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1 IntroductionThe basic notions of the noncommutative geometry were developed in [1, 2],and, in the form of the matrix geometry, in [3, 4]. The essence of thisapproach consists in reformulating �rst the geometry in terms of commutativealgebras and modules of smooth functions, and then generalizing them totheir noncommutative analogues.In standard �eld theory, to any point x of some space(-time) manifold Mthe values of various �elds are assigned:x 2M �! �(x) ; A(x) ; :::;as sections of some bundles over M , e. g. the line bundle of functions, or thespinor bundle, etc. The smooth functions on M form a commutative algebraA = F(M) with respect to the standard pointwise product: (fg)(x) =f(x) g(x) ; x 2 M . The bundle of smooth spinor �elds S(M) on M isan A-module with respect to the multiplication by smooth functions, whichsimply means that any spinor can by multiplied by a scalar �eld. In the sameway the linear spaces of gauge and other �elds are A-modules. If there existsa sequence of deformations of the commutative algebra A of the smoothfunctions on the manifold M , such that the deformed algebras are �nitedimensional, we may attempt to formulate a deformed �eld theory whichwould possess just a �nite number of degrees of freedom. Needless to say,this may be promising avenue towards a suitable regularization of ill-de�ned�eld theoretical path integrals.Having the �nite deformations of the algebra of scalar �elds (=functionson the manifoldM) a further step has to be made in order to obtain a physi-cally useful regularization. It consists of building up deformed spinor bundles,gauge �elds etc. which would be also just the �nite-dimensional vector spacesand at the same time modules of the deformed algebra A of the scalar �elds.For a �xed deformation of A there may be many inequivalent deformations ofthe corresponding modules. Therefore we would like to have a guiding princi-ple that would select the deformations which could legitimately be called thenoncommutative spinor bundles or spaces of noncommutative connections.In the general case of an arbitrary compact Riemannian manifold we are stillmissing this principle, however, for practical applications in Euclidean �eldtheories it is enough to understand the noncommutative deformations of thespheres Sn. Then the guiding principle reads: build up the noncommutative1



modules which would be representation spaces of the symmetry group whichrotates the sphere Sn.It is also natural to require that the regularized �eld theory path integralrespects the rotational symmetry. This signi�cantly narrows the room forthe possible deformations. The further restriction comes from a claim thatsome other desirable �eld theory symmetries are preserved in the deformedlevel. Amazingly, so far our experience shows that all relevant symmetries canbe incorporated while preserving the �niteness of the number of degrees offreedom. To our knowledge this is an unusual (and very favourable) property;for instance the fashionable lattice regularization does not enjoy it.In our previous investigations [5, 6], we dealt with the two-dimensional�eld theories, i.e. the manifold M was the sphere S2. The real scalar �eldon a truncated (=deformed) sphere we considered in [5] and, recently, wefound a proper supersymmetric extension of the formalism [6]. In particu-lar, the latter accounts for the description of the (chiral) spinor �elds withvanishing topological charge and gives manifestly supersymmetric regulariza-tion of two-dimensional supersymmetric theories. Historically, the truncatedtwo-sphere3 was introduced in [7] where the deformed algebra of functionsemerged upon the geometric quantization of the (symplectic) volume formon the sphere. Later the concept has been rediscovered in [8, 9, 10]. The�rst attempts to construct a �eld theory on the truncated sphere have beenundertaken in [9, 11]; in [5, 6] we have added into consideration the de-tails of the perturbation expansion for the deformed quantum scalar �eld,the construction of the deformed chiral spinors and the regularization of thesupersymmetric theories.In this article, we continue these investigations by constructing the de-formed topologically nontrivial spinor bundles needed for the inclusion of themonopoles. As was argued in [12], the correct in�nite volume limit (whichmeans that the radius of the sphere approaches in�nity) requires the con-sideration of the monopol con�gurations of the gauge �elds interacting withthe spinors. Hence, having in mind our ultimate goal of the physical appli-cability of the construction, we have to incorporate the spinor bundles witha nontrivial winding number. Remarkably, this can be done already at the`kinematical' level of the con�guration space of the deformed �eld theory3Also referred to as `fuzzy', `noncommutative' or `quantum' sphere in the literature[7, 8, 9]. 2



as opposed to the case of the lattice regularization where the topologicallynontrivial con�gurations emerge only dynamically [13].The plan of the paper is as follows: All basic notions we need on complexscalar and spinor �elds in the standard (commutative) case are summarizedin Section 2. In Section 3 we �rst describe the topologically nontrivial con-�gurations of a complex scalar �eld on a standard sphere in a more algebraiclanguage, and then we generalize them to the noncommutative situation. InSection 4 we extend our approach to the topologically nontrivial spinor �eldcon�gurations on the noncommutative sphere and write down a chirally sym-metric �eld theory action. The last Section 5 contains concluding remarks.2 Topologically nontrivial �elds on the sphereHere we describe brie
y the topologically nontrivial con�gurations of complexscalar and spinor �elds on the standard two-sphere. The embeddingS2 ,! R3is speci�ed by the cartesian coordinatesx1 = r cos' sin � ; x2 = r sin' sin � ; x3 = r cos � ; (1)where r > 0 is �xed, 0 � � � �, �� � ' � +�.The complex scalar �eld � on the upper hemisphere V+ (S2 without southpole � 6= �) is a function of the variables�01 = r1=2 cos �2 ; �02 = �r1=2 sin �2ei' ; (2)which are well de�ned on V+:�0 = �0(�0; �0�) = X a0m1m2n1n2�0�m11 �0�m22 �0n11 �0n22 : (3)The monomials in this expansion are characterized by their phase on theequator (� = �=2) ei(m2�n2)' = �0�m11 �0�m22 �0n11 �0n22 j�=�=2 :In the same way, the complex scalar �eld � on the lower hemisphere V�(S2 without north pole � 6= 0) is a function of the variables�001 = r1=2 cos �2e�i' ; �002 = �r1=2 sin �2 : (4)3



Thus, �00 = �00(�00; �00�) = X a00m1m2n1n2�00�m11 �00�m22 �00n11 �00n22 : (5)Now, the monomials in this expansion have the phase on the equator (� =�=2) ei(n1�m1)' = �00�m11 �00�m22 �00n11 �00n22 j�=�=2 :As ~Hk; k 2 12Z, we denote the line bundle of sections with the sameexpansion coe�tients in eqs. (3) and (5):�0 = �(�0; �0�) = X am1m2n1n2�0�m11 �0�m22 �0n11 �0n22 :�00 = �(�00; �00�) = X am1m2n1n2�00�m11 �00�m22 �00n11 �00n22 ; (6)and with k = 12(m1 +m2 � n1 � n2) �xed. On V+ \ V� they are related bythe singular gauge transformation�0 = ei�'�00 ; (7)where � = 2k is the so called topological winding number. Obviously,A = ~H0is an algebra, and ~Hk areA-modules (with respect to the usual multiplicationby functions from A).The presence of the gauge transformation (7) requires the use of thecovariant derivatives: D0� = i@ 0� + A0� ; on V+ ;D00� = i@ 00� + A00� on V� : (8)Here we introduced the topological (�-monopole) �eldsA0� = i��0+@ 0��0 ; on V+ ;A00� = i��00+@ 00��00 ; on V� : (9)On V+ \ V� they are related by the singular gauge transformation (7):A0� = A00� � ih@�h�1 ; h = ei�' : (10)Note: We would like to stress that the presence of the topological �-monopole �eld is dictated by the nontrivial topology, and not by the dynamics4



of a system in question. The dynamical gauge �eld A� = A�(x) is globallyde�ned on S2, and it could be added to the topological one. In what follows,we shall not consider this possibility.The action for the complex scalar �eld on S2 can be written in the formS[�;��] = 12�r Z d3x �(x2 � r2) [��D2�� + V (���)] ; (11)where V (:) is a polynomial bounded from below.In the same manner, the spinor �eld 	 we de�ne separately on the upperand lower hemisphere 	0 =  	01	02 ! ; on V+ ;	00 =  	001	002 ! ; on V+ : (12)As ~Sk we denote the bundle of spinor �elds which have their componentsfrom ~Hk: 	0� = 	�(�0; �0�) = X a�m1m2n1n2�0�m11 �0�m22 �0n11 �0n22 :	00� = ��(�00; �00�) = X a�m1m2n1n2�00�m11 �00�m22 �00n11 �00n22 ; (13)where k = 12(m1 +m2 � n1 � n2) is �xed. Obviously, ~Sk are A-modules.Alternatively, the elements of the ~Sk we can write in the form	0 = f(�0; �0�)  �01�02 ! + g(�0; �0�)  �02���01� ! ; on V+ ;	00 = f(�00; �00�)  �001�002 ! + g(�00; �00�)  �002���001� ! ; on V� : (14)The advantage of this form lies in the fact that both the f and g parts ofthis decompositions are separately eigenfunctions of the chirality operator� = 1r�ixi ; �i� Pauli matrices ; (15)5



with the eigenvalues +1 and -1 respectively:�	0 = f(�0; �0�)  �01�02 ! � g(�0; �0�)  �02���01� ! ;�	00 = f(�00; �00�)  �001�002 ! � g(�00; �00�)  �002���001� ! :The action of the (Dirac) spinor �eld can be written asS[	;	�] = 12�r Z d3x �(x2 � r2) [ �	D	 + W ( �	;	)] ; (16)where �	 = 	+�2, W (:; :) is a gauge and chiral invariant potential describingthe sel�nteraction of the spinor �eld, and D is a Dirac operator de�ned asD0 = r �i�0�(@ 0� + A0�) + 1r � ; on V+ ;D00 = r �i�00�(@ 00� + A00�) + 1r � ; on V� ; (17)Here �� = �ie�i (e�i denote corresponding zwei-beins). Only the topological(�-monopol) gauge �eld enters into D, and not a dynamical one. The Diracoperator anticommutes with the chirality operator,D� + �D = 0 :This guarantees the chiral invariance of the action (16).In the next two sections we �rst rewrite all relevant formulas in more al-gebraic terms, and then we introduce their truncated noncommutative ana-logues.3 Complex scalar �eldWe start with the Hopf �bration obtained from the mapping C2 ! R3de�ned by � =  �1�2 ! �! x = (x1; x2; x3) ;6



where xi = �+�i� ; i = 1; 2; 3 : (18)The restriction �+� = r > 0 implies x2i = r2, i.e. we obtain the �brationS3 ! S2 of a 3-sphere in C2 with the radius pr onto the 2-sphere in R3with the radius r. Since xi do not change under the transformation� ! e i2 � ;�+ ! e� i2 �+ ; (19)we see that the �ber is U(1).As Hk; k 2 12Z, we denote the linear space of functions in C2 (or in S3after the restriction) of the form� = �(�;��) =X am1m2n1n2��m11 ��m22 �n11 �n22 ; (20)with k = 12(m1 + m2 � n1 � n2) �xed (* denotes complex conjugation).Under (19) the functions from Hk transform as� ! e�ik � :They are eigenfunctions of the operatorK0 = 12[���@��� � ��@��] (21)with the eigenvalue k: K0� = k�; � 2 Hk :We have an involutive gradationH�k = H�k ; HkHl � Hk+lwith respect to the point-wise multiplication of functions(�1;�2)(�;��) = �1(�;��) �2(�;��) : (22)The space A = H0 endowed with the product (22) is a commutative algebra,which is isomorphic to the algebra of all polynomials in the variables xi; i =1; 2; 3. Obviously, all Hk are A-modules.The di�erential operatorsJk = i2[�����k��@��� � ���k��@��] ; k = 1; 2; 3 ; (23)7



map Hk to Hk and satisfy in Hk the su(2)-algebra relations4[Ji; Jj] = i"ijkJk : (24)The formulas Jj �� = 12i�j���� ; Jj ��� = � 12i��j����� ;guarantee that � and �� transform like spinors under transformations gen-erated by (24), and consequently x transforms like vector in R3. Moreover,the function C(x) = x2i = (�+�i�)2 satis�esJiC(x) = 0 ; i = 1; 2; 3 ; (25)i.e. C(x) is an invariant function as expected.Besides these operators we introduce operators K+ and K� de�ned asK+� = i"�� ���(@���) ; K�� = i"�� (@����)�� : (26)They map Hk to Hk+1 and Hk�1 respectively. The operators K� and K0satisfy su(2) algebra relations[K0;K�] = �K� ; [K+;K�] = 2K0 :Only products K�K� act in Hk, and K0 takes there the constant value k.The operators K0; K� commute with Ji, i = 1; 2; 3, but they are notindependent as the corresponding Casimir operators are equal:J2i = K20 + 12(K+K� + K�K+) : (27)To any � 2 A we assign the standard integral over S2I1[�] = 12�r Z d3x �(x2i � r2) �(x) : (28)This allows to introduce the scalar product on Hk as follows(�1�2)k = I1[��1�2] : (29)4It is important to note that the operators Jk and K0 do commute with the restriction�+� = r so they naturally act on the algebra of functions on S3.8



The complex scalar �eld � with the topological charge � 5 we identifywith the elements of Hk. The corresponding �eld action is given asS[�;��] = I1[12��(K+K� +K�K+)� + V (���)] ; (30)where V (:) is a polynomial bounded from below. According to eq. (27) thedi�erential operator 12(K+K� +K�K+) can be rewritten in Hk as follows:12(K+K� +K�K+) = J2i � k2 : (31)We stress that formula (30) for the action is equivalent to (11).We obtain the noncommutative (fuzzy) line-bundles by replacing the com-muting parameters ��; ���, � = 1; 2, by the noncommutative ones, expressingthem in terms of the annihilation and creation operators as�̂� = A� R�1=2 ; �̂�� = R�1=2A�� ; (32)where R = A��A� ; (33)so that the condition ����� = 1 is satis�ed (without lack of generality, wechoose the unit radius r = 1 of the sphere). The operators �� are well-de�nedon all vectors except vacuum; we complete the de�nition by postulating thatthey annihilate the vacuum. The operators A� and A�� (* denotes hermitianconjugation) act in the Fock space F spanned by the orthonormal vectorsjn1; n2i = 1pn1!n2! (A�1)n1(A�2)n2 j0i ;where j0i is the vacuum de�ned by A1j0i = A2j0i = 0. They satisfy in F thecommutation relations[A�; A�] = [A��; A��] = 0 ; [A�; A��] = ��� : (34)The operators R and Rj = 12 A���j��A� (35)5In other words: the section of the line-bundle with the winding number �.9



satisfy in F the u(2) algebra commutation relations[Ri; Rj] = i"ijkRk ; [Ri; R] = 0 : (36)Equation (35) is the Schwinger-Jordan realization of the su(2) algebra. Onthe other side, it is just the noncommutative (quantum) version of the Hopf�bration (18).As Ĥk; k 2 12Z, we denote the linear space spanned by the normal prod-ucts �̂�m11 �̂�m22 �̂n11 �̂n22 (37)with k = 12(m1 +m2 � n1 � n2) �xed. Obviously, Â = Ĥ0 is the noncom-mutative algebra generated by R;Rj ; j = 1; 2; 3 with the relations (36). Thespaces Ĥk are Â-bimodules. The operators Jj act in Ĥk as followsJjf = [Rj; f ] ; (38)and they satisfy in Ĥk the su(2) algebra commutations relations.For the further discussion, it is useful to consider (N + 1)-dimensionalsubspaces FN = fjn1; n2i ; n1 + n2 = N g ; N = 0; 1; 2; ::: ;of the Fock space F . The operator R takes in FN the constant value R = N .The subspace FN is the representation space of the unitary irreducible spinN2 -representation of the su(2) algebra in which the Casimir operatorC = R23 + 12(R+R� + R�R+) ; R� = R1 � iR2 ; (39)takes the value C = N2 �N2 + 1� : (40)As ĤMN we denote the space of linear mappings from FN to FM spannedby the monomials (37) with m1+m2 �M , n1+n2 � N , m1+m2�n1�n2 =M �N . Obviously,Ĥ�MN = ĤNM ; ĤLMĤMN � ĤLN :Any operator � 2 ĤMN maps FN to FM , and can be represented by a(M +1)� (N +1) matrix. There is an antilinear isomorphism between ĤMN10



and ĤNM represented as the (matrix) hermitian conjugation. In ĤMN weintroduce the scalar product(�1;�2)MN = 1J + 1 TrN(��1�2)= 1J + 1 TrM(�2��1) = (��2;��1)NM ; (41)where J = 12(M +N) and TrN 0 denotes the trace in the space ĤN 0N 0.In particular, ÂN = ĤNN is a (N +1)2-dimensional algebra generated byR(N); R(N)j ,j = 1; 2; 3, where R(N); R(N)j denote the restriction of R and Rjin FN . This restriction generates the algebra homomorphism Â ! ÂN . Wepoint out that in ÂN there is an additional relationR(N) �N = 0 ; (42)which expresses the fact that FN is irreducible representation of SU(2). Toany operator � 2 AN we assign the integralIN [�] = 1N + 1TrN(�) : (43)In [6], we proved that for N ! 1 the algebras ÂN approach the standardcommutative algebra of functions A1 and IN [�]! I1[�]. Obviously, ĤMNis a left ÂM -modul and a right ÂN -modul.The generators of su(2) rotations Jj in ĤMN are given byJj� = R(M)j � � �R(N)j : (44)This su(2) algebra representation is reducible and is equivalent to the directproduct of two irreducible su(2) representations:M2 
 N2 = jkj � (jkj+ 1) ::: � J ; (45)where k = 12(M�N) and J = 12(M+N). This means that any operator � 2ĤMN can be expanded into operators �jJkm, belonging to the representationsindicated in (45):J2i �jJkm = j(j + 1)�jJkm ; j = jkj; jkj+ 1; : : : ; J ;11



J3�jJkm = m�jJkm ; jmj � j :Putting J� = J1 � iJ2 we obtain the highest weight functions�jJkj = NJkjvuut (2j + 1)!(j + k)!(j � k)! �̂�j+k2 �̂j�k1 ; (46)satisfying J+�jJkj = 0. Here the normalization constant NJkj with respect tothe scalar product (41) is given by the equationNJkj = vuut(J + 1)(J + k)!(J � k)!(J + j + 1)!(J � j)! (47)(we used eqs. (26) on p. 608 and (43) on p. 618 from Ref. [14]). The othernormalized functions �jJkm, m = 0;�1; : : : ;�j, in the irreducible represen-tation containing �jJkj are given by�jJkm = vuut (j +m)!(j �m)!(2j)!J j�m� �jJkj : (48)Now we are ready to discuss the commutative limit J !1, k �xed. Notonly in this limit �� and � commute among themselves, also the normal-ization factor NJkj approaches 1 and expression (46) becomes the standardWigner D-function Djkj , expressed in terms of ��; ��� instead of Euler angles.Since [Ji; R] = 0, the same remains true for the functions �jJkm given in(48). The normalization coe�cient NJkj is also a cut-o� factor, as can beseen from (47), because NJkj = 0 for j > J . If we vary k while keeping J�xed, then �� and � will cease to commute for J � jkj ! 0, even though Jcan be very large. This is in accordance with the general principle (cf. [6])that approaching the maximal spin J of the truncation the multiplicationbecomes noncommutative.In the noncommutative case we identify a section � of a complex line bun-dle with �xed winding number with an element of ĤMN . The corresponding�eld theory action we take in the formSMN [�;��] = 1J + 1 TrN [12��(K+K� +K�K+)� + V (���)] ; (49)12



where in the noncommutative case the operators K� are de�ned byK+� = i"��A��[�; A��] ; K�� = i"��[A�;�]A� : (50)Note that the `topological charge' operator K0 de�ned asK0� = 12[R;�] (51)takes in ĤMN the constant value k = 12(M �N). The order of operators in(50) is essential because it guarantees that the operators K� act on mono-mials exactly in the same way as in the commutative case.Note: We would like to stress that for the description of topologicallynontrivial �eld con�gurations (with � 6= 0), two algebras ÂM and ÂN (withM �N = � 6= 0) are needed. This is the reason why the discussion withinonly one matrix algebra (M = N) corresponds to the topologically trivialsituation (see e.g. [4, 5, 6, 11]).If the winding number of the �eld � is not �xed, we work with �elds fromthe space Ĥ(J) = MM+N=2J ĤMN ; (52)and the corresponding action we take asS(J)[�;��] = XM+N=2J SMN [�;��] : (53)The action (53) has the following basic properties:1) it has the full su(2) symmetry corresponding to the rotations of S2.2) it describes a model with a �nite number of modes, since in fact, itcorresponds to a particular matrix model, and3) it approaches in the limit J ! 1 the commutative action (for anygiven polynomial �eld �).In general, the complex scalar �eld from Ĥ(J) can be expanded as� = JXj=0 +jXk;m=�j ajkm �jJkm : (54)The quantum �eld mean value of a functional F [�;��] is de�ned ashF [�;��]i = R D�D��e�S(J) [�;�� ]F [�;��]R D�D��e�S(J) [�;��] ; (55)13



where D�D�� = Qjkm dajkmda�jkm is a �nite product of the standard mea-sures in the complex plane. The quantum mean values are well de�ned forany polynomial functional F [�;��].Under rotations speci�ed by the Euler angles �; �; 
 the coe�cients ofthe �eld expansion transform asajkm ! a0jkm0 = Xm Djm0m(�; �; 
) ajkm ;a�jkm ! a0�jkm0 = Xm D�jm0m(�; �; 
) a�jkm :These are the unitary transformations not changing the measure D�D��.This completes the proof of rotational invariance of the model at the quantumlevel.4 Spinor �eldsFor construction of the topologically nontrivial spinor �elds we use the super-space approach developed in [6]. First we perform the N = 1 superextensionof the Hopf �bration described in the previous section. We obtain it fromthe mapping C2;1 ! R3;2 given by� = 0B@ �1�2a 1CA ! (xi; ��) ; i = 1; 2; 3 ; � = +;� ;where xi = �+�i� ; �� = �+F�� ; (56)Here �+ = (��1; ��2; a�), and �� = �1 � i�2, �3 and F� are 3 � 3 matricesgiven by�+ = 0B@ 0 1 00 0 00 0 0 1CA ; �� = 0B@ 0 0 01 0 00 0 0 1CA ; �3 = 12 0B@ 1 0 00 �1 00 0 0 1CA ;F+ = 1p2 0B@ 0 0 �10 0 00 �1 0 1CA ; F� = 1p2 0B@ 0 0 00 0 �11 0 0 1CA : (57)14



The quantities ��, ��� (� = 1; 2) and a, a� are respectively even and oddcoordinates of the superspace C2;1; * denotes the graded involution [15, 6]characterized by the properties(ab)� = (�1)deg a deg bb�a�; a�� = (�1)deg aa:Note that a restriction ��1�1+��2�2+a�a = 2� implies x2i + �+�� = �2. Thuswe obtain the Hopf super�bration sS3 ! sS2 of the 3-supersphere in C2;1with the �bration basis being the two-supersphere in R3;2.It is worth noting that �i and F� are respectively even and odd generatorsof the osp(2; 1) superalgebra:[�3;��] = ��� ; [�+;��] = 2�3 ;[�3; F�] = �12F� ; [��; F�] = 0 ; [��; F�] = F� ;[F�; F�] = ��� ; [F+; F�] = ��3 : (58)Here and in what follows, the symbol [A;B] denotes a supercommutator, i.e.the commutator AB�BA if either A or B is even, and the anticommutatorAB +BA if both A and B are odd.A superfunction � = �(�; ��) on sS3 is represented as a linear combina-tion of monomials ��m11 ��m22 �n11 �n22 a��a� ; (59)where m�, n� are non-negative integers and �; � = 0; 16. The representativeswhich are identical on the surface ��1�1 + ��2�2 + a�a = r correspond tothe same superfunction � on sS3. To any such monomial we assign thetopological charge 2k = m1 + m2 + � � n1 � n2 � �. As sHk, k 2 12Z,we denote the linear space spanned by the monomials with �xed k. Anysuperfunction � 2 sHk can be expanded as� = �0(�;��) + f(�;��)a + g(�;��)a� + F (�;��)a�a ; (60)where �0; F 2 Hk, are even and f 2 Hk+ 12 , g 2 Hk� 12 are odd. The spacesH0 is a superalgebra sA with respect to the supercommutative `pointwise'product of parameters �; ��. The spaces sHk are sA-bimodules.6If the monomial in (59) is odd then it appears with an odd coe�cient in the decom-position of the superfunction � in the linear combination of the monomials (59). Thusthe superfunction � itself is an even element of the Grassmann algebra.15



The di�erential operators generating the osp(2; 1) algebra acting on sHkare given by Ji = i2 [��a�iab@��b � �a��iab@�b] ;v� = i2[��aF �ab@��b + �aF ��ab @�b] : (61)The function C(x; �) = x2i + 12(�+�� � ���+) is an invariant superfunctionfrom sH0: JiC(x; �) = 0 ; v�C(x; �) = 0 : (62)The condition C(x; �) = �2 de�nes a supersphere in R3;2.In sH0 we can introduce a standard Berezin integral over the supersphere[6] as sI1[�] = �� Z d3xd�+d���(x2i + �+�� � �2) �(x; �) ; (63)where the super �-function should be understood as�(x2i + �+�� � �2) = �(x2i � �2) + �+�� �0(x2i � �2) ;(this formula is obtained by a Taylor expansion of the super �-function).Expressing �� in terms of a; a� we obtainsI1[�] = 1� Z d3xda�da[�(x2i � �2) + �a�a�0(x2i � �2)] �(x; a) ; (64)where now one can expand � directly as in (60). Much as before, we canintroduce the inner product in sHk(�1;�2)k = sI1[��1�2] ; (65)where (cf. (60)) �� = ��0(�;��)� g�a+ f�a� + F �a�a:The spinor �eld 	 we identify with the odd part of the super�eld �:	 = f(�;��)a + g(�;��)a� ; (66)where f and g are also odd (cf. footnote 5). As Sk, k 2 12Z we denotethe set of spinor �elds from sHk, i.e. with f 2 Hk+ 12 and g 2 Hk� 12 . Sk16



are A-bimodules (but not sA-(bi)modules). The formula (66) induces thedecomposition of the spinor space:Sk = S(+)k � S(�)k ; (67)where S(+)k corresponds to the �rst term in (66), and S(�)k to the second one.The chirality grading operator � we de�ne as the operator taking in S(�)k thevalue � = �1: �	 = f(�;��)a � g(�;��)a� : (68)The operator � can be realized as the di�erential operator�	 = (a@a � a�@a�)	 : (69)We de�ne the free Dirac operator D as the following mapping from Sk toSk: D	 = (K+g)a + (K�f)a� : (70)It can be expressed as the second order (in even and odd parameters) di�er-ential operator D	 = (a@a�K� + a�@aK+)	 : (71)The Dirac operator anticommutes with the chirality operator:D� + �D = 0 : (72)The action for spinor �eld we de�ne in terms of the Berezin integralS[	;	�] = sI1[	�D	 + W (	�;	)] ; (73)where W (	�;	) is a suitable potential describing the sel�nteraction of thespinor �eld. Note: We would like to stress that the formalism for the spinor�eld presented above is equivalent to the usual one described in Section 2,but it is better suited for the non-commutative generalization.In the noncommutative case we replace ��, ���, and a, a� by bosonic andfermionic annihilation and creation operators�̂� = A�R�1=2 ; �̂�� = R�1=2A�� ;â = bR�1=2 ; â� = R�1=2b� ; (74)17



where now R = A��A� + b�b ; (75)so that the condition ����� + a�a = 1 is satis�ed (this corresponds to theradius of the two-sphere � = 1=2). The operators A�; A��; b; b� act in theFock space sF spanned by the orthonormal vectorsjn1; n2; �i = 1pn1!n2! (A�1)n1(A�2)n2(b�)� j0i ;where n1; n2 are non-negative integers, � = 0; 1 and j0i is the vacuum de�nedby A1j0i = A2j0i = bj0i = 07. The annihilation and creation operators inquestion satisfy in sF the supercommutation relations[A�; A�] = [A��; A��] = 0 ; [A�; A��] = ��;� :[A�; b] = [A��; b] = [A�; b�] = [A��; b�] = 0 ;b2 = (b�)2 = 0 ; [b; b�] = 1 : (76)The operators Rj = 12 A���j��A� ;V+ = 1p2(�A�1b � b�A2) ; V� = 1p2(�A�2b + b�A1) ; (77)then satisfy in the Fock space sF the osp(2; 1) superalgebra commutationrelations (58) (with an obvious change in the notation).As sĤk we denote the linear space of super�elds (60) with �0; F 2 Ĥk,f 2 Ĥk+ 12 and g 2 Ĥk� 12 . Obviously, sA = sĤ0 is a superalgebra, and sĤkare sA-bimodules. The subalgebra A is naturally embedded into sA (as theset of �0's in the decomposition (60) for k = 0). The generators Jj and V� ofosp(2; 1) act in the space sĤk by means of the superadjoint action (cf. [6])Jj� = [Rj;�] ; V�� = [V�;�] : (78)Obviously, this is a reducible representation of the superalgebra osp(2; 1) insĤk.7Note that * still denotes the graded involution. This means that b� is the adjointoperator by of b in the standard fermionic Fock space, but b�� = �b.18



The spinor �eld 	 we identify with the odd part of the super�eld �:	 = f(�̂�; �̂)â + g(�̂�; �̂)â� : (79)As Ŝk, k 2 12Z we denote the set of spinor �elds from sĤk, i.e. with f 2 Ĥk+ 12and g 2 Ĥk� 12 . Ŝk are A-bimodules (but not sA-(bi)modules).The formula (79) induces the decomposition of the spinor space:Ŝk = Ŝ(+)k � Ŝ(�)k ; (80)where Ŝ(+)k corresponds to the �rst term in (79), and Ŝ(�)k to the second one.The grading �̂ we de�ne in the same way as in (68):�̂	 = f(�̂�; �̂)â � g(�̂�; �̂)â�: (81)It can be also written as �̂	 = � [b�b;	] : (82)Thus the grading is directly related to the fermion number and it takes inŜ(�)k the value � = �1.The free Dirac operator D we de�ne as in (70):D	 = (K+g)â + (K�f)â� ; (83)where K� were de�ned in (50). The Dirac operator maps Ŝk into Ŝk and itanticommutes with the chirality grading operator:D� + �D = 0 : (84)As sFN we denote the subspacesFN = fjn1; n2; �i 2 sF ; n1 + n2 + � = Ng ; (85)in which the operator R takes the valueR = N . Obviously, sFN is a (2N+1)-dimensional superspace sFN = sF (0)N � sF (1)N�1 ; (86)where sF (�)N 0 is the subspace with N 0 bosons and � fermions, sF (0)N is theeven subspace of sFN and sF (1)N�1 is the odd one. The space sFN is the19



representation space of the irreducible representation of the superalgebraosp(2; 1) (generated by Rj; V� given above) in which the Casimir operatorC = R23 + 12(R+R� + R�R+) + 12(V+V� � V�V+) (87)takes the value C = 14N(N + 1) : (88)As sĤMN we denote the space of linear mappings from sFN to sFMspanned by the operator monomials�̂�m11 �̂�m22 �̂n11 �̂n22 â��â�withm1+m2+� �M , n1+n2+� � N andm1+m2+��n1�n2�� = M�N .Any operator � 2 sĤMN can be represented by a (2N + 1) � (2M + 1)supermatrix. In sĤMN we introduce an inner product(�1;�2)MN = sTrN(��1�2) ; (89)where J = 12(M +N) and sTrN denotes the supertrace in the space sĤNN .As in the purely bosonic case, the action of su(2) generators Ji on sĤMN isgiven by the formula (44) with Ri given by (77).As ŜMN we denote the space of spinor �elds from sĤMN , i. e.	 = f(�̂�; �̂)â + g(�̂�; �̂)â� ;where f 2 ĤM;N�1 and g 2 ĤM�1;N . This gives the decompositionŜMN = Ŝ(+)MN � Ŝ(�)MN ;where Ŝ(�)MN contains spinors �elds with the chirality � = �1. The operatorsK�, entering the Dirac operator D (83), act in ŜMN , moreover, K0 takes inŜ(�)MN the constant value 12(M �N +�). The spinor �eld operators from Ŝ(�)MNare odd mappings sFN ! sFM , namely:fâ : sF (1)N ! sF (0)M ;gâ� : sF (0)N ! sF (1)M : (90)20



According to (45), f and g can be expanded into operator functions belongingto the representations:M2 
 N � 12 = jk + 12 j � ::: � (J � 12) ; for f ;M � 12 
 N2 = jk � 12 j � ::: � (J � 12) ; for g ; (91)where k = 12(M�N) and J = 12(M+N). This means that f can be expandedinto the functions �jJ� 12 ;k+ 12 ;m with j = jk + 12j; : : : ; J � 12 , jmj � j, and, inthe same way, g into the functions �jJ� 12 ;k� 12 ;m with j = jk � 12j; : : : ; J � 12,jmj � j (cf. (48)). The admissible values of j are:j = jkj � 12 ; jkj+ 12 ; : : : ; J � 12 :They can be seen from the representation content in Eqs. (91):(i) The �rst value j = jkj � 12 is admissible only for k 6= 0, and for k > 0it is present in g (chirality -1), whereas for k < 0 in f (chirality +1). Itcorresponds to the jM �N j (normalized) zero modes of the Dirac operatorgiven by	0+m1m2 = q(m1 +m2 + 1)!pm1!m2! �̂�m11 �̂�m22 â� ; for k = 12(m1 +m2 + 1) > 0 ;	0n1n2 = q(n1 + n2 + 1)!pn1!n2! �̂n11 �̂n22 â ; for k = �12(n1 + n2 + 1) < 0 ; (92)Note that the normalization does not depend on the cut-o� spin J , thereforethe correct commutative limit is obvious.(ii) The remaining eigenvalues j = jkj+ 12 ; : : : ; J � 12 , correspond to non-zero modes of the Dirac operator. Consider (normalized) functions �j�Jkmwith a given chirality � = �1 given by�j�Jkm = pJ � k + 1 �jJ� 12 ;k� 12 ;m â� ; �j+Jkm = pJ � k � 1 �jJ� 12 ;k+ 12 ;m â ;(93)21



where �jJk0m were de�ned in (46) and (48). Using the de�nition of the Diracoperator (83) and the formula8K��jJlm = q(j � l+ 1)(j � l) �jJ;l�1;m ; (94)we obtain the equation1pJ � k � 1D�j�Jkm = 1pJ � k � 1Ekj�j�Jkm ; (95)where Ekj = = s�j + 12�2 � k2 : (96)Thus the functions	j�Jkm = sJ � k � 12(J � k) �j+Jkm � sJ � k + 12(J � k) �j�Jkm (97)are (normalized) eigenfuctions of the Dirac operator with the eigenvalues�Ekj.Note: We would like to stress that in the standard commutative case exactlythe same formula for the spectrum is obtained, except for the fact, thatthe admissible values of j are not truncated. As the number of degrees offreedom is �nite this will lead to a non-perturbative UV-regularization (fora real scalar �eld this was demonstrated in [5]).The action for the sel�nteracting (Dirac) spinor �eld 	 2 ŜMN with a�xed winding number we de�ne as followsSMN [	�;	] = sTrN [	�D	 + W (	�;	)] ; (98)where 	 = fa + ga�, 	� = ag� � a�f�, and W (:; :) is an interaction term.We do not wish to �x the winding number of the �eld 	, instead we take 	from the space Ŝ(J) = MM+N=2J ŜMN ; (99)8Formula (94) follows from the properties of the Wigner functions (cf. the discussionafter (48)) because K� act on the second subscript of �jJlm in exactly the same way asJ� act on the third subscript. 22



and the corresponding action we de�ne asS(J)[	�;	] = XM+N=2J SMN [	�;	] : (100)This action has the following basic properties:1) Is invariant with respect to the space isometries, i.e. the rotations ofthe sphere, and the chiral transformations	! ei��	 ;	� ! 	�ei�� ; � 2 R ; (101)provided that the interaction term is rotationally and chirally invariant.2) It describes the system with a �nite number of degrees of freedom.3) It approaches for J !1 the commutative action.Note: The rotational invariance of the action SMN follows from the rotationalinvariance of the truncated Dirac operator. The chiral invariance of the actionis obvious, because the Dirac operator D anticommutes with the grading �(cf. (84)).The spinor �eld 	 2 ŜMN can be expanded as	 = Xm1m2 a0;jkj� 12m1m2 	0m1m2 + J� 12Xj=jkj+ 12 +jXm=�j �aj+km �j+Jkm + aj�km �j�Jkm� ; (102)where the �rst sum corresponds to the zero modes (92) and the remainingtwo sums are related to the non-zero modes (96). All expansion coe�cientsa:::: in (102) are supposed to be independent anticommuting Grassmannianvariables. In the same way, the �eld 	� 2 ŜNM is supposed to have anexpansion with independent Grassmann coe�cients a�:::: .The quantum �eld mean value of a functional F [	;	�] is given ashF [	;	�]iMN = R [D	]MN [D	�]NMe�SMN [	;	�]F [	;	�]R [D	]MN [D	�]NMe�SMN [	;	�] ; (103)where R [D	]MN [D	�]NM : : : denotes the �nite dimensional Berezin integralover all admissible coe�cients a:::: and a�:::: with �xed k = 12(M � N) andJ = 12(M +N).Taking into account that �j+Jkm and the zero modes for k > 0 correspondsto g, and similarly �j�Jkm and the zero modes for k < 0 corresponds to f , thechiral transformations (101) can be written asa0;jkj� 12m1m2 ! e�i"(k)� a0;jkj� 12m1m2 ; aj�km ! e�i�aj�km ; (104)23



where "(k) is the sign function. We see that the phase contributions to themeasure [D	]MN from the non-zero modes cancel. As expected, the onlycontribution comes from j�j zero modes (� = M �N):[D	]MN ! e�i�� [D	]MN :Analogous rules are valid for expansion coe�cients of the �eld 	�. Thephase factors from non-zero modes cancels, and there is just the same phasecontribution from zero modes (since the conjugation and the changeM�N !N �M compensate each other in the phase factors):[D	�]NM ! e�i�� [D	�]NM :Thus, the total change of the measure [D	]MN [D	�]NM is[D	]MN [D	�]NM ! e�2i�� [D	]MN [D	�]NM : (105)We see that assuming �xed k 6= 0, the chiral symmetry is violated onquantum level. However, taking into account simultaneously �elds with givenk and �k, as e.g. in Ŝ(J), the chiral symmetry is restored. Thus, the measureD	D	� = QMN [D	]MN [D	�]NM enterring the quantum mean value overŜ(J) hF [	;	�]i = R D	D	�e�S(J) [	;	�]F [	;	�]R D	D	�e�S(J) [	;	�] ; (106)is invariant under chiral transformations (101) or (104), since D	D	� !D	D	�.5 Summary and outlookIn treating the topologically nontrivial complex scalar �eld con�gurations inthe noncommutative case, our main tool was the noncommutative version ofthe Hopf �bration encoded in the noncommuting parameters �̂�, �̂��, � = 1; 2.Any �eld con�guration with the topological winding number � was expandedinto the functions �jJkm, k = 12(M �N), jmj � j = jkj; : : : ; 12(M +N) where�jJkm are noncommutative analogs of the standard D-functions Djkm. Thuswe gave an algebraic characterization of the winding number � = 2k which isdirectly related to the index k of theD-functions in question. On matrix level24



this leads to the (M + 1)� (N + 1)-matrix representation of �elds from thespace ĤMN . The usual matrix geometry models correspond to M = N , andthis is the reason why they describe the topologically trivial con�gurationsonly.The same procedure applied for the treatment of the topologically non-trivial spinor �eld con�gurations, too. Moreover, here it was essential thenatural supersymmetry of the problem introduced in [6]; we described thetopologically nontrivial spinors on S2 as the odd sections of nontrivial super-line bundles on the supersphere sS2. For this purpose we used the noncom-mutative Hopf super�bration in terms of even noncommutative parameters�̂�, �̂��, � = 1; 2, to which we added a pair â; â� of odd noncommutative pa-rameters. We identi�ed the spinor bundle ŜMN as the smallest space which isinvariant under action of the Dirac operator D. The bundle ŜMN is spannedby jM � N j zero modes of D and by functions �jJ� 12 ;k� 12 ;mâ�, �jJ� 12 ;k+ 12 ;mâcorresponding to the non-zero modes of D.The models (98) and (100) are rotationaly invariant and contain only�nite number of degrees of freedom both on classical and quantum level.This truncation of the modes has a consequence that their quantum versionis UV-regular (there are only �nite sums instead of singular integrals and/orini�nite series). A detailed discussion of these aspects in the case of a realscalar �eld can be found in [5].The supersymmetry approach proposed in [6] proved to be useful in de-scribing the chiral properties of spinors. Our spinor �eld models have the chi-rally invariant actions, however, the �eld functional measure [D	;D	�]MNis not invariant for a �xedM�N 6= 0, and under chiral transformations, it ismodi�ed due to the zero modes by the factor ei��. Only when the �elds withgiven � and �� are treated simultaneously the chiral invariance is recovered.Thus the chiral properties of the theory are the same as those in the standarduntruncated case.It would be desirable to include the gauge �elds into our approach. Evenmore desirable and important is to extend our scheme to the four dimensional(super)sphere S4. We hope to attack these problems in a near future.Acknowledgement We are grateful to A. Connes, V. �Cern�y, T. Damour,M. Fecko, J. Fr�ohlich, J. Ft�a�cnik, K. Gaw�edzki, J. Madore, H. Neubergerand D. Sullivan for useful discussions.25
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