classical work [R] Lord Rayleigh conjectured three inequalities for basic physical quan-
tities related to planar domains. The statements are that, among all planar domains with a
fixed area, the disk minimizes: (i) the principal eigenvalue of the Dirichlet Laplacian (mem-
brane); (ii) the principal eigenvalue of the Dirichlet biharmonic Laplacian (clamped plate);

and (iii) the electrostatic capacity.



) and
P-SJ).

In the twenties, the membrane problem was solved independently by Faber ([F]
Krahn ([K]); Pélya and Szegé gave a proof of the capacity problem twenty years later (|
The clamped plate problem remained open up to Nadirashvili’s recent solution (see [N] and
references therein for further backgrounds).

In this paper we propose a new isoperimetric statement, analogous to Rayleigh’s problems
above. The Laplacian in the membrane problem can be viewed as a free Schrodinger operator
(with Dirichlet boundary conditions), and, therefore, the same question naturally arises if we
consider the magnetic Laplacian (with a homogeneous magnetic field). Let B > 0 and let
Q1 C R? be a bounded domain (connected open set with smooth boundary), and let us denote
by A(B, ) the principal eigenvalue of the magnetic Schrédinger operator (—iV — A)? on ()
with Dirichlet boundary conditions. The vectorpotential (gauge) A : @ — R? generates the
constant magnetic field with strength B (i.e. rot A = B). It is well known that the spectrum
is discrete and independent of the gauge choice. The area of € is denoted by |2|. Our theorem

is the following:
Theorem 1.1 For any planar domain Q) and B > 0 we have

AB,Q) > XB,D), (1)
where D is the disk with |D| = |Q|. Fquality occurs only if Q@ = D.

We are not aware of any appearance of this, to our opinion quite natural, question in
the literature. Nevertheless, we think that both the statement and some ideas of the proof
(especially Lemma 3.1 about the monotonicity of the principal eigenvalue of a special one

dimensional quadratic form) are interesting.



2 Reduction to a radially symmetric problem

Consider the usual coordinate system in the plane and let A(x,y) = (—By/2, Bx/2) be the

linear gauge. Since C§°(Q) is a form core for our operator, by variational principle
MB,Q) = i / iV — AP 2
(B.Y) = coitl i 1 ) (2)

where ||f|| := HfHL2(Q)‘

We shall also need to consider the magnetic Schrodinger operator on a disk with a radially
symmetric magnetic field (and Dirichlet boundary conditions). Let D be a disk with center at
the origin and consider a bounded radial function b(r) > 0 (magnetic field). The corresponding

(unique) radial gauge is given (in polar coordinates) by
Arad = a(r)(—sin g, cos @), (3)

where a(r) = (1/r) [5 b(o)edo, i.e. a'(r) + a(r)/r = b(r).

By standard elliptic theory it is clear that the infimum in (2) is attained, and the minimizer

is a C°(Q) eigenfunction of the corresponding Schrédinger operator
(—iV — AP f=XNB,0)f, flaa=0. (4)

Moreover, since the coefficients are analytic functions, f € A(Q), where A({2) denotes the set
of analytic functions (in two variables) on 2. Let us call a set analytic if it is the union of
finitely many points and analytic line segments (level sets of a nonconstant analytic function).
Obviously, {f = 0} N Q is analytic (we exclude the f = 0 solution). Let Qo := Q\ {f = 0}.
Write f = dexp(ip) with ¢ : Qp — (0,00), ¢ : Qo — S! smooth functions. In addition,
V? € A(Q), ¥ # const, therefore {Vi) = 0} N Q is analytic. Clearly

(=iV = A)f[F = [V + (Ve — Al ()

3



and let w = (wy,ws) := A — Vo, with rot w = B on Q. Considering that |V f|? = |V |*)? +
|V |, one obtains that w?y? is bounded on . In particular, wiy? vanishes on the set

{f =0} ={y=0}.
Let v = (v1,v2) := (wy, —wy), then by a simple integration by parts on each connected

components of (g we obtain

LIV v = [V 4ot = gidive, (6)

Here we used that )*v vanishes on the boundaries of the connected components of 4. Since

dive = rotw = B, we have, by (5) and (6),
AB.Q) > B+ E(B,Q) (7)
with
E(B,Q) := inf{/Q Vo4 0P o € O N AQ), Qo= O\ {1 = 0} (8)
b >0, Plag =0, /Qw — 1, v € C%(Q,R?), dive = Bon Qo}.

Note that E(B,) is the lowest eigenvalue of the half of the Pauli operator, (—iV — A4)? — B.

The goal of this section is to prove the following

Proposition 2.1 Let D(0, R) be the disk, centered at the origin, with |D| = 7 R* = |Q|. Then

om () + alr)alr) e
o fOR q*(r)rdr

E(B,Q) > inf{ 9)
1 Br
q(r) € H((0,R),rdr), q(R) =0, g(r) >0, 0 <a(r) < 53 for a.a. r}.
Remark. The expression in the nominator on the right hand side of (9) is just

/Q (=iV — Ayaa)dl? — b (10)
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where ¢(z,y) := (/2% + y?) and similarly for b. This is the quadratic form of the corre-
sponding two dimensional Pauli operator, ((—iV — A,.4)* — (N)), on the spin-up subspace and in
the zero angular momentum sector. The proposition tells us that the lowest eigenvalue of the
Pauli operator on 2 with a constant field B can be minorized by that of the Pauli operator on
the disk D with a (possibly nonhomogeneous) magnetic field whose flux on each disk D(0,r)
(0 <r < R) is not bigger than that of the constant B field (i.e. 2wa(r)r < Brr?). Moreover,
it also shows that the lowest eigenvalue of the Pauli operator on the disk is attained in the

zero angular momentum sector. In the next section we show (Lemma 3.1) that this lowest

eigenvalue, in fact, decreases if we pointwise increase the radial gauge (i.e we increase the flux

on each D(0,r)). This will finish the proof of Theorem 1.1.

Proof of Proposition 2.1. The key idea is that we shall minimize the functional (8) on a
larger set of admissible pairs of functions (¢, v). Namely, we do not require divv to be equal
to B at every point, we only require that the integral of divwv on the level sets of ¥ be equal

B-times the area of this set. Therefore, obviously,

E(B,Q) > mf{/Q Vo 4+ 0P s € CX(@) AAQ), Qi=0\ (b =0},  (11)

020 vl =0, [vP=1 ve ¥ (R, [

{>c}

The set {¢p > ¢} C Q consists of finitely many open sets with piecewise smooth (even

dive = B|{¢) > ¢}| for a.a. c}.

analytic) boundary. By Stokes theorem, [i,. dive = — fi,_ v n, where n := Vi /|Vi] is
the inner unit normal vector to the curve {¢) = ¢} (in fact, this set can be a union of finitely
many curves, but for simplicity, we refer to them as level curves). Since ¢? is analytic, any
of these curves shrink to a point only for finitely many ¢ values (this can happen only when
Vi = 0), and since {Vi = 0} is analytic, the unit normal vector is well defined and given by
V) /|Vi)| along all but finitely many curves with a possible finitely many exceptional points.
Let 1 := Qo \ {V¢ = 0}.



Fix ¢ for the moment and notice that replacing v by (v-n)n does not effect the divergence
condition in (11), the integral does not increase (in fact, it decreases unless v were parallel
with Vi at almost all points), and the vectorfield (v-n)n is smooth on €. Thus, it is enough
to consider v = —pV» with some real smooth function ¢, which is, perhaps, undefined on an

analytic set. Therefore

EB,Q) 2 it { [ [V = ouVol 5 ¢ € C¥@) N AQ), &= 0\ ({6 =0} U (T =0}),

020 W =0, [ =1 o e CUWR), [ eVe]= Bl > o) for aa. } (12)

where the divergence condition is rewritten using Stokes theorem.

By the co-area formula and Holder inequality

LIVep =y = [Tde [ (1= gVl 2 (13)

2 2
N / N (Jpmay (1 = 20 VE]) /oo N (Jpe) V0] = eBI{& > c}])
f{d/ c} |v¢| 0 f{d;:c} |v¢| 7
and equality occurs only if ¢ is constant on each {1 = ¢} (for almost all ¢). Therefore the

energy functional does not increase if we replace ¢ by

Bl{y > c}|

eole) = o

(14)

on the set {z : ¢ (x) = ¢}, which is an admissible function in (12) (notice that the level curves
in €, are genuine curves, not points). Let ®(c) := @o(¢p~!(c)). Let C2° be the set of real
valued functions on R which are well defined and smooth with the exception of finitely many

points; clearly ®(c) € C2°. Therefore

EB.9) = it { [ [V - 0(0)0Vel e 02(@)n A©),



620, bha =0, [ 42 =1 0(e) == B{u > o ( /wzc}w) for a.a. } (15)

Using the isoperimetric inequality (between the area and the perimeter of a domain, which

is valid even if the domain has several components) and co-area formula again, we have

- L({v=¢) Ar|{ > &3
Q ctl = d d d
2 [y > e}l / ] {w=¢} |V¢| / =y V0L = / Jopmey VO] w1

which shows, in particular, that @ is integrable (L(-) denotes the length of the corresponding
one dimensional level curve). Therefore, we can set A(c) := [ ®(£)dE, A’ = —, and we

arrive at

B(B,Q) > inf {/Q IV (heMON) 2200 . o 0(T) 1 A(Q), (17)

C

V20 Glan =0, v =1 A= [T BI{v > &) (/{M} |W|) d§} .

Note that, by definition, A € C2° is a nonnegative, strictly monotone decreasing, continuous

function on the range of .

Let h := A(¢), then Vh = A'(¢)Vi. Clearly, for any b > 0 (with finitely many exceptions)

[, divhs [ vh = /{sz_l(b)}Aww = Bl{¢: > A7'(b)}| = BI{h < b}|. (18)

Let O(z) := A~!(x)e”, defined on the range of A(z). Since 1 is bounded, O is so. Then

/ IV (A9 2200 / IV(O(h))[2e2h _/ Ve w2 (19)

_/ db (©'(b))? —%/{ | 1Vh| = B/ )2e=2 [ (b) db,
h=b

with F(b) := [{h < b}| (in the last step we used (18)). We can also express [, 1* with the
help of the functions © and F' as follows:

|t = [Ty = [ @y (20)
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o'e) 1 o'e)
= dbe 220%(b — = “2002(p)F'(b) db
| dbe <>/{h:b}|w| | eermF b d,

where, in the last step, the co-area formula was used again

b
o= <o [Lae [ o

(21)
to calculate F'(b).

Now we determine the constraints for © and F. Starting from 1, by construction, ©
and F' are smooth functions (with possible finitely many exceptional points), F' is strictly
monotonically increasing (notice that h € Cg° is continuous) and F(0) = 0. Moreover, we

claim, that if F'(b) < |Q|, then F'(b) > 4n/B. For, similarly to (16), by (21), a Holder
inequality and (18)

P - | L (=0} _ drl{h < b}

. 292
e T9R] = Ty ISR = Bk < B)] (22)

This means that there exists a smallest value of b = by, such that F'(by) = ||, bp < B|Q|/(4).
Since ¢ = 0 at the boundary of Q, A(0) = by, therefore O(by) = 0.

Putting all these information together, we obtain that

E(B,Q) = inf{B 0°(0'(b))*e* F'(b) db
) = J}?O @2(6)6_%F/(b) db

F,0 €eCF, 0>0, O bounded (23)
4
F strictly monotone, F'(b) > % for a.a. 0 < b < by, F(0)=0, F(by) =[], O(bo) = 0}.

Now we consider the disk D = D(0, R) with |D| = |©2|. For any admissible (F, ®) pair (for
which the energy integral in (23) is finite), we shall construct admissible functions ¢(r) and

a(r) for the right hand side of (9), which give a lower (or equal) energy.
Let h*(r) := F~Y7r?), a(r) := (h*)'(r), then (for almost all r)

0< alr) = (W) (1) = o < DL

= T () = (24)
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Next, we define ¢(r) := O(h*(r)) exp(—h*(r)). Clearly h*(0) = 0, h*(R) = by, ¢(R) = 0 and

R

27r/0R(q/(r) +a(r)g(r))rdr = QW/O |(q(r)eh*(”)/|2€_2h*(7°)rdr _ 27T/0R |(@(h*(r)))’|2€—2h*(7°)rdr
(25)

bo
_/ h* 2 —2h* Vh*|2 / db(@/(b))Ze—Zb/ |Vh*| </ 2 _2bF(b) db
0 {h*=b}
where, in the last step, we used that [,._, [VA*] < Brr? = BF(b) by (24) and the definition
of h*. In particular, we obtain from (25) that ¢ € H'((0, R),rdr) (notice that ¢ is bounded).

Similarly, we calculate the norm of ¢(r):

27 /OR @(r)yrdr = /D O (h*)e= " (26)

bo 1 bO
— [T abe(b —%/ - :/ 02(b)e=221'(b) db
/0 (b)e sy [VEE o (b)e™F7(b)

using (24) in the last step. This completes the proof of Proposition 2.1. O

3 Comparison lemma for the radial case

In this section we prove the following comparison result which, in addition to Proposition 2.1

will complete the proof of Theorem 1.1.

Lemma 3.1 Let 0 < ay(r) < ax(r) < Cr be two functions on [0, R] with some constant
C > 0. Then, for

E(a(r), D) :=inf {27‘[‘ /OR(q’(r) +a(r)q(r))?rdr : g€ H'((0, R),rdr), (27)

R
or [0 rdr = 1 gl =0, ¢ 0},
0

we have E(ax(r),D) < E(ai(r), D). FEquality occurs if and only if ai(r) = aa(r) almost

everywhere.



Remark. In terms of the Pauli operator (see (10)) the statement of this lemma is quite natural.
The Pauli operator on R? in the radial gauge has a positive, zero-energy eigenfunction which
is well localized around the origin. The localization is stronger if the field is larger. Therefore
the spectral shift due to imposing Dirichlet boundary conditions on the boundary of the disk
is smaller in case of a stronger field (see Appendix).

Proof of Lemma 3.1. We shall prove that infinitesimally increasing the function a(r), the
eigenvalue F(a(r), D) strictly decreases. Let ¢ be the minimizer of the variational problem
for E(a(r), D), let h(r) := [ a(s)ds and p(r) := q(r)e""). Note that p minimizes the Dirich-
let integral [I*|Vp|?du(r) with respect to the measure du(r) = e ?"rdr (with Neumann
boundary condition at 0 and Dirichlet b.c. at R), in particular p > 0 and ¢ > 0 on [0, R).

Clearly ¢q satisfies the corresponding Schrodinger equation in a weak sense

!
- Ly (a2 —ad - g) q = Eq, (28)

7

(with £ = E(a(r), D) > 0, where the positivity of F follows from the fact that it could be zero
only if p were constant, but then ¢(R) = 0 were impossible). This implies that the function

p = qe” satisfies the following equation (in a weak sense)

P+ (% - Qh'(r)) p=—Ep (29)

Since ¢ is square-integrable with respect to the measure rdr, there is a sequence r, —
0 such that |¢/(r,)|r, — 0. By the bound on a(r) = A'(r) and |¢(r)] < [F|¢'(s)|ds <
HqHH1(TdT)(fTR5_1d3)1/2 < (const)(|logr|)'/2, we have |p/(r,)|r, — 0 along the same sequence.
Consider the function ¢(r) := p'(r)re=2""), By (29), this function has a negative distributional
derivative, and it goes to zero along a sequence 1, converging to zero. Therefore, ¢(r) < 0 for

r>0,ie 0>p = (¢ +aqg)e" on (0, R).
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Now consider a®) := a 4+ ey with some 0 < x(r) < (const)r, y #Z 0 and small . Using ¢
as a trial function in the variational problem for E(a®)(r), D), a short calculation gives, that

B((r), D) < Bla(r), D)+ 25 [ \()a(r)( () + alrg(r) rdr +O(2). (30

Since the coefficient of ¢ is strictly negative, we obtain that pointwise increasing a(r) strictly

decreases F(a(r), D). This completes the proof of Lemma 3.1. O

Proof of Theorem 1.1. Proposition 2.1 and Lemma 3.1 proves (1) (choose a1(r) = a(r)
and ay(r) = Br/2 in Lemma 3.1). For equality in (1), according to Lemma 3.1, one needs
a(r) = Br/2, which, in turn (see (24)), implies that F'(b) = 4w /B (for almost all b). But
then we have equality in (22), i.e. the level curves of {h = b} must be circles, so are those of
Y (almost all b). Since ¢ € A(R), if almost all of its level curves are circles, then all of them

are so, therefore 99 = {4 = 0} is a circle. O

Appendix

A Estimates on the spectral shift

We supplement our theorem by giving some rough bounds on A(B, D). Let A(B,R) :=
A B, D(0, R)), then, by scaling, A(B, R) = L*AX(BL™*, RL) (for any L > 0), i.e. there is only
one effective parameter in the problem: BR?. So from now on we consider only A(R) :=

AL R).
Proposition A.1 The following bounds hold for the rescaled eigenvalue:

1+ C R 2™ < A1,R) <14 Cy(R™? + R?)e /8 (31)
with some universal, explicit constants.
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Remark. As it is easy to see from the following proof, the lower bound can be improved to
14 Ci(e)R*exp (—(5 4+ 2)R?).

Proof. Consider the radial gauge with a(r) = Br/2 with B = 1 (see (3)). Proposition
2.1 and Lemma 3.1 show that A(R) is the smallest eigenvalue of the Schrodinger operator
Hy = =0} — 20, +r*/4 on L*((0, R),rdr) with Dirichlet boundary condition at r = R (and
free b.c. at the origin). This is the same as the lowest eigenvalue of the two dimensional
harmonic oscillator, —A + r*/4 on D(0, R), which is 1 + 2E(R), where E(R) is the lowest
eigenvalue of the one dimensional shifted harmonic oscillator H = —9% + 2*/4 — 1/2 on
[— R, R] with Dirichlet b.c.

The upper bound on E(R) is easy; we simply take a trial function f constructed from
the Gaussian eigenfunction (27)~"/*exp(—x2/4) of the unrestricted oscillator by cutting it
off using straight line segments on R/2 < |x| < R. Simple calculation shows that E(R) <
(const)(R™* + R?)exp(—R?/3).

For the lower bound, we use the Birman-Schwinger principle. Let U be a potential which
is zero on [— R, R] and infinite otherwise, then, instead of the Dirichlet b.c., we can consider
H + U on the whole space.

Suppose we can show that for some 1 > 0 the number of eigenvalues of H + U below 7 is

smaller than 1 (i.e. zero). Then the lowest eigenvalue of H 4 U is at least . For £ > 0, let
1
H+E

be the Birman-Schwinger kernel (| - |- denotes the negative part), then

Ky = U —n— B[ U —n— B[ (32)

#{ev'sof H+ U below n} = #{ev'sof H+ U —n—2FE below —2F}

< #{ev'sof K, g above 1} <Tr ([&”mE)N (33)
for any N > 1. But, using a well known trace inequality (Tr(AY2BAY%)N < Tr(ANBV)),
- N LY
Tr (K, p)¥ < Te|U —n— E| (H+E) (34)
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o . o 2
:;m(U+E) /_R|‘Pn($)| dx,

where ,,’s are the normalized eigenfunctions of H (with eigenvalue n). We know that ¢o(x) =
(2m)~ V4 exp (—2?/4), thus

R 2
/_R o2(z)de < 1 —2eR e /2 (35)

with some absolute constant ¢ and R, := max(1, R). For n > 0, we simply estimate [ |, |?
by one.
Therefore

. n+ ENY e = (n+ ENY
Tr([me)Ng(T) (1—2c3*1eR/2)+Z<n+E) : (36)

n=1
Choose E := conN exp (R?) with a large enough ¢, (depending on c¢), such that ef/® <
1+ ¢£/100 for any 0 < ¢ < 1. Then (1 + 5/E)Y is smaller than than exp (c;' exp (—R?)) <
14 cexp (—R?)/100 < 14 cR; ' exp(—R*/2), so the first term on the right hand side of (36)
is smaller than 1 — ¢cR;' exp (—R?/2). The second term is smaller than c¢R_!'exp (—R?/2) if
n < (1+cNexp(R?)™ and N > ¢; - max(R?,1) with ¢; depending on ¢y. Therefore, if
n < caR™%exp (—R?), with some universal constant, then Tr (K, )"V < 1 for some suitable

N, which completes the proof. O
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