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ESSENTIAL KILLING FIELDS

OF PARABOLIC GEOMETRIES:

PROJECTIVE AND CONFORMAL STRUCTURES

ANDREAS ČAP AND KARIN MELNICK

Abstract. We use the general theory developed in our article [1]

in the setting of parabolic geometries to reprove known results on

special infinitesimal automorphisms of projective and conformal

geometries.

1. Introduction

This text is a complement to our article [1] which studies special in-

finitesimal automorphisms in the general setting of parabolic geome-

tries. We illustrate the general theory developed there by reproving

the known results on such automorphisms in the cases of projective

structures (see [5]) and of conformal structures (see [4] and [3]). The

main moral of [1] is that special infinitesimal automorphisms can be

understood to a large extent by doing purely algebraic computations

on the level of the Lie algebra which governs the geometry in ques-

tion. The output of these computations can then be nicely interpreted

geometrically, providing examples of the powerful interplay between

algebra and geometry for the class of parabolic geometries. Even for

well known geometries as the two examples discussed here, this leads

to precise new descriptions of the behavior of these special flows.

The two examples of structures discussed in this article belong to

the subclass of parabolic geometries related to so–called |1|–gradings.
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These geometries have been studied under the names AHS–structures,

irreducible parabolic geometries, and abelian parabolic geometries, in

the literature. We will restrict all discussions in this article to geome-

tries in this subclass, referring to [1] for more general concepts.

The notion of higher order fixed point, which is the main concept

studied in [1], becomes very simple in the AHS–case: A point x0 is

a higher order fixed point of an infinitesimal automorphism η of an

AHS–structure if and only if the local flow ϕt of η fixes x0 to first

order, meaning ϕt(x0) = x0 and Dϕt(x0) = Id for all t (see [1, Def.

1.5] for the general definition). Infinitesimal automorphisms with this

property exist on the homogeneous model of each AHS–structure (see

2.2 below) and, as observed in [1, Rmk. 1.6], they are always essential.

For the structures treated in this article, the latter condition simply

means not preserving any affine connection in the projective class, re-

spectively, any metric in the conformal class.

The basic question is to what extent infinitesimal automorphisms ad-

mitting a higher order fixed point can exist on non–flat geometries.

The simplest possible answer to this question would be that existence

of a higher order fixed point implies local flatness on an open neighbor-

hood of this fixed point, which happens for projective structures. In

this case, the infinitesimal automorphism in question is conjugate via

a local isomorphism to an infinitesimal automorphism on the homoge-

neous model of the geometry which has a higher order fixed point, and

the latter can be explicitly described.

In general, and already in the case of conformal pseudo-Riemannian

structures, the situation is less simple. The next best case is that exis-

tence of a higher order fixed point x0 implies local flatness on an open

subset U such that x0 ∈ U . For example, for higher order fixed points

of conformal flows of timelike or spacelike type (see 3.2 below), the set

U is the interior of the light cone, or the interior of its complement,

respectively, intersected with a neighborhood of x0. It seems difficult

to precisely describe the flow outside of U , but one can obtain detailed

information about the flow on U from the results of [1] (or from the

results of [5] and [4] in the projective and conformal cases, respectively).
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2. Background

In this section, we very briefly review some background on AHS–

structures referring to sections 3.1, 3.2, and 4.1 of [2], and we collect

the results from [1] we will need in the sequel.

2.1. AHS–structures. The basic data needed to specify an AHS–

structure is a semisimple Lie algebra g endowed with a |1|–grading, a

decomposition g = g−1 ⊕ g0 ⊕ g1 making g into a graded Lie algebra.

This means that g±1 are abelian Lie subalgebras, while g0 is a Lie

subalgebra which acts on g±1 via the restriction of the adjoint action.

The only additional information encoded in g is the restriction of the

Lie bracket of g to a map [ , ] : g1 ⊗ g−1 → g0. It turns out that g0 is

always reductive, and its action on g−1 defines a faithful representation.

Finally p := g0⊕g1 is a maximal parabolic subalgebra of g and g1 is an

ideal in p. The Killing form of g induces an isomorphism (g/p)∗ ∼= g1 of

p–modules, which can also be interpreted as an isomorphism (g−1)
∗ ∼=

g1 of g0–modules.

Choosing a Lie group G with Lie algebra g, it turns out that the nor-

malizer NG(p) is a closed subgroup of G with Lie algebra p. One next

chooses a parabolic subgroup P ⊂ G corresponding to p, a subgroup ly-

ing between NG(p) and its connected component of the identity. Then

one defines G0 ⊂ P to be the closed subgroup consisting of all elements

whose adjoint action preserves the grading of g. This subgroup has Lie

algebra g0 and it naturally acts on g−1 via the adjoint action. Finally,

the exponential mapping restricts to a diffeomorphism from g1 onto

a closed normal subgroup P+ ⊂ P and P is the semidirect product

G0 ⋉ P+.

An AHS–structure of type (g, P ) on a smooth manifold M which has

the same dimension as G/P is then defined as a Cartan geometry of

that type, which consists of a principal P–bundle p : B → M and a

Cartan connection ω ∈ Ω1(B, g). The Cartan connection trivializes

the tangent bundle TB, is equivariant with respect to the principal

right action of P , and reproduces the generators of fundamental vector

fields (see [2, Sec. 1.5] for the definition). The homogeneous model of
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the geometry is the bundle G → G/P with the left-invariant Maurer–

Cartan form as the Cartan connection.

Via the Cartan connection, TM can be identified with the associated

bundle B ×P (g/p). More precisely, one can form B0 := B/P+ which

is a principal bundle over M with structure group P/P+
∼= G0, and ω

descends to a soldering form on this bundle. Hence one can interpret

B0 → M as a first order structure with structure group G0. In this

interpretation, TM ∼= B0 ×G0
g−1, and consequently T ∗M ∼= B0 ×G0

g1 ∼= B ×P g1.

If none of the simple ideals of g is of the type corresponding to projec-

tive structures, requiring a normalization condition on the curvature

of ω makes the Cartan geometry (B,ω) equivalent, in the categorical

sense, to the underlying first order structure B0. In the projective case,

this underlying structure contains no information and the Cartan ge-

ometry is equivalent to the choice of a projective class of torsion free

linear connections on the tangent bundle TM .

For any Cartan geometry, the curvature of a Cartan connection is a

complete obstruction to local isomorphism to the homogeneous model,

or local flatness (see [2, Prop. 1.5.2]). In the case of AHS–structures,

there is a conceptual way to extract parts of this curvature, called har-

monic curvature components, which still form a complete obstruction

to local flatness (see [2, Thm. 3.1.12]). In the examples we are going

to discuss, there is only one harmonic curvature component, and this

is either a version of Weyl curvature or of a Cotton–York tensor.

2.2. Higher order fixed points. An infinitesimal automorphism of a

Cartan geometry (B → M,ω) of type (g, P ) is a vector field η̃ ∈ X(B)

which is P–invariant and satisfies Lη̃ω = 0, where L denotes the Lie

derivative. Any P–invariant vector field η̃ on B is projectable to a

vector field η ∈ X(M). From the equivalence to underlying structures

discussed in the previous section, one concludes that, apart from the

projective case, η̃ is an infinitesimal automorphism of the Cartan geom-

etry if and only if η is an infinitesimal automorphism of the underlying
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first order structure. There is an analogous correspondence in the pro-

jective case.

Via the Cartan connection ω, a P–invariant vector field η̃ on B corre-

sponds to a P–equivariant function f : B → g. Then η̃, or the underly-

ing vector field η on M , has a higher order fixed point at x0 ∈ M if and

only if for one—or equivalently, any—point b0 ∈ B with p(b0) = x0, we

have f(b0) ∈ g1 ⊂ g. (Observe that x0 is fixed by the flow, or is a zero

of η, if and only if f(b0) ∈ p ⊂ g.)

If η̃ has a higher order fixed point at x0, then for each b0 ∈ B with

p(b0) = x0 the value f(b0) ∈ g1 via b0 corresponds to an element of

T ∗
x0
M since T ∗M ∼= B ×P g1. Equivariance of f implies that this

element does not depend on b0, so η̃ gives rise to a well defined element

α ∈ T ∗
x0
M , called the isotropy of η̃ (or of η) at the higher order fixed

point x0 [1, Def. 1.5].

The P–orbit f(p−1(x0)) ⊂ g1 similarly depends only on α. This P–

orbit is called the geometric type of the isotropy α [1, Sec. 1.2], and

is the most basic invariant of a higher order fixed point. In all ex-

amples studied here and in [1], different geometric types are discussed

separately.

It is possible to do precise calculations for infinitesimal automorphisms

with higher order fixed points on the homogeneous model G/P of the

geometry. Here the automorphisms are exactly the left translations by

elements of G, so infinitesimal automorphisms are right invariant vector

fields on G. By homogeneity, we may assume that our automorphism

fixes the point o = eP ∈ G/P . Thus the value of an infinitesimal

automorphism at o can be naturally interpreted as the generator Z ∈ g

of the right invariant vector field in question. Now of course o is a fixed

point if and only if Z ∈ p and a higher order fixed point if and only if

Z ∈ g1. Hence the flows of such infinitesimal automorphisms are just

the left translations by etZ for Z ∈ g1.

Given a higher order fixed point x0 of an infinitesimal automorphism η

and a neighborhood U of x0 in M , we call the strongly fixed component

of x0 in U [1, Def. 2.3] the set of all points in U which can be reached



6 ANDREAS ČAP AND KARIN MELNICK

from x0 by a smooth curve lying in U , all of whose points are higher

order fixed points of the same geometric type as x0. The higher order

fixed point x0 is called smoothly isolated if its strongly fixed component

consists of {x0} only.

2.3. Results from [1]. The first step to apply the results of [1] is

to associate to an element α ∈ T ∗
x0
M three geometrically significant

subsets of the tangent space Tx0
M . These sets are defined algebraically,

after choosing an element b0 ∈ B with p(b0) = x0. Via b0, the covector

α corresponds to an element Z ∈ g1, and the subsets of g−1 are defined

by

C(Z) := {X : [X,Z] = 0} ⊂ {X : [X, [X,Z]] = 0} =: F (Z)

T (Z) := {X : [[Z,X], X] = −2X, [[Z,X], Z] = 2Z}

In [1] the sets were denoted by Cg
−

(Z), and similarly for F and T .

Moreover, the original definition of Fg
−

(Z) used there is different, but

equivalence to the one used here is observed in the proof of Proposition

2.16 of [1].

For X ∈ T (Z), we can consider A := [Z,X] ∈ g0. Given a represen-

tation W of G0 on which A acts diagonalizably, we define Wss(A) ⊂

Wst(A) ⊂ W as the sum of all eigenspaces corresponding to negative

eigenvalues, respectively, to non–positive eigenvalues of A.

Identifying g−1
∼= g/p as vector spaces, one can use the element b0 to

identify C(Z) ⊂ F (Z) and T (Z) with subsets C(α) ⊂ F (α) and T (α)

of Tx0
M . Equivariance of ω then easily implies that the latter subsets

are independent of the choice of b0, so they are intrinsically associated

to α ∈ T ∗
x0
M . Observe that C(α) is a linear subspace of Tx0

M , F (α) is

only closed under multiplication by scalars, while T (α) is just a subset.

The most concise way to formulate the results of [1] for our purposes

is via normal coordinates centered at a point x0 ∈ M , see [1, Sec.

1.1.2]. For X ∈ g−1 we can take the “constant vector field” X̃ ∈ X(B)

characterized by ω(X̃) = X. Write ϕt

X̃
(b0) for the flow line of such a

field emanating from b0 ∈ B with p(b0) = x0; then we can use X 7→

p(ϕ1
X̃
(b0)) to define a diffeomorphism from an open neighborhood of 0
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in g−1 onto an open neighborhood of x0 in M . Combining the inverse

of such a diffeomorphism with the identification of g−1 with Tx0
M

provided by b0, we obtain a normal coordinate chart centered at x0

with values in Tx0
M . Varying b0 gives a family of charts parametrized

by the fiber p−1(x0) ∼= P .

Now the first result we need concerns the form of the flow, and in par-

ticular further fixed points of an infinitesimal automorphism admitting

one higher order fixed point. It is proved in Propositions 2.5 and 2.17

of [1].

Proposition 2.1. Let η be an infinitesimal automorphism of an AHS–

structure having a higher order fixed point at x0 ∈ M with isotropy

α ∈ T ∗
x0
M .

(1) If C(α) = 0, then the higher order fixed point x0 is smoothly iso-

lated.

(2) In any normal coordinate chart centered at x0 with values in a

neighborhood U ⊂ Tx0
M of zero we have

(a) Any point of U ∩ F (α) is a zero of η.

(b) Any point of U ∩C(α) is a higher order fixed point of the same

geometric type as x0.

(c) For any ξ ∈ T (α) the flow on the intersection U ∩R · ξ is given

by ϕt(sξ) = s
1+st

ξ for ts > 0.

The second result concerns information on local flatness coming from

elements of T (α).

Proposition 2.2. Let η be an infinitesimal automorphism of an AHS–

structure having a higher order fixed point at x0 ∈ M with isotropy

α ∈ T ∗
x0
M . Suppose that for some element Z ∈ g1 belonging to the

geometric type of α and all X ∈ T (Z), the element A = [Z,X] acts

diagonalizably on g−1 and on each representation W of G0 in which one

of the harmonic curvature components of the geometry in question has

its values. Suppose further that the following conditions are satisfied:

(1) For each X ∈ T (Z), all eigenvalues of A on g−1 are non–

positive and the 0–eigenspace coincides with C(Z).
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(2) For each X ∈ T (Z), Wss(A) = 0.

(3) ∩X∈T (Z)Wst(A) = 0.

Then in each normal coordinate chart centered at x0 with values in a

neighborhood U ⊂ Tx0
M of zero and for each ξ ∈ T (α), there is an

open neighborhood of (R · ξ) ∩ (U \ 0) on which the geometry is locally

flat. In particular, we get local flatness on an open subset containing

x0 in its closure.

Proof. Using condition (3) we can apply Proposition 2.15 of [1] to con-

clude that all harmonic curvature quantities vanish in the fixed point

x0. But this argument also applies to any other higher order fixed point

of the same geometric type as x0. Thus we may apply Corollary 2.14

of [1] which directly gives the result. �

3. Results

3.1. Projective structures. A projective structure on a smooth man-

ifold M of dimension n ≥ 2 is given by an equivalence class of torsion

free linear connections on TM which share the same geodesics up to

parametrization. An infinitesimal automorphism in this case can be

simply defined as a vector field η on M whose flow preserves this class

of connections or equivalently the family of geodesic paths. What we

will prove here is

Theorem 3.1 (compare [5]). Let (M, [∇]) be a smooth manifold of

dimension n ≥ 2 endowed with a projective structure and suppose that

η ∈ X(M) is an infinitesimal automorphism of the projective structure

which has a higher order fixed point at x0 ∈ M . Then there is an open

neighborhood of x0 ∈ M on which the projective structure is locally flat.

To describe projective structures as AHS–structures, takeG = PSL(n+

1,R) and let P ⊂ G be the stabilizer of a point for the canonical ac-

tion of G on RPn. On the level of Lie algebras, g = sl(n + 1,R), and

the |1|–grading satisfies g0 ∼= gl(n,R), g−1
∼= Rn, and g1 ∼= Rn∗. The

grading comes from a block decomposition with blocks of sizes 1 and
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n of the form
(

−tr(A) Z

X A

)

with X ∈ Rn, A ∈ gl(n,R), and Z ∈ Rn∗.

Note G0
∼= GL(n,R). It follows that there is just one non–zero P–

orbit in g1, and hence just one possible geometric type of isotropy. The

algebra needed for our purpose is in the following lemma:

Lemma 3.2. For 0 6= Z ∈ g1,

0 = C(Z) ⊂ F (Z) = {X ∈ g−1 : ZX = 0}

T (Z) = {X ∈ g−1 : ZX = 1}

Moreover, Z satisfies all conditions of Proposition 2.2.

Proof: For Z ∈ g1 and X, Y ∈ g−1, the brackets relevant for our

purposes are

[Z,X] = −XZ

[[Z,X] , Y ] = −ZY X − ZXY

[[Z,X] , Z] = 2ZXZ.

The descriptions of C(Z), F (Z), and T (Z) follow easily.

For X ∈ T (Z), setting A = [Z,X] gives [A, Y ] = −Y − ZY X for all

Y ∈ g−1. Hence the eigenspace decomposition of g−1 is R ·X ⊕ ker(Z)

with corresponding eigenvalues −2 and −1. In particular, condition

(1) of Proposition 2.2 holds.

Now it is well known that for projective structures, there always is only

one harmonic curvature component, see Section 4.1.5 of [2]. If n > 2,

the harmonic curvature is the so–called Weyl curvature, the totally

tracefree part of the curvature of any connection in the projective class.

The corresponding representationW of g0 is contained in Λ2g1⊗sl(g−1).

From the calculations for g−, one can see that the possible eigenvalues

of A on Λ2g1 are 2 and 3, while the possible eigenvalues on sl(g−1)

are −1, 0, and 1. Hence Wst(A) = 0 for n > 2. For n = 2 the basic

invariant is a projective analog of the Cotton–York tensor, and the
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corresponding representation W is contained in Λ2g1 ⊗ g1. Clearly, A

has only positive eigenvalues on this representation, so Wst(A) = 0

holds for n ≥ 2. The remaining conditions from Proposition 2.2 follow.

♦

Proof: [of Theorem 3.1] The description of T (Z) in the lemma shows

that the set of non–zero scalar multiples of elements of T (α) ⊂ Tx0
M

is the complement of the hyperplane ker(α). In particular, the inter-

section of this set with the range U of a normal coordinate chart is a

dense subset of U . Now by Proposition 2.2, the geometry is locally flat

on this dense subset and hence on all of U . ♦

3.2. Pseudo–Riemannian conformal structures. Recall that two

pseudo–Riemannian metrics g and ĝ are conformally equivalent if there

is a positive smooth function f such that ĝ = f 2g. Evidently, confor-

mally equivalent metrics have the same signature. A conformal equiv-

alence class of metrics on a smooth manifold M is called a conformal

structure on M . This can be equivalently described as a first order

structure corresponding to CO(p, q) ⊂ GL(p + q,R). There are three

orbits of CO(p, q) on R(p+q)∗, when 0 < p ≤ q. These orbits give

three geometric types (see [1, Sec 1.2]): spacelike, null, or timelike, and

correspond to the sign of the inner product of the vector with itself.

For definite signature, there is just one possible geometric type. As we

shall see, flows with isotropy equal to a spacelike or timelike element

of Rp,q∗ behave very similarly, so the main distinction is between null

isotropy and non–null isotropy. Of course, in definite signature, only

non–null isotropy is possible. Recall that infinitesimal automorphsism

of a conformal structure are conformal Killing vector fields. We are

going to prove the following.

Theorem 3.3 (compare [3], [4]). Let (M, [g]) be a smooth manifold

of dimension ≥ 3 endowed with a conformal structure, and let η be a

conformal Killing vector field on M . Then higher order fixed points with

non–null isotropy are smoothly isolated, while for null isotropy there is

a smooth curve contained in the strongly fixed component. Moreover,
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for any higher order fixed point x0 of η, there is an open subset U ⊂ M

with x0 ∈ U on which M is locally conformally flat.

This theorem is a consequence of the detailed descriptions of infinites-

imal automorphisms with the two kinds of higher order fixed points in

Propositions 3.5 and 3.7, respectively.

The description of pseudo–Riemannian conformal structures in dimen-

sion n ≥ 3 as parabolic geometries is well known, see Sections 1.6 and

4.1.2 of [2]. A structure of signature (p, q), is modeled on G/P with

G = PO(p+1, q+1) and P the stabilizer of a null line in Rp+1,q+1. The

homogeneous model is the space of null lines in Rp+1,q+1, a quadric in

RPn+1. The Lie algebra g = so(p+ 1, q + 1) can be realized as

g =

















a Z 0

X A −IZt

0 −X t
I −a






:

a ∈ R,

X ∈ Rn, Z ∈ Rn∗,

A ∈ so(p, q)











Here I is the diagonal matrix Idp ⊕ −Idq. The grading corresponding

to P has the form g = g−1 ⊕ g0 ⊕ g1 with the components represented

by X, (A, a) and Z, respectively. The relevant bracket formulae for

Z ∈ g1 and X, Y ∈ g−1, are:

(∗)

[Z,X] = (−XZ + I(XZ)tI, ZX)

[[Z,X], Z] = 2ZXZ − ZIZtX t
I = 2ZXZ − 〈Z,Z〉X t

I

[[Z,X], Y ] = −XZY + IZtX t
IY − ZXY

= −XZY − ZXY + 〈X, Y 〉IZt.

where 〈 , 〉 denotes the (standard) inner product of signature (p, q) on

g±1 corresponding to the matrix I. This leads to G0
∼= CO(p, q) and

P ∼= CO(p, q)⋉Rn∗.

In all dimensions n 6= 4, there is just one harmonic curvature compo-

nent. For n ≥ 5, this component is the Weyl curvature, the totally

tracefree part of the Riemann curvature tensor of any metric in the

conformal class. It is a section of the bundle associated to the irre-

ducible component of highest weight in Λ2g1 ⊗ so(g−1). For n = 3, the

harmonic curvature is the Cotton–York tensor, which is a section of
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the bundle associated to the irreducible component of highest weight

in Λ2g1 ⊗ g1. In dimension n = 4, the Weyl curvature splits into two

components according to the splitting of Λ2g1 into a self–dual and an

anti–self–dual part (with respect to the Hodge–∗–operator), and these

comprise the harmonic curvature.

3.2.1. Non–null isotropy. This lemma collects the needed algebraic re-

sults. Recall that for a |1|–graded Lie algebra g there is a unique

element E ∈ g, called the grading element, such that for i = −1, 0, 1

the subspace gi is the eigenspace with eigenvalue i for ad(E).

Lemma 3.4. If Z ∈ g1 is such that 〈Z,Z〉 6= 0, then

(1) The sets associated to Z are

0 = C(Z) ⊂ F (Z) = {X ∈ g−1 : ZX = 〈X,X〉 = 0}

T (Z) =

{

2

〈Z,Z〉
IZt

}

(2) For the unique element X ∈ T (Z), the bracket A = [Z,X] ∈ g0

is twice the grading element of g. In particular, all conditions

of Proposition 2.2 are satisfied by Z.

Proof: Assume [Z,X] = 0. Then from the brackets in equation

(∗) above, ZX = 0 and [[Z,X], Z] = 2ZXZ − 〈Z,Z〉X t
I = 0. Since

〈Z,Z〉 6= 0 by assumption, we concludeX = 0, so C(Z) = 0. Next, sup-

pose that [[Z,X], X] = 0. Then formula (∗) gives 2ZXX = 〈X,X〉IZt,

which is impossible if X and IZt are linearly dependent, so the descrip-

tion of F (Z) follows.

Next, if [[Z,X], Z] is a multiple of Z, then X t
I must be a multiple

of Z. It is easy to compute this multiple, which yields T (Z), and to

verify that A = [Z,X] is twice the grading element. This implies that

A always acts diagonalizably on all representations of g0, and it acts

by multiplication by −2 on g−1. Since all eigenvalues of the grading

element on Λ2g1⊗ g are positive, we conclude that Wst(A) = 0 for any

representation W corresponding to a harmonic curvature component.

♦
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From the general theory of parabolic geometries it follows that, given

any normal coordinate chart centered at x0, straight lines through zero

in Tx0
M correspond to distinguished curves of the geometry emanat-

ing from x0 (see [2, Sec 5.3]). In conformal geometry, these curves are

conformal circles in non–null directions and null geodesics in null direc-

tions. While the latter are determined by their initial direction up to

a projective family of reparametrizations, there is additional freedom

for conformal circles.

Now the results of Lemma 3.4 can be converted to geometry.

Proposition 3.5. Let (Mn, [g]) be a smooth manifold endowed with

a pseudo–Riemannian conformal structure of signature (p, q), where

n = p + q ≥ 3. Suppose η is a conformal Killing vector field with a

higher order fixed point at x0 ∈ M with non–null isotropy α ∈ T ∗
x0
M .

(1) The higher order fixed point x0 is smoothly isolated. Null ge-

odesics emanating from x0 in directions in ker(α) are, locally

around x0, zeros of η.

(2) Let ξ0 ∈ Tx0
M be the unique vector such that gx(ξ0,−) is a

non–zero multiple of α and such that α(ξ0) = 2. Then for any

conformal circle c = c(s) in M with c(0) = x0 and c′(x0) = ξ0,

there is ǫ > 0 such that ϕt
η(c(s)) = c( s

1+st
) for |s| < ǫ and st > 0.

Finally, an open neighborhood of {c(s) : 0 < |s| < ǫ}, which in

particular contains x0 = c(0) in its closure, is conformally flat.

Proof: Varying the point b0 ∈ p−1(x0) gives all normal coordinate

charts centered at x0, which give all conformal circles emanating from

x0. Now the result follows from Propositions 2.1 and 2.2, which apply

in our case by Lemma 3.4. ♦

3.2.2. Null isotropy. Again we start with an algebraic lemma:

Lemma 3.6. Let 0 6= Z ∈ g1 be such that 〈Z,Z〉 = 0. Then the sets

associated to Z are

R · IZt = C(Z) ⊂ F (Z) = {X ∈ g−1 : ZX = 〈X,X〉 = 0}

T (Z) = {X ∈ g−1 : ZX = 1, 〈X,X〉 = 0},
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and all conditions of Proposition 2.2 are satisfied by Z.

Proof: As in the proof of Lemma 3.4, [Z,X] = 0 implies ZX = 0, and

then [[Z,X], Y ] = 0 implies thatX and IZt must be linearly dependent.

Conversely, [Z, IZt] = 0 is easily verified, so the claim on C(Z) follows.

If X is linearly independent of IZt, then 0 = [[Z,X], X] = −2XZX +

〈X,X〉IZt implies ZX = 〈X,X〉 = 0 and thus the description of F (Z).

Since 〈Z,Z〉 = 0, the equation [[Z,X], Z] = 2Z is equivalent to ZX =

1. In this case, [[Z,X], X] = −2X is equivalent to 〈X,X〉 = 0, and

the description of T (Z) follows. Taking X ∈ T (Z), the eigenspace

decomposition of g−1 with respect to A = [Z,X] follows from the for-

mula for [[Z,X], Y ]: The isotropic lines spanned by X and by IZt are

the eigenspaces for eigenvalues −2 and 0, respectively, and A acts by

multiplication by −1 on the complementary subspace ker(Z)∩X⊥. In

particular, condition (1) from Proposition 2.2 is satisfied.

The grading on g−1 is the one on Rp+1,q+1 that gives rise to the initial

|1|–grading on g, shifted by one degree. This shift does not change the

induced grading of so(g−1), which thus has eigenvalues −1, 0, and 1.

On the other hand, the eigenvalues on Λ2g1 are 1, 2, and 3. Hence for

any subrepresentation W of Λ2g1 ⊗ g1, we have Wst(A) = 0, while for

a subrepresentation W of Λ2g1 ⊗ so(g−1), we have Wss(A) = 0, and

Wst(A) is contained in the tensor product of the degree one part of

Λ2g1 with the degree −1 part of so(g−1). This implies that all values in

so(g−1) of any element of Wst(A) act trivially on the (−2)–eigenspace

in g−1 and thus on X. But g−1 is spanned by elements of T (Z), so

∩X∈T (Z)Wst(A) = 0 follows. ♦

Again, this is easily converted into geometric information.

Proposition 3.7. Let (Mn, [g]) be a conformal manifold of signature

(p, q), where n = p+ q ≥ 3. Suppose that η is a conformal Killing field

with a higher order fixed point at x0 ∈ M with null isotropy α ∈ T ∗
x0
M .

Let F (α) ⊂ Tx0
M be the set of those null vectors ξ which satisfy α(ξ) =

0, and let C(α) ⊂ F (α) be the line of all elements dual to a multiple

of α.
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Then for any normal coordinate chart centered at x0 with values in

Tx0
M , there is an open neighborhood U of zero in Tx0

M such that:

(1) Elements of F (α)∩U are zeros of η and C(α)∩U is contained

in the strongly fixed component of x0.

(2) For any null vector ξ ∈ U with α(ξ) ≥ 0, we get ϕt
η(ξ) =

1
1+tα(ξ)

ξ.

(3) Any null vector ξ ∈ U with α(ξ) > 0 has an open neighborhood

on which the geometry is flat. In particular, the geometry is flat

on an open set containing x0 in its closure.

Proof. Taking into account that a vector ξ in part (2) is either a mul-

tiple of an element of T (α) (if α(ξ) 6= 0) or contained in F (α) (if

α(ξ) = 0), the result follows directly from Propositions 2.1 and 2.2. �
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