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1. INTRODUCTION

The property of e-regularity for weak solutions plays an important role in char-
acterizing singularities of such solutions, which enables us to obtain global smooth
solutions. For harmonic maps on compact Riemann surfaces, Struwe [7] proved the
e-regularity of weak solutions u(x,?) to the heat flow. Indeed, around the singular
point (x,t), it occurs the concentration of energy as

I 0V > e,
im sup BT@)G(U( ) dV = e

where e(u) is the energy density of u. Since the total energy / e(u(t)) dV is mono-
M

tone decreasing in time, there exist at most finitely many singularities {(x;,#;)}2, of
u.

For the Yang-Mills functional on compact 4-manifolds, Struwe [8] and Kozono,
Maeda and Naito [6] gave a similar criterion and proved that there exists an ¢ > 0
such that the concentration of energy of the curvature form F4 occurs like

lim sup |Fa(t)]?dV > ¢
r—0 Br(l’)

for every singular point (x,t) of the connection A(¢). Making use of the gauge trans-
formations by Uhlenbeck, they proved that there exist at most finitely many singu-
larities of the connection A(¢,x) for the Yang-Mills gradient flow.

In the present paper, we show the e-regularity of gradient flow for the Yang-Mills-
Higgs heat flow on the trivial SU(2)-bundle over Euclidean 3-space. Let P = [R® x
SU(2) be the trivial bundle over R?. Consider the Yang-Mills-Higgs functional: for

a connection A of P and a su(2)-valued function ® on R3 we set
(1.1) E(A,®) = /R (1Faf? + |da®P) aV.
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where d4 and F4 denote the covariant exterior differentiation and the curvature form
of A, respectively. It is known that the Yang-Mills-Higgs functional has an interesting
aspect on the following compactified configuration space (cf, [2]):

C={(A,®): F(A,®) <oo,|P(z)] — 1 as || — oo}.
On the configuration space C, we define N(A, ®) as

1
N(A, ) = E/Rs Fa A dad.

which is called the monopole number (or magnetic charge) for (A, ®). Groissor [2]
showed that if (A, ®) € C, then N(A,®) is an integer and the functional N: C — Z
gives a path component decomposition on C. By restricting ® to a sufficiently large
2-sphere in R?, it determines a homotopy class of maps on S%. Let S, be the ideal
boundary of R3. We can identify S., with S?(1) canonically: associated to ®, we

define a map $: 9, — 52 by

x CI)(r,w)
O(w) = lim ,
)= B0 T o)
where ®(r,w) = ®(z), r = |z|, w = |:1;_| Then, we have N(A,®) = —deg(é)).
T

Furthermore, 2N(A, ®) gives the first Chern number of some bundle over 52,

Critical points of the functional (1.1) is called Yang-Mills-Higgs configurations. If
(A, @) satisfies Fy = £+« da®, then (A, @) is a Yang-Mills-Higgs configuration. We
call such (A, ®) (anti-)monopole, and B = F4 — *d4® is called Bogomolny tensor.
Existence of monopoles and general Yang-Mills-Higgs configuration are given by Jaffe-
Taubes [5] and Taubes [9, 10].

Consider the following heat flow associated with the Yang-Mills-Higgs functional:
(1.2) {&A: —d3Fy — [®,ds9],

0P = Ay 9.

We study a property of the regularity for solutions to (1.2). In [3], Hassell showed
the existence of the global smooth solutions of (1.2) under the assumption that some
norm of the Bogomolny tensor of the initial data is small. We now consider the
regularity of the solutions of (1.2) without smallness of the initial data. Let us call a
pair (A(t), ®(¢)) in the configuration space C smooth solution of (1.2), if (A(t), ®(¢))
satisfies (1.2) in the classical sense. Now, we introduce the following notion:

Definition 1.1. A smooth solution (A(t), ®(¢)) of (1.2) is called extendable if the
following conditions are satisfied:

(1) Foreacht € (0,T], there exists a gauge transformation ¢(¢) such that g*(¢) A(?)
extends to a smooth connection over S, = S2.

(2) N(A(1),®(t)) is constant for all ¢t € (0,T].
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For wy € 52, let B.(wy) be the geodesic ball centered at wy with the radius 7.
Consider a smooth solution (A(t), ®(¢)) of (1.2) with the following property:

(1.3) lim inf r2(|Fa(t,r,w)| + [da®(t, r,w)]) dw < &,

7—00 BT(WO)

for sufficient small 7, for all ¢ € (0, 7] and for all wy € S?. Our theorem now reads:

Theorem 1.2. There exists a universal constant 1 > 0 such that if the smooth
solution (A(t),®(t)) of (1.2) with the following initial conditions (1.4), (1.5) and
(1.6):

(1.4)
IVAF4(0,2)] + |Vida®(0,2)] < Cla|™"7%,  for all n € NU {0},
(1.5)
(A(0),®(0)) e C
(1.6)

1= (0, 2)]*] < Cla| ™,

with C' independent of v € R3, satisfies (1.3), then (A(t), ®(t)) is extendable .

Remark 1.3. It is easy to see that the Prasad-Sommerfield monopole [5, 1V.1] sat-
isfies the assumption (1.4), (1.5) and (1.6). (See Section 8.) It is also known that for

any integer N, there exists at least one monopole solution (A, ®) with N(A,®) = N
such that (1.4) is fulfilled for n = 0. (See [5, p. 109]).

Compared with the harmonic maps and the Yang-Mills functional, we shall char-
acterized the singularity as local concentration not of the energy functional but of the
L'-norms of the curvature tensor and the first derivative of the Higgs field. From a
view point of nonlinear partial differential equations, such a characterization should
be done in the LP-space whose norms is invariant under the change of scaling. Un-
fortunately, for the Yang-Mills-Higgs functional, the bound of norms necessarily for
getting smooth solution does not coinside with that of norm defining the energy
functional. This causes a lot of difficulties to obtain the global regularity for weak
solutions of Yang-Mills-Higgs gradient flow.

It would be interesting to find a global weak solution for the gradient flow (1.2)
for Yang-Mills-Higgs functional without any smallness on the initial data. The above
theorem will be useful to get a global solution of (1.2) in weak sense, which will be
discussed in a forthcoming paper.



2. PRELIMINARIES

In this section, we prepare some fundamental estimates.

Proposition 2.1. Letu: (0,7)x(0,00) — R be a smooth function satisfyingu > 0,
u(0) € L*(0,00) and let f € C°((0,T); L*(0,00)). Suppose that u and [ satisfy

c C
atu_ arru—l' _laru - _zu S f7
r r

where ¢y and ¢y are non-negative constants. Then for any positive ¢ and R, there
exists a positive constant A\ and C. such that

sup fu(t,r)] <M sup Ju(0,r)] + Core™ T sup (If()]lor + lu(®)lloier));
0<t<T elr<oo 0<t<T
elr<oo

provided u € C°(0,T; L*(¢, R)),

Proof. Fix positive numbers R > ¢ > 0. Let ¢ be a smooth non-decreasing function
on (0,00) such that ¢ =0 on (0,¢) and ¢ =1 on (R,00). Set u(t,r) = ¢(r)u(t,r).
Then u satisfies

Cz .

{ ot — O0pptt + c—laﬂl — —u < —¢"u—2¢'u + c—3u¢’ + 1.
r r

(2.1) r
u(t,e) = 0.

Here we set g(t,r) = —¢"u — 2¢'u + cr—Suqb’, and then g(t,r) =0 on (R, 00).
Consider the equation
O = 0,U + 0,0 = SU = [ +g.
(2.2) U(t,e) = 0,U(t,00) = 0,
U0,r) =a(0,r).
By a comparison theorem, we have
(2.3) a(t,r) < U(t,r) foraz>e.

Set Hu = —0,,u + c—laTu — c—iu Since U(t,e) = 0, we have
r r

(HU,U) 2 :—/OoaTTUUdr—I—cl/oor_laTUUdr—02/007“—2|U|2dr

2

1 00 00
§/ 10U 2 dr — (c3 + 02—1)/ 72| U)? dr
2

> ey 02—1)/“) 2 (U2 d

Y
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1
Taking A > (2 + 02—1)5—2, we get

(2.4) (H +NU, Uz > 0.

The solution of (2.2) is written as

t
(2.5) Ut,r) = eHug + / e~ = (£(5) + g(s)) ds.

0
Use fundamental estimates for semi-group e~ ** and (2.4), and we have

t
Utz o0y < €0l o eroe) +/0 "= (f(s) + g(s)ll 2o ds

IA

13
Mol (oo + [ (8= )2 () 4 g5 ds

< Mol ooy + 26X T2 sup [[£(8) +g(t) |1,
0<t<T

since f(t,-) € L'(0,00) by the assumption. Moreover, we have

lg(llr = N9l = r)

since supp g C [¢, R]. Thus we get

I Miseoer < ol ooy + CTH2ET smp (L + [0 s
and by (2.3),

s e < € ollm ey + O sup (170 + ) )

This completes the proof. [

Proposition 2.2. Let B.(w) be the geodesic ball centered at w with the radius T. For
u € WH(B,(w)), u >0, we have

/ lul® dw < C (/ |u|dw) (/ |un|2dw—|—7'_2/ |u|2dw) )
B (w) B (w) B (w) B (w)

where dw and V, denote the standard volume form and the differentiation in the
direction of S?, respectively.



Proof. First we prove

(2.6) / uf dw < C (/ |u|dw) (/ |un|2dw),
B (w) B (w) B (w)

for u € Wy*(B,(w)). By Gagliardo-Nirenberg inequality, we have

[ullzs < Cllull 32V oul| 15
(2.7) < O (Il 2 7 2
= O]l 2l [} 5 V|15

Dividing the both sides of (2.7) by HUH}:/B)Q, we have (2.6).

To obtain Proposition 2.2, we have
(2.8) / luf dw < c/ lu — @ do + c/ ) deo,
BT BT BT

where u is the average of v on B;(w). The second term of the right hand side of (2.8)
is dominated by

3 3/2
(2.9) [l do = B (/ udw) < B[\ (/ |u|2dw) .
B, B, B,

By (2.7), (2.8) and (2.9), we have

(2.10)
1/2 3/2
[ lpaw<cl|f |u—u|2dw</ |un|2dw) —|—|BT|‘1/2</ |u|2dw) ]
B Br B B,
1/2 1/2
gc( |u|2dw) l(/ |un|2dw) —|—|BT|‘1/2</ |u|2dw) ]
B
1/2
§(7< hAdw) (/)|uPdw)
B

1/2
x (/ v, u|2dw) + (B, (/ |u|2dw) ]
B, B,

1/2
Dividing (2.10) by (/ |u|3dw) , we get the claim. O
B,



3. FUNDAMENTAL PROPERTIES OF SMOOTH SOLUTIONS

We give fundamental properties for the smooth solution (A(t), ®(¢)) of (1.2). First
we give the energy formula:

Proposition 3.1. Let (A(t), ®(1)) be a smooth solution of (1.2) on (0, T]xR3. Then,

we have
0

AW, 0(1) = =2 [ |0AQ + 20(1) dV.

In particular, the energy is non-increasing in time along the solution of (1.2).

This proposition is due to [3, Proposition 4.3]. Taking the standard coordinates of
R3, we define

FA = ZFwdl‘Z A dl‘j, Fij == &AJ - a]Az + [AivAj]v

i<
ds® = V,;0dz’, V0 = 9,0 + [A;, ],
0
where d; = ——. Moreover W denotes the 6-vectors obtained by putting the compo-

nents of £y aﬁd ds®, that is,
_ [ I
V= (*dACD) '

Proposition 3.2. Let (A(t), ®(1)) be a smooth solution of (1.2). Then we have

(3.1) O Fy; = =N\ N 4Fs; — 2[Fiy, Fi] — 2[V:®,V;®] + [[Fi;, ®], ],
(3.2) OV = =V VAV 0 — 2[V,.®, Fiy] + [V D, 8], D],
(3.3) 0|0 = AlDf* — 2[da @[,
(3.4) | Fal? < A|FA* = 2|V 4F4|* + C|Fa|® + C|Fa?|da®|,
(3.5) DV A®2 < Alds®|? — 2|V4®|? + C|d4®|?|Fal,
(3.6) T2 < A|T> = 2|V 4T |2 + C|T)°,
OV = -V 4VeU + znj VLU« V0

(3.7) . =0

+ 3 [0, VLU « VU] + [V, 0], 8],

=0

(38)  OIVLUP < AV - [V 4 OV Y (VU] [V,

=0
Here, Ax B denotes some linear combination of tensor products of components of A
and B, and V*; denotes the formal adjoint operator of V 4 with respect to the standard
L?-inner product.



Proof. For any su(2)-valued tensor field T', a, b and ¢, we have

A|T|2 = Q(VZVAT, T) + 2|VAT|2,
(ViV; =V, V)T = [F;,T],
(a,[b, c]) = (b, [c,a]),

where (-, -) denotes the pointwise inner product for su(2)-valued tensor fields. Using
these relations, we obtain (3.3). Taking the inner product between ® and the second
equation of (1.2) in the direction of fiber, we have

1
(0:P,®) = (A4P,P) = §A|<I>|2 — |V4®%,

which shows (3.3).
Using the Bianch indentity, we have

da;0:A; = O Fy,

da(V;Fyi) = ViVl — Vily) + 2[Fy, Fi
= —VaValj 4 2[F, Fyl,

dA[q)vvlq)] = _Z[VZCI)?V](I)] + [[Fijv ]7 (I)]

(3.9)

By (3.9) and the first equation of (1.2), we have (3.1). A similar calculation to the
second equation of (1.2) yields (3.2). (3.4) and (3.5) are obtained easily from (3.1)
and (3.2). From (3.4) and (3.5), we get (3.6).

Let us show (3.7) by induction. The case n = 0 is shown in (3.6). Assume (3.7) is
true for n and we have

OV = V40, VLU — [d5Fy, VU] — [[©, ds®], V7 V]

=V (—v;vAvgxp + Y VLU VU 43 [0, VL0« VU] 4 [V4 U, 9], <I>])

=0 =0
— (3 Fa, VY] — [[@,d4®], VU]
= VAUV + > (VLU VT 4 [0, V40 « ViH ) + [ViH 0, 9], 9],
=0

which implies that (3.7) is true for n 4+ 1. So, we have (3.8) by (3.7). O

By applying the maximum principle for (3.3), sup|®| is bounded by its initial value.
(t,x)



Proposition 3.3. Let (A(1),®(t)) be a smooth solution of (1.2) satisfying (1.5).
Then we have the following uniform bounds for t € (0,T]:

sup || W(t)]z < € max(|[Woll72, || Woll~ ).
0<t<T

sup [[V" ¥l < C (n € ),

o<t<T

where C, depends on (Ao, ®o) and n € NU {0}.
For the proof, see [3, Proposition 5.2, 5.3].

Proposition 3.4. Let (A(t), ®(1)) be a smooth solution of (1.2). Assume that
1= [@(0,r,w)[*| < Cor™",
|ds®(t,r,w)|* < Cir™®, fora>3,r>1,
|da®(t,r,w)| € C=(R%) N L>(R%).

Then we have

11— [@(t,r,w)]| < Car™",

which yields
1 —|®(t,r,w)|| < Cr .

Here constant C depends on Cy and Cf.

Proof. By setting w := |®]* — 1 — Cor™!, w satisfies
Orw — Aw = =2|d,®|* < 0.

Therefore, we have
w(t,r,w) < maxw(0,r,w) <0,

(rw)

which implies
(3.10) B (¢, r,w)|> =1 < Cor™h.
To show the Proposition, we need to show the bound from below:
[@(t,rw)* =1 = =Cor™,

with some constant 'y independent of r and w.
Let us take a bounded continuos function v on R® as

Cs for r <1,
v {Cgr_a for r > 1,
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where o > 3 and (5 = ZmaX(Cl,mleX |d4®]*). Choose f as

= [y 20,

o Jes [~y

which solves —A f = v. Since v is bounded near the origin and since v(x) = O(|z|~%)
with o > 3, it is easy to verify that f € L*°(IR®) with decay like

(3.11) |f(2)| < Cylz|™" for all |z] > 1.
Now set u := |[®]* — 1 4+ Cor~! + f and we have by (3.3) and the definition of v that
O — Au = =2|d,®|* — Af

= —2|d,®” +v > 0.
Hence the maximum principle yields
(3.12) fnil()lu((),t,w) < wu(t,z) for all (t,2) € (0,00) x R

Since f > 0, we have by assumption,

minu(0,r,w) > (Cy — Co)r_l

(va)

and (3.12) yields
(3.13) |<I)(t,:1;)|2 —1> f(x) — Cor™t > —Cyr™1.
Now the desired estimate follows from (3.11).

By (3.13) and

[L—[@[| < [L—[@[|[L+|®]] =1 - |®[,

we get the conclusion. [
Proposition 3.5. Let (A(t), ®(t)) be a smooth solution of (1.2). Assume (1.4), then
we have
(3.14) IV (t,r,w)| < Cr=(n+D)
fort € (0,7].

Proof. First we show (3.14) for n = 0.
From (3.6) and Proposition 3.3, we have

0|V < A|Y| + C .
Set w = ¢“!|®(¢)] — Cr~!, then w satisfies
(3.15) Orw — Aw < 0.

10



Applying the maximum principle for (3.15), we have

w(t,z) < max w(0, ).

On the other hand, by Proposition 3.3, we have

T(0)] < Cr=* forr >1,
W) = C for r < 1.

Hence we have

Clr=2—=r71 forr>1,
w(0) = |W(0)] — Cr~' < )
C(l—r7") for r < 1,

and
w(0,2) <0.
Therefore we have
w(t) = [U(t)| - Cr~' <0.
To prove (3.14) for general n, we assume (3.14) is true for m < n — 1. Set u, =
r" Ve W], By (3.8), we have
2(n+1) (n+1)(n+2)

atun S Aun - 7arun —I' 2 Up,
r r

n—1
+ ClU|uy, + C D (r 2| VLU ) (r 2| Vo).

=1

Using Proposition 3.3 and the assumption of the induction, we have
C C
r r

where g, = O Y15 (P35 |V W)) (7= 5 | V00)).
For any 0 < ¢ < R, let ¢(r) be a non-decreasing function which satisfies ¢ = 0 on
[0,e], ¢ =1 on [R,00). Set f = u¢, then, by (3.16), we have

C C
(3.17) Of < Af = =20 f + 3+ Caf + 9.+ G,

where G = C(¢"uy, + ¢'0ruy + 2¢'u,). Here we note that supp G C [e, R], g, + G is
bounded and f(e,w) = 0.

Let v be the solution for

—Av =g, + G,
{ Oljpj=e = 0,
then v is bounded on R3. Applying the maximum principle for (3.17), we have
flt,x) —v(x) < géﬁ)gect(f((),x) —wv(x)) < C, for t € (0,7].
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Hence we have
VI < C.
Therefore we have (3.14) by induction. O

4. ESTIMATES

Throughout this section, we assume that (A(t), ®(¢)) is a smooth and W12(IR%)-
solution of (1.2) with the initial value (Ag, ®¢) € C on (0,7) x R3 T < co. Taking
the polar coordinates on R?) we denote R* > z = (r,w) € (0,00) x S%.

Proposition 4.1. If (A(0), ®(0)) satisfies (1.4) and (1.5), then we have
U(t) e Wm(Ry nwm™=(R?),
for all m € NU {0}.

Proof. For m = 0, we see for Propositions 3.1 and 3.3, ¥ € L*(IR%) n L>(IR3).
Suppose Proposition 4.1 is true for m. Then we have by (3.8) that

OV < AVEF| 4 P [VAT]- - [VE)),

where I' denotes the polynomial for |¥[,--- | |V3+'W|. By the assumption of the
induction, there is a function f,, = f,.(¢,2) € L=(R® x (0,T)) such that |F| < f,.
for all (t,x) € (0,T) x R3. Using the maximum principle,

(4.1) VAT < Jult, 2)],
where u(t, x) is the solution of the heat equation

{atu—Au:f

(4.2) u(z,0) = |V5H0(0, 2)|.

Note that if (A(0), ®(0)) satisfies (1.4) and (1.5). We have

/ IVAHLe(0)]* dV < IV HD(0) 2 dv_|_c/oo P22 g < (0
R? )

jel<1
therefore V310 (0) € L2(IR%) N L>=(R3). (4.1) and (4.2) yield that
Vathy(t) e LR n L= (R?).

This completes the proof. [
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Proposition 4.2. If (A(0), ®(0)) satisfies (1.4) and (1.5), then we have

/ r2|\Il(t,r,w)|dw
2

is uniformly bounded on (0,T) x (0,00). The bound depends only on T and F(0).

Proof. Set
h(t,r) ::/ P2 W(t,r,w)| dw.
S2
Then we have

6

4
(4.3) i — Duh + =0k — —h < cﬂ/ |2 deo.
r r 52

Note that h € L*=((0,T) x (0,00)), ||2(0)|[r1(e,r) < CR?, and
/m/ P22 dwdr = E(1).
o Js2

Applying Proposition 2.1 to (4.3), we have

sup | rAU(t,r,w)|dw < C,
(th) 5?

where the constant depends on 7" and F(0). O

For a positive 7 > 0, we take a smooth non-negative function n on S? satisfying

1 on B 2(wo)
=7 0 outside B (wo)

and |V,n| < C/7. In the following, we assume the following condition for the solution

(A, D).

Condition 4.3. There exists a universal constant £; > 0 such that the solution

(A, @) satisfies

sup [ rP|U(t,r,w)|n’dw < e;.
(th) 52

Proposition 4.4. [f (A, ®) satisfies the condition 4.3, then we have
1
SO [ WAV 4 C [V awPtav < C,
R3 R3

where the constant C' = C(E(0),7) is independent of r.
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Proof. Taking the L*-inner product to (3.7) with ¥Un? for n = 0, we have
1
SO0 [ 1WAV = = [ (VA ey dv
2 JRre R?
+ C/ (5 W, Wyn? dV — 0/ (@, W) |22 dV.
R3 R3
In particular, we have
1
(4.4) 5@/ |22 dV < —/ (VA V40, W2 dV+C/ W22 dV.
R? R? R?
Using [r~'V 4, ®| < |Va®| and elementary calculations, we get
—/ (VY 40, U)p? dV
RS
== [ IVaWPav + [ (Va9 w)Vyydy
R? R?
(4.5) S—:éJVAWPde*:éJVAWHWHVWUdV
1
<= [IVawPEav + 2 [ 9 awytay
R? 2 Jrs
+4/ P2 W2 V2 dV
RS
In the above integration by parts, the surface integrand at infinity vanishes because
U, VaU
J vV

by Proposition 3.5. Combining (4.4) with (4.5), we have

. §C/ P U] VAV | dw < Cr*7 172 = Cr 1
S2

1 1

SO0 [P av + S [ vwpav

(46) 2 R3 2 R3

< 4/ r‘2|\Il|2|Vw77|2dV—|—C/ P2 W P2 dV.
R3 R3

Applying Proposition 2.2, we have
(4.7)

[ av

RS

SCl/Oorz (/ |\I/|772dw) (/ Vo || *9? dw + 77 / |\Il|2772dw) dr
2 S2 2

<4 sup( 2|\I/|772dw) (/RS _2|V |\I/|| ndV + 17 /Rgr_2|\11|2772 dV)
< sup ( r? || n? dw) ( (VAU P n* dV + 7~ / r2 W) dV) .
R2 R2

14



If
su AW n?dw < —,
i 5 b 2C,

then, by Proposition 4.2, (4.6) and (4.7), we have
1
SO [Ny + O [ VauEay < e [l ay.

On the other hand, we have

1
/r‘2|\11|2dV:// |\Il|2dwdr—|—/ |2 4V
R2 0 Js? |z >1

< Csup W)+ [ W] av.
(th) R3

which completes the proof. [J

Proposition 4.5. Forn > 1, we have
1
SO [ TR AV 4 C [ R av
R3 B3

<C(1+ 7'_2) /RS A AV AL AV C?u]g; (/52 r WP dw) /R3 P2V Pt dV
t,r

n—1
+C Z [sup (/ r2i+4|Vf4\I/|2772 dw)
S2

i=1 L(t7)

x (/ S TRl ISR\ T dv)],
R3 R3

where constant C depends only on n.

Proof. Taking the L*-inner product to (3.7) with r?"V%¥n?, by a similar calculation
with the previous proof, we have

1

500 /R P22 dV < —/RS PN AV, V) dV

(4.8) . | |

+OY [ IV [V VY V.
=0 R?

15



Moreover, we have

ol ARG A I
|
(4.9) <= [ IR av 4 o [ e st ay
R3 R3
4 [ VRO AV + C [ v
R3 R3

Using Proposition 3.5, we have

IR AT )

SOV [V e < Gttt = o,
S2

and therefore the boundary term of the integral by part is vanish. By (4.8) and (4.9),
we get

1 n n 1 n n
SO0 [ VRS AV 45 [ st ay
(10) SC [ VIRV v 4 C [ e v
n—1
+ C/ P20 20| 2 dV 4 CZ/ P20 | (V| (VW g d
R? = Jre
By a direct calculation, we have

LIS IV (VR gt dv < [ e av

(4.11) AT o

_I_/ T4Z+2|Vi4q}|4772 dv _I_/ r4(n—2)+2|vz—zq}|4n2 dv7
R3 R3

and

Lty = [T dodr
<c/ it (/ AR dw)
(112 < (L VIV do+ 772 [ 90 do) dr
< Csup (/ P2 P[22 dw)
(tr) 52
x (/R PV 4t [y dv) .

16



Combining (4.11) with (4.12), we get
n—1
S [V VR av
=1 R?

n—1
(413) < (n . 2) /R3 r2n—2|vzq;|2772 dv + C Z |iu1; (/52 r2i+4|vf4q}|2772 dw)
=1 t,r

« (/ PV 22 dV—I—T_2/ P21 |7 |22 dv)].
R3 R3

Using the Sobolev and Schwartz inequalities, we have
1/2 1/2
Lol do < ([ pwpde) ([ 19501 do)
BT BT BT
1/2 1/2
< ([ 1P ae) " ([ vawtds)
B, B,
(VLRI o 77 [0 )
B, B,
€ " € _ "
<5 [ VeIV 4 5 [V e

1
_ xp“d)(/ w”d).
o (L rwprras) ([ 1vnwpy

Therefore, taking ¢ = 2r~2¢’, we have

1/2

L (VR v
R3
(4.14) <o [V ay + Ot [ v
R3 R3
+ C'sup (/ r U P? dw) / P22V PR dV.
(t,’/’) 5’2 RS
By (4.10), (4.13) and (4.14), we get Proposition 4.5. O

Set

1 2 2
An:: §arr_n+ ar—l_(n—l_ )gn—l_g)v

r r

for n > 0.

Proposition 4.6. [f (A, ®) satisfies Condition 4.3, then, we have

1
—at/ U0 dw — Ao/ U Pn? dw < CT_Q/ | dw.
2 Js? 52 supp

17



Proof. For the sake of simplicity, set

h, ="tV

9n = | hin? dw = /52 rE VU 20? dw.
Since

A|\I/| = T_28TTh0 — 47“_387«h0 + 67“_4h0 + T_4A52 h07
by (3.6), we have

4
(4.15) Oho < 0prhg — —0rho + 6ho + 17 *Ag2hg + Cho|V|.
r

Multiplying (4.15) by hon? and then integrating over 5%, we obtain

1

581590 — AOQO + /2 (|6Th0|2 + T_2|awh0|2) 772 dw

(4.16) s

<272 [ (0uhol ko 10| ol deo + € [ b3 9] o
52 52

On the other hand, we have
/ he |V |n? dw :/ U Pn? dw
52 52
< (/ r?|Wn? dw) (/ r 2 (r* 0,9 P n?) dw + 7'_2/ |0 *n? dw) :
S2 S2 S2

Combining (4.16) with (4.17), we set

(4.17)

1
581590 — AOQO + / (|a7«h0|2 + r_2|8wh0|2) 772 dw
52

1
< 5 r_2|awh0|2772 dw + 2/ r2|\I/|2|8w77|2dw
5’2

5’2

+ 4 (/ 2|0 |n? dw) (/ r210,hol*n* dw + 7'_2/ r W ? dw) :
2 2 2

If

1
W9 dw < —
e <

then we have

1
561590 — Aggo < 07_2/ T2|\I’|2 dw,

supp 7

which implies Proposition 4.6. [

18



Proposition 4.7. Forn > 1, we have
1 i3 i3 i3 i3
5&5 /52 PV dw — A, /52 P2 VWA dw

< CT_Q/ r2”+2|VZ\II|2772 dw + C sup (/ r4|\I/|2772 dw) / r2”+2|VZ\II|2772 dw
52 (t,7) 52 52
n—1
+C Z sup (/ r2i+4|Vf4\I/|2772 dw)
=1 (th) 52

([ R R o+ 7 [ )
52 52

where constants C' are depending only on n.

Proof. By a similar calculation in the proof of Proposition 4.6, we have

oh <o 2ty (2 t3)

r r2

h, +1r 2Ag:h,
(4.18) - | |
+ Chy |V + C > "2 VL] V0.

=1
Multiplying (4.18) by h,n* and then integrating over S?, we obtain

1
_atgn — Angn + / (|a7“hn|2 + r_2|8whn|2) 772 dw
2 52

(4.19) <2072 [ okl ol 10 Inldeo + C [ 210 de
+ Cg P /S VLUV dw.
By the Sobolev and the Holder inequalities, we have
/52 W] n? dw = /S P20 |02 W ? de
= 5/52 P20,V Py do + C7 7 /S W 2 dow
(4.20)  tCsuwp (/S rH W Pn? dw) /S 22T 202 duw

(th)
< 5/ r 2|0, hn |1 dw + CT_Q/ r 2 hin? dw
52 52

+ C'sup (/ hin® dw) / r 2 hin? dw,
(t,r) \/S2 S2

19



and
n—1 ) )
> / P2 | |V By? dow

S5 [ [T 90 de
=1

< Z [(/ 2i+4|Vf4\I/|2772 dw)

1.21 ) o

( ) ( 22+4|Vi4+1\1}|2772 dw _I_ 7_—2/ r22—|—2|vj4q;|2772 dw):|
5’2

C/ 2”+2|V”\I/|277 dw

=C Z (/ hin? dw) (/ r?hlntdw + 7 / rhin? dw)
= \Us2 52 52
+ C/ _2h277 dw.
52
From (4.19), (4.20) and (4.21), we obtain

1
§8tgn — Ang, <C772 /52 2h2772 dw

+ C'su (/ h%nde) (/ 2hin? dw)
(t,r) \J 52 52

-1

+C ) sup ( . hin? dw) (/52 hiantdw+ 177 /52 r 2 hin? dw) )

i=1 (t7)

which yields the desired result. [

In the following, we impose the following assumption on the initial value:

(4.22)

IV F4(0,2)] + [Vida®(0,2)| < Clz|™"7%,  for all n € NU {0},
(4.23)

(A(0),®(0)) € C,
(4.24)

1= 120, r,w)]| < Cr.

We remark that these assumptions are equivalent to (1.4), (1.5) and (1.6), respec-
tively.

20



Proposition 4.8. Let (A(t), ®(t)) be a smooth solution of (1.2) with the initial value
(A(0),®(0)). Assume that (A(0), ®(0)) satisfies (4.22) and (4.23). If (A, ®) satisfies
Condition 4.3, then, for any n > 0,

sup/ P2 V)P dw
(t,r) Y Bry2(wo)

is finite.

Proof. First we show that

(4.25) sup [ W% dw < C.
(th) 52

By Proposition 4.6,
go(t,r) = /52 r W An? dw
satisfies
(4.26) %atgo — Aggo < C172 /52 | dw.
We verify the assumption of Proposition 2.1 for (4.26). Since |[¥(0)| < Cr~?, we have
(4.27) 90(0,7) = /S 0 (0)? de < O vol(S?).

By Proposition 3.1, we have

| dedr = [ JwRav < B().
0 Js? R3

Since | U(t)]|L~ < C, we have

R
oo s = [ [ 19 dodr < CFE.

Applying (4.26) to Proposition 2.1, we have (4.25).
On the other hand, by Proposition 4.6 and Proposition 4.7, we have

(4.28)
L we Py av + c/ot/Rg VA U[2n? dVdt < E(0) + Ct,
(4.29)
/RS P2V 4 (1) 2 dV + C/Ot/RS 2 |VR |22 dVdt < C/Ot/RS V4022 dV dt

¢
+ C'sup (/ r4|\I/|2772dw)// |VA\I/|2772dth—I—/ r2 |V a0 (0)*n* dV.
(t,7) S2 0J/R3 R3
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Since [V AU (0)|* < Cr~°, we get

/ PRIV AO) 22 dv < [ |[Vau(0)? + c/oo r2dr < C.
R3 1

lz|<1
Combining (4.28) with (4.29), we have

sup/ W (t)]*n*dV < C,

t JR3

sup/3 P2V a0 (t))*n? dV < C,
(4.30) Lo
//R VAU 22 dVdt < O,
0 3

1
// P VAU()| 52 dVdt < O
0JR3

Here, we assume that

(4.31) sup [ PP VI()]Pn" dw < C,
(th) 5?
(4.32) sup /R PN (1) 22 dV < O,
+ 3
1
(4.33) / / PN (1) 202 dV dE < C,
0JR?3

for all m < n — 1. By Proposition 4.7,
galtr) = [ d
s

satisfies

1
§8tgn — Ang, <C(1 4777 /52 rE 2 VWA dw
n—1
+C Z sup (/ AR IR dw)
=1 (th) 52
X (/ rz(i+1)+2|Vf4+1\I/|2772 dw + 7'_2/ e AARVIES dw) .
s2 52
By (4.31), we have
1 n . .
(4.34) 500n = Angn < 02/52 PR 22 o
=1
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Since |[V4W(0)| < Cr= 2 ||[VAW(1)|[ 1~ < C, we get

900,71} < [V RWO) deo < C vol(52),
S2

R
lgn (Do = [ [ 2 IR0 (0 PP dedr < C R
By (4.32), we have
/00/ rA2V U202 dwdr = / r2 VLU dV < C.
0o Js R3

Applying (4.34) to Proposition 2.1, we have (4.31) for m = n.
Moreover, by Proposition 4.5, we have

t
L Ivaw@pEav + ¢ [ [ oty v
(4.35) L.
< CZ//R P22 22 dth+/R P2 (020 dV.
=1 0 3 3
Since [V5¥(0)] < Cr=""2, we have
(4.36)

Lnw@prtav < [ VRe)Fav + 0 [t < o
R3 1

|l=|<1

Combining (4.35) with (4.36), we get (4.32) and (4.33). This completes the proof by
the induction. [

Theorem 4.9. Let (A(t), ®(1)) be a smooth solution of (1.2) with the initial value
(A(0),®(0)). Assume that (A(0), ®(0)) satisfies (4.22) and (4.23). If (A, ®) satisfies
Condition 4.3, then, for any n > 0,

sup PV, w)| < C.
weB(ZZ)(Wo)
Proof. By Proposition 4.8, for any n > 0,
r"PVLU € L¥(B,ja(wo)),  for (t,r) € (0,T) x (0, 00).

In particular, we have

r"VA ViU € L (B, ja(wo)),  for (1,r) € (0,T) x (0, 00).
Using, for any g-valued form Q, |0,[Q|| < |V4,9|, we get

r"P2|VTP| € LA(B,ja(wo)),  for (t,r) € (0,T) x (0, 00).

23



Note that W™?(B; 2(wo)) C W"™(B; 2(wp)) for all n > 2, we have
r"ViTW e C°(0,00) X Byja(wo)),  for t € (0,7).
]

5. EXISTENCE OF GAUGE TRANSFORMATIONS

In this section, we show the existence of an exponential gauge for a smooth solution

(A(t), (1)) of (1.2).

Theorem 5.1. Let (A(t), ®(1)) be a smooth solution of (1.2) with the initial value
(A(0),®(0)). Assume that (A(0), ®(0)) satisfies (4.22), (4.23) and (4.24). If (A, ®)
satisfies Condition 4.3 then we have

(5.1) sup |1 — |®(¢,r,w)|*| < Cr7,
(t,r,w)
(5.2) sup | Falt,r,w)] < Cr2,
(th)
WGBT/2(WO)
(5.3) sup  |da®(t, r,w)| < Or 2
(th)
WGBT/2(WO)

Proof. By Theorem 4.9, we recall

(5.4) sup  |U(t,r,w)| < Cr 2
(th)
WGBT/2(WO)
By the definition of ¥, (5.2) and (5.3) follows from (5.4).
From (5.3) we have |d4®(¢,r,w)|?* < Cr~?*. Combining (5.3) with Proposition 3.4,
we get (5.1). O

Theorem 5.2. Under the same assumptions of Theorem 5.1, if (A, ®) satisfies Con-
dition 4.3, for all wy € S?, then there exists a gauge transformation g(t,r,w) such
that A := g* A satisfies

By Theorem 5.1, we can apply the result of Jaffe-Taubes [5, p. 37], (cf. [11]) and
obtain Theorem 5.2. However we remark that such a ¢ is not unique. Those two
transformations ¢g; and g, differ only by a radially constant gauge transformation A

Gy,
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6. CONNECTIONS AT INFINITY

Throughout of this section, we assume that connections A satisfy the exponential
gauge conditions. Take the orthonormal basis {dr,rsin 6d¢,rdf} on the cotangent
space R%. In polar coordinate, we can represent the condition A as A(r,¢,0) =

Apdr+ Ay(rsinde) + Ag(rdf). Since we take the exponential gauge, we may assume
A, =0.
F(r,¢,0) = Fye(R, ¢, 0)(rsin0dp) A (rdf)

+ Fg(R,0,0)dr A (rdd) + F4(R,¢,0)dr A (rsin 0do),
da® = (da®),dr 4+ (da®)s(rdf) + (da®P),(rsin 8)de.
Set AR(¢,0) := A(R,¢,0) and ®¥(4,0) = ®(R, ¢,0). So, we get
Fur(9,0) = Fye(R, ¢, 0)(Rsin0do) A (RdO),
dar®" = (d4 @) = (da®)g(RdAO) + (da®)s( R sin 0)dp.
Therefore this implies
| Far(6,0)] = | Foo(r, &, 0)(rsin0de) A (rd0)] < r*|Fyo(r, &, 0)],
| Far(0,0) — F(r,¢,0)| = |Fro(r, ¢, 0)dr A (rdf) — F.y(r, ¢,0)dr A (rsin 0do)|
< 7|, ¢, 0)];
(da®)"(0,0)] = [(da®)s(rdb) + (da®)y(rsin 0)do| < r|ds®(r, ¢, 0)],

Thus, we have

Proposition 6.1. Under the gauge condition A, =Y 2'A; = 0, we have
| Far(,0)] < 72| F(r, ¢, 0)] < r? [ (r, 6,0),
|(da®) (¢, 0)] < r|da®(r,0,0)] = r|*dsa®(r, ¢, 0)| < r|¥(r,o,0)]|.

Using Proposition 6.1, we have

Theorem 6.2. Let (A(t), ®(t)) be a smooth solution of (1.2) with the initial value

(A(0),®(0)). Assume that (A(0),®(0)) satisfies (4.22), (4.23) and (4.24). More-
over, we assume that there exists gauge transformations g(t,r,w) such that A .= g*A
satisfies A, = 0. Then there exists a universal constant e1 > 0 such that if

sup P (t, r,w)|dw < &1,
(t,T) BT(WO)

then there exist a smooth sw(2)-valued function @ on B, jy(wo) and a connection A%
over B;ja(wo) such that

O —

A" — A%,
in C*°(B;2(wo)).
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Proof. Using the polar coordinate (r,w) in R® we write A = A,dr + A, dw. By the
assumption A, = 0, it is easy to show that

Frw = aTAw - aWAT + [AT7 Aw] = aTAW'
(See Uhlenbeck [11]). Thus, we obtain

(6.1) %(TAW(J})) = A, +rF..(z).

Integrating (6.1) over (ry,72), we have
T2 a
raAu(raw) = rAufr )| = | [ S-(rAu(rw) dr
T1 T

< [CrlFun)ldr+ [ Aurw)ldr

(6.2)

Using A, = 0, we have
[Au(T)] < 77HA(T) < |F (7))

(6:3) P Fu(m)] < [F(7)].
and
(6.4) rAy(r,w) = (Ao (w).

Combining (6.2) (6.3), (6.4) and the finiteness of the energy, we obtain

r 1/2
’ 772 dT)

1

A7) -l < ¢ [TIPmel <o (f

ro 1/2 1 1N\ 1/2
(/ 7'2|F(T,w)|2d7') §C<———) )
1 ™ 2

Thus, the sequence { A”(w)} is a Cauchy sequence.
In general, we have

050 (rAy) = 00A, + 00 (rF.,),
which yields
(6.5) P A, w) — A, C < [ d
The right hand side of (6.5) is bounded from above in terms of

. . T2 . .
sup |7'Z+182A|, and / T2]+2|VZ4FA|2dT,
T1

r1<r<ry
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fori=0,---,n—1,5=0,--- ,n. Therefore, by (4.32), we have

1 1 1/2
AT — gr AT < G, (— _ —) forallne N

1 L)

Hence, there exists A* such that A” — A* in C"*-topology.
Similarly, we obtain the convergence of ®”. (cf. [1, pp. 2491-2492], [5, II. 4]).
Obviously, A* and ®* are smooth with respect to t. [

7. PROOF OF MAIN THEOREM

Let (A(t), ®(¢)) be a smooth solution of (1.2) with the initial value (A(0), ®(0)).
Assume that that (A(0), ®(0)) satisfies (4.22), (4.23) and (4.24). We furthermore

assume that

2
sup ré|U(t, r,w)|dw < &;.
P L) (W(t,r, W) |

By Theorem 5.1, for any n > 0, we have (5.1), (5.2) and (5.3). By Theorem 5.2,
there exists gauge transformations g(¢, r,w) such that A(¢,r,w) := g(t,r,w)*A(t,r,w)
satisfies

AT = ZS: J}Z/L =0.
=1
Hence, by Theorem 6.2, there exists a smooth su(2)-valued function > on B 5(wo)
and a connection A* over B, 3(wp) such that
¢ — O™,
AT — A®,
in C%°(B;3(wo)).

Let us summerize the above arguments, if the initial value (A(0), ®(0)) satisfies
IVAFA0, 2)] + [V5ds®(0,2)] < Cle|™"2,  for all n € NU {0},
(4(0),2(0)) € C

and if

sup T2|\I/(t,r,w)| dw < &1 for any wo € 52,
(t,T) BT(WO)

then the solution (A(t), ®(¢)) is extendable on (0, T']. Hence we get the main theorem.
It A, exists, by Proposition 6.1, then we have

[(d4®)"| < r|¥| < Cr .

Therefore, we have d e ®> = 0. Recall that |®>°| = 1. Then the connection A (¢,w)
is reduced to the U(1)-bundle over S2.
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8. THE PRASAD-SOMMERFIELD MONOPOLE

We show that the Prasad-Sommerfield monopole satisfies the condition (1.4), (1.5)
and (1.6) in Section 1.
The Prasad-Sommerfield monopole has the monopole number N = +1:

b)=F (- )i

tanhr r

A(:z;):( ! —l)mxa)-df.

sinhr r

(8.1)

where r = ||, 7 = Z/r, ¢, = —0;, 0; are Pauli matrices.
2

It is easy to see that
1
1= |@(x)]| = = =277 + O(e™™),
r

which shows (1.6), (cf. [5, IV.1, pp. 104-105]).) Remark that the energy of the
monopole (8.1) is equal to 47, and we get (1.5).

Let us show (1.4) for n = 0. Since F4 = dA + [A, A], and we have by (1.16) in [5,
V.1, p. 105]

(8.2) |ds®(2)| < Cr7?,

For general n, we have

n—1
[VAEA] < 10 Fal + C 10 Al 07 1A < O,

=0

For |Vida®|, we have

n—1
Vida®| < |07 da®] + € X 107A]077 7 da®] < Crn?,

=0

This show that the Prasad-Sommerfield monopole (8.1) satisfies (1.4), (1.5) and (1.6).
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