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Asymptotics of the number of Rayleigh resonances

J. Sjostrand and G. Vodev

1 Introduction and statement of results

Let O C R",n > 2, be a compact set with C'"**-smooth boundary I" and connected comple-
ment 2 = R"\ O. Denote by A, the elasticity operator

Ao = poAv + (Ao + o) V(V - v),
v ="(vy,...,v,), where the Lamé constants \g and o satisfy
(Hl) Ho > 0, nio + 2/,L0 > 0.

Consider A, in ) with Neumann boundary conditions on T’
(Bv); := ZUZ']‘(U)I/AF =0, 1=1,...,n,
j=1

where o;;(v) = AV - vé;; + po (8% v; + &Mvj) is the stress tensor, v is the outer normal to
I'. Denote by AY the self-adjoint realization of A, in  with Neumann boundary conditions
on I'. It was proved in [7] that for any obstacle in odd dimensional spaces there exists an
infinite sequence {);} of resonances associated to AN such that ImA; = O(]A;|=>°). This
is due to the existence of Rayleigh surface waves mooving with a speed cgp > 0 strictly less
than the 2 speeds in Q, ¢; = \/1o, €2 = /Ao + 2p0. Moreover, for strictly convex obstacles,
a large region free of resonances was obtained in [6]. This was extended in [2] for obstacles
nontrapping for the Dirichlet realization, AP, of A..

The purpose of this work is to obtain asymptotics of the counting function of the reso-
nances associated to AY near the real axis for a class of obstacles including the strictly convex
ones. To do so, we use the following characterization of the resonances by the complex scal-
ing method (see [4]). Fix a 6 € (0,7/2) and let y be a deformation of 2 with properties
described in [4] and in particular which coincides with e’ R" outside a neighbourhood of O.
Then z € C\0,0 < arg z < 0, is a resonance of AY iff 22 is an eigenvalue of the operator —AN
on the Hilbert space L*();) with domain of definition HE(€y) = {u € H*(y) : Bu = 0}.

The multiplicity of z is the multiplicity of the corresponding eigenvalue, i.e.

mult(z) := tr (27Ti)_1/ (Aiv + )\2)_12)\d)\,

v(2)



where (AN + X)L L%(Qy) — HE() is meromorphicin {\ € C: 0 < arg A < 0}, y(2) is
a small positively oriented circle centered at z and with no other poles in its interior. This
enables us (see Sect.2) to express the multiplicity in terms of the Dirichlet-to-Neumann map,

N(A), defined as follows:
N(A): H (D) 5> f— Bve HHD),

where v solves the problem

(Ac+ Ao = 0 in Q,
= f on I,
v — outgoing.

Recall that A'()) is a meromorphic family with poles among the Dirichlet resonances. We
get that if z is not a Dirichlet resonance, then

mult(z) = tr (27Ti)_1/ N()\)_IN()\)d)\,

v(z)

where @ denotes the first derivative da/dA. Clearly, the formula does not change if we put
A = 1/h and replace N'(A) by N(h) := RN (™). Recall next (e.g. see [6]) that in the elliptic
region £ = {¢ € T*T; ¢ ||¢|| > 1}, N(h) is a h — UDO of class L5°(T') (see the appendix
for the terminology) with a characteristic variety ¥ = {¢ € T*T; ¢g|[¢|| = 1} C &. The
existence of such a characteristic variety is interpreted as existence of Rayleigh waves on the
boundary. To get asymptotics for the counting function of the resonances generated by X
we need the following assumptions.

(H.2) There exist some constants Cy > 1, 8o, kg > 0 such that the elastic Dirichlet problem
has no resonances in A = {A € C: |[Im | < |A|7% Re X > (y}, and

IV ey, g2y < [AFo, A€ A. (1.1)

Note that (H.2) is fulfilled if the obstacle is nontrapping for the Dirichlet problem (see
[2]). In particular, for strictly convex obstacles it follows from the analysis in [6]. Note
also that when n is odd, it suffices only to require that there are no Dirichlet resonances in
some polynomial neighbourhood of the real axis, as this implies, in view of Proposition 1 in
[7], that (1.1) holds in a smaller polynomial neighbourhood of the real axis. The following
assumption means that N(h) is invertible outside ¥ and in the strictly convex case it follows
from the results in [6].

(H.3) Let xy € L;°(T") be a h — ¥DO depending holomorphically on A for 27" in a larger
set of the same type as A with WEF(y) contained in a small neighbourhood of ¥ such that
N(h) := N(h) + y is elliptic in €& Then, for h~" € A, the operator N(h) : HY/*T') —

H~'Y%(T) is bijective with inverse of norm O(|h|™") for some constant k; > 0.



It is easy to see that the validity of (H.3) is independent of the choice of y. See also
Remark 3.2. We also need the following technical assumption.

(H.4) n # 4.

Let {);} be the resonances of AY in A, repeated according to multiplicity. Our main
result is the following theorem.

Theorem 1.1. Under the assumptions (H.1)-(H.4), we have
AN <) = mcg" T Vol (D)™™ 4+ 0(r" %), r — oo,

where 7, = (27) 7"t Vol{x € R"™! : |z| < 1}.

To prove the theorem we first show that N(h) in € minus a small neighbourhood of
its boundary can be extended to an h — WDO, P(h) € Lil’o(r), which is selfadjoint for
real h, with a principal symbol having one eigenvalue vanishing on ¥, negative in B :=
{C € T*T; er||C|| < 1}, positive in {¢ € TT'; cgl|]| > 1}, and all the other eigenvalues
positive on T*I'. We further show that the eigenvalues {u;(h)}, repeated according to
multiplicity, of P(h) near 0 are increasing functions of h, for h small enough, so we can
define an infinite sequence {X]} C R* by Mj(Xgl) = 0. Thus, modulo some constant, the

number of {}; : X; < r} is equal to the number of the eigenvalues of P(r~') in (—oco, 0]
which, according to well known semi-classical asymptotics, is

r\"! o
(%) Vol(B) + O(r"2),
The final step in the proof is to show that there exists a bijection between {X]} and the
resonances {A;}.

Acknowledgements. The authors would like to thank J. Lannes for some helpful discus-
sions. The first author also thanks the Erwin Schrodinger institute for pleasant working
conditions in October 1995.

2 Trace integrals for N/

The purpose of this section is to prove the following

Proposition 2.1. Let v C Cy := {) € C : |arg A| < 0} be a closed positively oriented
CY curve without self intersections which avoids the resonances. If there are no Dirichlet
resonances on vy and in its interior, then

tr(27ri)‘1/wj\/()\)‘1/\'/()\)d)\

is equal to the number of the Neumann resonances inside ~.



Proof. Let Q C C be an open domain and let Hy, Hy be two Hilbert spaces. A meromorphic
function B(A) : Q — L(H,, Hy) will be said to be a family with finite rank singularities in €
if near every pole Ay € Q, B()) has a Laurent expansion

B()\) = B(\) + zkj Pi(XA = Xo) 7, (2.1)

i=1

with P; of finite rank and E()\) holomorphic at Ag. As N (A) (resp. N(A)™!) can be expressed
in terms of the Dirichlet (resp. Neumann) resolvent, N (\) (resp. N (X)) is a family with
finite rank singularities in Cy with poles among the Dirichlet (resp. Neumann) resonances.
We need the following technical lemma.

Lemma 2.2. Let B()\) be as above and let A(X) : Q — L(Ha, Hy) be a holomorphic function.
Let also v : St — Q be a C' curve avoiding the poles. Then the operators

(27ri)‘1/A()\)B()\)d)\ H, — Hy, and (27ri)‘1/B()\)A()\)d)\ . Hy — H,
2 2
are of trace class and have the same trace.

Proof. We may replace v by a union of closed loops around the poles inside v, so we may
assume that v is already a small closed loop around a pole Ag, where (2.1) holds. Then,
we can replace B(A) by its singular part Zle P;(A — Xo)™7 in both the integrals above,
and we are reduced to the case when B(A) is of trace class. In this case, however, the
desired conclusion is immediate as we can put the traces inside the integrals and use then
the cyclicity of the trace. a

For A € Cy we can solve the inhomogeneous Dirichlet problem

(A + X)u = fe L*Qy),
u|F = gEHS/z(F)v

u — outgoing,
by
w=GP()] + KP(\g,

where GP : L}(Qg) — H?(£) is the Dirichlet-Green operator, and K? : H3/2(F) — H*(8y)
is the Dirichlet-Poisson operator. Now the Dirichlet-Neumann operator N : H*?*(T) —
H'Y?(T) is given by

N(X) = BKP()).
Hence,

N(A) = BKP()\) = =BGP(MKP(M\)2). (2.2)
On the other hand, it is easy to see that

(AN 4 A1)~ = GP(N) — KP(NN(\)"LBGL (). (2.3)



Since G is holomorphic inside 7, by (2.2), (2.3) and Lemma 2.2, we obtain

r(2m0) 1/ (AN 4 22)"12)d)
Y
= —tr(2mi)7" [ KP(MN (M) BGP (M)20dA

= —tr (27Ti)_1

S~ 55—

NN BGP (A KP (A)22dA

r(2mi)” 1/./\/ JdA.
y

3 Study of N in the elliptic region

As we are going to use the semi-classical calculus (see the appendix for the terminology and
notations) it will be more convenient to work with the semi-classical parameter h = 1/A
which will vary in L := {h € C : [Imh| < |h|**®_ |h| < hg,Reh > 0} when A varies in A. Let
x € L77°(T) be an h — ¥DO depending holomorphically on % such that \W([ —x) C €.
Then it follows from [6] that (I — x)N, N(I — x) € L}°(I') with symbols having for every

choice of the local coordinates a common asymptotic expansion
thnk(:z:,f) (3.1)
k=0

in the complement of \ﬁ(x), where ny = O(J€]*7%), €] > <", and extends holomorphically
in ¢ to a complex neighbourhood of € such that (x, A{) belongs to the neighbourhood when-
ever (x,£) belongs to it and A > 1. Furthermore, it follows from the Green formula for the
elastic Laplacian that for real i, we have

(L= X)(N = N7), (N = N*)(I = x) € L77(T). (3.2)

In particular, this implies that no(x, £) is a Hermitian matrix. Let ai(x,§) < az(x,§) < ... <
an(x,€) be its eigenvalues. Then we know (see [1],[8]) that ai(x,§) = al( )(CR|§| —1) with
ay; smooth and dy, as > 0 everywhere in £.

Next we shall construct a selfadjoint (for real h) operator P € L5%(T') which concides
(mod L=°=°(T")) with N in |{] > ¢!, where we can choose ¢ with ¢; — ¢ > 0 arbitrarily
small, and which is elliptic away from ¥. The only difficulty in doing so is to extend ng(x, )
to the whole T*T". Let ¢o € (¢pr,c1) and put g = {(2,€) € T : ¢|€| = 1}. For any p € X,
let v(p) € P"! be the point corresponding to the eigenspace of ng(p) associated with the
(unique) negative eigenvalue a1(p). Obviously, v : ¥y — P"~! is continuous. Now, according
to [3], under the assumption (H.4), v has a continuous extension 7 : By — P"~! where
By = {(x,&) € T*I' : ¢o|¢] < 1}. We will think of F(p) as a 1-dimensional subspace of C”.

Extend a; to a continuous function a;(p) < 0 on By. Then it is clear that we can extend



no to a continuous function g on By with values in the Hermitian matrices such that 7¢(p)
maps J(p) (and hence also (p)~) into itself, such that ng(p) = a1(p)! on ¥ and ne(p) > 0
on Y(p)~. This means that we have found a continuous extension 71 of ng from T*I' \ By
to the whole T*I" such that 7y has one eigenvalue < 0 in By while the other eigenvalues are
> 0. After decreasing ¢o arbitrarily little and regularizing, we may assume that ng is C'*°.
The lower symbols are much easier to handle. Thus we get an A — ¥DO, P € LijO(F) with
leading symbol ng, depending holomorphicaly on h with the following properties:

P =P for h real, (3.3)

(L= X)(N = P), (N = P)(I —x) e L77(T). (3.4)

In what follows we will use the notations ng and a; for the principal symbol of P and its first
eigenvalue, respectively. By well known results on the semi-classical eigenvalue assymptotics,
if g > 0 is small enough, then for real h, the number of the eigenvalues of P in (—o0,&g] is

(2mh) ™" (Vol ({(z,€) € T™T = ay(x,€) < eo}) + O(h)). (3.5)

Remark 3.1 Since N(h) is an elliptic A — WDO near |£| = oo, we see that N(h) : HY/? —
H~'/?is a Fredholm operator and in particular N(h) is of constant index for h € L. Moreover
N(h) depends holomorphically on & € L and is invertible when k™! is not a resonance, so
N(h) is of index 0 for all h. Therefore, whenever N(h) has a bounded left or right inverse,
that inverse is two sided. This remark also applies to the operator ﬁ(h) introduced in the
assumption (H.3).

Remark 3.2 Assuming (H.1), (H.2) and that hg in the definition of L is small enough,
the following assumption is equivalent to (H.3), where yo € Lgl’o is elliptic near ¥ and with
WTF(yo) contained in a small neighbourhood of X:

(H.3') For h € L,u € H'?, we have

lull sz < CAIT (IN(R)ull s + X0t ) -

The proof is easy and we will only indicate how to get (H.3) from (H.3). In & we can
construct a microlocal parametrix for N(h) and it follows that if y € Lgl’o and WF(y) C €&,
then for any Ng > 0:

Ixtll e < Cng (IN (Rl -1z + B ([l 72 - (3.6)

Here we use for simplicity the natural /-dependent Sobolev norms discussed in the appendix.
Assume in addition that WF(I — y) is compact and disjoint from ¥ and even disjoint from

\W(Xo) in (H.3"). Applying (H.3') to (I — x)u we get
(1 = X)ull sz < CIAIT (I = X)N(R)ull g2
N (B), Xull -7 + [Ixoull gore)- (3.7)
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Here

(I = X)N(h)ullg=1r2 = |(1T = X)N(h)ull =12 + O(R]) [l /2

and (using a new x) ||[[N(h), x]u|[r-1/2 can be estimated by the RHS of (3.6). Using this in
(3.7) and adding (3.6) and (3.7), we get

iz < ClRIT (IN(R)ullrr-ase + 1R grar2)
so with Ny > k; and hg sufficiently small, we finaly deduce
el e < 2C RIS [IN ()]l oo

Then N(h) has a left inverse which, according to Remark 3.1, is also a right inverse and

(H.3) follows.

4 Positivity of P

In this section we will study P for real i only. Notice first that if h-derivatives are denoted
by points, ‘
P c LVY(T) with principal symbol h™'v(ng), (4.1)

where v = £ - V. We are going to study v(ng) in a neighbourhood of ¥. Recall that the
first eigenvalue a := ay of ng vanishes on ¥, and moreover it is easy to see that v(a) > 0
there. Let m(x,&) be the spectral projection associated to a. Then there exists a smooth
matrix-valued function ¢(x,¢), ¢ > 0, [¢, 7] = 0, such that

no = arm + (I —m)q(l — 7). (4.2)

Hence

v(ng) = via)m + av(m) — v(m)q(l — )
(1 = m)gu(m) + (1 = m)la)(I = ). (1.3)
Differentiating the identity 7% = 7, we get

v(m) =mv(m) +v(m)r.
Applying 7 to the left and to the right yields wv(7)r = 0, so
vim) = —mv(m)r+ mv(r)(l — ). (4.4)
Using this in (4.3), we get
v(no) = mv(a)m + (I —m)(av(m) — qu(m))m

t(av(m) —v(m)g)(I — )
+(I —m)v(q)(I —m). (4.5)



Since v(a) > 0, it follows that in sense of Hermitian matrices
v(ng) > C ' — C(I — )
for some constant C' > 0, and using that ¢ > 0 we obtain
v(ng) > C7 ' — Cnl, (4.6)

with a new constant C' > 0. Outside a neighbourhood of ¥ we do not know the sign of v(ng)
any more, but we can here use that ng is elliptic, and (4.6) can be globalized to

v(ng) > CTHE — C(€) ™ ng, (4.7)

where (€) = (1 + [£]2)'/2. Let (hD) = (1 — h?A)"/2, A being the Laplace operator on I, so
that (hD) has the principal symbol (£) and is selfadjoint for real h. Then, combining (4.1)
and (4.7), we get

hP + CP(hDY™ P > C~YhD). (4.8)

In the remainder of this section we will derive from (4.8) that the eigenvalues of P near 0
are increasing functions of h. In the next section we will use (4.8) to show the invertibility
of P(h) when Im#h # 0.

From now on we equip the Sobolev spaces H® with the h-dependent norm ||ul|g: =
[(hD)?u|[rz. Let pi(h) < pe(h) < ... be the eigenvalues of P(h) repeated according to
multiplicity. The domain of P is H! and from the fact that P = O~ : H' — H° it
follows that if pu, is close to 0 (so that k ~ A="*1), then u(h) is a locally Lipschitz function
in i whose a.e. defined derivative satisfies

dpx(h)
dh

= O(h™). (4.9)

We also want a lower bound of the same type. Assume for h = hy (small) that px(hq)
is of multiplicity m and let F'(hy) be the corresponding m-dimensional spectral subspace.
For h close to hq, we have precisely m eigenvalues close to py(h1) and we let F'(h) be the
corresponding spectral subspace. Let hy > hy be close to hy and let e(hs) € F(hy) be a
normalized eigenvector with associated eigenvalue iy (hs). We then extend it to e(h) for
h € [h1,hs] as the unique smooth function of h in F(h) with é(h) € F(h)~. Trivially e(hq)
will be an eigenvector of P(hy) with eigenvalue p(hy). We have
d

h=(P(h)e(h). e(h)) = (hP(h)e(h).e(h)). (4.10)

Restricting the attention to the eigenvalues in [—4,6] for § > 0 small enough, we have

|P(R)e(h)|| < 9, and (4.8) gives
(hP(R)e(h), e(h)) = CTH{{hD)e(h), e(h))
—C{(hD)~ P(h)e(h), P(h)e(h))
> - 08 > (200N (4.11)
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Using (4.11) in (4.10) and integrating between hy and hq, we get
ha
pr(he) — pr(hy) > (20)71 A h=tdh. (4.12)

By (4.9) and (4.12), we conclude that the a.e. defined derivative of ui(h) € [—4,4], with
o > 0 small enough, satisfies

<, (4.13)

with some constant C' > 0.

Fix a hg > 0 small enough. Since ux(h) decreases when h decreases, as soon as pg(h) €
[—0,0], there exists an infinite sequence hy, > hp,11 > ... of values in (0, ho] defined by
pr(hy) = 0. Clearly, hy are precisely the values of h in (0, ko] for which P(h) is not invert-
ible. Let p > n. We have |ux(h )| < h? (k ~ R'~") for h in some interval [}, contammg hg,
of length |I,,| ~ hP*1. If 0 < h < he, then (h/2, h] can intersect at most O(h~"*) of the
intervals [, and we conclude that the union of all such [}, is a union of at most O(h ntl)
disjoint intervals J ,, where each Jj , is of length at most O(hp "+2). Varying h, we get

Proposition 4.1. The inverse P(h)™' : L? — L* exists and is of norm O(h™") for h €
(0, ho]\ 2y, where Q, is a union of disjoint closed intervals Jy ,, Jo p, ... with |y ,| = O(hPT277)
for h € Jg,. Moreover, the number of such intervals that intersect [h/2,h], for 0 < h < hg,
is at most O(h*™").

5 Trace integrals for P

We will now work with A € L. Assuming hg sufficiently small we will first prove the following

Lemma 5.1. If Imh # 0, the inverse P(h)™': H® — H*! exists and

Proof. Without loss of generality we may suppose that Imh > 0. We have with i; = Reh:
P(h) = P(hy) + ilmhP(hy) + r(h),

where

hiD —1/2p(h, hiD -1/2 _ h_llmh2 P — L2
1
Let w € HY2. Then

Im (P(h)u, u) = Imh(P(hl)u,u> + Im ((hy D)"Y2r(R)u, (hy D)),



and using (4.8) and the estimate on r, we get

Im (P(h)u, u) + C||(hy D)"Y2 P(hy)ul|?

> (Chy) ™ m A{{hy DY, ) — O ((hl‘llmh)Q) (b DY2u 2.
Assuming hg sufficiently small, the last term can be absorbed, and we obtain
m (P(h)u, w) + C[(ha D)2 Py Ju

> (2Chy) " Im h||(hy D) ?u)?. (5.1)

Here

1{hs DY 2P (hy Y| < [|(hy D) P(Ryu]| + O (R Tm h) [[(y DY ul],
and hence from (5.1):

(20 k)™ T h][ (i DY 2ul? < [[(hy D)2 P(Ryul | (s D) 2]

420 DY Pyl + 0 ( (k5 k) ) 1 D2
The last term can be absorbed as before and we get
(3Chy) m b {hy DY 2ull* < 2] {hy D)2 P (h)ul?

+(6Chy) Tm A (hy DY ?u)|? + 3Chy (2Im h) Y| (hy D)2 P(h)ul|*.

This gives with a new constant ' > 0:
1{ha D) 2ull < Cha(Tmh) = [ {hy D)2 P(R)ul|. (5.2)

In other words, P(h) : H'/? — H~='/? has a bounded left inverse of norm O(h;/|Im h|). Since

P(h)* = P(h), the adjoint of the left inverse of P(h) is a right inverse of P(h), so we see
that P(h) : H'/* — H~'/% has a two sided inverse of norm O(hy/[Im hl).

To prove the lemma for any s we will use that P is elliptic outside X. Let x € L0
have its WF in a small neighbourhood of ¥ so that M = P + y is elliptic. It is easy to see
that

Plt=M"'-MY P -MM'+MYP-MP(P—-MM?"' (5.3)

Here M~* € L™ is O(1) : H* — H**' and P — M is O(1) : H™* — H* Vs. Using this
in (5.3) together with the fact that the lemma holds for s = —1/2, we obtain the lemma in
general. O

Let Ji, be one of the intervals in {2, given in Proposition 4.1. Let ~;, be the piecewise

smooth simple positively oriented loop given by the four segments: Reh € Ji,, Imh =
+(Reh)P*! and Reh € 0Jg,, [Imh| < (Reh)Pt.

10



Proposition 5.2. For every h € v;,, the inverse P(h)™' : H® — H*T! exists and

|P(h) e ey < Cs(Re k)™, h € ypy.

Proof. Let hy € (0, ho] \ ©,, so that by Proposition 4.1,
|P(h1) " | 2er2,n2) < Chy”.
By the same argument as in the end of the proof of Lemma 5.1 we derive from this
HP(hl)_lHIL(HS,HSH) < Cshl_p. (54)

For |h — hq| < hy/2, write

P(h) = P(hi)(I + P(h1)"'(P(h) = P(h1))).
Here

P(h) — P(hy) = O()hTM A — he| - H' — L7,
so if [h — hy| < BEY!, we get from (5.4) with s = 0, that P(h) : H' — L? is invertible with
inverse O(|h|™?). As before this extends to H**' — H* for all s. In particular, if we let

Reh = hyq, then
1P(h) ™ e oy < Cohy”

first for [Im A| < AYt', and then also, by Lemma 5.1, when [Im A| > C~'A2*!. This completes
the proof of Proposition 5.2. O

If hy, € (0, ho), k > ko, is defined by ux(hi) = 0, we define the multiplicity of Ay to be the
multiplicity of uy as eigenvalue. In the remainder of this section we will prove the following

Proposition 5.3. Let v C L be a closed positively oriented C' curve without self intersec-
tions which avoids the points hy,. Then

tr (2m4)~1 / P(h) P(h)dh

~

is equal to the number of hy inside ~.

Proof. Fix an hj and assume that the multiplicity of Ay is m so that hr_p, = Ar—m, 41 =
cee = Rggm, where my > 0,my > 0,m = my + my + 1. For h close to hy, let F'(h) be the
spectral subspace corresponding to the eigenvalues fix—m, (h), ..., ftgtm, (h). Then dim F'(h) =
m and F'(h) is also well defined for h in a small complex neighbourhood of h; and depends
holomorphically on h. Let ei(h), ..., ex,(h) be a basis in F'(h) which depends holomorphically
on h and which is orthonormal for real h. Define Ry (h) : L? — C™ by Ry (h)u(j) = {(u,¢;(h))

and put R_(h) = Ry (h)*: C™ — L?. Then

piyi= (20 0o

11



depends holomorphically on & and has the inverse

_ (B Ei(h)
e0= oy 2\

which is also holomorphic in h. Moreover, —E_,(h) is simply P(h)|p(n), expressed in the

):L2><Cm—>H1><Cm,

basis e1(h), ..., en(h). In particular, the eigenvalues of —E_1(h) are fig—m, (h)s oy fhpmy (R).
Each of these eigenvalues is ~ (h — hy)/hy both in sign and size (for h real). Therefore

Let v be a sufficiently small positively oriented circle centered at h; and consider
I, = tr (27Ti)_1/ P(h)L P (h)dh.
vy
Note that it follows from the formula
P(h)™ = B(h) = By () E-L(h)E_ (1),

where F(h) is holomorphic inside 4 and E,, E_ are of finite rank, that P(h)™! is a Fredholm
family, so I, is well defined and

L= —(2mi)" / tr (Ex(h)E_y(h)™ E_(h)P(h)) db. (5.6)

From the relation

we get

—FE_ . =FE PE,+E_,R,E, +E_R_FE_,. (5.7)
By (5.6), (5.7) and the cyclicity of the trace, we obtain

L, =—2m)™! / tr (E:}FE_PEJF) dh
_ (27ri)_1/tr (BZVB_y) dh + (2m')_1/tr (RyEy) dh
—|—(2m')_1/tr (EZ\E_R_E_.) dh. (5.8)

Here R+E+ is holomorphic inside 7, so the corresponding integral vanishes. The same holds
for the last integral in (5.8) since

tr (BZVE_R_E_y) =tr (E_R_).
We then have in view of (5.5),
I, = (zm')—l/tr (EZLE_)) dh
v

- (2wi)_1Ad(log det E_y(h)) = m, (5.9)

which is the desired result for this simple curve 7. It is now immediate to extend this for a
general curve ~. O
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6 Relationship between the trace integrals for P and

N

In this section we will compare the trace integrals that we have already studied in the pre-
ceding sections. Before doing so, however, we will prove the following

Proposition 6.1. For every h € i, the inverse N(h)™' : H® — H*t! exists and

[N ()" ere ey < Cs(Re k)™, h € ypy.

Proof. In view of Proposition 5.2, it suffices to take h varying in a subset of {h € L : |h| < ho}
where P(h)~! exists and is of norm O,(|h|77) in L(H*, H**"), with hg = ho(p) > 0 to be
taken small enough. Let yq,v2 € L%° with WF(Xl) N WF(XQ) =0, WF(Xl) or WF(XQ) is
disjoint from X. Let M be an elliptic h — DO whose symbol coincides (modulo S~°7>)
with that of P outside some sufficiently small neighbourhood of ¥. Then from (5.3) we get

1P 'xa=O(h]®) : H® — H®, Vs. (6.1)

We can treat N=! in the same way, N being defined in (H.3). Let x1,x2 € L°° with
WF(Xl) N WF(XQ) =0, WF(Xl) or WF(XQ) is disjoint from {(z,&) € 1T : [¢] < et}
Choose M as above, so that the symbols of M and N, both operators having well defined
symbols in [£| > cl_1 mod S7°7° coincide mod ST in || > ¢!, where ¢ < ¢ is
sufficiently close to ¢;. This means that if y € L7°°° and \W([— X)N{|¢l < ¢t} =0, then

(M = R = ), (T — )M — ) € L=, (62
Replacing P by N in (5.3) we then get
YiN“tyy = O(|h]*) : H* — H®, Vs. (6.3)

Let y € L™°° with ﬁ(x) contained in a small neighbourhood of ¥. Now we are going to
show that the operator N
R=NI-y)+ Py

is an approximative right inverse of N. We have
NR=1+(N—-N)N"YI—x)+(N—-P)P 'y

Here (N—N)ﬁ_l(]—x) € L7°97°° by (6.3), assuming of course that the symbols of N and N
coincide outside a sufficiently small neighbourhood of ¥ in the elliptic region. Let ¥ € L™°%°
with WE(I = )N {|¢] < e '} =0, WE(Y) N WF(y) = 0, so that (N — P)(I =) € L=,
Then, in view of (6.1),

(N=P)P™Ix = (N = P)(I =X)P"'x + (N = P)XP~'x

13



=0O(|h]*): H> — H*, Vk.
By inversion of a Neumann series we then get a right inverse which, according to Remark

3.1, is a two sided inverse and the desired result follows. a

It follows from Propositions 6.1 and 5.2, and the analysis above, that
N'=NYI-y)+ P '\+K, (6.4)

Pr=M'YI—x)+P 'y + K, (6.5)

with K, K" = O(|h|*): H=* — H*,¥s € R, h € v;,. By (6.4) and (6.5) we have with a fixed
h € ygpt
tr (2m)~! / N(h)"'N(h)dh

Yk,p

— tr(2m)—1/ P(h)"'xN(h)dh + O,(|R|*)

Yk,p

- tr(2m)—1/ P(h)" '\ P(h)dh + O,(|h|™)

Yk,p

— tr (zm)—l/ P(h) " E(R)dh + O,(|h]). (6.6)

Yk,p

Here we have used that we can take y holomorphic in &, so that the contributions from the
first term in the right hand sides of (6.4) and (6.5) vanish. In view of Propositions 2.1 and
5.3, (6.6) tels us that there are exactly as many inverse resonaces inside v, as there are
points hy in Jy,. It is also clear that there are no inverse resonances outside the union of
Y- In view of Proposition 4.1 we get with a suitable choice of h(p):

Proposition 6.2. For every p > n, there is a bijection [, from the set of hy in (0,h(p)],
counted with multiplicity, into the set of the inverse resonances in {h € L : |h| < h(p)},
counted with multiplicity, such that

IL(h) — h| < ChPH2 ",

By skillfully patching together different [, we get
Proposition 6.3. [f hg > 0 is suitably chosen, there is a bijection | from the set of hy in

(0, ho], counted with multiplicity, into the set of the inverse resonances in {h € L : |h| < ho},
counted with multiplicity, such that for every p > 0:

l[(h) — h| < C,hP.

14



Define Xk = h,;l. We have

Proposition 6.4. If Co > 0 is suitably chosen, there is a bijection | from the set of Ay in
[Co, +00), counted with multiplicity, into the set of the resonances in {A € A/ |A| > Co},
counted with multiplicity, such that for every p > 0:

(A) = A < CA,

It is now clear how to finish the proof of Theorem 1.1 as indicated at the end of the
introduction.

Appendix

Let I' be a compact manifold without boundary of dimension n — 1, that we equip with
a smooth Riemannian metric, and let h € (0, ko], ho > 0. Define the Sobolev spaces H*® with
h-dependent norm: u € H* < (hD)*u € L?. Here (hD) := (1 — h2A)'/?, where A is the
Laplace-Beltrami operator on I'. We say that A € L™= if A=0O(h*): H™® — H*,Vs.

Let U € R"! be an open domain. We let S™*(I/ x R""!) be the space of functions
a(z,&;h) on U x R™™! x (0, hg] which are smooth in (z,£) and such that for every compact
K cU and all a,3 € N*1:

070 a(, & )] < Craph™ (O™ V(,6) e K xR

If a; € S™iki 5 € {0,1,2,...},m; \, —00,k; \, —oc, then as usual we define a € S™o-h
given by a ~ 37°7 a;, and a is unique up to ST = Nk S™F. We define SZL’k C S™F as
the subspace of all @ which have an asymptotic expansion

Cl(l‘, 5; h) ~ Z hj_kaj(xv 5)7
7=0
where a; € S{?()_j(U x R"™") are independent of &. Recall that S7(U x R"~!) is the space of

all functions a(x, ) € C°°(UxR"!) such that for every compact K C U and all o, 3 € N"~%:

10207 a(x,€)| < Crap (&)L (2, ¢) € K x R™.

The spaces SZL’k have a natural regularity in . We can and will choose the asymptotic sums
a(x,&; k) such that (hd),)'a € S:;’k,‘v’l, with the asymptotic expansion

(how)'a ~ S WG — k)ay(z,€).

i=0

Denote by L™*, LZL’k the corresponding spaces of i — WDO which up to L™ are given
in local coordinates by a(x,hD,;h) with @ € S™* and SZL’k respectively. Now we are going
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to introduce the notion of wave front, \W(A), of an operator A € L™*(T'). Let T-T be the
compactification of T*I" by adding {(x,00€) : (2,€) € S*I'} ~ S*I" as a natural boundary
(ﬂ is then homeomorphic to {(x, &) € T*T" : |£] < 1}). If p € T*I', we say that p & \W(A)
if the symbol of A, for some choice of local coordinates near the projection of p, is of class
S0~ near p. If p = (29, 00&) € ﬂ\T*F, we say that p € \W(A) if the symbol of A is of
class ST in {(z,§) : @ € neigh(wxo), {/[] € neigh(&), [£] > C'} for some neighbourhoods
of zo and &, and for some constant C' > 0. It follows from the definition that WF(A)
closed, WF(AB) C WF(A) NWF(B), WF(A) = § = A e L™=, Moreover, if A € L7}'",
then W“F(hahA) C WF(A).

Now we are going to extend the above notions to complex h. More precisely we will work
in the domain

{h € C:0<|h| <hg, |Imh| < |h]*T}, (A1)

where §p > 0 and hg > 0 is small enough. Clearly, we may assume that argh € (—n/2,7/2).
Then (hD)* is a well defined operator and we can still define the h-dependent Sobolev
spaces. Moreover, the norms |[(hD)*ul|zz2, |[{|h|D)*u||rz2, ||(Re h D)*ul|2 are equivalent, uni-
formly with respect to h, for every fixed s € R. It also makes sense to speak about operators
of class L=°7°° when h varies in the set (A.1). Now consider an A € LZL’k and assume that
there exists an ¢ > 0 such that for every choice of local coordinates in I, the full symbol of
A becomes

h) ~ ihj_kaj(x,f), (A.2)

where the function r — a;(x,r{) has a holomorphic extension to 1/2 < |r| < 2,|argr| < &,
for v € U, € R™™' €] > € > 0. Moreover, we assume that this extension, which we can
also denote by a;(x,r€), is of class S{rfo_j in U x{&e R ¢ >Ciu}. For [€] <200,
let @;(z,€) denote an almost analytic extension so that d:d;(z, &) is O(|]Im&]*). Then for
(1+e)Ciu <[ £(2—¢)C,p, and r as above, we have

aj(x,r€) = aj(z,rf) = O([Imr|*). (A.3)

Pasting together @;(x,r¢) and a;(x,ré), by means of a cutoff y(x,r€), we get an extension
aj(x,ré) of aj(z,r) to x € U, & € R, 1/2 <|r| < 2,|argr| < o, such that a;(-,r) is a
C* function of r with values in the class S{5”, with

ey | Ol
8Ta](:1?,7“§)—{ 0 for |§|220]‘,U,

so that 0za;(x,r§) = O(|Imr|>) in S;g°. As an extension of aj(x,hD),0 < h < hg, we now
take a;(x,hD) for h in the set (A.1). We have

9 .
o [hr) "

where we let hy > 0 be h-independent, so that

Oaj(z, he) = hy il (hfhi) ha§),

Opttj(x, h&) = haO((hy ' [Im h])™)
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in the sense of the functions f(x, k&), f € S™%. Because of the shape of the domain (A.1),
we then get
aﬁ&]‘(l',hf) = T]‘(l’,|h|§; h)v ri € 5_007_007

and similarly for 9fdsa,. It is now clear that we can extend A € L7* for h in the set
(A.1) in such a way that 99, A € L=°>~°. By solving a d-problem we will next see that
we can, after modifying A by an operator in L™°7%°  extend A holomorphically in the
domain (A.1). We may assume that we have the extension of A above in the slightly bigger
domain |[Imh| < 2(Reh)!*% 0 < Reh < 2hg. Let x be a C* function on this bigger domain
which vanishes near the boundary and is equal to 1 on (A.1). We may further assume that

IFx = O(|h|7*"), ¥k. Then
OF(xOnA) = O(|h>) : H™* — H*, Y(k,s).

Next we try to solve the equation

or_ oA
ol — " oh
in a small sector around (0, 2hg]. Put h = e*. Then we want to solve
OR 0A
I AA
FERRRNE (44)
in a half band
IIm z| < Cp,0 < Rez < (4, (A.D)
in which the right hand side has its support. Also,
OF(x0.A) = O((e®*)>) . H™* — H* V(k,s). (A.6)

6—(Z—w)2

Now let g p— be a convenient fundamental solution of d; and we choose R to be the

corresponding solution of (A.4):

1) = [ (V52 i (A7)
where L(dw) denotes the Lebesgue measure. Then in (A.5) we have

OFR = O((e"**)®): H™* — H* Y(k,s),
and going back to the h-variable, we get

OR 0A

% = X677 (A-S)

with
OER = O(H[™) - > — ", ¥(k, s),

in the domain (A.1). Summing up, we have proved
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Proposition A.1. Let A € L:}’k(F) satisfy the assumptions around (A.2). Then, if hg > 0
is small enough in (A.1), we can find R(h), for h in the domain (A.1), such that

OFR = O(hI®) : H™* — H°, (k).

and such that ;l(h) = A(h)+ R(h) extends holomorphically to the domain (A.1). Moreover,
we have A(h) = B(Reh; h/|h|) = C(|h|; h/|h]), where B,C € L7y™(T) uniformly in h/|h|.

Remark A.2. Tt is easy to see that if p & WF(A), then p € WF(B), p & WF(C).
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