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Abstract

Magnetic monopoles are considered as massless fermion fields interacting via lo-
cal four-monopole interaction of the Nambu—Jona—Lasinio kind leading to monopole
condesation. Condensation of magnetic monopole currents and any derivative of
them are obtained. It is shown that the bosonized version of this Monopole—Nambu—
Jona—Lasinio (MNJL) model is reducing to London’s theory of dual superconduc-
tivity within Dirac’s extension of Maxwell’s Electrodynamics. The affinity of the
MNJL-model with Compact Quantum Electrodynamics is discussed.
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Introduction

It is well-known that QQCD possesses a confined phase being responsible for quark
confinement. Most likely the phenomenon of quark confinement is closely connected
with the properties of the nonperturbative vacuum of low—energy QCD. At present a
qualitative description of quark confinement within QCD is far from being complete.
Therefore, investigations of different models being much simpler than QCD and possessing
confined phases should be rather important for the clarification of the mechanism of quark
confinement at both qualitative and quantitative level.

Compact Quantum Electrodynamics (CQED) defined for lattices as nonlinear U (1)
gauge theory has a confined phase like QCD [1] and realizes confinement of electric charges.
Thereby the investigation of CQED should aid understanding of quark confinement. As
has been shown in [2] the nonperturbative vacuum of CQED behaves like an effective
dual superconductor with magnetic monopoles. Due to magnetic monopoles the electric
field flux between quarks rearranges and looks like a dual Dirac string. As a result
quarks interact via a linearly rising potential [3,4] that realizes quark confinement [5,6]
and spontaneous breaking of chiral symmetry (SByS) [7] by a Nambu—Jona—Lasinio (NJL)
type [8-14].

The NJL model should be considered as some kind of a relativistic extension of the
BCS (Bardeen—Cooper—Schrieffer) theory of superconductivity [15]. Thereby the nonper-
turbative vacuum of the NJL model should possess the properties of the ground state
of a superconductor in the superconducting phase. Thus if one would like to get a rela-
tivistic field theory with a nonperturbative vacuum that possesses the properties of dual
superconductors one would put in the foundation of this theory the NJL model.

In this paper we conceive in continuum space—time a NJL version of magnetic monopole
physics with dual Dirac strings, which we call Monopole Nambu—-Jona—Lasinio (MNJL)
model. It shows nonperturbative peculiarities of CQED in the confined phase. In partic-
ular it should possess a nonperturbative vacuum with properties of dual superconductors.

The Lagrangian of the starting system involving magnetic monopolos, quarks and
dual-vector fields should read

L) = = Fule) F*() +
(@) i7" (0, + i 90 Cule) x(2) + G [x(e) x(2)]” + (1)
+Leree quark () -

where Leee quark () 1s a kinetic term for quark and antiquark

(dXZ»“(T) dX?

- 1/2
e T R

Efree quark(x) = - Z my / dr
t1=q,9

We consider quark and antiquark as classical point-like particles with massesm, = m; =

m, charges Q, = —Q; = Qo, and trajectories X?(7) and X (1), respectively. Note

that ()¢ is a bare charge of a quark which will be renormalized by magnetic monopole

interactions. The electric quark current J¥ () is given by

v _ dXZP(T) 4
T = % Qi/drTé()(:p ~ X (7). (3)

1=q,9



Then y(z) is a quantum fermionic monopole field, and g is a bare magnetic charge
connected with a bare electric charge of quark by the relation go ()¢ = 2m. Following
[16] we consider monopoles as fermions which are massless in the symmetry—unbroken
phase. G is a phenomenological coupling constant of a local four—-monopole interaction.

The field strength F'#”(x) is defined [4]
Fr () = £ () = H(dC (x)) " (4)
where (dC (z))"" = d*CV (x) — 9V C*(x), and *(dC (x))*" is a dual version

(A @) = S (O (@) ap (O = 1), (5)

The electric strength field £#7(x), induced by a dual Dirac string, is defined following
[3,17]

£ (z) = Q // d?v8D(z — X)oh” (X) (6)

where we have denoted d?v = d7do and

OXH* XV OXV OXH
v _ _
ot(X) = or Jdo or do (7)

Here X* = X*(7,0) represents the position of a point on the world sheet swept by

the string. The sheet is parametrized by the internal coordinates —c0 < 7 < oo and
0 <o < m,sothat X#(7,0) = X®5(7) and X* (7, 7m) = X§(7) represent the world
lines of an antiquark and a quark [3]. Within the definition (6) the tensor field £#"(x)
satisfies identically the equation of motion

O B (x) = J"(x), (8)

that is the first pair of equations of motion of Dirac’s extension of Maxwell’s Electrody-
namics. This means that the inclusion of a dual Dirac string in terms of £#”(x) defined
by (6) saturates completely the electric Gauss law.

The Lagrangian (1) is invariant under local U(1) gauge transformations, where U(1)
is the Abelian gauge group of dual-vector potential transformations. Due to the four-
monopole interaction, proportional to the phenomenological positive coupling constant
(7, the local U(1) symmetry gets broken spontaneously. In the symmetry-broken phase
the y-field becomes massive and condensed. The process of the y-field condensation
accompanies the appearance of a massive scalar y y—collective excitation and the mass
for the dual-vector field C',. The longitudinal component of the massive dual-vector
(' ,—field is generated by the contribution of the massless Goldstone boson appearing due
to the U(1) symmetry breaking in accordance with the Goldstone theorem [18].

By varying the Lagrangian (1) with respect to C () and y(x) we get the set of
equations of motion

9, F " (x) = gox(x)y” x(), (9)

(0 + g0 Cu(2)) x(z) = =26 [X(x) y(2)] x(2). (10)
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Eq.(8) can be valued as the second pair of equations of motion of Dirac’s extension of
Maxwell’s Electrodynamics. The r.h.s. of eq.(8) should be identified with the magnetic
current 7" (x)

7% () = gox(z)v" x(2). (11)

The magnetic current j”(x) can be obtained in a standard way by applying local gauge
transformation for the monopole field y

X'(x) = €

V() = xla)e (12

H
X(@) =
and defining the magnetic current as a derivative of the Lagrangian (1) with respect to

0" o (x)

dL(x)

Julz) = T 50rale)” (13)

For the subsequent investigation it is convenient to rewrite the Lagrangian (1) as follows

L) = — FEa(e)E5(x) + L Eu(e)(dC ()" +
PO ()0 (dC @)+ (14)

FXE)i (0, + 100 Cula) () + G Ko@) +
+Liree quark () -

Here we have used eq.(4). The Lagrangian (14) is the basic Lagrangian of the MNJL
model which we apply to the description of magnetic monopole physics with dual Dirac
strings.

The paper is organized as follows. In Sect. 1 we analyse the monopole condensation
and derive in one-monopole loop approximation the effective Lagrangian of the C',~field
and the scalar o—field being a collective excitation of the yx pair. In Sect. 2 we perform
the complete bosonization of the n—point monopole Green function. In Sect. 3 we derive
London equation of dual superconductivity. In Sect. 4 we represent the bosonized n—
point monopole Green function as a functional of a dual Dirac string shape. In Sect. 5 we
evaluate the Green function of the massive dual-vector field. We show that the mechanism
of the acquirement of the mass in one-monopole loop approximation is compared with
that within the standard Higgs model. There is also no contradiction to the Goldstone
theorem. In the Conclusion we discuss the obtained results.

1. Monopole condensation

Due to the strong attraction produced by the local four-monopole interaction the
monopole field y(z) acquires a mass M satisfying the gap equation [8-14]

M = —2G < 7(0)x(0) > (15)
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where

< (0 x(0) >= — —— M J,(M) (16)

42
is the monopole condensate [8-14] and J1(M) is the quadratically divergent integral

k1 . A?
Jl(M):/W%MQ_kQ — A M ﬁn(l—l—m). (17)

Here A is the ultra—violet cut—off.

Monopole condensation accompanies the creation of a monopole—antimonopole (y y)
collective excitation with the quantum numbers of a scalar Higgs meson field which we
denote below as p—field.

Following [8-14] we determine the effective Lagrangian of the p-field and the massive
C',—field as follows

Lei(e) = Le(v) = 7=p"() (18)
where
. Det(id — M + @)
Leg(x) = —i<:1; n - :1;> (19)
Det(id — M)
Here we have denoted & = —gov#C, — ko, and 0 = p — M/k. The o-field has

vanishing vacuum expectation value (v.e.v.), i.e. < o >= 0, while the v.e.v. of the
p—field does not vanish, i.e. <p >= M/x # 0.
The effective Lagrangian Leg(2) can be represented by an infinite series

Leg(r) = il %tr&x‘(ﬁ <I>) "

v) = ilzggw). (20)

The index L. means the evaluation of the trace over the Lorentz indices. The effective
Lagrangian E(i?;f)(x) is given by

; "l dd,dk, . 11 d*k
L‘(n) — / —tk1w1 —.—tkno (_ - ) /
ot (7) }:_[1 2mt ° n 1677 2

T T2y
«t { L (o) — & (2y) 21
T =~ X —— X
"M -k VM (21)
1
X...0(x,_ - - - D(x) ;.
( I)M—k—kl—...—kn_l ()}

at k1 + ko + ...+ k, = 0. The r.h.s. of (27) describes the one-massive-monopole
loop diagram with n—vertices. The monopole-loop diagrams with two vertices (n = 2)
determine the kinetic term of the o—field and give the contribution to the kinetic term of
the C',—field, while the diagrams with (n > 3) describe the vertices of interactions of the
o— and the C',— fields. In accordance with the prescription given in [9-14] the effective
Lagrangian £ o (x) should be defined by the set of divergent one-massive—monopole-loop
diagrams with n = 1,2,3 and 4 vertices. The evaluation of these diagrams gives



Log(2) = %8’;2 To(M)D, o(x) 9" o(z) + M [2i - j?JQ(M)} o(z) +
%[— ;—2 + 4/£7T22J1(M) - 4M8’j:2 To(M)] o%(z) —
2 Mk L Ty (M) o) — %M S (M) o () - (22)
93 v
o LMY () o (dC )
—1522 [J1(M) + M2 J5(M)] C () CF(x).

In order to get a correct factor of the kinetic term of the o—field we have to put [9-14]

/i2

2

Jo(M) = 1 (23)

where Jo(M) is a logarithmically divergent integral

d* k 1 A? A?
Jo(M) = / T2; M2 — k2 - ﬁn(l + Mz) M2 + A2 (24)

Accounting to the gap equation (15) and the constraint (23) we bring the effective La-
grangian (22) to the form

Carla) = §0uot0)0*ale) - 2o |1+ 0]+

M,
_4522 Jo(M) (dC(2)) 0y (dC(2))"" — (25)
_1532;2 JA(M) 4 MPTo(M)] C ) O ().

where M, = 2 M is the mass of the o—field.

The term proportional to (dC(x)),,(dC(x))"" can be removed by the renormaliza-
tion of the wave-function of the ', field with the subsequent renormalization of the
magnetic charge go. We leave to readers to get convinced in this assertion by performing
these quantum field theory exercises and emphasize that below g means the renormalized
magnetic charge connected with go by the expression

g -1 2 gt
ot =gl - o D] =gd [l S ] (26)
Here we have applied the constraint (23). The expansion in the r.h.s. of (26) is valid if
K> g.

After the integration over the monopole degrees of freedom the total Lagrangian should
read

Lunle) = = TEu ) EM () + 3 Euw) (dC ()" -
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+ 7 (dC(2)) o (dC (2)" = %Mé Culz) C*(z) + (27)

| =

1 . L.y o(x) 2
—|—§8MU(:1;)8 o(x) — §MUO' (x) ll + /QE] +

‘I’Efree quark (l’) .

where . . A
= [J1(M) + M2 Jy(M)] = FEhTeEe
We identify M¢ with the mass of the C',field in the phase of the spontaneously broken
U(1l)-symmetry. The longitudinal component of the massive ' ,field is generated by
the contribution of massless Goldstone bosons the appearance of which accompanies with
the spontaneous breaking of the U(1) gauge symmetry in accordance with the Goldstone
theorem [18]. A more detailed derivation of the Green function of the massive C',—field
displaying the contribution of Goldstone bosons is given in Sect. 5.

It should be emphasized that the field strength £#¥ () in the Lagrangian (27) contains
a renormalized electric charge of a quark @, i.e. Q@ = (go/g) Qo.

M2 = (28)

2. Monopole Green functions

The phenomenon of the magnetic current condensation has been observed within the
framework of CQED by DeGrand and Toussaint [19]. For the analysis of this phenomenon
within the MNJL model we have to consider the v.e.v. of time-ordered products of
densities expressed in terms of the massless—monopole fields, i.e. the monopole Green
function

Gar,...,2,) =< 0|T(x(z1)T1x(x1) ... X (@2) Tn x (20))]0 >connected (29)

where I'; (1 = 1,...,n) are the Dirac matrices.
Following the derivation suggested in [13] one can represent the r.h.s. of (29) in the
following form

G(x1,...,2,) =

= < 0|T (X(xl)IHX(xl) s X(xn)FnX(xn))m > connected=
(D < 01T (W aa( )T 1x ar (1) - X )T X ()

X exp 1 /d4:1; [,Cint(XM(x),a(x),Cu(x)) + (30)
+Lor(0(2), Cul@)) = LO(o(2), Cu(2))] )10 >0 iea
where
Lind x (@), 0(2), Cule)) = —gvar(2) 7 x (@) Oula) — kX ar(z) xarlz) o) (31)

and L (o(z),C ,(x)) is the Lagrangian of the free massive o— and C,fields. Then
0 >M) is the wave-function of the nonperturbative vacuum in the symmetry-broken



phase. The complete coincidence of the NJL model with the BCS—theory of supercon-
ductivity admits the exact evaluation of [0 >) in the form [8,15]

0> l\/lJrﬂp = bOT(—p. N[ 0>O (32)

where g;, = p/Es = p/\/p> + M? is the velocity of massive monopoles with the
mass M, and a7 (p,A) (or T (—H, A)) denotes the creation operator of a massless
monopole (or antimonopole) with the momentum p and helicity A; [0 > = |0 > is the
wave—function of the vacuum in the U(1)-symmetry phase. In the linear approximation
the operators of annihilation and creation of massive monopoles (or antimonopoles) are
connected with the corresponding operators annihilating and creating massless monopoles
(or antimonopoles) via the Bogoliubov transformation

1 1 — 33
a™(p.N) = M/ +ﬁp + O~ 5 ) 257),
(33)

In order to pick up the phenomenon of magnetic current condensation we have to consider
the following v.e.v.

< 0l7,(x) 7" (x)|0 > (34)

where the magnetic current 7% () is defined by formula (11) with a renormalized magnetic
charge g.
In terms of the massive—monopole fields interacting with the o—field and the massive

C ,~field the v.e.v. (34) is given by

<0lju(e) " (@)]0> = M < 0T (g v ar(w)yo x () ¥ aa(2)r” X ()
xexpi/d4:1?/[ﬁint(XM(wl)7U($/)70u($/))‘I' (35)
+Lo(o(x"), Cula’)) = Lo (2" ), C oz’ )])10 > Eiheciea -

In the tree—meson approximation the r.h.s. of the v.e.v. (34) is defined by the monopole
condensate

<0lju(a) 7 (@)0 > = —g* [ < x(0) x(0) > | (36)

where the monopole condensate < y(0) x(0) > is given by formula (15). Thus in the
MNJL model the magnetic current condensation exists and is fully due to the magnetic
monopole condensation.

As has been shown in [20] CQED predicts the nonzero v.e.v. of the curl of the magnetic
current, i.e. the quantity

< O|(d () o (dj(2))""]0 > (37)



should have a nonvanishing value. The direct evaluation of (37) in the tree-meson ap-
proximation gives

g2

12874

The analogous calculation one can perform for the v.e.v. of any order derivatives of

< 0(dj(x)) o (dj(x))"*]0 >= AP —16A* M2J5 (M) +28 M* J2(M)]. (38)

magnetic currents
<000,y ...0,,3(x)0" .. 0 5 (2)|0 > . (39)

This implies that within the MNJL model the v.e.v. (39) is fully defined in terms of the
cut—off A and the monopole mass M. The dependence of any v.e.v. on a dual Dirac string
shape can be also taken into account (see Sect. 4).

3. London’s equation of dual superconductivity

In order to show that the MNJL model admits the London equation of dual super-
conductivity we have to evaluate the v.e.v. of the magnetic current, i.e.

T¥(x) =< 05, ()0 >=
=< 0T (Xas(w) o (@) exp i [ e’ [Lanl (e’ ) o), Cule )+ (ap)
+Lo(o(x"), Coula’)) = LOo(2"), Culx)])10 >0l ciea -

In the tree-meson approximation the r.h.s. of (40) can be expessed in terms of the C

field
J"(x) = =MgC"(x). (41)
This is a relativistic extension of the London’s equation of dual superconductivity [3,4].

The relation (40) can be obtained directly from the Lagrangian (27) by performing an
infinitesimal gauge transformation of the C',field

Culz) = Clx) = Culz) = dya(z) (42)
and defining the magnetic current as a derivative of the Lagrangian (27) over d, a ()
dL(x)
= - ——"7 4
j#(x) 58“0&(1’) ( 3)

The r.h.s. of (43) is proportional to the C'”—field as it is given by eq.(41).

4. Monopole Green functions as functionals of the
dual string shape

By varying the Lagrangian L.(x) with respect to C',(x) one obtains the equations
of motion

(O 4+ M2)C¥(z) = =0, E" (). (44)
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Here we have used the constraint d,C*(x) = 0. The solution of eq.(44) reads [4]
CViE) = — / d'e Al — 2')0,EM () (45)

where A(x — «') is the Green function of the ' ,~field. The notation C'” [E(x)] means
that the C',~field is a functional of the dual string shape.

Substituting (45) in (30) we obtain the monopole Green function as a functional of
EM¥(x), i.e. a dual Dirac string shape

G(1,...,2,;E) =
=< 0|T (X(xl)IHX(xl) <. X(xn)FnX(xn))m > connected =
=M< 0T (X ar(e )T i am( 1) - X (@) DX a2 0) X

X exp 1 /d4:1;{ —gxm()y" xml(z)CL[E(x)] +

1
— s Xa(e) () ox) = Mono(e) = 5?0t (@) )10 > e -

(46)

The averaging over the string shape fluctuations should be performed with the weight
exp i Sqiring[E], 1-€.

G(xa,...,an) = /D/“‘[E]eiSString[g]G(l'la---7$n55)' (47)

Here D p [f] is the measure of the integration over the shape of the dual Dirac string with
the length £ [21], and Sguing|€] is the string action [3,4]

1
Seuingl€] = ZMg/ A od s €, u(x)DY(x — 2’ ) 5 (a") (48)
where 92 8
o4 ! o4 ﬁ !
Dﬁ(x—x):(gﬁ—ZM—g)A(x—x). (49)

Formula (47) is valid for the evaluation of any monopole Green function averaged over
dual Dirac string—shape fluctuations.

5. Green function of massive C',~field and Goldstone
boson

In this Section we give a derivation of the two—point Green function for the massive
(' ,—field and display the contribution of Goldstone bosons which accompany spontaneous
breaking of U(1) gauge symmetry as has been explained by the Goldstone theorem [18].
For simplicity we carry out the derivation in Lorentz gauge: 9,C*(x) = 0.

In accordance with quantum field theory [22] the two-point Green function of the
massive (' ,field, calculated in the one-monopole-loop approximation, should be defined
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by the infinite series

: 1 quqv
2 2 n
1g°D,.(q) % 3370 (gw i ) + (50)
1 quq o 1 q59v
p—— T L () Fa— -
+ goqurl.o(gu . ) (C])qz_l_l-o gp peal

Here 11°7(q), being a tensor of vacuum polarization caused by the constribution of virtual
magnetic monopole—antimonopole pairs, reads

2 4
o 95 d*k 1 N 1 sl
I (q)_167rz/7rzitr{M_]%7 M_]%_Qﬁy N
= A(¢*)(¢*9°" = q¢°¢") + B(¢*)q°q¢" = (51)
_ 98 [+ M Lrong\ (ger — 474"
= 52 [1( ) + 2 )]+§ 2(M)q g " = .2
where
2 93 2 2 2
A(Q) = 96 1 2 _?JI(M)—I_?(ZLM —Q)Jz(M) )
2 9(2) 2 (52)
B(¢®) = 32W2[—?J1(M)+J2(M)]-

Eq.(51) represents the gauge invariant evaluation of the polarization tensor performed for
the cut—off regularization.
Substituting (51) in (50) and summing up the infinite series one obtains

qpdv
2

19°D,uu(q) = g4 (guv —

93

61

x[qz— .

q

{[Jl(M) + M2J,(M)] + %JQ(MW} + @'01

) »

-1

e
= g(zJ (gﬂl’ - ;2 ) X
9 96 - 3)
2 0 0 2 . .
o= g ra0n) = 2 [+ vt an] + o] -
_ g’ PSR 17
g* — MZ +i0\""" g2
_ g _ ), 9 4t
¢ = Mz 0 \"" T Mg ) T MR g

Here g and M are the renormalized magnetic charge of monopole and the mass of the
C ,field in the symmetry—broken phase given by eqs.(26) and (28), respectively. The

term

2

g QMQU

Mg q?
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in the r.h.s. of (53) describes the contribution of the massless Goldstone boson appearing
due to spontaneous breaking of U(1) gauge symmetry in accordance with the Goldstone
theorem [18].

The evaluation of the two—point Green function of the massive (', ~field, given in the
MNJL model, one should compare with that within the standard Higgs model [22] when a
vector field acquires a mass in the tree approximation. In the case of the standard Higgs
model 119%(q), defined in the tree approximation, is given by: M1*?(q) = 2g2v?g®?,
where v is the v.e.v. of the Higgs field. The infinite series (51) should be summed up to
the form (53) with the vector meson mass equals M3 = 2¢g2v?.

Thus the mechanism of the acquirement of mass by vector mesons, caused by sponta-
neous breaking of symmetry, given in the MNJL model and the standard Higgs model can
be compared well. There is only the distinction that for the Higgs mechanism ¢, remains
unrenormalized. This implies that the quantity M defined by eq.(28) is in reality the
mass of the C',~field in the symmetry-broken phase.

Conclusion

Now let us resume the obtained results. We have found that the NJL model applied
to the description of monopole physics, i.e. the MNJL model, has turned out very useful
for the understanding of the mechanism of monopole and magnetic current condensa-
tion. The local four-monopole interaction provides spontaneous breaking of the U(1)
gauge symmetry that leads to the monopole condensation and the appearance of massive
monopole y p—fields. They interact with the massive scalar monopole—antimonopole col-
lective excitation o-field and the massive dual-vector field C',. As a result the v.e.v. of
any time-ordered product of massless monopole densities can be evaluated in terms of
v.e.v. of massive monopole densities with massive monopole fields interacting with the
massive o— and the massive (', ~fields. This allows to reproduce in continuum space-time
the condensation of any order derivative of the magnetic current, i.e.

<000, ...0,.j(2)0" .. 9" j(2)]0 >

observed within CQED. The v.e.v. can be evaluated in terms of dual Dirac string-shapes
and averaged over string—shape fluctuations.

Thus, the enumerated peculiarities of the MNJL model, i.e. magnetic monopole con-
densation, the condensation of magnetic current and any order derivative of magnetic
current and so on, should testify a close affinity between the MNJL model and CQED.
This allows to think that the MNJL model can be considered as some kind of continuum
space—time analogy of CQED.

The Nambu—Jona-Lasinio version of the monopole physics, i.e the MNJL-model,
seems much more flexible in comparison with the dual Higgs model that we have sug-
gested in ref.[23]. Indeed, in the MNJL-model the condensation of the magnetic current
and its derivatives can be obtained in the main one-monopole-loop and in the tree C',—
field approximation. In turn in the Dual Higgs model the condensation of these quantitites
is the matter of the C',~field loop contributions and does not appear in the tree C',~field
approximation. The more detail comparison of the MNJL-model with the dual Higgs
model [23] we are planning to carry out in our forthcoming publications.
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