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1 Introduction

The basic notions of the noncommutative geometry were developed in [1, 2],
and, in the form of the matrix geometry, in [3, 4]. The essence of this
approach consists in reformulating first the geometry in terms of commutative
algebras and modules of smooth functions, and then generalizing them to
their noncommutative analogues.

In standard field theory, to any point « of some space(-time) manifold M
the values of various fields are assigned:

reM— ®(x),Alz) , ...,

as sections of some bundles over M, e. g. the line bundle of functions, or the
spinor bundle, etc. The smooth functions on M form a commutative algebra
A = F(M) with respect to the standard pointwise product: (fg)(z) =
flz) g(x) , @ € M. The bundle of smooth spinor fields S(M) on M is
an A-module with respect to the multiplication by smooth functions, which
simply means that any spinor can by multiplied by a scalar field. In the same
way the linear spaces of gauge and other fields are A-modules. If there exists
a sequence of deformations of the commutative algebra A of the smooth
functions on the manifold M, such that the deformed algebras are finite
dimensional, we may attempt to formulate a deformed field theory which
would possess just a finite number of degrees of freedom. Needless to say,
this may be promising avenue towards a suitable regularization of ill-defined
field theoretical path integrals.

Having the finite deformations of the algebra of scalar fields (=functions
on the manifold M) a further step has to be made in order to obtain a physi-
cally useful regularization. It consists of building up deformed spinor bundles,
gauge fields etc. which would be also just the finite-dimensional vector spaces
and at the same time modules of the deformed algebra A of the scalar fields.
For a fixed deformation of A there may be many inequivalent deformations of
the corresponding modules. Therefore we would like to have a guiding princi-
ple that would select the deformations which could legitimately be called the
noncommutative spinor bundles or spaces of noncommutative connections.
In the general case of an arbitrary compact Riemannian manifold we are still
missing this principle, however, for practical applications in Euclidean field
theories it is enough to understand the noncommutative deformations of the
spheres S™. Then the guiding principle reads: build up the noncommutative



modules which would be representation spaces of the symmetry group which
rotates the sphere S™.

It is also natural to require that the regularized field theory path integral
respects the rotational symmetry. This significantly narrows the room for
the possible deformations. The further restriction comes from a claim that
some other desirable field theory symmetries are preserved in the deformed
level. Amazingly, so far our experience shows that all relevant symmetries can
be incorporated while preserving the finiteness of the number of degrees of
freedom. To our knowledge this is an unusual (and very favourable) property;
for instance the fashionable lattice regularization does not enjoy it.

In our previous investigations [5, 6], we dealt with the two-dimensional
field theories, i.e. the manifold M was the sphere S?. The real scalar field
on a truncated (=deformed) sphere we considered in [5] and, recently, we
found a proper supersymmetric extension of the formalism [6]. In particu-
lar, the latter accounts for the description of the (chiral) spinor fields with
vanishing topological charge and gives manifestly supersymmetric regulariza-
tion of two-dimensional supersymmetric theories. Historically, the truncated
two-sphere® was introduced in [7] where the deformed algebra of functions
emerged upon the geometric quantization of the (symplectic) volume form
on the sphere. Later the concept has been rediscovered in [8, 9, 10]. The
first attempts to construct a field theory on the truncated sphere have been
undertaken in [9, 11]; in [5, 6] we have added into consideration the de-
tails of the perturbation expansion for the deformed quantum scalar field,
the construction of the deformed chiral spinors and the regularization of the
supersymmetric theories.

In this article, we continue these investigations by constructing the de-
formed topologically nontrivial spinor bundles needed for the inclusion of the
monopoles. As was argued in [12], the correct infinite volume limit (which
means that the radius of the sphere approaches infinity) requires the con-
sideration of the monopol configurations of the gauge fields interacting with
the spinors. Hence, having in mind our ultimate goal of the physical appli-
cability of the construction, we have to incorporate the spinor bundles with
a nontrivial winding number. Remarkably, this can be done already at the
‘kinematical’ level of the configuration space of the deformed field theory

3Also referred to as “fuzzy’, ‘noncommutative’ or ‘quantum’ sphere in the literature

[7, 8, 9].



as opposed to the case of the lattice regularization where the topologically
nontrivial configurations emerge only dynamically [13].

The plan of the paper is as follows: All basic notions we need on complex
scalar and spinor fields in the standard (commutative) case are summarized
in Section 2. In Section 3 we first describe the topologically nontrivial con-
figurations of a complex scalar field on a standard sphere in a more algebraic
language, and then we generalize them to the noncommutative situation. In
Section 4 we extend our approach to the topologically nontrivial spinor field
configurations on the noncommutative sphere and write down a chirally sym-
metric field theory action. The last Section 5 contains concluding remarks.

2 Topologically nontrivial fields on the sphere

Here we describe briefly the topologically nontrivial configurations of complex
scalar and spinor fields on the standard two-sphere. The embedding $* — R?
is specified by the cartesian coordinates

ry = rcosesinf ; xy = rsinpsind |, x3 = rcosf (1)

where r > 0 is fixed, 0 < <7, -7 < ¢ < +7.
The complex scalar field ® on the upper hemisphere Vy (5? without south
pole 8 # ) is a function of the variables

0 0 .
Y4 = rY?cos 7 Y, = —rt?sin §ew \ (2)

which are well defined on V;:
@/ — @/()(/7 X/*) — Z a;n1m2n1n2 X/’l‘ml X/;‘m2X/71’Ll X/;2 . (3)

The monomials in this expansion are characterized by their phase on the
equator (0 = 7/2)

i(m2—n2)e 7R R g

0 ( _ 1m2
€ = X1 X2 X1X2|6’=7T/2'

In the same way, the complex scalar field ® on the lower hemisphere V_
(S5* without north pole 8 # 0) is a function of the variables

0 _. 0
Xlll — T1/2 1 "o 1/2 ) (4)



Thus,

@// — @//()(//7 X//*) — a// //*m1X//;m2 X//7111 X”;2 . (5)

m1m2n1n2X 1
Now, the monomials in this expansion have the phase on the equator (6 =

/2)

ei(nl—ml)w N S S - I L S

X1 X2 X1X2|6’=7r/2-

As Hp. k € %Z, we denote the line bundle of sections with the same
expansion coeffitients in eqs. (3) and (5):

O = O ) = D tmmemna X1 XS OX XS

@// — @()(//7 X//*) — Zam1m2n1n2X//’lﬂm1X//;m2X//7111X//7212 \ (6)

and with &k = %(ml + mg —ny — ng) fixed. On Vi NV they are related by
the singular gauge transformation

q)/ — eimpq)// 7 (7)

where x = 2k is the so called topological winding number. Obviously, A = H,
is an algebra, and H;, are A-modules (with respect to the usual multiplication
by functions from A).

The presence of the gauge transformation (7) requires the use of the
covariant derivatives:

D, =10, + A, , onV,,
DZ = i@g + AZ on V_ . (8)
Here we introduced the topological (k-monopole) fields
A, = mX’+aLX’ , on V.
Al = i/ix"—l_a::x", on V_ . 9)
On Vi N V_ they are related by the singular gauge transformation (7):
Al = A — ihdh™h  h = (10)

Note: We would like to stress that the presence of the topological k-
monopole field is dictated by the nontrivial topology, and not by the dynamics
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of a system in question. The dynamical gauge field A, = A, (z) is globally
defined on S?, and it could be added to the topological one. In what follows,
we shall not consider this possibility.

The action for the complex scalar field on S? can be written in the form

S10.07] = o [ & il =) @Dk 1 VerR], (1)

wr

where V(.) is a polynomial bounded from below.
In the same manner, the spinor field ¥ we define separately on the upper

\I}/
U= (\I},;),OHV_F,

U’ = vy |% 12
- q;g , on Vg . ( )

and lower hemisphere

ASNSk we denote the bundle of spinor fields which have their components

from Hj:
r Iy a I¥My  pRma ma e
\I}a - q}a(X 7X ) - Zamlmgnlngx 1 X 2 X 1 X 2

\I}/O/[ — @O[(><//7 X//*) — Za?nlm2n1n2X//Im1X//;m2X//71”blX//;Q \ (13)

where k& = %(ml + mg — ny — ng) is fixed. Obviously, S, are A-modules.

Alternatively, the elements of the S;, we can write in the form

- f(/ * Xll ;orE Xlz* v
= f(Xsx7) N + g(x’,x") S ) Ve

1%

"
o= (", X" (i//l ) + g(x",xX"") ( _X;,,* ) con Vo . (14)

2 1

The advantage of this form lies in the fact that both the f and ¢ parts of
this decompositions are separately eigenfunctions of the chirality operator

1

I' = —o;2; , 0;— Pauli matrices , (15)
r



with the eigenvalues +1 and -1 respectively:
!
T = f(x',x"7) (X}) — g, xX") (_X?,*) :
X2 X

o’ — TN X1 o TN X/Q/*
= ST g x") N

2 — X1
The action of the (Dirac) spinor field can be written as

1 - _
S, = - dPr §(2* —r®) [VDY + W(¥,0)], (16)
r
where U = Wta? W(.,.) is a gauge and chiral invariant potential describing
the selfinteraction of the spinor field, and D is a Dirac operator defined as

1
D = r[ia’“(aL + AL) + —], on V, ,
r

. 1
P [ww@/ +oAY) 4 ;] ,on V., (17)
Here o = o;¢! (e denote corresponding zwei-beins). Only the topological
(k-monopol) gauge field enters into D, and not a dynamical one. The Dirac
operator anticommutes with the chirality operator,

D'+ I'D = 0.

This guarantees the chiral invariance of the action (16).

In the next two sections we first rewrite all relevant formulas in more al-
gebraic terms, and then we introduce their truncated noncommutative ana-
logues.

3 Complex scalar field

We start with the Hopf fibration obtained from the mapping C? — R?
defined by

X2

Y = (Xl) — s = (1’171’271'3),



where
r = xtox., 1=1,2,3. (18)

The restriction YTy = r > 0 implies 7 = r?, i.e. we obtain the fibration
53 — 5% of a 3-sphere in C* with the radius \/r onto the 2-sphere in R?

with the radius r. Since z; do not change under the transformation
X ey e T (19)

we see that the fiber is U(1).
As Hi, k € %Z, we denote the linear space of functions in C* (or in S*
after the restriction) of the form

D = B, X)) =D Umymanana XTI (20)

with £ = %(ml + my — ng — n2) fixed (* denotes complex conjugation).

Under (19) the functions from H transform as
d —e .

They are eigenfunctions of the operator
R
Ko = 5[XG0x; — XaOka] (21)

with the eigenvalue k:

Ko® = k®, & € H), .

We have an involutive gradation
’HZ = H_; , HiH, C Hk_|_1

with respect to the point-wise multiplication of functions

(®1,P2)(x, X*) = P1(x, x7) P2, ) - (22)

The space A = Hy endowed with the product (22) is a commutative algebra,
which is isomorphic to the algebra of all polynomials in the variables z;,1 =

1,2,3. Obviously, all Hy are A-modules.
The differential operators

i

Jk:2

[Xgo-zzéaxz - Xﬁaiﬁa a] ) k= 17273 ) (23)



map Hy to Hy and satisfy in Hj, the su(2)-algebra relations?

[JZ', J]] = Z'aSi]‘ka . (24)

The formulas

Jixp = ZaiﬁXav Jixg = _Zaa]ﬁXa7

guarantee that y and x* transform like spinors under transformations gen-
erated by (24), and consequently z transforms like vector in R®. Moreover,
the function C(z) = a? = (yTo;x)? satisfies

JiC(z) = 0,i=1,2,3, (25)

i.e. C'(x) is an invariant function as expected.
Besides these operators we introduce operators K, and K_ defined as

Ki® = icap \L(04,0) , K@ = icas (Dr®)ys - (26)

They map Hy to Hiri1 and Hyp_y respectively. The operators Ky and K
satisfy su(2) algebra relations

[Ko, Ky] = £Ky, [K4, K] = 2K, .

Only products K4 K¢ act in Hy, and K takes there the constant value k.
The operators Ky, Ky commute with J;, ¢« = 1,2.3, but they are not
independent as the corresponding Casimir operators are equal:

1
J? = K¢ + §(K+K_ + K_Ky). (27)

K3

To any ® € A we assign the standard integral over S?

_ 3 2 2
Lef0] = 5 / &P §(z? — 12) B(z) . (28)
This allows to introduce the scalar product on H; as follows

(P1D2)r = [[PTP:] . (29)

41t is important to note that the operators J; and Ky do commute with the restriction
Xt x = r so they naturally act on the algebra of functions on S3.



The complex scalar field ® with the topological charge x ° we identify
with the elements of Hj. The corresponding field action is given as

1
S[0.97] = Lo;® (Ko K-+ K-K)® + V(9°0)] (30)

where V(.) is a polynomial bounded from below. According to eq. (27) the
differential operator %(K+ K_ + K_K}) can be rewritten in Hj, as follows:

K3

1
§(K+K_—|—K_[x’+) = JF — k. (31)

We stress that formula (30) for the action is equivalent to (11).

We obtain the noncommutative (fuzzy) line-bundles by replacing the com-
muting parameters Y, X5, & = 1,2, by the noncommutative ones, expressing
them in terms of the annihilation and creation operators as

Xo = Ao BP0 %0 = R4, (32)
where
R — AzAa7 (33)

so that the condition x%y, = 1 is satisfied (without lack of generality, we
choose the unit radius r = 1 of the sphere). The operators x, are well-defined
on all vectors except vacuum; we complete the definition by postulating that
they annihilate the vacuum. The operators A, and A* (* denotes hermitian
conjugation) act in the Fock space F spanned by the orthonormal vectors

1
A
where |0) is the vacuum defined by A1]|0) = A3|0) = 0. They satisfy in F the

commutation relations

(AD)™(A3)™]0)

[Aa, Ag]l = [AL,AG] = 0, [Ay, A% = dup . (34)

The operators R and

1,
RJ‘ = 5 AadiﬁAg (35)

°In other words: the section of the line-bundle with the winding number &.



satisfy in F the u(2) algebra commutation relations
[RZ',R]‘] = Z'afi]‘kRk 5 [RZ,R] =0. (36)

Equation (35) is the Schwinger-Jordan realization of the su(2) algebra. On
the other side, it is just the noncommutative (quantum) version of the Hopf
fibration (18).

As 7:(k, k€ %Z, we denote the linear space spanned by the normal prod-

ucts

XXX (37)
with £ = %(ml + mg — ny — ngy) fixed. Obviously, A = H, is the noncom-
mutative algebra generated by R, R;,j = 1,2,3 with the relations (36). The

spaces H; are A-bimodules. The operators J; act in Hy as follows
‘]jf = [ijf] ) (38)

and they satisty in H; the su(2) algebra commutations relations.
For the further discussion, it is useful to consider (N + 1)-dimensional
subspaces

Fnv = {lni,n2) , mi+ny = N}, N =0,1,2, ...,

of the Fock space F. The operator R takesin Fy the constant value R = N.
The subspace Fy is the representation space of the unitary irreducible spin
%—representation of the su(2) algebra in which the Casimir operator

1
C = R?)) + §(R_|_R_ + R_Ry), Ry = RitiRy, (39)
takes the value NN
=—(—+1) . 4
c=5(3+Y) (40

As Hun we denote the space of linear mappings from Fy to Fy; spanned
by the monomials (37) with my4+me < M, ny+ny < N, my+me—ny—ny =
M — N. Obviously,

H}KWN = Hyum , HoveHun C Hin -

Any operator ¢ € Hun maps Fy to Fus, and can be represented by a
(M +1) x (N +41) matrix. There is an antilinear isomorphism between Hysn

10



and 7’AfNM represented as the (matrix) hermitian conjugation. In 7:(MN we
introduce the scalar product

1 *
((I)l,q)g)MN = J—_HTTN((I)ICI)Q)
1 * * *
= J—HTTM(%(I%) = (@3, P7)nwr (41)

where J = %(M + N) and T'rys denotes the trace in the space Hvne.

In particular, Ay =HAny is a (N + 1)*-dimensional algebra generated by
RW), R;N),j = 1,2,3, where RV, R;N) denote the restriction of R and R,
in Fn. This restriction generates the algebra homomorphism A= Ay. We

point out that in Ay there is an additional relation
R™M N =0, (42)

which expresses the fact that Fy is irreducible representation of SU(2). To
any operator ® € Ay we assign the integral
1
IN[®] = ——Trn(9). 43
W) = o Tra(®) (13)
In [6], we proved that for N — oo the algebras Ay approach the standard
commutative algebra of functiong A, and In[®] — [..[®]. Obviously, Han
is a left Ap;-modul and a right Ay-modul. A
The generators of su(2) rotations .J; in Hyn are given by
Jio = RMeo — or™ (44)
This su(2) algebra representation is reducible and is equivalent to the direct
product of two irreducible su(2) representations:

M N
7®3:|k|@(|k|+1)...@J, (45)

where k = (M — N) and J = (M 4 N). This means that any operator ¢ €

Hary can be expanded into operators @7, . belonging to the representations
indicated in (45):

JROL, = G, G= kLR T

11



‘]3(I){Ikm = mq)?]km ,ml <.

Putting Jy = Ji + ¢.J; we obtain the highest weight functions

j (27 +1)! xjtk Ak

satisfying J CI)?]M = 0. Here the normalization constant N;;; with respect to
the scalar product (41) is given by the equation

N - J(J—Fl)(J—l—k)!(J—k)! )

T+ i+ DT —j)

(we used eqs. (26) on p. 608 and (43) on p. 618 from Ref. [14]). The other
normalized functions ®%, . m = 0,£1,...,47, in the irreducible represen-
tation containing ®7,, are given by

i UAm)! g
B = J(j—mﬂ(zj)!‘]‘ B .

Now we are ready to discuss the commutative limit J — oo, k fixed. Not
only in this limit y* and xy commute among themselves, also the normal-
ization factor Nji; approaches 1 and expression (46) becomes the standard
Wigner D-function Dy, expressed in terms of x,, X}, instead of Euler angles.

Since [J;, R] = 0, the same remains true for the functions CI)f]km given in
(48). The normalization coefficient Ny, is also a cut-off factor, as can be
seen from (47), because Nyi; = 0 for 7 > J. If we vary k while keeping .J
fixed, then y#* and y will cease to commute for J — |k| — 0, even though J
can be very large. This is in accordance with the general principle (cf. [6])
that approaching the maximal spin J of the truncation the multiplication
becomes noncommutative.

In the noncommutative case we identify a section ® of a complex line bun-
dle with fixed winding number with an element of Harwn. The corresponding
field theory action we take in the form

1 1
Sun[®, 07 = S P[50 (K Ko+ Ko K)o+ V(@0)], (49)

12



where in the noncommutative case the operators K4 are defined by
K10 = ie,pA5[@, A7), K_® = ig,5[A,, ®]Ap . (50)

Note that the ‘topological charge’ operator Ky defined as

Ko® = —[R,®] (51)

1
2
takes in 7:(MN the constant value & = %(M — N). The order of operators in
(50) is essential because it guarantees that the operators Ky act on mono-
mials exactly in the same way as in the commutative case.

Note: We would like to stress that for the description of topologically
nontrivial field configurations (with x # 0), two algebras Ay and Ay (with
M — N = k # 0) are needed. This is the reason why the discussion within
only one matrix algebra (M = N) corresponds to the topologically trivial
situation (see e.g. [4, 5, 6, 11]).

If the winding number of the field ® is not fixed, we work with fields from
the space ) )

H(J) = @ Hunw (52)
M4N=2J

and the corresponding action we take as

Swle, @] = > Sun[®, 7. (53)
M4N=2J

The action (53) has the following basic properties:

1) it has the full su(2) symmetry corresponding to the rotations of S2.

2) it describes a model with a finite number of modes, since in fact, it
corresponds to a particular matrix model, and

3) it approaches in the limit J — oo the commutative action (for any
given polynomial field ®).

In general, the complex scalar field from 7:((J) can be expanded as

J +J ) )
7=0k;m=—j

The quantum field mean value of a functional F/[®, ®*] is defined as

[ DODE TP [G, §7]
B [ DO DP*e=5n[®:27] ’

(£, ")

13



where DODO* = T[], daimdaza is a finite product of the standard mea-
sures in the complex plane. The quantum mean values are well defined for
any polynomial functional F[®, ®*].

Under rotations specified by the Euler angles «, 3,~ the coefficients of
the field expansion transform as

a‘;gm - a/‘;gm/ = ZD]m/m(a7677) a‘;ﬂm b
m

G = e = 2D (0 By) af,
m

These are the unitary transformations not changing the measure D®D®*.
This completes the proof of rotational invariance of the model at the quantum
level.

4 Spinor fields

For construction of the topologically nontrivial spinor fields we use the super-
space approach developed in [6]. First we perform the A" = 1 superextension
of the Hopf fibration described in the previous section. We obtain it from
the mapping C*! — R*? given by

X1
5 = X2 — (J}i,(gu)7i:172737/l:_|_7_7
a
where
v = 8L, 0, = TRE (56)

Here £t = (x1,x3,a), and X4 = ¥ 4+ iy, Y3 and Fy are 3 x 3 matrices
given by

010 00 0 {1 00
Se=l0o00],xo=100]. % =2]0-10],
00 0 00 0 0 0 0
{0 0 -1 L {00 0
Fo=—|0 0 0|, Fo=—|00 -1 (57)
V2lo 21 o V211 0 o

14



The quantities y., X% (o = 1,2) and «a, a* are respectively even and odd
coordinates of the superspace C'%!; * denotes the graded involution [15, 6]
characterized by the properties

(ab) = (—1)%0 © 9 M, g = (< 1) .

Note that a restriction yixi+ x3X2 +a*a = 2p implies 2 +0,60_ = p*. Thus
we obtain the Hopf superfibration s5° — s5% of the 3-supersphere in C'*!
with the fibration basis being the two-supersphere in R>?.

It is worth noting that 3; and F, are respectively even and odd generators
of the osp(2,1) superalgebra:

[2372:&] = j:zzl:v [Z+,Z_] = 2237

1
[237F:|:] = i§F:|:7[Z:I:7F:I:] = Ov[zﬂ:vF:F] = F:|:7
(Fa Fy] = 454, [Fo, F] = %5 . (58)

Here and in what follows, the symbol [A, B] denotes a supercommutator, i.e.
the commutator AB — BA if either A or B is even, and the anticommutator
AB + BA if both A and B are odd.

A superfunction ® = ®(£,£*) on s5° is represented as a linear combina-
tion of monomials

*770q KT ny ok UV

X1 X2 X?le a-a , (59)

where m,, n, are non-negative integers and p, = 0,1°. The representatives
which are identical on the surface xix1 + x3x2 + ¢*¢ = r correspond to
the same superfunction ® on s5°. To any such monomial we assign the
topological charge 2k = my +mg +pu —ny —ny —v. As sHy, k € %Z,
we denote the linear space spanned by the monomials with fixed k. Any
superfunction ® € sH; can be expanded as

® = Po(x,x") + fOuxa + g0, x)a™ + F(x,x")a"a, (60)

where ®g, I' € Hy, are even and f € H; 1, g € H,_1 are odd. The space
2 2

sHo is a superalgebra s A with respect to the supercommutative ‘pointwise’

product of parameters £, £*. The spaces sHj, are sA-bimodules.

°If the monomial in (59) is odd then it appears with an odd coefficient in the decom-
position of the superfunction @ in the linear combination of the monomials (59). Thus
the superfunction @ itself is an even element of the Grassmann algebra.

15



The differential operators generating the osp(2,1) algebra acting on sHj,
are given by

Ji = o) (00 — &aXii0s,]

. .
o = SlEFR0g + &ali'Os] (61)
The function C'(x,0) = x} + $(040_ — 0_0,) is an invariant superfunction
from sHg:
JiC(x,0) = 0, v,C(x,0) = 0. (62)

The condition C'(x,0) = p* defines a supersphere in R*?.
In sHy we can introduce a standard Berezin integral over the supersphere
[6] as
sIL[0] = £/d3xd0+d0_5(xf L 0,0_ — p?) B(x,0) (63)
s

where the super §-function should be understood as
(S(l’? —|— 0_|_0_ - p2) = (S(l’? - p2) —|— 0+0— 5’(:[22 — pz) ,

(this formula is obtained by a Taylor expansion of the super é-function).
Expressing 0, in terms of @, a* we obtain

sl [®] = %/deda*da[(S(aj? —p*) +patad’(x? — p*)] ®(z,a), (64)

where now one can expand ¢ directly as in (60). Much as before, we can
introduce the inner product in sH;

(1, P2)r = slec[PTPo] (65)
where (cf. (60))
" =05\, X") — g a+ ffa" + Fra”a.
The spinor field ¥ we identify with the odd part of the superfield ®:
U= floxNa + g, XN, (66)

where f and g are also odd (cf. footnote 5). As Sy, k € 1Z we denote
the set of spinor fields from sHj, i.e. with f € Hk+;— and g € Hk_;_. Sk
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are A-bimodules (but not sA-(bi)modules). The formula (66) induces the

decomposition of the spinor space:
S = SP @ s, (67)

where S,E—I_) corresponds to the first term in (66), and S,g_) to the second one.

The chirality grading operator I' we define as the operator taking in S,g“) the
value = +1:

'V = flx,x")a — g(x,x7)a". (68)

The operator I' can be realized as the differential operator
'V = (a0, — a0,V . (69)

We define the free Dirac operator D as the following mapping from Sy to
Ski
DV = (Kyg)a + (K_f)a" . (70)

It can be expressed as the second order (in even and odd parameters) differ-
ential operator

DV = (aduK_ + a*0,K.)0 . (71)

The Dirac operator anticommutes with the chirality operator:
DI' + TD = 0. (72)
The action for spinor field we define in terms of the Berezin integral
SV, U] = sl VDY + WU, U)], (73)

where W(U*, W) is a suitable potential describing the selfinteraction of the
spinor field. Note: We would like to stress that the formalism for the spinor
field presented above is equivalent to the usual one described in Section 2,
but it is better suited for the non-commutative generalization.

In the noncommutative case we replace Y., x5, and a, ¢* by bosonic and
fermionic annihilation and creation operators

)A(oz - AozR_l/2 ) )%z = R_l/zsz

a = bR7Y? & = RV (74)
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where now

R=A%A, + b, (75)

so that the condition X%y, + a*a = 1 is satisfied (this corresponds to the
radius of the two-sphere p = 1/2). The operators A,, A%, b,b* act in the
Fock space sF spanned by the orthonormal vectors

1
\ n1!n2!

where nq, ny are non-negative integers, v = 0,1 and |0) is the vacuum defined
by A;]0) = A,|0) = b|0) = 07. The annihilation and creation operators in
question satisfy in sF the supercommutation relations

(A7)™ (A9)=(07)7]0)

|n1,n2;l/> =

[AOMAﬁ] = [AZNAE] = 07 I:AOMAE] = 5a,ﬁ .

[Aa, 0] = [AL,b] = [Aa, 7] = [AL 0] = 0,
b= (b =0, [b,0] = 1. (76)
The operators
.,
Ry = L Alds

1 1

Vi = 75(—14?6 — b Ay) V. = 75(—1436 + 0" Ay), (77)
then satisfy in the Fock space sF the osp(2,1) superalgebra commutation

relations (58) (with an obvious change in the notation).
As sH; we denote the linear space of superfields (60) with @, F' € 7:(k,
I e 7:(k_|_;_ and g € ﬂk_%. Obviously, sA = sHo is a superalgebra, and sH
are sA-bimodules. The subalgebra A is naturally embedded into sA (as the
set of ®y’s in the decomposition (60) for & = 0). The generators .J; and V,, of

0sp(2,1) act in the space sHj by means of the superadjoint action (cf. [6])
J;® = [R;,®], V, 0 = [V,,D]. (78)

Obviously, this is a reducible representation of the superalgebra osp(2,1) in

SHk.

"Note that * still denotes the graded involution. This means that 5 is the adjoint
operator bt of b in the standard fermionic Fock space, but b** = —b.
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The spinor field ¥ we identify with the odd part of the superfield ®:

U= f({"0)a + g(xnn)at. (79)
AsSp k€ %Z we denote the set of spinor fields from sHy, i.e. with f € 7:(1“-;—
and g € 7:(k_;_ Sy are A-bimodules (but not sA-(bi)modules).

The formula (79) induces the decomposition of the spinor space:
S =8P @ s, (80)

where $,£+) corresponds to the first term in (79), and 3’,5_) to the second one.
The grading I' we define in the same way as in (68):

IV = f(x",x)a — g(xX",x)a". (81)
It can be also written as
[0 = — [b°b, 0] . (82)

Thus the grading is directly related to the fermion number and it takes in
S,g“) the value p = +1.
The free Dirac operator D we define as in (70):

DY = (Kyg)a + (K_f)i" . (83)

where Ky were defined in (50). The Dirac operator maps Sy into Sy and it
anticommutes with the chirality grading operator:

DI' + TD = 0. (84)
As sFn we denote the subspace
sFn = {|lni,nov) €sF , ni+ne+v=N}, (85)

in which the operator R takes the value R = N. Obviously, sFy isa (2N+1)-
dimensional superspace

sFy = sFY @ sFYL, . (36)

where SF](\;//) is the subspace with N’ bosons and v fermions, 5.7:](\?) is the
even subspace of sFxn and 5.7:](\}11 is the odd one. The space sFy is the
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representation space of the irreducible representation of the superalgebra
0sp(2,1) (generated by R;,V, given above) in which the Casimir operator

1 1
C=R + SR B+ BoRy) + S(ViVo = VoV (87)
takes the value |
CZZN(N—I-l) . (88)

As 57:(MN we denote the space of linear mappings from sFy to sFus
spanned by the operator monomials

AXI] A KRN AT ATLQA*/J,AI/

X1 X2 X1 Xg°¢

with my+mo+pu < M, ny+no+v < N and my+mot+pu—ny—ny—v = M—N.
Any operator ® € sHyny can be represented by a (2N + 1) x (2M + 1)
supermatrix. In sHysn we introduce an inner product

(&1, Do) = sTry(P7Ps) , (89)

where J = %(M + N) and sT'ry denotes the supertrace in the space S?%NN.

As in the purely bosonic case, the action of su(2) generators .J; on S?ijN is
given by the formula (44) Wlth R; given by (77).
As SMN we denote the space of spinor fields from SHMN7 1. e.

vo= f(X",0)a + g(x",x)a",
where f € 7:(M7N_1 and g € 7:(M_17N. This gives the decomposition
Sun = S & Sk,

where ‘SA‘](\%\T contains spinors fields with the chirality ¢ = 4+1. The operators
Ki, entering the Dirac operator D (83), act in Sy, moreover, Ky takes in

SMN the constant value (M — N + ). The spinor field operators from ‘SA‘](\%\T
are odd mappings sFn — sFy, namely:

Ja: sFY — sFY
ga* : Sf](vo) — 3.7:](\/1[) . (90)
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According to (45), f and g can be expanded into operator functions belonging
to the representations:

M N-1 1 1
—Q— = |lk+= — =), fi
M-1 N 1 1
— = |k—= — =), fi 1
where k = $(M —N)and J = (M +N). This means that f can be expanded
into the functions (I)?]—;—,k-l—;—,m with = k+3,....,J — 3, |m| <j, and, in
the same way, ¢ into the functions q)f]_;_’k_%m with j = |k —1[,....J — 3,

|m| < j (cf. (48)). The admissible values of j are:

1 1
— e, ==
27 Y

1
= |k|l—=, |k
jo= b= Ikl :

They can be seen from the representation content in Eqs. (91):

(i) The first value j = |k| — £ is admissible only for & # 0, and for & > 0
it is present in ¢ (chirality -1), whereas for & < 0 in f (chirality +1). It
corresponds to the |M — N| (normalized) zero modes of the Dirac operator
given by

(mi+me+10 |
\Ilgnt% = \/ W Xiﬂmlx’zﬂm?a* , for k = §(m1 + mo + 1) >0,
0 (n1 4 ny + 1)!

~ry AT A 1
qjmm - \/W X71%1X22a ’ for k = _§(n1 +ng + 1) <0 3 (92)

Note that the normalization does not depend on the cut-off spin J, therefore
the correct commutative limit is obvious.

ii) The remaining eigenvalues j = |k|+L.....J — 1 correspond to non-
g eig J R p 4

-1

zero modes of the Dirac operator. Consider (normalized) functions q)f]j,;m

with a given chirality p = £1 given by

Wi, = VTR, i i = VTET e,
2T

)

1 1
—5k+5m
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where ®7,, were defined in (46) and (48). Using the definition of the Dirac
operator (83) and the formula®

Ke®p, = U214 DGF) Wppar - (94)
we obtain the equation

1 i 1

— Do L Y A 95
T—k+1 Jkm J—k:FI k3 ¥ Jkm ( )

1N
Ek]‘ = = \/(j—|-§) —kz. (96)
Thus the functions

: J—k—-1 _. J—k+1 _._
Wi =\ 2=k o, + V3T =R (e (97)

are (normalized) eigenfuctions of the Dirac operator with the eigenvalues
+Ey;.

Note: We would like to stress that in the standard commutative case exactly
the same formula for the spectrum is obtained, except for the fact, that
the admissible values of 7 are not truncated. As the number of degrees of

where

freedom is finite this will lead to a non-perturbative UV-regularization (for
a real scalar field this was demonstrated in [5]).

The action for the selfinteracting (Dirac) spinor field ¥ & SMN with a
fixed winding number we define as follows

Sun[U, U] = sTry[U"DU + W(U" W), (98)

where U = fa + ga*, V* = ag* — a* f*, and W(.,.) is an interaction term.
We do not wish to fix the winding number of the field W, instead we take ¥
from the space

Sn = @D Sun, (99)
M+N=2J

8Formula (94) follows from the properties of the Wigner functions (cf. the discussion
after (48)) because K4 act on the second subscript of ®, in exactly the same way as
J+ act on the third subscript.
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and the corresponding action we define as

Sl = > Sun[¥, 0] (100)
M+N=2J
This action has the following basic properties:
1) Is invariant with respect to the space isometries, i.e. the rotations of
the sphere, and the chiral transformations

U — Ty U — Ul aeR, (101)

provided that the interaction term is rotationally and chirally invariant.

2) It describes the system with a finite number of degrees of freedom.

3) It approaches for J — oo the commutative action.
Note: The rotational invariance of the action Sy follows from the rotational
invariance of the truncated Dirac operator. The chiral invariance of the action
is obvious, because the Dirac operator D anticommutes with the grading I’
(cf. (84)).

The spinor field ¥ € Syn can be expanded as

J=3 4
0[K-3 0 ) i+ it i~ -
U= D amms Uom, + D D (akm L (I)ka) , (102)
e i=lkl4 5 m==i

where the first sum corresponds to the zero modes (92) and the remaining
two sums are related to the non-zero modes (96). All expansion coefficients
a in (102) are supposed to be independent anticommuting Grassmannian
variables. In the same way, the field ¥* € Sy is supposed to have an
expansion with independent Grassmann coefficients a*.

The quantum field mean value of a functional F/[W, U*] is given as

f[D\I;]MN[D\I}*]NMQ—SMN[‘IJ,‘II*] )

(FU, ¥ uy = (103)

where [[DW]yn[DU*]nar- .. denotes the finite dimensional Berezin integral
over all admissible coefficients ¢ and «* with fixed k = %(M — N) and
J=1(M+N).

Taking into account that CI)f]—I,;m and the zero modes for £ > 0 corresponds
to g, and similarly q)f];m and the zero modes for k£ < 0 corresponds to f, the
chiral transformations (101) can be written as

0,k|l—5 — 0lkl-3 i+ ‘o j+
am1TfL22 — e Zs(k)a am1m22 7a‘]7§m - e:FZaa‘;ﬂm 2 (104)
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where (k) is the sign function. We see that the phase contributions to the
measure [DW]yny from the non-zero modes cancel. As expected, the only
contribution comes from || zero modes (k = M — N):

[DW]ary — €7 [DW]yy .

Analogous rules are valid for expansion coefficients of the field U*. The
phase factors from non-zero modes cancels, and there is just the same phase
contribution from zero modes (since the conjugation and the change M—N —
N — M compensate each other in the phase factors):

[D\I/*]NM — e_ma [D\I/*]NM .
Thus, the total change of the measure [DWU]yn[DW*|nas is
[DU N [DY v — €725 [DU]yn[DY ] v - (105)

We see that assuming fixed k # 0, the chiral symmetry is violated on
quantum level. However, taking into account simultaneously fields with given
k and —k, as e.g. in S(J), the chiral symmetry is restored. Thus, the measure
DYDY = [lyn[DV¥]un[DY*]yy enterring the quantum mean value over
S
- [ DYDY e~ nM VT p [y g
< [ ? ]> - fD\I}D\I}*e_S(J)[‘IJ"I}*] )

is invariant under chiral transformations (101) or (104), since DY DY* —

DV D>,

(106)

5 Summary and outlook

In treating the topologically nontrivial complex scalar field configurations in
the noncommutative case, our main tool was the noncommutative version of
the Hopf fibration encoded in the noncommuting parameters \,, X5, o = 1, 2.
Any field configuration with the topological winding number x was expanded
into the functions ®%, k= 1(M — N), |m| < j = |k|,...,3(M 4+ N) where
CI)f]km are noncommutative analogs of the standard D-functions D‘,im. Thus
we gave an algebraic characterization of the winding number k = 2k which 1s
directly related to the index k of the D-functions in question. On matrix level
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this leads to the (M + 1) x (N + 1)-matrix representation of fields from the
space Han. The usual matrix geometry models correspond to M = N, and
this is the reason why they describe the topologically trivial configurations
only.

The same procedure applied for the treatment of the topologically non-
trivial spinor field configurations, too. Moreover, here it was essential the
natural supersymmetry of the problem introduced in [6]; we described the
topologically nontrivial spinors on S? as the odd sections of nontrivial super-
line bundles on the supersphere sS%. For this purpose we used the noncom-
mutative Hopf superfibration in terms of even noncommutative parameters
Xao» Xos @ = 1,2, to which we added a pair a,a” of odd noncommutative pa-
rameters. We identified the spinor bundle Sy as the smallest space which is

invariant under action of the Dirac operator D). The bundle Sysn is spanned
by |M — N| zero modes of D and by functions &’ a*, o’ a

J-Lk-1m J-Lk+im
corresponding to the non-zero modes of D.

The models (98) and (100) are rotationaly invariant and contain only
finite number of degrees of freedom both on classical and quantum level.
This truncation of the modes has a consequence that their quantum version
is UV-regular (there are only finite sums instead of singular integrals and/or
inifinite series). A detailed discussion of these aspects in the case of a real
scalar field can be found in [5].

The supersymmetry approach proposed in [6] proved to be useful in de-
scribing the chiral properties of spinors. Our spinor field models have the chi-
rally invariant actions, however, the field functional measure [DW, DU*|y;n
is not invariant for a fixed M — N # 0, and under chiral transformations, it is
modified due to the zero modes by the factor €*“. Only when the fields with
given k and —k are treated simultaneously the chiral invariance is recovered.
Thus the chiral properties of the theory are the same as those in the standard
untruncated case.

It would be desirable to include the gauge fields into our approach. Even
more desirable and important is to extend our scheme to the four dimensional
(super)sphere S*. We hope to attack these problems in a near future.
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