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HADAMARD’S AND CALABI-YAU’S CONJECTURES ON
NEGATIVELY CURVED AND MINIMAL SURFACES

N1KOLAT NADIRASHVILI

1. INTRODUCTION

In this paper we consider two related problems. Let (M, s) be a Riemann surface
with a complete Riemannian metric s on M and let

U:(M,s)— B, cR®

be an isometrical immersion, and let By be the unit ball.

Problem 1 (Hadamard’s conjecture, [Ha], cf. [R2]). Is it possible that the metric
s has a negative Gaussian curvature?

If the Gaussian curvature K of s is a negative constant then such an immersion
is impossible even into the whole space R® (Hilbert, [Hi]). Hilbert’s theorem is
valid for K < const < 0 (Efimov, [E]). On the other hand there exists a complete
bounded surface in [R? with nonpositive Gaussian curvature (Rosendorn, [R1], [R2]).

Problem 2 (Calabi-Yau problem, [Y]). Is it possible that an immersion ¥ is
minimal?

Jorge and Xavier, [J-X] , proved the existence of a complete minimally immersed
surface between two planes. On the other hand there are many non-existence results
under certain extra conditions on the surface, see e.g. [H], [X].

The aim of this paper is to show that to both problems the answer is YES. And
even more, the following theorem holds.

Theorem. There exists a complete surface of negative Gaussian curvature mini-
mally immersed in R® which is a subset of the unit ball.

Our example of a minimal surface is somewhat similar to the example of Jorge
and Xavier: we also use the Weierstrass representation of minimal surfaces and the
Runge approximation theorem.

2. PRELIMINARIES

Let  C Cbe a domain and ¢ : @ — C be a conformal map ¢ = (¢1, v2,¢3),
satisfying, ©3 + 2 + 2 = 0. Then

4
1) (o) =Re [
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is a minimal surface in R3. Also every minimal surface X : @ — R? can be
locally represented in the form (1) and if © is simply connected then X is globally
represented by (1), (see [C], [O]). In order for Q to be immersed in R® one requires

3

Y lpi=)|#0

=1

for all z € Q.
Let us assume that ¢1 — 23 Z 0 and set

f = @1 — i9927
g =3/(¢1 — 1p2)

then f is a holomorphic and ¢ is a meromorphic function on 2. The surface (1)
can be obtained by

1
(5

0

¢

5f(1 +9°), fg).

2) X(2) = Re / F1—g?).

This is called the Weierstrass representation of a minimal surface. The induced
metric sy on € is given by:

(3) sx = (5 I+ TPl

The poles of g are the zeros of f and a pole of order k of ¢ corresponds to a zero of
order 2k of f. The curvature Kx of (M, s) is given by:

. 4lg'] )2
= <|f|(1+|g|2)2 |

The meromorphic map ¢ has an important geometrical meaning: it is the com-
position of the Gauss map of X (m) with the stereographic projection of the unit
sphere to the equatorial plane, from the north pole. Let the minimal immersion
X : Q — [R? be given by (2) and let h be a holomorphic function on Q,% # 0 in €.
Set f = fh,§ = g/h, and

(4 )= Re [ (GFO-32) 570+ )50

0

DD |

Then X : Q — R? is a minimal immersion.

Notation. Let D, be a disk on C: |z| <7, S, :=8D,, and let B, C [R? be a ball
|z| < r. Let E C Che a set, ¢ > 0. By Ul¢](E) we denote an e-neighbourhood of
the set E.



3. PROOF OF THE THEOREM

Lemma. Let X € C~(Dy;R?) and
(5) X:D, — B, c R,

r > 0, be a minimal immersion, X(0) = 0, Kx < 0. Assume that (D1,5x) is @
geodesic disk of radius p centred in 0. Then for every e, p > 0 there exists a minimal
IMmMErsion

Y :D, — Br c 3,

R =r?+ s*+4¢e, such that (D1, sy) 1s a geodesic disk of radius p+ s, Ky <0 and
X —Y|<¢conDi_.

This Lemma will be proved in Section 4. We now show that the Theorem is a
consequence of the Lemma.

We define a sequence of minimal immersions

X, :D; — R
by induction over n = 1,2,.... Let X; : (D, |dz|) — R? be any minimal immersion
such that Kx, < 0,X7(0) =0 and let (D, sx,) be a disk of radius 1. Let ¢,,,n =
1,2,..., be a sequence of positive numbers which will be specified later. Assume

that a minimal immersion X,,_; = X is already defined. Set ¢ = ¢,,,s = 1/n and
let the minimal immersion Y be defined by the lemma. Define X,, =Y. If the ¢
tend sufficiently fast to zero as k — oo then the following holds:

(a) Xy — ¥ as k — oo in the open disk Dy and

U:D; — R

is a minimal immersion and Ky < 0;
(b)
Xy:D, - B, R

where 71, < rg_y + 1/k? and hence r; < 2 for all k;
(c) since (Dq, sx, ) is a geodesic disk of radius pg, where py is given by

k

pr= 1/j

i=1

the metric (Dy, sx ) is complete provided that the ¢ tend to zero sufficiently fast.

The theorem is proved.



4. PROOF OF THE LEMMA

(4.1) Consider the following labyrinth, see the diagram below.

It’s not difficult to find a way from the inner circle to the outside but any such
way 1s fairly long although the Euclidean distance is short.

Now we give a formal description of a partition of the unit disk, which is illus-
trated by the diagram above.

N-partition of a disk. Let N € N Denote r; =1 —¢/N3,i=0,...,2N% 41,
QLZDl\Dr

2N2417 N
Ai = Dr2i\DT2i+17 Al = Dr2i—1\DT2i7
A=UN A,
— =04+t
A = Uf\;ifziiv
S =S,
Denote by lg a ray in C Iy = ae’?, a > 0,

I = Ug\;OZiZTr/Nv
[ = vazol(zzq-l)n/N-
L=InNAL=InA H=SULUL, P=U[1/4N*](H), Q=A\P, s; = L)y N2
Let us denote by wj,j = 1,...,2N, the union of the segment s; and those
components of the set  which have nonempty intersection with s;.
Let the curve Y € D;\Q connect the point 0 and S;. Then we have
length (¥) > 10N.

Let h be a continuous function in Dy, h > 1 on Dy, h > N* on Q. Let a smooth
curve ¢ connect 0 and S in D;. Then

(6) /U hds > N



where ds is the arc length parameter on o.

(4.2) Let G : Dy — S? be the Gauss map of the minimal surface (5). Since X
is smooth in D; the map G is continuous in D;. Hence, for any § > 0 there exists
N = N(¢) such that for every domain w; of the N-partition of Dy the following
inequality holds

diamG(w;) < 6.

(4.3) Proposition. Let Ey, E; C D; C Cbhe compact such that each complement
CE; is connected, i = 1,2, and E; N E; = 0. Let ¢ be a meromorphic function
on Dyt 60 > 0and ¢' 20 on Dy. Let T > 1. Then there exists a holomorphic
function h(z) on Dy,

h(z) = h[T, E1, Es, g)(z)

such that
|1 —h| <1/T on E4

|h —T| <1/T on Es.
(9/h)" # 0 on Dy

Proof. There exist Jordan domains F1, E}, C D; such that £y CC E{, E2 CC E}
and E; N E) = (. By Runge’s theorem for any €; > 0 there exists a holomorphic
function w on C such that

lw| < € on EY,

|w —1InT| < €; on Ej.
. From the above inequalities it follows that

w' — 0on EyUE,; as e — 0.

Since ¢'/g is a nonvanishing meromorphic function on D; we can choose € > 0 so
small such that
d:=w"—¢'/g #0on Ey U E;.

Since the set of zeros and the set of poles of d are discrete there exists a Jordan

domain F C Dy such that £y C E, E; C E,
d#0on E
and
(7) 1/d# 0 on OF.
Denote ¢ := ¢/¢', then ¢ is a holomorphic function on Dy4,. Denote by zy, ..., z,
the zeros of ¢ in Dy and by ky,..., k, their orders. Since 1/d is a holomorphic

function on E we obtain by the theorem of Walsh, [W], that for any ¢ > 0 there
exists a holomorphic function ss(z) on Dy such that

lss —1/d| <6 on E



b
and for all2 =1,...,n

k’) as 7 — z;.

|s5(2) +4(2)] = ol|z — =

Denote y = 1/ss + 1/¢q. Then y be a holomorphic function on Dy and

(8) y—g'/g+0on Di.
i From (7) it follows that

|1/ss —d| — 0 on OF as 6 — 0

(9) ly —w'| = 0 on E as § — 0.

Let zo € Ey. Set

i From (9) it follows that for sufficientlly small 6 > 0 we have
|wi] < 2¢ on En,

|wy —In T| < 2¢ on Ej.

Let us denote

h =),

Then
(g/h) = (9" —wig)h
and from (8) it follows that
(g/h) # 0 on Dy.

For sufficiently small € > 0 we evidently have |I—h| < 1/T on Ey and |T—h| < 1/T
on F5 as required.

(4.4) Let N and T be sufficiently large positive constants which will be specified
later. We define a sequence of minimal immersions

F,:D; — R3

k=0,...,2N3 = K by induction over k. Set Fy = X. Assume that a map F;_; is
already defined. Let us pick a point ¢; € S! such that

(10) dist(q;, G(wi)) = 1/vVN

We assume that in the orthogonal coordinates zi,zs,z3 in R® the vector ¢; is
directed along x3. Let (2) be the Weierstrass representation of F;_;. Set

h = h[T, Di\U[1/4N?](w;), wi, 9],



f=fh,§=g/handlet X be defined by (4). Set F; := X. Then

(11) m(F) = m(Fi),

where 7 is the orthogonal projection R? to the z3 axes. If Kp._, <0 then
Kp. <0.

Denote gp, = aldz|. By (3) we have

a > | flmas(|hl, gl ).

Hence a — oo on w; as T — oo, gp, — gp,_, on D1\U[1/4N?3](w;) as T — co. By
(7) the following inequality holds on the set U[1/4N3](w;)\w;:

a>1/4VN.

Thus, by (6) for sufficiently large T the geodesic distance between the points 0 and
Sy in the metric (D1, gr, ) is no less than /N /4.

Let d be a geodesic disk in (Dy, g, ) of radius p + s with centre at 0. Since
the Gaussian curvature of ¢gp, is nonpositive, dd is a smooth curve in Dy. For
sufficiently large N it follows:

(12) D_.Cd
and
(13) | X — Fx| <eon Dy_..
Let n € 0d. If

K

n € Di\ | JU[1/4N](wi)

=1
then
(14) Fr(n)=X(n)+o(l) as T — oo.

It n € U[1/4N](w;) for some j,1 < j < K, then from (11) it follows that the vector
Fr(n) has the form

(15) Fr(n)=X(n)+1tp(n)+o(1) as T — oo
where t = +(N,T) € R, < p(n), ¢ >= 0. By (10)
(16) (X()5) = 0 asN — co.
;From (12) and (13) it immediately follows that

mjjvﬁoot(N, T)<s.

So as a consequence of (14), (15), (16) and of the inequality |X(n)| < r we have
mpy— oo Fr ()] < V12 + 2.
T—o0

Let w : Dy — d be a biholomorphic map such that w(0) = 0,w'(0) > 0. Set
Y = Fx ow. By Carathodory’s theorem on the convergence of a sequence of
conformal maps, (see [G]), it follows from (9) that for every 6 > 0 and for all
sufficienly large N the following inequality holds.

X —Y|<eon Di_.

The lemma is proved.
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