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ABSTRACT. One considers the equation ¢ (z +h) + 1 (z —h) +v (2) ¢ () = Ey (2),
where v 1s an almost everywhere finite periodic function, and A is a positive number.
It is proved that this equation has no solutions from L2 (R). This implies in particular
that the spectrum of Harper operator appears to be singular continuous in all the
cases where its geometrical structure was investigated.

1 INTRODUCTION

In this note we consider the equation
Hy(r)=Ep(a), =R, (L.1)

where
(Hy)(x) = (x+h)+(x—h)+ov(2))(2), (1.2)

h is a positive number, and v is an almost everywhere finite measurable function
periodic with a period hg. This function can be complex valued. We prove

Theorem 1.1. Equation (1.1) has no solutions from L2(R).

The central point in the proof is related to the notion of Bloch solutions. For
an ordinary differential equation with periodic coefficients, one calls its solution
1 a Bloch solution if it is invariant up to a constant factor with respect to the
translation by the period:

Y(x+ho)=utp(x), x€R. (1.3)

For equation (1.1) ¢ is called a Bloch solution if it satisfies (1.3) with a coefficient
u depending h-periodically on =z,

u(x+h)=u(x).
The work was partially supported by grant INTAS-93-1815.
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This definition is natural since the set of solutions of equation (1.1) is a two-
dimensional modul over the ring of h-periodic functions. The idea of the proof
is to show that if there is an L2 (R)-solution of (1.1), then this equation has also a
Bloch solution belonging to L2 (R), and to check that this is impossible. The same
idea leads to an immediate proof of the analogous theorem for the one-dimensional
differential equation with periodic coefficients. In the case under considiration the
coefficient u from the definition of Bloch solutions depends on x, and the proof
becomes a little more complicated.

In the case where v is, for example, a bounded real-valued function, the state-
ment of the theorem can be easily derived from the direct-integral decomposition
of the problem in terms of the corresponding problems on the invariant lattices,
and from the known theorems on the structure of the discrete spectrum of the er-
godic operators, see [PF]|. But even in this case the present proof, probably, is not
completely useless since it is quite direct and elementary.

In section 2, we characterize the set of solutions of equation (1.3). The theorem
1.1 is proved in section 3.

In the sequel, for brevity, we often omit in the standard way the words ”almost
everywhere”. In particular, instead of writing "a(z) = b(x) for a.e. © € X, we
write simply a(x) = b(x) v € X7, instead of saying "an a.e. finite function” , we
say ”a finite function”, and so on.

2 SET OF SOLUTIONS OF THE EQUATION Hvy = E

To prove the theorem we have to prepare several auxiliary results.

2.1 The structure of the set of solutions.

Here, we slightly generalize two statements from [BF3].

Let () and ;/:(:1;) satisfy equation (1.1). We call the expression
((0), 8 () = bl + 1)) = ()i + B)
the wronskian of the solutions 1 and ).

Lemma 2.1 The wronskian of ¢ and 1 is an h-periodic function.

Proof.

() (e +h) + (e =) = (B —v(@))()p(x) = d(a) (Ve + h) + (e = h)).
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Proposition 2.2 Let

(¢ (2),¢ (x)) =1, zeR. (2.1)

Then any function ¢ satisfying (1.1) can be represented in the form

g(z) = (g(2), ¥ (2))¥ (&) + (¢ (2), g ()¢ (), = €R.

Proof. Let

Obviously,
U(x+h)=M(z)¥(z), G(x+h)=M(z)G(x).

Moreover, due to (2.1) det ¥ = 1. Therefore, one can write G (v + h) = ¥ (x +
h) ¥~ (2) G (z). This implies that the vector ¥ ! G is an h-periodic function. This

leads to the representation ¢ = p1)+ pvb where p and p are two h-periodic functions.
Using this representation and taking into account (2.1), one can easily check that

(g, ) =p, and (v, g) = p, which proves the lemma. O

Note that this proposition is a part of the proof that the set of solutions of
equation (1.1) is a two-dimensional modul over the ring of h-periodic functions.

2.2 Relations between Ls-solutions.

Assume that two functions 1 and 1 belong to Ly(R) and satisfy equation (1.1).
Study relations between them.

Lemma 2.3. The wronskian of ¢ and ¢ equals to zero.

Proof. By Lemma 2.1, the function (¢ (), 2(x)) is h-periodic. But, since ¢y €
Ly(R) and o2 € Ly(R), one has

/ (11 (), 102(2))] do < oo.
R

This implies the statement of the lemma. O



Proposition 2.4. Let ¢ and ¢ satisfy equation (1.1) and belong to L2 (R). Let

S={r R :p(x) £0),
A=Ugez{x e R :ax —hk €6}
There exists an h-periodic finite function a (), defined on A, such that
J(r)=a(@)(x), weA (22)
Proof. Let

S(x) = 0, when 0 <z <h, C(2) = 1, when 0 <z < h,
11, when h <2 < 2h, 10, whenh <z <2h.

Y

By means of the formulae S (z+h)=—-S(zFh)+(E—v(x))S (z) define S (z) for
other « € R. By construction, S satisfies equation (1.1). Define in the same way
C'. Obviously,

(S(2),C (2)) = 1. (23)

Using proposition 2.2, one can write
P () =a(z)C(x)+5(x)S (), (2.4)
O(2) =a(e)C(x) +F(2)S (a). (2.5)

This is clear that «, 3, & and 3 are h-periodic finite functions. By Lemma 2.1,
the wronskian (¢ (x),% (x)) = 0. Substituting in the formula for this wronskian
representations (2.4) and (2.5) one gets

a () (2) —a(2)f (x) = 0. (2.6)
On the other hand, for all x € ¢,
o (@) + (8 (2)* # 0. (2.7)

The h-periodicity of & and  implies that (2.7) remains true on A. Therefore (2.6)

and (2.7) show that
(gg§§>:a(x) (gg;ﬁ%) v €A, (2.8)

where the function a is defined and finite on the set A. Obviously, a is h-periodic.
Formulae (2.4), (2.5) and (2.8) lead to the representation (2.2). O

3. ABSENCE OF THE L,-SOLUTIONS

3.1 Bloch solution.



Proposition 3.1. If equation (1.1) has a solution from Ly(R), then it also has
a solution ¥ € Ly(R) satisfying the relation

T+ ho) = u () ¥ (o),

with an h-periodic function u being finite and non-zero for a.e. = € R.

(3.1)

Proof. Let 1pg € Ly(R) be a solution of equation (1.1), and let

Ao =Ugez{xz € R 12 —hk € 6g}, where 6g ={ax € R :¢pg(x) #0}.
Put

Ar={z Rz —1lhy € Ay},

leZ.
Note that for any [ € Z

€N = x+nhecA\ VYnclZ.

(3.2)
Fix ¢ € R so that 0 < ¢ < 1. Define the functions

bi(z) = gMepo(z — The), 1€ Z.

All the functions ¢ satisfy equation (1.1) and belong to Ly(R). Moreover, Propo-
sition 2.4 implies

Lemma 3.2. If ¢ € Ly(R) and satisfies (1.1), then for any ! € Z

Y (2) = a(z) (), v e Ay

where a; is a finite h-periodic function.

To construct the solution ¥, it is covenient to introduce one more family of sets.
Let My = Ay, and

=] j=1+1
Mg = A\ ]U M, Moa=A1)\ ] U M,
j=—1 j=—t
for all [ € NU {0}. Note that by definition for all I € Z
My C Ay (3.3)
Furthemore, it can be easily seen that
MinMp=0 if kE#I,

and

(3.4)

j=l+1 j=l+1
U M= U 4

: (3.5)
j=—1 j=—1

=1
U M;
j=—1

j=1
U 2
=—1

J



This together with the definition of M; and (3.2) shows that for any [ € Z

reE M= x+nheM; neZ. (3.6)
Let
M =M. (3.7)
leZ
Note that, due to (3.5), this is equivalent to
M=]A. (3.8)
leZ
Therefore the definitions of A; and (3.2) imply that
reEM=—=ax+mho+nheM n,mcZ. (3.9)
It is convenient to intriduce one more set,
N =R\ M.
In view of (3.9),
reEN =z+mhy+nheN nmcZ. (3.10)

Remark that all the above sets are measurable.

Define ¥ (x) by the formula
= X (@) (), (3.11)

leZ
where y aq, 1s the characteristic function of the set M;. Note that, by definition,
U (z) =0for all € N, and, due to (3.4), ¥ (x)=v(z) when z € M.

Check that ¥ satisfies equation (1.1). Consider at first the case when z €
M. There is an [ € Z such that + € M;. By (3.6), « £ h € M;. Therefore
(HU)(z) = (HY1)(z) = E¢y(x) = E¥(z). If + € N, then 2 £+ h € N, and
U(x—h)=U(x) =¥ (x+h)=0. So, again (HU)(z) = EV (x).

The solution ¥ belongs to Ly(R):

12|, = / @) de < S 2, = 3 @2 o2, < oo.
=y/A

leZ leZ
Now prove

Lemma 3.3. If ) € Ly(R), and Hiy = Ev, then
xm (z) = a(@)¥ (), = eR,
where a is a finite h-periodic function.
Proof. Using Lemma 3.2, one can write

Xm(x =Y (@)Y (@) =Y v (@) (@) ()

ez e
with some finite h-periodic functions a;. Due to (3.4), this formula can be rewritten
in the form

XM = xmlw)a(@) > xan(x) a(x) V().
ez e
The function a(x) = Y ;c7 XM, (2) ai(x) is finite and, by (3.6), h-periodic.
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Now one can easily finish the proof of the proposition. Since ¥ = 0 outside M,
and since M is invariant with respect to the ho-translations, one has by Lemma
3.3

U(x+hy)=a(x)¥(x), z€eR, (3.12)

with an finite h-periodic function a. Discuss the set where a () = 0.

Denote by D the set where W () # 0. By (3.12), ¥ (x4 ho) =¥ (2) =0, x ¢ D.
Thus, for all these © one can change a by letting a(x) = 1. Now, to finish the
proof, it suffices to show that a(x) # 0 for a.e. @ € D. In the same way as we
have proved (3.12) one can show that ¥ (x — hg) = g(:z;) U (2), where b is a finite
h-periodic function. Therefore,

U(x)=0(x)V(x + hg), z€R,
where b(z) = g(:z; + hg). This formula and formula (3.12) imply that
a(z)b(x)=1, x€D.

Since both a and b are finite, this finishes the proof.
O

Corollary 3.4. For the Bloch solution ¥ described in Proposition 3.1, one has
mes {x € [0, ho] : ¥ (z)#0} > 0.

Proof. Suppose that ¥ (x) = 0 on the interval [0, ko). Then, since u(x) # 0 and
1/u(x) # 0 for a.e. a, formula (3.1) implies that ¥ = 0. But this is impossible,
because ¥ () = 1pg(x) for all « where ¢ (x) #0. O

3.2 Proof of the theorem.

Now we can easily prove the theorem. Suppose equation (1.1) has a solution
from Ly(R). Then it has also the Bloch solution ¥ described in the proposition.
Show that this is impossible.

Define a measure by the formula v (o) = [ |¥ (z)|* dz, where ¢ is a measurable
set. Note that by Corollary 3.2 v ([0, ho]) > 0.

By (3.1) one has

/000 ¥ (z)| do = Z i 0 filz)dv (=), (3.13)
where fo(z) =1, and
fil) = lu(z)u(e +ho) ... u(z+ (1= 1)ho)]*, T€N

Since fooo |2 dx < oo, and fi(x) > 0for all 2 € R and [ € N, formula (3.13) implies
that for any fixed C' > 0

v{r €0,ho] : filx) >C}—0 as [— oc. (3.14)



Since u in (3.1) is (a.e.) non-zero, one can consider the functions
gi(x) =|u(x —ho)u(x —2hg) ... u(x — lh0)|_2, [ e N.

In the same way as we have obtained (3.14), one can easily prove that the inequality
ffoo |¥|? dz < oo implies that for any fixed C' > 0

v{xe€[0,ho] : gi(x)>C}—0 as [— oo. (3.15)
Show that (3.14) and (3.15) can not be valid simultaneously. Note that

1
=————— JeN
gl(l') fl(l' — Zho)
Therefore v {x € [0, ho] : gi(z) > C} =v {z €[0,ho] : fi(x —lho) < C~'}. Since

f1 1s h-periodic, one has also

v{x €[0,ho] : gi(z) >C}=v{a€[0,ho] : fila +jh—1hy)<C™"'}, jEL.
(3.16)
To finish the proof we have to consider the cases h/hy € Q and h/hy € Q
separately.
Let h/hy € Q. Then one can write h/hyg = m/n for some natural m and n. Since

hom = hn, by (3.16)
v {x €10,ho] : grm(zx) > C}=v{[0,ho]} —v {2 €[0,h] : frm(z)>C""'}

for any [ € N. Direct [ in this formula to infinity. By (3.14) and (3.15), we get
in result that 0 = v {[0, hg]} which is impossible. This completes the proof of the
theorem in the case where h/hy € Q.

Assume that h/hy € Q. Then for any € > 0 one can choose an increasing
sequence of natural numbers [} so that

}g%bh— leho| < e

Fix k. Choose j € N so that |ey| < €, where e = jh — [pho. Relation (3.16) implies
v{x€[0,ho] : g1, () >C}=v {:L' €[0,ho] = fi,(x+€)< C_l} =

=v {:L'E [€0, ho + €o] : flk(:zﬁ)<C'_1} >y {:L'E [, ho — €] : flk(:zﬁ)<C'_1} =
=v([e,ho —€]) —v {x €le,ho — € ¢ fr.(x) > C}.

Directing in this formula k to oo one obtains 0 > v {[e, ho — €]}, and, since € is
arbitrary, 0 > v {[0, hy]}, which is impossible. This completes the proof of the
theorem. 0O
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