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Nambu-Jona-Lasinio version of magnetic monopolephysics with dual Dirac stringsM. Faber , A. N. Ivanov1, W. Kainz , N.I. Troitskaya1Institut f�ur Kernphysik, Technische Universit�at Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna, AustriaAbstractMagnetic monopoles are considered as massless fermion �elds interacting via lo-cal four{monopole interaction of the Nambu{Jona{Lasinio kind leading to monopolecondesation. Condensation of magnetic monopole currents and any derivative ofthem are obtained. It is shown that the bosonized version of this Monopole{Nambu{Jona{Lasinio (MNJL) model is reducing to London 0s theory of dual superconduc-tivity within Dirac 0s extension of Maxwell 0s Electrodynamics. The a�nity of theMNJL{model with Compact Quantum Electrodynamics is discussed.
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IntroductionIt is well{known that QCD possesses a con�ned phase being responsible for quarkcon�nement. Most likely the phenomenon of quark con�nement is closely connectedwith the properties of the nonperturbative vacuum of low{energy QCD. At present aqualitative description of quark con�nement within QCD is far from being complete.Therefore, investigations of di�erent models being much simpler than QCD and possessingcon�ned phases should be rather important for the clari�cation of the mechanism of quarkcon�nement at both qualitative and quantitative level.Compact Quantum Electrodynamics (CQED) de�ned for lattices as nonlinear U (1)gauge theory has a con�ned phase like QCD [1] and realizes con�nement of electric charges.Thereby the investigation of CQED should aid understanding of quark con�nement. Ashas been shown in [2] the nonperturbative vacuum of CQED behaves like an e�ectivedual superconductor with magnetic monopoles. Due to magnetic monopoles the electric�eld 
ux between quarks rearranges and looks like a dual Dirac string. As a resultquarks interact via a linearly rising potential [3,4] that realizes quark con�nement [5,6]and spontaneous breaking of chiral symmetry (SB�S) [7] by a Nambu{Jona{Lasinio (NJL)type [8-14].The NJL model should be considered as some kind of a relativistic extension of theBCS (Bardeen{Cooper{Schrie�er) theory of superconductivity [15]. Thereby the nonper-turbative vacuum of the NJL model should possess the properties of the ground stateof a superconductor in the superconducting phase. Thus if one would like to get a rela-tivistic �eld theory with a nonperturbative vacuum that possesses the properties of dualsuperconductors one would put in the foundation of this theory the NJL model.In this paper we conceive in continuum space{time a NJL version of magneticmonopolephysics with dual Dirac strings, which we call Monopole Nambu{Jona{Lasinio (MNJL)model. It shows nonperturbative peculiarities of CQED in the con�ned phase. In partic-ular it should possess a nonperturbative vacuum with properties of dual superconductors.The Lagrangian of the starting system involving magnetic monopolos, quarks anddual{vector �elds should readL(x) = � 14 F� �(x)F � �(x) ++��(x) i 
 � (@� + i g 0C�(x))�(x) + G h��(x)�(x)i2 + (1)+Lfree quark (x) :where Lfree quark (x) is a kinetic term for quark and antiquarkLfree quark (x) = � Xi= q ; �q m i Z d �  dX �i (� )d� dX �i (� )d� g� � !1=2 � (4) (x � X i(� )) : (2)We consider quark and antiquark as classical point{like particles with massesm q = m �q =m, charges Q q = �Q �q = Q 0, and trajectories X �q (� ) and X ��q (� ), respectively. Notethat Q 0 is a bare charge of a quark which will be renormalized by magnetic monopoleinteractions. The electric quark current J �(x) is given byJ � (x) = Xi= q ;�q Q i Z d � dX �i (� )d � � (4)(x � X i (� )) : (3)2



Then �(x) is a quantum fermionic monopole �eld, and g 0 is a bare magnetic chargeconnected with a bare electric charge of quark by the relation g 0Q 0 = 2�. Following[16] we consider monopoles as fermions which are massless in the symmetry{unbrokenphase. G is a phenomenological coupling constant of a local four{monopole interaction.The �eld strength F � �(x) is de�ned [4]F � �(x) = E � �(x) � �(dC (x))� � (4)where (dC (x))�� = @ � C � (x) � @ � C � (x), and �(dC (x))�� is a dual version�(dC (x))�� = 12 "�� �� (dC (x))�� (" 0 12 3 = 1) : (5)The electric strength �eld E � �(x), induced by a dual Dirac string, is de�ned following[3,17] E � � (x) = Q ZZ d 2 v � (4)(x � X)� � � (X) (6)where we have denoted d 2 v = d � d � and� � � (X) = @ X �@ � @ X �@ � � @ X �@ � @ X �@ � : (7)Here X � = X � (�; �) represents the position of a point on the world sheet swept bythe string. The sheet is parametrized by the internal coordinates �1 < � < 1 and0 � � � �, so that X � (� ; 0) = X ��Q(� ) and X � (� ; �) = X �Q(� ) represent the worldlines of an antiquark and a quark [3]. Within the de�nition (6) the tensor �eld E � �(x)satis�es identically the equation of motion@� F � �(x) = J �(x) ; (8)that is the �rst pair of equations of motion of Dirac 0 s extension of Maxwell 0 s Electrody-namics. This means that the inclusion of a dual Dirac string in terms of E � �(x) de�nedby (6) saturates completely the electric Gauss law.The Lagrangian (1) is invariant under local U(1) gauge transformations, where U(1)is the Abelian gauge group of dual{vector potential transformations. Due to the four-monopole interaction, proportional to the phenomenological positive coupling constantG, the local U(1) symmetry gets broken spontaneously. In the symmetry{broken phasethe �{�eld becomes massive and condensed. The process of the �{�eld condensationaccompanies the appearance of a massive scalar ���{collective excitation and the massfor the dual{vector �eld C�. The longitudinal component of the massive dual{vectorC�{�eld is generated by the contribution of the massless Goldstone boson appearing dueto the U(1) symmetry breaking in accordance with the Goldstone theorem [18].By varying the Lagrangian (1) with respect to C�(x) and ��(x) we get the set ofequations of motion @��F � �(x) = g 0 ��(x) 
 � �(x) ; (9)(@� + i g 0C�(x))�(x) = � 2G h��(x)�(x)i�(x) : (10)3



Eq.(8) can be valued as the second pair of equations of motion of Dirac 0 s extension ofMaxwell 0 s Electrodynamics. The r.h.s. of eq.(8) should be identi�ed with the magneticcurrent j �(x) j �(x) = g 0 ��(x) 
 � �(x) : (11)The magnetic current j �(x) can be obtained in a standard way by applying local gaugetransformation for the monopole �eld ��(x)! � 0 (x) = e i�(x) �(x) ;��(x)! �� 0 (x) = ��(x) e� i �(x) (12)and de�ning the magnetic current as a derivative of the Lagrangian (1) with respect to@ � � (x) j�(x) = � �L(x)� @ � �(x) : (13)For the subsequent investigation it is convenient to rewrite the Lagrangian (1) as followsL(x) = � 14 E� �(x) E � �(x) + 12 E� �(x) �(dC (x))� � ++ 14 (dC (x))�� (dC (x))�� + (14)+��(x) i 
 � (@� + i g 0C�(x))�(x) + G h��(x)�(x)i2 ++Lfree quark (x) :Here we have used eq.(4). The Lagrangian (14) is the basic Lagrangian of the MNJLmodel which we apply to the description of magnetic monopole physics with dual Diracstrings.The paper is organized as follows. In Sect. 1 we analyse the monopole condensationand derive in one{monopole loop approximation the e�ective Lagrangian of the C�{�eldand the scalar �{�eld being a collective excitation of the ��� pair. In Sect. 2 we performthe complete bosonization of the n{point monopole Green function. In Sect. 3 we deriveLondon equation of dual superconductivity. In Sect. 4 we represent the bosonized n{point monopole Green function as a functional of a dual Dirac string shape. In Sect. 5 weevaluate the Green function of the massive dual{vector �eld. We show that the mechanismof the acquirement of the mass in one-monopole loop approximation is compared withthat within the standard Higgs model. There is also no contradiction to the Goldstonetheorem. In the Conclusion we discuss the obtained results.1. Monopole condensationDue to the strong attraction produced by the local four{monopole interaction themonopole �eld �(x) acquires a mass M satisfying the gap equation [8-14]M = � 2G < ��(0)�(0) > (15)4



where < ��(0)�(0) >= � 14� 2 M J 1(M) (16)is the monopole condensate [8-14] and J 1(M) is the quadratically divergent integralJ 1(M) = Z d 4 k� 2 i 1M 2 � k 2 = � 2 � M 2 `n 1 + � 2M 2! : (17)Here � is the ultra{violet cut{o�.Monopole condensation accompanies the creation of a monopole{antimonopole (���)collective excitation with the quantum numbers of a scalar Higgs meson �eld which wedenote below as �{�eld.Following [8-14] we determine the e�ective Lagrangian of the �{�eld and the massiveC�{�eld as follows L e�(x) = ~L e�(x) � � 24G � 2(x) (18)where ~L e�(x) = � i* x�����`nDet�i @̂ � M + ��Det�i @̂ � M� �����x+ : (19)Here we have denoted � = � g 0 
 �C� � ��, and � = � � M=�. The �{�eld hasvanishing vacuum expectation value (v.e.v.), i.e. < � >= 0, while the v.e.v. of the�{�eld does not vanish, i.e. < � >= M=� 6= 0.The e�ective Lagrangian ~L e�(x) can be represented by an in�nite series~L e�(x) = 1Xn=1 in trLD x���� 1M � i @̂ ��n���x E = 1Xn=1 ~L (n)e� (x) : (20)The index L means the evaluation of the trace over the Lorentz indices. The e�ectiveLagrangian ~L (n)e� (x) is given by~L (n)e� (x) = Z n� 1Ỳ= 1 d 4 x ` d 4 k `(2�) 4 e� i k 1�x 1�:::�i kn�x �� 1n 116� 2� Z d 4 k� 2 i ��trL ( 1M � k̂ �(x 1) 1M � k̂ � k̂ 1 �(x 2) : : :� : : :�(xn� 1) 1M � k̂ � k̂ 1 � : : :� k̂n� 1 �(x)) : (21)at k 1 + k 2 + : : : + kn = 0 . The r.h.s. of (27) describes the one{massive{monopoleloop diagram with n {vertices. The monopole{loop diagrams with two vertices (n = 2)determine the kinetic term of the �{�eld and give the contribution to the kinetic term ofthe C�{�eld, while the diagrams with (n � 3) describe the vertices of interactions of the�{ and the C�{ �elds. In accordance with the prescription given in [9-14] the e�ectiveLagrangian ~L e� (x) should be de�ned by the set of divergent one-massive{monopole{loopdiagrams with n = 1; 2; 3 and 4 vertices. The evaluation of these diagrams gives5



L e� (x) = 12 � 28� 2 J 2(M)@� �(x) @ � �(x) + M h �2G � �4� 2 J 2(M)i�(x) ++ 12h� � 22G + � 24� 2J 1(M) � 4M � 28� 2 J 2(M)i� 2(x) �� 2M � � 28� 2 J 2(M)� 3(x) � 12 � 2 � 28� 2 J 2(M)� 4(x) �� g 2048� 2 J 2(M)(dC(x))� � (dC(x))� � �� g 2012� 2 hJ 1(M) + M 2 J 2(M)iC�(x)C �(x) : (22)In order to get a correct factor of the kinetic term of the �{�eld we have to put [9-14]� 28� 2 J 2(M) = 1 (23)where J 2(M) is a logarithmically divergent integralJ 2(M) = Z d 4 k� 2 i 1M 2 � k 2 = `n 1 + � 2M 2! � � 2M 2 + � 2 : (24)Accounting to the gap equation (15) and the constraint (23) we bring the e�ective La-grangian (22) to the formL e� (x) = 12 @� �(x) @ � �(x) � 12 M 2� � 2(x) "1 + � �(x)M� # 2 +� g 2048� 2 J 2(M) (dC(x))� � (dC(x))� � �� g 2012� 2 hJ 1(M) + M 2 J 2(M)iC�(x)C �(x) : (25)where M � = 2M is the mass of the �{�eld.The term proportional to (dC(x))��(dC(x))� � can be removed by the renormaliza-tion of the wave{function of the C�{�eld with the subsequent renormalization of themagnetic charge g 0. We leave to readers to get convinced in this assertion by performingthese quantum �eld theory exercises and emphasize that below g means the renormalizedmagnetic charge connected with g 0 by the expressiong 2 = g 20 h1 � g 2012� 2 J 2(M)i� 1 = g 20 h1 + 23 g 20� 2 + : : : i : (26)Here we have applied the constraint (23). The expansion in the r.h.s. of (26) is valid if�� g.After the integration over the monopole degrees of freedom the total Lagrangian shouldread L tot(x) = � 14 E� �(x) E � �(x) + 12 �E� �(x) (dC (x))� � �6



+ 14 (dC (x))� � (dC (x))�� � 12M 2C C�(x)C �(x) + (27)+12 @� �(x) @ � �(x) � 12M 2� � 2(x) "1 + � �(x)M � # 2 ++Lfree quark (x) :where M 2C = g 26� 2 hJ 1(M) + M 2 J 2(M)i = g 26� 2 � 4M 2 + � 2 : (28)We identify MC with the mass of the C�{�eld in the phase of the spontaneously brokenU(1){symmetry. The longitudinal component of the massive C�{�eld is generated bythe contribution of massless Goldstone bosons the appearance of which accompanies withthe spontaneous breaking of the U(1) gauge symmetry in accordance with the Goldstonetheorem [18]. A more detailed derivation of the Green function of the massive C�{�elddisplaying the contribution of Goldstone bosons is given in Sect. 5.It should be emphasized that the �eld strength E � �(x) in the Lagrangian (27) containsa renormalized electric charge of a quark Q, i.e. Q = (g 0=g)Q 0.2. Monopole Green functionsThe phenomenon of the magnetic current condensation has been observed within theframework of CQED by DeGrand and Toussaint [19]. For the analysis of this phenomenonwithin the MNJL model we have to consider the v.e.v. of time{ordered products ofdensities expressed in terms of the massless{monopole �elds, i.e. the monopole GreenfunctionG (x 1 ; : : : ; xn) =< 0jT(�� (x 1) � 1 � (x 1) : : : �� (xn) �n � (xn))j0 >connected (29)where � i (i = 1; : : : ; n) are the Dirac matrices.Following the derivation suggested in [13] one can represent the r.h.s. of (29) in thefollowing formG(x 1; : : : ; xn) == < 0jT(��(x 1)�1�(x 1) : : : ��(xn)�n�(xn))j0 >connected== (M) < 0jT���M(x 1)� 1�M(x 1) : : : ��M(xn)�n�M(xn)�� exp i Z d 4 x hL int(�M(x); �(x); C�(x)) + (30)+L tot(�(x); C�(x))� L(0)(�(x); C�(x))i�j0 >(M)connectedwhereL int(�M(x); �(x); C�(x)) = � g ��M(x) 
 � �M(x)C �(x) � � ��M (x)�M(x)�(x) (31)and L(0)(�(x); C�(x)) is the Lagrangian of the free massive �{ and C�{�elds. Thenj0 >(M) is the wave-function of the nonperturbative vacuum in the symmetry{broken7



phase. The complete coincidence of the NJL model with the BCS{theory of supercon-ductivity admits the exact evaluation of j0 >(M) in the form [8,15]j0 > (M)= Y~p ;�=� 1 "s1 + � ~p2 + �s1 � � ~p2 a (0)y (~p ; �) b (0)y (� ~p ; �)# j0 > (0) (32)where ~� ~p = ~p=E ~p = ~p=q~p 2 + M 2 is the velocity of massive monopoles with themass M , and a (0)y (~p ; �) (or b (0)y (� ~p ; �) ) denotes the creation operator of a masslessmonopole (or antimonopole) with the momentum ~p and helicity �; j0 > (0)� j0 > is thewave{function of the vacuum in the U(1){symmetry phase. In the linear approximationthe operators of annihilation and creation of massive monopoles (or antimonopoles) areconnected with the corresponding operators annihilating and creating massless monopoles(or antimonopoles) via the Bogoliubov transformationa (M)(~p ; �) = a (0)(~p ; �)s1 + � ~p2 + b (0)y(� ~p ; �)�s1 � � ~p2 ;b (M)(� ~p ; �) = b (0)(� ~p ; �)s1 + � ~p2 + a (0)y(~p ; �)�s1 � � ~p2 : (33)In order to pick up the phenomenon of magnetic current condensation we have to considerthe following v.e.v. < 0jj �(x) j �(x)j0 > (34)where the magnetic current j �(x) is de�ned by formula (11) with a renormalized magneticcharge g.In terms of the massive{monopole �elds interacting with the �{�eld and the massiveC�{�eld the v.e.v. (34) is given by< 0jj �(x) j �(x)j0 > = (M) < 0jT�g 2 ��M(x)
 � �M(x) ��M(x)
 � �M(x)�� exp i Z d 4 x 0 hL int(�M(x 0 ); �(x 0 ); C�(x 0 )) ++L tot(�(x 0 ); C�(x 0 ))� L(0)(�(x 0 ); C�(x 0 ))i�j0 >(M)connected :(35)In the tree{meson approximation the r.h.s. of the v.e.v. (34) is de�ned by the monopolecondensate < 0jj �(x) j �(x)j0 >= � g 2 h < ��(0)�(0) > i2 (36)where the monopole condensate < ��(0)�(0) > is given by formula (15). Thus in theMNJL model the magnetic current condensation exists and is fully due to the magneticmonopole condensation.As has been shown in [20] CQED predicts the nonzero v.e.v. of the curl of the magneticcurrent, i.e. the quantity < 0j(d j(x))� � (d j(x))� � j0 > (37)8



should have a nonvanishing value. The direct evaluation of (37) in the tree{meson ap-proximation gives< 0j(d j(x))� �(d j(x))� � j0 >= � g 2128� 4 h� 8 � 16� 4M 2 J 1(M) + 28M 4 J 21 (M)i : (38)The analogous calculation one can perform for the v.e.v. of any order derivatives ofmagnetic currents < 0j@� 1 : : : @�nj(x)@ � 1 : : : @ �nj(x)j0 > : (39)This implies that within the MNJL model the v.e.v. (39) is fully de�ned in terms of thecut{o� � and the monopole massM . The dependence of any v.e.v. on a dual Dirac stringshape can be also taken into account (see Sect. 4).3. London 0 s equation of dual superconductivityIn order to show that the MNJL model admits the London equation of dual super-conductivity we have to evaluate the v.e.v. of the magnetic current, i.e.J �(x) =< 0jj �(x)j0 >==(M)< 0jT���M(x)
 � �M(x) exp i Z d 4 x 0 hL int(�M(x 0 ); �(x 0 ); C�(x 0 )) ++L tot(�(x 0 ); C�(x 0 ))� L(0)(�(x 0 ); C�(x 0 ))i�j0 >(M)connected : (40)In the tree{meson approximation the r.h.s. of (40) can be expessed in terms of the C�{�eld J �(x) = �M 2C C �(x) : (41)This is a relativistic extension of the London 0 s equation of dual superconductivity [3,4].The relation (40) can be obtained directly from the Lagrangian (27) by performing anin�nitesimal gauge transformation of the C�{�eldC�(x)! C 0�(x) = C�(x) � @� � (x) (42)and de�ning the magnetic current as a derivative of the Lagrangian (27) over @� � (x)J�(x) = � �L(x)� @ � � (x) : (43)The r.h.s. of (43) is proportional to the C �{�eld as it is given by eq.(41).4. Monopole Green functions as functionals of thedual string shapeBy varying the Lagrangian L tot(x) with respect to C �(x) one obtains the equationsof motion (2 + M 2C)C �(x) = � @� �E � �(x) : (44)9



Here we have used the constraint @�C �(x) = 0. The solution of eq.(44) reads [4]C � [E(x)] = � Z d 4 x 0�(x � x 0 ) @ 0� �E � � (x 0 ) (45)where �(x � x 0 ) is the Green function of the C�{�eld. The notation C � [E(x)] meansthat the C�{�eld is a functional of the dual string shape.Substituting (45) in (30) we obtain the monopole Green function as a functional ofE � �(x), i.e. a dual Dirac string shapeG(x 1; : : : ; xn; E) ==< 0jT(��(x 1)�1�(x 1) : : : ��(xn)�n�(xn))j0 >connected==(M)< 0jT���M(x 1)� 1�M(x 1) : : : ��M(xn)�n�M(xn)�� exp i Z d 4 xn� g ��M(x) 
 � �M(x)C �[E(x)] +�� ��M (x)�M(x)�(x) � M � �� 3(x) � 12 � 2 � 4(x)o�j0 >(M)connected : (46)The averaging over the string shape 
uctuations should be performed with the weightexp iS string[E], i.e.G(x 1; : : : ; xn) = Z D � [`] eiS string [E]G(x 1; : : : ; xn; E) : (47)Here D � [`] is the measure of the integration over the shape of the dual Dirac string withthe length ` [21], and S string[E] is the string action [3,4]S string[E] = 14 M 2C Z d 4 x d 4 x 0 E� �(x)D��(x � x 0 ) E ��(x 0 ) (48)where D��(x � x 0 ) =  g �� � 2 @ � @ �M 2C !�(x � x 0 ) : (49)Formula (47) is valid for the evaluation of any monopole Green function averaged overdual Dirac string{shape 
uctuations.5. Green function of massive C�{�eld and GoldstonebosonIn this Section we give a derivation of the two{point Green function for the massiveC�{�eld and display the contribution of Goldstone bosons which accompany spontaneousbreaking of U(1) gauge symmetry as has been explained by the Goldstone theorem [18].For simplicity we carry out the derivation in Lorentz gauge: @�C �(x) = 0.In accordance with quantum �eld theory [22] the two{point Green function of themassive C�{�eld, calculated in the one{monopole{loop approximation, should be de�ned10



by the in�nite seriesi g 2D� �(q) = g 20 1q 2 + i 0  g� � � q�q �q 2 ! + (50)+ g 20 1q 2 + i 0  g� � � q�q�q 2 !���(q) 1q 2 + i 0  g � � � q �q �q 2 ! + : : : :Here ���(q), being a tensor of vacuum polarization caused by the constribution of virtualmagnetic monopole{antimonopole pairs, reads���(q) = g 2016� 2 Z d 4k� 2 i tr( 1M � k̂ 
 � 1M � k̂ � q̂ 
 �) == A(q 2) (q 2 g �� � q �q �) + B(q 2) q �q � == g 206� 2 (hJ 1(M) + M 2 J 2(M)i + 12 J 2(M) q 2) g �� � q �q �q 2 ! (51)whereA(q 2) = g 2096� 2"� 2q 2 J 1(M) + 1q 2 (4M 2 � q 2)J 2(M)# ;B(q 2) = g 2032� 2"� 2q 2 J 1(M) + J 2(M)# : (52)Eq.(51) represents the gauge invariant evaluation of the polarization tensor performed forthe cut{o� regularization.Substituting (51) in (50) and summing up the in�nite series one obtainsi g 2D� �(q) = g 20  g� � � q�q �q 2 ! �� "q 2 � g 206� 2 (hJ 1(M) + M 2 J 2(M)i + 12 J 2(M) q 2) + i 0#� 1 == g 20  g� � � q�q �q 2 ! �� "q 2 �1 � g 2012� 2 J 2(M)� � g 206� 2 hJ 1(M) + M 2 J 2(M)i + i 0#� 1 == g 2q 2 � M 2C + i 0  g� � � q�q �q 2 ! == g 2q 2 � M 2C + i 0  g� � � q�q �M 2C ! + g 2M 2C q�q �q 2 : (53)Here g and MC are the renormalized magnetic charge of monopole and the mass of theC�{�eld in the symmetry{broken phase given by eqs.(26) and (28), respectively. Theterm g 2M 2C q�q �q 211



in the r.h.s. of (53) describes the contribution of the massless Goldstone boson appearingdue to spontaneous breaking of U(1) gauge symmetry in accordance with the Goldstonetheorem [18].The evaluation of the two{point Green function of the massive C�{�eld, given in theMNJL model, one should compare with that within the standard Higgs model [22] when avector �eld acquires a mass in the tree approximation. In the case of the standard Higgsmodel ���(q), de�ned in the tree approximation, is given by: ���(q) = 2 g 20 v 2 g ��,where v is the v.e.v. of the Higgs �eld. The in�nite series (51) should be summed up tothe form (53) with the vector meson mass equals M 2V = 2 g 20 v 2.Thus the mechanism of the acquirement of mass by vector mesons, caused by sponta-neous breaking of symmetry, given in the MNJL model and the standard Higgs model canbe compared well. There is only the distinction that for the Higgs mechanism g 0 remainsunrenormalized. This implies that the quantity MC de�ned by eq.(28) is in reality themass of the C�{�eld in the symmetry{broken phase.ConclusionNow let us resume the obtained results. We have found that the NJL model appliedto the description of monopole physics, i.e. the MNJL model, has turned out very usefulfor the understanding of the mechanism of monopole and magnetic current condensa-tion. The local four{monopole interaction provides spontaneous breaking of the U(1)gauge symmetry that leads to the monopole condensation and the appearance of massivemonopole �M{�elds. They interact with the massive scalar monopole{antimonopole col-lective excitation �{�eld and the massive dual{vector �eld C�. As a result the v.e.v. ofany time{ordered product of massless monopole densities can be evaluated in terms ofv.e.v. of massive monopole densities with massive monopole �elds interacting with themassive �{ and the massive C�{�elds. This allows to reproduce in continuum space{timethe condensation of any order derivative of the magnetic current, i.e.< 0j@� 1 : : : @�nj(x)@ � 1 : : : @ �nj(x)j0 >observed within CQED. The v.e.v. can be evaluated in terms of dual Dirac string{shapesand averaged over string{shape 
uctuations.Thus, the enumerated peculiarities of the MNJL model, i.e. magnetic monopole con-densation, the condensation of magnetic current and any order derivative of magneticcurrent and so on, should testify a close a�nity between the MNJL model and CQED.This allows to think that the MNJL model can be considered as some kind of continuumspace{time analogy of CQED.The Nambu{Jona{Lasinio version of the monopole physics, i.e the MNJL{model,seems much more 
exible in comparison with the dual Higgs model that we have sug-gested in ref.[23]. Indeed, in the MNJL-model the condensation of the magnetic currentand its derivatives can be obtained in the main one{monopole{loop and in the tree C�{�eld approximation. In turn in the Dual Higgs model the condensation of these quantititesis the matter of the C�{�eld loop contributions and does not appear in the tree C�{�eldapproximation. The more detail comparison of the MNJL{model with the dual Higgsmodel [23] we are planning to carry out in our forthcoming publications.12
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