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ON THE POINT SPECTRUM OFDIFFIRENCE SCHR�ODINGER OPERATORSVladimir Buslaev and Alexander FedotovDepartment of Mathematical Physics, Institute for Physics,St.Petersburg University, Russiabuslaev@snoopy.niif.spb.su and fedotov@phim.niif.spb.suAbstract. One considers the equation  (x+h) + (x�h) + v (x) (x) = E (x),where v is an almost everywhere �nite periodic function, and h is a positive number.It is proved that this equation has no solutions from L2(R). This implies in particularthat the spectrum of Harper operator appears to be singular continuous in all thecases where its geometrical structure was investigated.1 IntroductionIn this note we consider the equationH (x) = E (x); x 2 R; (1.1)where (H  ) (x) =  (x + h) +  (x � h) + v (x) (x); (1.2)h is a positive number, and v is an almost everywhere �nite measurable functionperiodic with a period h0. This function can be complex valued. We proveTheorem 1.1. Equation (1.1) has no solutions from L2(R).The central point in the proof is related to the notion of Bloch solutions. Foran ordinary di�erential equation with periodic coe�cients, one calls its solution a Bloch solution if it is invariant up to a constant factor with respect to thetranslation by the period:  (x + h0) = u (x); x 2 R: (1.3)For equation (1.1)  is called a Bloch solution if it satis�es (1.3) with a coe�cientu depending h-periodically on x,u (x+ h) = u (x):The work was partially supported by grant INTAS-93-1815. Typeset by AMS-TEX1



2 VLADIMIR BUSLAEV AND ALEXANDER FEDOTOVThis de�nition is natural since the set of solutions of equation (1.1) is a two-dimensional modul over the ring of h-periodic functions. The idea of the proofis to show that if there is an L2(R)-solution of (1.1), then this equation has also aBloch solution belonging to L2(R), and to check that this is impossible. The sameidea leads to an immediate proof of the analogous theorem for the one-dimensionaldi�erential equation with periodic coe�cients. In the case under considiration thecoe�cient u from the de�nition of Bloch solutions depends on x, and the proofbecomes a little more complicated.In the case where v is, for example, a bounded real-valued function, the state-ment of the theorem can be easily derived from the direct-integral decompositionof the problem in terms of the corresponding problems on the invariant lattices,and from the known theorems on the structure of the discrete spectrum of the er-godic operators, see [PF]. But even in this case the present proof, probably, is notcompletely useless since it is quite direct and elementary.In section 2, we characterize the set of solutions of equation (1.3). The theorem1.1 is proved in section 3.In the sequel, for brevity, we often omit in the standard way the words "almosteverywhere". In particular, instead of writing "a (x) = b (x) for a.e. x 2 X, wewrite simply a (x) = b (x) x 2 X", instead of saying "an a.e. �nite function" , wesay "a �nite function", and so on.2 Set of solutions of the equation H = E To prove the theorem we have to prepare several auxiliary results.2.1 The structure of the set of solutions.Here, we slightly generalize two statements from [BF3].Let  (x) and ~ (x) satisfy equation (1.1). We call the expression� (x); ~ (x)� =  (x + h) ~ (x) �  (x) ~ (x+ h)the wronskian of the solutions  and ~ .Lemma 2.1 The wronskian of  and ~ is an h-periodic function.Proof. (x) ( ~ (x+ h) + ~ (x � h)) = (E � v(x)) (x) ~ (x) = ~ (x) ( (x + h) +  (x � h)):�



DIFFIRENCE SCHR�ODINGER EQUATIONS 3Proposition 2.2 Let ( (x); ~ (x)) = 1; x 2 R: (2.1)Then any function g satisfying (1.1) can be represented in the formg(x) = (g (x); ~ (x)) (x) + ( (x); g (x)) ~ (x); x 2 R:Proof. Let M (x) = �E � v (x) �11 0 � ; G (x) = � g (x)g (x � h)� ;	(x) = �  (x) ~ (x) (x � h) ~ (x � h)� :Obviously, 	 (x + h) =M (x)	 (x); G (x + h) =M (x)G (x):Moreover, due to (2.1) det	 = 1. Therefore, one can write G (x + h) = 	 (x +h)	�1(x)G (x). This implies that the vector 	�1G is an h-periodic function. Thisleads to the representation g = p +~p ~ where p and ~p are two h-periodic functions.Using this representation and taking into account (2.1), one can easily check that(g; ~ ) = p, and ( ; g) = ~p, which proves the lemma. �Note that this proposition is a part of the proof that the set of solutions ofequation (1.1) is a two-dimensional modul over the ring of h-periodic functions.2.2 Relations between L2-solutions.Assume that two functions  and ~ belong to L2(R) and satisfy equation (1.1).Study relations between them.Lemma 2.3. The wronskian of  and ~ equals to zero.Proof. By Lemma 2.1, the function ( 1(x);  2(x)) is h-periodic. But, since  1 2L2(R) and  2 2 L2(R), one hasZR j( 1(x);  2(x))j dx <1:This implies the statement of the lemma. �



4 VLADIMIR BUSLAEV AND ALEXANDER FEDOTOVProposition 2.4. Let  and ~ satisfy equation (1.1) and belong to L2(R). Let� = fx 2 R :  (x) 6= 0g ;� = [k2Z fx 2 R : x � hk 2 �gThere exists an h-periodic �nite function a (x), de�ned on �, such that~ (x) = a (x) (x); x 2 �: (2.2)Proof. LetS (x) = � 0; when 0 � x < h;1; when h � x < 2h; C (x) = � 1; when 0 � x < h;0; when h � x < 2h:By means of the formulae S (x�h) = �S (x�h)+(E�v (x))S (x) de�ne S (x) forother x 2 R. By construction, S satis�es equation (1.1). De�ne in the same wayC. Obviously, (S (x); C (x)) = 1: (2.3)Using proposition 2.2, one can write (x) = � (x)C (x) + � (x)S (x); (2.4)~ (x) = ~� (x)C (x) + ~� (x)S (x): (2.5)This is clear that �, �, ~� and ~� are h-periodic �nite functions. By Lemma 2.1,the wronskian ( (x); ~ (x)) = 0. Substituting in the formula for this wronskianrepresentations (2.4) and (2.5) one gets� (x) ~� (x) � ~� (x)� (x) = 0: (2.6)On the other hand, for all x 2 �,j� (x)j2 + j� (x)j2 6= 0: (2.7)The h-periodicity of � and � implies that (2.7) remains true on �. Therefore (2.6)and (2.7) show that � ~� (x)~� (x)� = a (x) �� (x)� (x)� ; x 2 �; (2.8)where the function a is de�ned and �nite on the set �. Obviously, a is h-periodic.Formulae (2.4), (2.5) and (2.8) lead to the representation (2.2). �3. Absence of the L2-solutions3.1 Bloch solution.



DIFFIRENCE SCHR�ODINGER EQUATIONS 5Proposition 3.1. If equation (1.1) has a solution from L2(R), then it also hasa solution 	 2 L2(R) satisfying the relation	 (x + h0) = u (x)	 (x); (3.1)with an h-periodic function u being �nite and non-zero for a.e. x 2 R.Proof. Let  0 2 L2(R) be a solution of equation (1.1), and let�0 = [k2Z fx 2 R : x � hk 2 �0g ; where �0 = fx 2 R :  0(x) 6= 0g :Put �l = fx 2 R : x � lh0 2 �0g ; l 2Z:Note that for any l 2Zx 2 �l =) x + nh 2 �l 8n 2Z: (3.2)Fix q 2 R so that 0 < q < 1. De�ne the functions l(x) = qjlj  0(x � lh0); l 2Z:All the functions  l satisfy equation (1.1) and belong to L2(R). Moreover, Propo-sition 2.4 impliesLemma 3.2. If  2 L2(R) and satis�es (1.1), then for any l 2Z (x) = al(x) l(x); x 2 �l;where al is a �nite h-periodic function.To construct the solution 	, it is covenient to introduce one more family of sets.Let M0 = �0, andMl+1 = �l+1 n0@ j=l[j=�lMj1A ; M�l�1 = ��l�1 n0@j=l+1[j=�l Mj1Afor all l 2 N [ f0g. Note that by de�nition for all l 2ZMl � �l: (3.3)Furthemore, it can be easily seen thatMl \Mk = ; if k 6= l; (3.4)and j=l[j=�lMj = j=l[j=�l�j; j=l+1[j=�l Mj = j=l+1[j=�l �j: (3.5)



6 VLADIMIR BUSLAEV AND ALEXANDER FEDOTOVThis together with the de�nition of Ml and (3.2) shows that for any l 2Zx 2 Ml =) x + nh 2 Ml; n 2Z: (3.6)Let M = [l2ZMl: (3.7)Note that, due to (3.5), this is equivalent toM = [l2Z �l: (3.8)Therefore the de�nitions of �l and (3.2) imply thatx 2 M =) x +mh0 + nh 2 M n;m 2Z: (3.9)It is convenient to intriduce one more set,N = R nM:In view of (3.9), x 2 N =) x +mh0 + nh 2 N n;m 2Z: (3.10)Remark that all the above sets are measurable.De�ne 	 (x) by the formula	 (x) =Xl2Z �Ml(x) l(x); (3.11)where �Ml is the characteristic function of the set Ml. Note that, by de�nition,	 (x) = 0 for all x 2 N , and, due to (3.4), 	 (x) =  l(x) when x 2 Ml.Check that 	 satis�es equation (1.1). Consider at �rst the case when x 2M. There is an l 2 Z such that x 2 Ml. By (3.6), x � h 2 Ml. Therefore(H	)(x) = (H l)(x) = E l(x) = E	(x). If x 2 N , then x � h 2 N , and	 (x � h) = 	 (x) = 	 (x + h) = 0. So, again (H	)(x) = E	(x).The solution 	 belongs to L2(R):k	k2L2 =Xl2Z ZMl j l(x)j2 dx �Xl2Z k lk2L2 =Xl2Z q2jlj k 0k2L2 <1:Now proveLemma 3.3. If  2 L2(R), and H = E , then�M (x) = a (x)	 (x); x 2 R;where a is a �nite h-periodic function.Proof. Using Lemma 3.2, one can write�M(x) (x) =Xl2Z �Ml(x) (x) =Xl2Z �Ml(x) al(x) l(x)with some �nite h-periodic functions al. Due to (3.4), this formula can be rewrittenin the form�M(x)  (x) =Xl2Z �Ml(x) al(x) Xl2Z �Ml(x) l(x) = a (x)	 (x):The function a (x) =Pl2Z �Ml(x) al(x) is �nite and, by (3.6), h-periodic.�



DIFFIRENCE SCHR�ODINGER EQUATIONS 7Now one can easily �nish the proof of the proposition. Since 	 = 0 outside M,and since M is invariant with respect to the h0-translations, one has by Lemma3.3 	 (x + h0) = a (x)	 (x); x 2 R; (3.12)with an �nite h-periodic function a. Discuss the set where a (x) = 0.Denote by D the set where 	 (x) 6= 0. By (3.12), 	 (x+h0) = 	 (x) = 0, x 62 D.Thus, for all these x one can change a by letting a (x) = 1. Now, to �nish theproof, it su�ces to show that a (x) 6= 0 for a.e. x 2 D. In the same way as wehave proved (3.12) one can show that 	 (x � h0) = ~b (x)	 (x), where ~b is a �niteh-periodic function. Therefore,	 (x) = b (x)	 (x + h0); x 2 R;where b (x) = ~b (x + h0). This formula and formula (3.12) imply thata (x) b (x) = 1; x 2 D:Since both a and b are �nite, this �nishes the proof.�Corollary 3.4. For the Bloch solution 	 described in Proposition 3.1, one hasmes fx 2 [0; h0] : 	 (x) 6= 0g > 0:Proof. Suppose that 	 (x) = 0 on the interval [0; h0). Then, since u (x) 6= 0 and1=u (x) 6= 0 for a.e. x, formula (3.1) implies that 	 = 0. But this is impossible,because 	 (x) =  0(x) for all x where  0 (x) 6= 0. �3.2 Proof of the theorem.Now we can easily prove the theorem. Suppose equation (1.1) has a solutionfrom L2(R). Then it has also the Bloch solution 	 described in the proposition.Show that this is impossible.De�ne a measure by the formula � (�) = R� j	(x)j2 dx, where � is a measurableset. Note that by Corollary 3.2 � ([0; h0]) > 0.By (3.1) one has Z 10 j	(x)j dx = 1Xl=0 Z h00 fl(x) d� (x); (3.13)where f0(x) = 1, andfl(x) = ju (x)u (x + h0) : : : u (x+ (l � 1)h0)j2; l 2 N:Since R10 j	j2 dx <1, and fl(x) � 0 for all x 2 R and l 2 N, formula (3.13) impliesthat for any �xed C > 0� fx 2 [0; h0] : fl(x) > Cg ! 0 as l!1: (3.14)



8 VLADIMIR BUSLAEV AND ALEXANDER FEDOTOVSince u in (3.1) is (a.e.) non-zero, one can consider the functionsgl (x) = ju (x � h0)u (x � 2h0) : : : u (x � lh0)j�2; l 2 N:In the same way as we have obtained (3.14), one can easily prove that the inequalityR 0�1 j	j2 dx <1 implies that for any �xed C > 0� fx 2 [0; h0] : gl(x) > Cg ! 0 as l!1: (3.15)Show that (3.14) and (3.15) can not be valid simultaneously. Note thatgl(x) = 1fl(x � lh0) ; l 2 N:Therefore � fx 2 [0; h0] : gl(x) > Cg = � �x 2 [0; h0] : fl(x� lh0) < C�1	. Sincefl is h-periodic, one has also� fx 2 [0; h0] : gl(x) > Cg = � �x 2 [0; h0] : fl(x + jh� lh0) < C�1	 ; j 2Z:(3.16)To �nish the proof we have to consider the cases h=h0 2 Q and h=h0 62 Qseparately.Let h=h0 2 Q. Then one can write h=h0 = m=n for some naturalm and n. Sinceh0m = hn, by (3.16)� fx 2 [0; h0] : gl�m(x) > Cg = � f[0; h0]g � � �x 2 [0; h0] : fl�m(x) � C�1	for any l 2 N. Direct l in this formula to in�nity. By (3.14) and (3.15), we getin result that 0 = � f[0; h0]g which is impossible. This completes the proof of thetheorem in the case where h=h0 2 Q.Assume that h=h0 62 Q. Then for any � > 0 one can choose an increasingsequence of natural numbers lk so thatinfj2Z jjh� lkh0j < �:Fix k. Choose j 2 N so that j�0j < �, where �0 = jh� lkh0. Relation (3.16) implies� fx 2 [0; h0] : glk(x) > Cg = � �x 2 [0; h0] : flk (x+ �0) < C�1	 == � �x 2 [�0; h0 + �0] : flk(x) < C�1	 � � �x 2 [�; h0 � �] : flk (x) < C�1	 == �([�; h0 � �]) � � fx 2 [�; h0 � �] : flk(x) � Cg :Directing in this formula k to 1 one obtains 0 � � f[�; h0 � �]g, and, since � isarbitrary, 0 � � f[0; h0]g, which is impossible. This completes the proof of thetheorem. �
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