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2 CARLANGELO LIVERANIx0 Introduction.A discrete time dynamical system consists of a measurable space X togetherwith a �-algebra F , a measurable map T : X ! X which describes the dynamics,and a probability measure P invariant with respect to T . This setting is particu-larly well suited to study problems involving statistical properties of the motion ofdeterministic systems.Typically the properties of interest are ergodicity, mixing, bounds on the decayof correlations, Central Limit Theorems ( CLT ) and so on. Several approaches havebeen developed to tackle such problems at various levels. Given a system, one �rstexplores the weaker statistical properties and then tries to investigate the strongerones using the already obtained results plus some extra properties.The position of this paper in the above mentioned hierarchy is between obtainingbounds on the decay of correlations and CLT. In other words we discuss a generalapproach that gives checkable conditions under which, in a mixing system, an ob-servable enjoys the CLT. Such general approaches already exist but they are eitherlimited to one dimensional systems [Ke] or relay on the existence of special par-titions of the phase space [Ch], partitions which concrete construction may be farfrom trivial [BSC1], [BSC2]; for a very nice review of the state of a�airs up to 1989(but still actual) see [De].Here, I want to put forward the following point of view: the above describeddynamical systems are most naturally viewed as giving rise to a (deterministic)Markov process. It is therefore tempting to think that there should exists somegeneral probabilistic theorem that states abstract conditions for the validity of theCLT, and that all the concrete cases can simply be obtained by the direct applicationof such a theorem to the system under consideration (without having to code thesystem in some symbolic type dynamics). General theorems of this type are wellknown in probability theory but they are normally not well suited for applicationsto the case at hand. Two such general theorems, tailored for dynamical systems,can be found in this paper.Attempts in this directions already exists for some time [Go], [IL], but they aresatisfactory only for the one dimensional case (the equivalent of Theorem 1.1 in thispaper). Particular mention must be given to [DG], the results obtained there areessentially comparable to the one presented here in section 1 and could be appliedto the multidimensional case. Unfortunately, not much attention is given thereto applications, so that the possibility to bypass a symbolic representation of thesystem is completely overlooked.The approach used here is a martingale approximation inspired by [KV]. Sincethis is a typical probabilistic technique, I think it underlines very well the purelyprobabilistic nature of the result hereby clarifying which characteristics of a deter-ministic system yield such a drastic statistical behavior.As we will see, a major di�erence with the analogous type results in probabilityis that the CLT holds for a much smaller class of observables than the square sum-mable ones. This is not an artifact of the proof: it is an inevitable consequence ofthe deterministic nature of the systems under consideration so that only observables



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 3that operates some \coarse graining" (and therefore enjoy some degree of smooth-ness) can yield strong statistical behavior. Here no particular attempt is made to�nd the most general class of observables to which the Theorems apply; nonetheless,the technique put forward lends itself to an extension in such a direction.The paper includes some concrete examples as well. Their aim is to show how thegeneral theorems can be applied in special cases. The cases discussed belong to quitegeneral classes (expanding one dimensional maps, area preserving piecewise smoothuniformly hyperbolic maps in two and more dimensions), yet no real new resultis contained in such examples. This re
ects the spirit of the paper of presentingan approach to the problem rather than new implementations. Nevertheless, theapplication of the present results in technically complex situations (e.g., hyperbolicbilliards) greatly simpli�es the proof of the validity of the CLT. In addition, it isconceivable that some new results can be obtained by this approach since the twoabove mentioned theorems hold in more general cases than the ones already presentin the literature (a brief comparison with previously known results is inserted afterthe proof of each theorem).The plan of the paper is as follows. Section 1 contains two probabilistic theoremsthat are well suited for the study of dynamical systems. In fact, they may seem a bitunnatural from the pure probabilistic point of view. On the one hand, both theoremsdeal only with functions in L1 instead than L2. The reason is that normallythe decay of correlations in dynamical systems can be obtained only for classesof functions with some amount of smoothness, which makes them automaticallybounded. The issue is not purely a matter of taste: a look at the proofs will showthat such an hypothesis has really been used and that many key estimates wouldnot hold in L2. On the other hand, in Theorem 2 are introduced �-algebras Fi thatbehave nicely with respect to the dynamics. This may make little sense from thepurely probabilistic point of view but it is instead a cornerstone in the treatmentof hyperbolic dynamical systems.In the above sense the results of section 1, although purely probabilistic in nature,are expressly developed for applications to dynamical systems.Section 2 describe how the technique applies to non-invertible maps. The caseof piecewise smooth expanding maps of the interval is discussed in detail.Section 3 deals with the most interesting applications: the multidimensionalcase. As an example I treat a large subclass of piecewise smooth symplectic maps.Such maps are well studied in the literature for some relevant physical models (e.g.billiards) are naturally described in their terms. It is shown that very generalconsiderations imply the applicability of the results developed in section one.x1 A general probabilistic result.Let X be a complete separable metric space, F a �-algebra, P a probabilitymeasure (P (X) = 1) and T : X ! X a measurable map.1 We will call E the1Actually, we assume that, for each A 2 F , not only T�1A 2 F but also TA 2 F .



4 CARLANGELO LIVERANIexpectation with respect to P . In addition, we require that P is invariant withrespect to T (i.e., for all A 2 F holds P (T�1A) = P (A)), and that the dynamicalsystem (T; X; P ) be ergodic.For each � 2 L2(X) de�ne bT : L2(X)! L2(X) bybT� = � � T;and let bT � : L2(X)! L2(X) be the dual of bT .If E(f ) = 0, then by ergodicity limn!1 1nPn�1i=0 bTnf = E(f ) = 0. The CLT gives usinformations on the speed of convergence; namely the conditions under which thereexists � 2 R+: for each interval I � Rlimn!1P  ( 1pn n�1Xi=0 bTnf 2 I)! = 1p2�� ZI e� x22�2 dx;this is called \convergence in law (or distribution)" to a Gaussian random variableof zero mean and variance �.Consider a sub-�-algebra F0 of F and de�ne Fi = T�iF0, i 2 Z, then thefollowing holds.Theorem 1.1. If Fi is coarser than Fi�1 and, for each � 2  L1(X), we haveE( bT bT ��jF1) = E(�jF1);then, for each f 2  L1(X), E(f ) = 0 and E(f jF0) = f , such that(1) P1n=0 jE(f bTnf)j <1,(2) the series P1n=0 E( bT �nf jF0) converges absolutely almost surely,2the sequence 1pn n�1Xi=0 bT ifconverges in law to a Gaussian random variable of zero mean and �nite variance�, �2 � �E(f2 ) + 2P1n=0 E(f bTnf).In addition, � = 0 if and only if there exists a F0{mesurable function g such thatbTf = bTg � g:Finally, if (2) converges in L1(X), then �2 = �E(f 2) + 2P1n=0 E(f bTnf).Proof. The key idea is to use a Martingale approximation. That is, to �nd Yi 2L2(X) and g F0{measurable, and almost everywhere �nite, such that(1.1) E(Yi�1 jFi) = Yi�1 ; E(Yi jFi) = 0;2As we will see in the proof, this implies that there exists an almost everywhere �nite F0-meausurable function g, such that f = g � E( bT �gjF0).



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 5(i.e., Yi is a reverse Martingale di�erence with respect to the �ltration fFig1i=0),and(1.2) bT if = Yi + bT ig � bT i�1g 8i > 0:Accordingly,(1.3) 1pn n�1Xi=0 bT if = 1pn n�1Xi=0 Yi + 1pn [bTng � g]:Equation (1.3) shows that we can obtain the central limit theorem for our randomvariable provided we have the central limit theorem for the martingale di�erenceYi. In fact, 1pn [bTng � g] converges to zero in probability when n!1.Note that (1:1) and (1:2) are equivalent toE( bT if jFi) = E( bT igjFi) � E( bT i�1gjFi) 8i > 0:Since by the de�nition of Fi follows that, for each � 2 L1(X),E( bT i�jFi) = bT iE(�jF0) 8i > 0;and because the invariance of E with respect to T implies bT � bT = 1l, we have(1.4) f = E(gjF0)� bT �E(gjF1) = g � bT �E( bT bT �gjF1)= g � E( bT �gjF0):It is immediate to see that g = 1Pn=0E( bT �nf jF0) (the convergence of the seriesis the hypothesis (2) in the statement of the theorem) is a solution of the aboveequation, and therefore of (1.2), (clearly, Yi = bT i�1Y1).3In fact, setting T0� = E( bT ��jF0), the solution of (1:4) is given by the Neumannseries P1n=0 Tn0 f . But Tn0 f = E( bT �nf jF0) sinceE( bT �E( bT �nf jF0)jF0) =bT � bTE( bT �E( bT �nf jF0)jF0) = bT �E( bT bT �E( bT �nf jF0)jF1)=bT �E(E ( bT �nf jF0)jF1) = bT �E( bT �nf jF1)=bT �E( bT bT �(n+1)f jF1) = E( bT �(n+1)f jF0):To insure that the central limit theorem for Yi holds, we need only to show thatYi is square summable due to the following [Ne]:3It is remarkable that, once we have g, the Yi are de�ned by (1.2) itself, and will automaticallysatisfy (1.1).



6 CARLANGELO LIVERANITheorem. Let (Yn)n�1 be a stationary, ergodic, martingale di�erence (or reversedmartingale di�erence) with respect to the �ltration fFngn�1. If Y1 2 L2(X), then�2 = E(Y 21 ) and the CLT holds.The above theorem applies to our case since the stationarity of (Yn) is implied bythe invariance of the measure with respect to T , while the ergodicity follows fromthe ergodicity of the dynamical system (X; T; P ).If the seriesP1n=0 E( bT �nf jF0) would converge in L2(X), then Y1 2 L2(X) wouldhold and the Theorem would be proven. It is however a remarkable fact that Yi canbe in L2(X) without g being even integrable [KV]. Unfortunately, the road to thisresult is a bit indirect and consists in carrying out an argument similar to the oneabove but producing a sequence of martingale di�erences Yi(�) that approximateYi.Let us look for Yi(�), � > 1, such that(1.5) E(Yi�1(�)jFi) = Yi�1(�) ; E(Yi(�)jFi) = 0;and(1.6) bT if = Yi(�) + bT ig(�)� ��1 bT i�1g(�) 8i > 0; � > 1:In analogy with what we have seen before g(�) = 1Pn=0��nE( bT �nf jF0), only nowg(�) 2 L2(X) for each � > 1. Since lim�!1g(�) = g(1) = g almost surely, it followsthat lim�!1Yi(�) = Yi almost surely. In addition,E(Yi (�)2) =E(Y1(�)2) = E([ bT f � bTg(�) + ��1g(�)]2)=E( bT f [ bT f � bTg(�) + ��1g(�)])� E([ bT g(�)� ��1g(�)][bTf � bTg(�) + ��1g(�)]);since E( bT f � bTg(�) + ��1g(�)jF1) = E(Y1 jF1) = 0. Hence,E(Yi(�)2) =� E(( bT f)2) + E([ bT g(�) � ��1g(�)]2)=�E(f2) + E( bT g(�)[ bTg(�) � ��1g(�)])� ��1E(g(�) bT g(�)) + ��2E( bT g(�)2)=� E(f 2) + 2E( bT g(�)[bTg(�)� ��1g(�)])� (1� ��2)E(g(�)2)=� E(f 2) + 2E( bT g(�)bTf) � (1� ��2)E(g(�)2)=� E(f 2) + 2E(g(�)f ) � (1� ��2)E(g(�)2)�� E(f 2) + 2 1Xn=0��nE(f bTnf) � �E(f 2) + 2 1Xn=0 jE(f bT nf)j:The wanted estimates follows fromE(Y 21 ) = E(lim inf�!1 Y1(�)2) � lim inf�!1 E(Y1(�)2) � �E(f2 ) + 2 1Xn=0E(f bTnf):



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 7In conclusion, we have seen that the random variable under consideration con-verges in law to a Gaussian of variance �2 = E(Y 21 ) <1. If � = 0 then the secondassertion of the statement follows sinceE(Y 21 ) = E([ bT f � bTg + g]2):If we assume that the series in (2) converges in L1(X), then it is possible toobtain the much sharper resultlim�!1 E(Y1 (�)2) = �E(f 2) + 2 1Xn=0��nE(f bTnf):In fact, for each " > 0����E(Yi(�)2)�E(f 2) + 2 1Xn=0��nE(f bTnf)���� � 1Xn=0(1� ��n)E(f bTnf)+ (1� ��2)E(g(�)2) � (1� ��M ) 1Xn=0 E(f bTnf) + 1Xn=M E(f bTnf)+ (1� ��2)E(g(�)2) � "+ (1� ��2)E(g(�)2)where M has been chosen su�ciently large and � su�ciently close to one. In orderto continue we need to estimate the last term in the above expression. For furtheruse we will deal with a more general estimate: for each �; � 2 (1; 1) holds(1.7) E(g(�)g(�)) = 1Xn;m=0��n��mE( bT �nfE( bT �mf jF0))� 1Xn=0��n M�1Xm=0 kfk1E(jE ( bT �nf jF0)j) + 1Xn=0��n 1Xm=M E(jE ( bT �mf jF0)j)�Mkfk1 1Xn=0E(jE ( bT �nf jF0)j) + kfk11� ��1 1Xm=M E(jE ( bT �mf jF0)j):That is, choosing again M large and � su�ciently close to 1,(1 � ��1)E(g(�)2 ) � 2":This is not the end of the story: it is possible to prove that Y1 is the limit of Y1(�)in L2(X). To see this it su�ces to estimateE([Y1(�) � Y1(�)]2) = E([��1g(�) � ��1g(�)][Y1(�) � Y1(�)])= E([��1g(�) � ��1g(�)]2) + E([g(�) � g(�)]2)� (1 � ��1��1)E(g(�)g(�));since no generality is lost by choosing � � � > 1, the result follows thanks to theestimate (1:7). �



8 CARLANGELO LIVERANILet us discuss brie
y how the above result compares with the ones present in theliterature. In the work of Gordin [Go], used by Keller [Ke], a very similar theoremis present. The main di�erence is that condition (1) and (2) are replaced by themuch stronger condition 1Xn=0E(E ( bT �nf jF0)2) <1:A similar comment applies to [DG], where moreover there is no discussion of thecase � = 0.Theorem 1.1 often is applicable in cases in which T is not invertible, wheresometime it is possible to choose F0 = F (see x2 ).When T is invertible the choice F0 = F is likely to yield Fi = F for each i 2Z,this would undermine the possibility of capturing any type of dynamical coarsegraining e�ect, whereby nullifying the hope of obtaining an interesting statisticalbehavior. In such a case, there are situations in which a natural choice for F0 exists(see x3), but it would be too restrictive to require f to be F0{measurable.The above di�culties can be dealt with by the following Theorem.Theorem 1.2. Suppose T one to one and onto. If Fi is coarser than Fi�1, then,for each f 2  L1(X), E(f ) = 0 such that(1) P1n=0 jE(f bTnf)j <1,(2) the series P1n=0 jE( bT �nf jF0)j converges in L1,(3) 9 � > 1: supk2N k�E(jE (f jF�k ) � f j) <1,4the sequence 1pn n�1Xi=0 bT ifconverges in law to a Gaussian random variable of zero mean and �nite variance�, �2 = �E(f2 ) + 2P1n=0 E(f bTnf).In addition, if P1n=0 njE(f bTnf)j < 1, then � = 0 if and only if there existsg 2 L2(X) such that bTf = bTg � g:Proof. The key idea is to �rst approximate f by E(f jF�k ) and then use the sametype of Martingale approximation introduced in Theorem 1.1. That is, to �ndYi(k; �) 2 L2(X) and g(k; �) 2 L2(X) such that, given k > 0, for each i > 0 and� > 1(1.8) E(Yi�1(k; �)jFi�k) = Yi�1(k; �) ; E(Yi(k; �)jFi�k) = 0;(i.e., Yi(k; �) is a reverseMartingale di�erence with respect to the �ltration fFig1i=�k)and(1.9) bT iE(f jF�k ) = Yi(k; �) + bT ig(k; �)� ��1 bT i�1g(k; �) 8i > 0; � � 1:4This condition it is not optimal, as it can be seen by looking at the proof, yet I do not knowof any application in which a weaker condition could be of interest.



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 9Note that (1:8) and (1:9) are equivalent toE(f jF�k ) = g(k; �)� ��1E( bT �g(k; �)jF�k):It is immediate to see that g(k; �) = 1Pn=0��nE( bT �nf jF�k) 2 L2(X) for each� > 1 and in L1(X) for � = 1 (this is a consequence of hypothesis (2) in thestatement of the Theorem) is a solution of the above equation (see the analogousdiscussion in Theorem 1.1).Again we want to show that the Yi(k; 1) are square summable, actually, in thiscase, we need a uniform estimate in k. In partial analogy with Theorem 1.1, wehaveE(Yi(k; �)2) =E(Y1(k; �)2) = �E(E (f jF�k )2) + E([ bT g(k; �) � ��1g(k; �)]2)=� E(E (f jF�k )2) + 2E(g(k; �)E(f jF�k )) � (1 � ��2)E(g(k; �)2):In addition, for each � > 1,E(g(k; �)E(f jF�k )) � 1Xn=0 jE(fE ( bT �nf jF�k))j = 1Xn=0 jE( bT �nfE(f jF�k ))j�2kfk1kE(jE (f jF�k )� f j) + 1Xn=k E( bT kfE( bT �nf jF0))+ 2k�1Xn=0 E( bTnff) <1;where the uniform bound follows from the hypotheses (1), (2), (3) of the Theo-rem. The previous estimates show that Yi(k; 1) are uniformly square integrablemartingale di�erences. Moreover,limk!1 lim�!1 E(Y1 (k; �)2) = �E(f 2) + 2 1Xn=0 E(f bTnf) = �2:To see this it, it is enough to computeE(g(k; �)g(k; �)) = 1Xn;m=0��n��mE( bT �nfE( bT �mf jF�k))� 1Xn=0��nMkfk1E(jE ( bT �nf jF�k)j)+ 1Xn=0��nkfk1 1Xm=M E(jE ( bT �mf jF�k)j)�Mkfk21k +Mkfk1 1Xn=0E(jE ( bT �nf jF0)j)+ (1� ��1)�1kfk1 1Xm=M�k E(jE ( bT �mf jF0)j);



10 CARLANGELO LIVERANIso, sinceM can be chosen arbitrarily large, lim�!1(1��)E (g(k; �)2) = 0. Furthermore,in analogy with Theorem 1.1, easily follows that Y1(k; �) converges to Y1(k; 1) inL2(X).This implies that, de�ningSn = 1pn n�1Xi=0 bT if ; Skn = 1pn n�1Xi=0 bT iE(f jFk );the Skn converges in law to a gaussian with zero means and variance E(Y1(k; 1)2).The next step is to obtain the needed convergence as k goes to in�nity.E([Skn � Sn]2) =1n n�1Xi; j=0 E( bT i [f � E(f jF�k )]bT j [f � E(f jF�k )])�E([f � E(f jF�k )]2) + 2 n�1Xi=1 jE([f � E(f jF�k )]bT i[f � E(f jF�k )])j�2kfk1E(jf � E(f jF�k )j) + 2 n�1Xi=1 jE( bT if [f � E(f jF�k )])j=2kfk1E(jf � E(f jF�k )j) + 2 n�1Xi=1 jE( bT �if [f � E(f jF�k�i )])j� 2kfk1 1Xi=k E(jf � E(f jF�i )j);which it is smaller than " uniformly in n, since (3) implies the convergence of theseries P1i=0 E(jf � E(f jF�i)j).Collecting the previous estimates follows that Sn converges to a Gaussian of zeromean and variance �2.Next, suppose that �2 = 0 and P1n=0 njE(f bTnf)j � 1, then(1� ��2)E(g(k; �)2) + E(Y1(k; �)2) � �E(E (f jF�k )2) + 2E(g(k; �)f)� E(f 2) � E(E (f jF�k )2) + 2 1Xn=1(1� ��n)E(f bTnf)+ 2 1Xn=0��n hE(E ( bT �nf jF�k)f) � E(f bT nf)i� kfk1E(jf � E(f jF�k )j) + 2(1� ��1) 1Xn=0njE(f bTnf)j+ 2kfk1 2k�1Xn=0 E(jE (f jF�k )� f j) + 1Xn=k E(jE ( bT �nf jF0)j)!+ 2 1Xn=2k E(f bTnf):



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 11Accordingly, it is possible to de�ne � : (0; 1)! N, lim�!1 �(�) =1, such thatE(g(�(�); �)2) �M 8� > 1lim�!1E(Y1(�(�); �)2) = 0;where M is some �xed positive number.Since L2(X) is a Hilbert space, and therefore re
exive, the unit ball is compactin the weak topology, so fg(�(�); �g�>1 is a weakly compact set and we can extracta subsequence f�jg, limj!1 �j = 1, such that fg(�(�j); �jg converges weakly to afunction g 2 L2(X). In addition, (1.9) implies, for each ' 2 L2(X),E( bT �'E(f jF�k )) = E(Y1 (�(�j); �j)')+E( bT �'g(�(�j); �j))���1j E('g(�(�j ); �j));and taking the limit j !1 yieldsE( bT �'f) = E( bT �'g)� E('g) 8' 2 L2(X):That is bTf = bTg � g:�This theorem is rather similar to Theorem 4.4 in [DG], the main di�erence is theabsence, in [DG], of a discussion of the degenerate case � = 0. The only other resultsknown to the author that have a breath similar to Theorem 2.1 are contained in[Ch]. The comparison it is not so easy because the results in [Ch] are stated directlyin the language of special families of �nite partitions. This language it is well suitedfor applications to the case in which the system is studied by the type of codingcalled Markov sieves, but it is not so transparent in an abstract contest. At anyrate an evident di�erent is that Chernov's result requires the existence of the �rstmoment of the correlations (i.e., P1n=0 nE(ff � Tn) < 1) in order to obtain theCLT while in Theorem 1.2 such a condition is not necessary, unless one wants thecoboundary characterization of the functions that yields to a degenerate limit.x2 Non invertible maps.In this section we will see how the results of the previous section apply to thecase in which T is onto but not one to one.We choose F = F0, so Fi = F for all i � 0. Note that if E(�jF1) = �,then g(x) = �(T�1x) is well de�ned, hence Range(T ) is exactly the F1-measurablefunctions. Moreover, bT bT � is an orthogonal projection onto Range(T ), while E(�jF1)is an orthogonal projection onto the F1-mesuarable functions. That is, for each� 2 L1(X) bT bT �� = E(�jF1):



12 CARLANGELO LIVERANIThe �rst condition of Theorem 1.1 is then satis�ed quite generally. To see how thetheorem works let us apply it to the case of one dimensional maps (i.e. X = [0; 1]).Let us consider a partition of [0; 1] into �nitely many intervals fIkgpk=1. AndT : [0; 1]! [0; 1] such that(1) T ��Ik 2 C(2) for each k 2 f1; :::; pg(2) infx2[0; 1] jDxT j � � > 1.That is a piecewise smooth expanding map. If the reader wants to consider aconcrete example, here is a very simple one: the piecewise linear map T : [0; 1]![0; 1] de�ne by T (x) = 8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
92 �19 � x� x 2 �0; 19�92 �x � 19� x 2 �19 ; 39�92 �59 � x� x 2 �39 ; 59�92 �x � 59� x 2 �59 ; 79�92 (1� x) x 2 �79 ; 1�The map satis�es our assumptions since jDT j = 92 > 1.The following result is well known [HK]:Theorem 2.1. There exists a unique probability measure �, absolutely continuouswith respect to Lebesgue, which is invariant with respect to the map T . In addition,there exist � 2 (0; 1) and K > 0 such that, for each f 2 BV ([0; 1]) (the space offunctions of bounded variation), and g 2 L1([0; 1]; �)����Z 10 fg � Tnd�� Z 10 fd�Z 10 gd����� � K�nkfkBVkgk1Since � is absolutely continuous with respect to the Lebesgue measure m theRadon{Nicod�ym derivative h = d�dm is in L1([0; 1]; m). For simplicity assume h �" > 0,5 then it followsbT �f(x) = h(x)�1 Xy2T�1(x)h(y)f(y)jDyT j�1:Such a representation implies that the last statement of Theorem 2.1 can berephrased as follows: for each f 2 BV ([0; 1]), R 10 fd� = 0kbT �nfk1 � K�nkfkBV:5This is always veri�ed if T is continuous, like in our example; but see [L2] for a discussion ofthe general case.



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 13It is then immediate to see that Theorem 1.1 applies to this situation yieldingthe central limit theorem for all functions of bounded variation. The reader caneasily see that such a result can be improved obtaining the central limit theorem forfunctions with less regularity (e.g., by an approximation argument) but this is notthe main focus here. In addition, similar results can be obtained for several casesin which the map T consists of in�nitely many smooth pieces.It is also immediate to verify that the theorem will yield the CLT for BV functionsalso for some non-hyperbolic maps (such as the quadratic family [Y]) or maps thatare non-uniformly hyperbolic ([LSV]).x3 Invertible maps.In this case it would be useless to choose F0 = F : typically this would yieldFi = F for each i 2 Z. So the choice of F0 must be motivated by dynamicalconsiderations. Here we will discuss a general class of systems for which such achoice is quite natural: the hyperbolic systems.6For simplicity I will con�ne the discussion to the case in which X is as compactsymplectic manifold with a Riemannian structure that yields a volume form equiv-alent to the symplectic one and T a piecewise C2 symplectic map, but see [KS] and[LW] for more general possibilities. By hypothesis the symplectic (or Riemannian)volume � is invariant. (The more general case of dissipative systems can also betreated with the same arguments, again the details are left to the reader).We will assume T uniformly hyperbolic, since almost nothing is known on thedecay of correlations for non-uniformly hyperbolic systems. By this we mean that ateach point x 2 X there exists two subspaces Eu(x); Es(x) 2 TxX, Eu(x)\Es(x) =f0g and Eu(x)�Es(x) = TxX, invariant (i.e., DxTEu;s(x) = Eu;s(Tx)), and thereexists � > 1 such that for each x 2 X,kDxTvk � �kvk 8v 2 Eu(x)kDxTvk � ��1kvk 8v 2 Es(x):Also, we assume that Eu;s(x) depends continuously with respect to x (the abovesystems are called Anosov, in the smooth case). In the smooth case such systems areknown to be ergodic (in fact, Bernoulli ), one can see [LW] for su�cient conditionsthat insure ergodicity also in the non smooth case. To help the reader in bettervisualizing the following discussion let us consider the simplest possible non-trivialexample.We consider a family of linear maps of the plane de�ned byx01 = x1 + ax2x02 = x2;where a is a real parameter. We use these linear maps to de�ne (discontinuous ifa 62 N) maps of the torus by restricting the formulas to the strip f0 � x2 � 1g and6More generally this strategy can be applied to K-systems.



14 CARLANGELO LIVERANIfurther taking them modulo 1. In this way we de�ne a mapping T1 of the torusT2 = R2=Z2 which is discontinuous on the circle fx2 2 Zg (except when a is equalto an integer) and preserves the Lebesgue measure �.Similarly we de�ne another family of maps depending on the same parameter aby restricting the formulas x01 = x1x02 = ax1 + x2to the strip f0 � x1 � 1g and then taking them modulo 1. Thus for each a we geta mapping T2 of the torus which is discontinuous on the circle fx1 2 Zg (exceptwhen a is equal to an integer) and preserves the Lebesgue measure �.Finally we introduce the composition of these maps T = T2T1 which depends onone real parameter a. An alternative way of describing the map T is by introducingtwo fundamental domains for the torusM+ = f0 � x1 + ax2 � 1; 0 � x2 � 1g andM� = f0 � x1 � 1; 0 � �ax1 + x2 � 1; g.The linear map de�ned by the matrix� 1 aa 1 + a2� = � 1 0a 1�� 1 a0 1�takesM+ ontoM� thus de�ning a map of the torus which is discontinuous at moston the boundary of M+ and preserves the Lebesgue measure. This is the map Tthat constitute our toy model.Let us go back to the more general case, according to [KS] such systems havea natural measurable partition (in fact a K-partition): the partition into stablemanifolds.Such a partition P can be constructed as to satisfy the following requirements:(1) there exists a �nite number of codimension one smooth manifolds fSigm0i=1,transversal to the stable direction, such that each p 2 P has the boundariespoints belonging to the set [m0j=1 [1n=0 T�nSi;7(2) for each p 2 P diam(p) � 2�;8(3) for each p 2 P there exists fpigki=1 � P such that T�1p = [ki=1pi.The above properties imply that choosing as F0 the �-algebra generated by thepartition P, then fFig1i=0 has the dynamical properties requested in the hypothesesof Theorem 1.2.To make the previous statement more clear let us see how such a partition lookslike in the concrete example mentioned above.The map T is piecewise linear and it has constant contracting direction v. Let uscall S the discontinuity set of T�1 and S1 = \1n=0T�nS. Then the stable partitionis made of segments along the direction v with the endpoints belonging to S1.9Since S1 is an invariant set, properties (1)-(3) are readily veri�ed.Further, we will assume that the manifolds fSig satisfy the following property:7In the discontinuous case such manifolds can be simply chosen as the set of points at whichT is not C(2) .8� is some previously �xed number.9See [LW] for the details of such a construction and the proof that almost every point belongsto one such segment.



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 15Property 0. For each i 6= j Si \Sj is either empty or consists of smooth subman-ifolds Iij of codimension at least two. Moreover, setting10M � supij ]fk 2 f1; :::; m0g j Sk \ Iij 6= ;g;we require � � ��1M < 1:Note that Property 0 may not be satis�ed by T but may be enjoyed by T q, forsome q > 1. In fact, it is not so hard to see that \generically" this will be thecase (i.e., Property 0 will hold for some iterate of the map). In such a situationwe can apply all the following to the dynamical system (X; �; T q) obtaining thesame conclusions as far as the CLT is concerned. Here, for simplicity, we restrictourselves to the case q = 1.If we think to our model example we see that M = 2, so that ��1M < 1 ifjaj > 1p2 . The reader can easily compute M for powers of T and see that Property0 is satis�ed for smaller and smaller values of a. Of course, a = 0 corresponds tothe identity, for which no hyperbolicity is present.For the systems under consideration holds the following (see [KS] for details)Property 1. For each p 2 P de�ne the measure �p byE(gjF0)(x) � Zp gd�p;for g 2 C(0)(X), and x 2 p.Then, calling mp the measure induced by the Riemannian structure on p, and�p = d�pdmp the Radon{Nicod�ym derivative, there exist c0 such that supp k�pk1 � c0.For our simple example we see that �p = 1mp(p)mp.The map is invertible, thus bT �f = f � T�1. A very important consequence ofProperty 1 is that, if p 2 P and P 0 � P is such that Sq2P0 q = T�np, then for eachf 2 L1(X; �) Zp f � T�nd�p = Xq2P0 �p(Tnq)Zq fd�p:In addition, one can prove the following (see [L1] for a complete discussion of thetwo-dimensional case).Property 2. There exists K 2 R and � > 1, such that, for each x 2 X that belongsto p 2 P with diam(p) � �, and for each g; f 2 C�(X) (H�older continuous of class� > 0), RX g = 0,11 E(f bT �ngjF0)(x) � K��nkgks�kfku�In the rest of the section we will see that Properties 0-2 imply, for the systemsunder consideration, the hypotheses of Theorem 1.2.10By ]B I mean the cardinality of the set B.11By kfk� we mean the usual C(�) norm, while kfks� = supp2P supx; y2p jf(x)�f(y)jkx�yk� + kfk1 ; andkfku� is de�ned analogously by using the unstable partition. Essentially, This norms measure theH�older derivative in the stable (or unstable) direction only.



16 CARLANGELO LIVERANILemma 3.1. Calling A" = fx 2 X j diam(p(x)) � "g we have12m(A") � C"for some �xed C 2 R+.Proof. Since @p is made up of points belonging to the preimages of the manifoldsSi, it follows that if diam(p) � " then there exists z 2 @p and n 2 N, i 2 f1; :::; m0gsuch that Tnz 2 Si. Accordingly, Tnp must lie in a ��n" neighborhood of Si. Sucha neighborhood has measure c1��n", for some �xed c1. It is then clear thatm(A") � 1Xn=0m0c1��n" = m0c11� �":�The problem in applying our theorem comes from the possible presence in Pof very small elements. On such elements Property 2 does not provide any directcontrol. To our advantage instead works Lemma 3.1 that informs us that the totalmeasure of the very small pieces is small.Yet, small pieces may be present.13 The idea to deal with them consists initerating them: if T�njp is smooth, then diam(T�np) � �ndiam(p). Unfortunately,in general T is not smooth so we have to handle the iteration with more care.Fix p 2 P, by construction there exists P1 � P such that T�1p = Sq2P1 q. CallP�1 = fq 2 P1 j diam(q) � �g and p1 = Sq2P�1 Tq � p. In other words p1 consistsin the part of p that, under the actions of T�1, does not give rise to su�cientlylarge elements of the partition. The process can obviously be iterated: let P2be the collection such that T�2p1 = Tq2P2 T�2q, P�2 = fq 2 P2 j diam(q) � �g,p2 = Sq2P�2 T 2q � p1 and so on.Lemma 3.2. If � is chosen su�ciently small and p 2 A", then for n � log "�1�log ��1 +m,mp(pn) � "�m:Proof. By choosing � su�ciently small we can insure, thanks to Property 0, thateach element with diameter less than � can intersect at most M manifolds Si.Since the Si describe all the possible discontinuities in our system, it follows that]P1 �M . But the same argument applies to each connected piece of pj : since thediameter of T�lpj is, by de�nition, less than �, for l < j, it follows that T�l�1pj12By m(�) we mean the symplectic or Riemannian metric that, according to our hypotheses, isthe invariant measure of the system.13In fact, this is certainly the case in the non-smooth case. If T is smooth, then it is possibleto construct P in such a way that diam(P) � � for some �xed �, by using Markov partitions.When �nite Markov partitions are available the present method boils down to a repackaging ofwell known facts.



CENTRAL LIMIT THEOREM FOR DETERMINISTIC SYSTEMS 17can consists of, at most, M elements of the partition. In conclusion, ]P�n � Mn,and mp(pn) �Mn��n� � �m":�Using the above estimates, for each n; k 2 N, k < n, and calling �B the charac-teristic function of the set B, we haveE(jE (g bT �nf jF0)j) � 1Xm=0 E(�A�m� jE(g bT �nf jF0)j)= n�kXm=0 E(�A�m� jE( bT �k [bT kg bT �(n�k)f ]jF0)j)+ 1Xm=n�k+1 kfk1kgk1�(A�m�):Next, for each x 2 p � A�m�, using the notations of the Lemma 3.2 and setting� = bT kg bT �(n�k)f ,jE(g bT �nf jF0)j = ����Zp � � T�kd�p���� � ����Zpk � � T�kd�p����+ �����Zpnpk f � T�kd�p������ c0mp(pk)k�k1 + Xq2PTkq�pnpk �p(T kq) ����Zq �d�p����� c0kfk1kgk1��k + Xq2PTkq�pnpk �p(T kq)jE(�jF0)j� c0kfk1kgk1��k +K��n+kkbT kgks�kfku�� kfk�kgk�[c0��k +K��n+k��k�]:Using the above estimates yieldE(jE (g bT �nf jF0)j) � kfk�kgk� �(n� k)(c0�k� +K��n+k) + C�1� � �n�k+1� :Hence, by choosing k = �n2 �, it follows that there exists c1 2 R+ such thatE(jE (gT �nf jF0)j � c1nmaxf�; ��1gn2 :This veri�es the hypotheses 1{2 of Theorem 1.2. Hypothesis 3 follows triviallyfrom the assumption f 2 C(�) (or f piecewise H�older). To see this, consider thatF�k is the �-algebra associated to the partition T kP. But, if p 2 T kP, then
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