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1 IntroductionIn spite of the diversity of solvable models of quantum �eld theory and the vast variety of methods, the�nal results display dramatic uni�cation: the spectrum of an integrable theory with a local interactionis given by a sum of elementary energies E =Xi "(ui) ; (1.1)where ui obey a system of algebraic or transcendental equations known as Bethe equations [1], [2]. Themajor ingredients of Bethe equations are determined by the algebraic structure of the problem. A typicalexample of a system of Bethe equations (related to A1-type models with elliptic R-matrix) ise�4�� �(uj)�(uj � 2) = �Yk �(�(uj � uk + 2))�(�(uj � uk � 2)) ; (1.2)where �(x) is the Weierstrass �-function and�(u) = NYk=1�(�(u � yk)) : (1.3)Entries of these equations which encode information of the model are the function "(u) (entering through�(u)), quasiperiods !1, !2 of the �-function, parameters �, �, yk and size of the system N . Di�erentsolutions of the Bethe equations correspond to di�erent quantum states of the model.In this paper we show that these equations, which are usually considered as a tool inherent to thequantum integrability, arise naturally as a result of the solution of entirely classical non-linear discretetime integrable equations. This suggests an intriguing interrelation (if not equivalence) between integrablequantum �eld theories and classical soliton equations in discrete time. In forthcoming papers we willshow that the Bethe equations themselves may be considered as a discrete integrable dynamical system.R.Hirota proposed [3] a di�erence equation which uni�es the majority of known continuous solitonequations, including their hierarchies [4], [5]. A particular case of the Hirota equation is a bilineardi�erence equation for a function � (n; l;m) of three discrete variables:�� (n; l+1;m)� (n; l;m+1)+�� (n; l;m)� (n; l+1;m+1)+� (n+1; l+1;m)� (n�1; l;m+1) = 0 ; (1.4)where it is assumed that � + � +  = 0. Di�erent continuum limits at di�erent boundary conditionsthen reproduce continuous soliton equations (KP, Toda lattice, etc). On the other hand, � (n; l;m) canbe identi�ed [4] with the � -function of a continuous hierarchy expressed through special independentvariables.The same equation (with a particular boundary condition) has quite unexpectedly appeared in thetheory of quantum integrable systems as a fusion relation for the transfer matrix (trace of the quantummonodromy matrix).The transfer matrix is one of the key objects in the theory of quantum integrable systems [6]. Transfermatrices form a commutative family of operators acting in the Hilbert space of a quantum problem. LetRi;A(u) be the R-matrix acting in the tensor product of Hilbert spaces Vi
VA. Then the transfer matrixis a trace over the auxiliary space VA of the monodromy matrix. The latter being, the matrix productof N R-matrices with a common auxiliary space:T̂A(ujyi) = RN;A(u� yN ) : : :R2;A(u � y2)R1;A(u� y1) ;TA(u) = trAT̂A(ujyi) : (1.5)The transfer matrices commute for all values of the spectral parameter u and di�erent auxiliary spaces:[TA(u); TA0 (u0)] = 0: (1.6)They can be diagonalized simultaneously. The family of eigenvalues of the transfer matrix is an object ofprimary interest in an integrable system, since the spectrum of the quantum problem can be expressedin terms of eigenvalues of the transfer matrix. 2



The transfer matrix corresponding to a given representation in the auxiliary space can be constructedout of transfer matrices for some elementary space by means of the fusion procedure [7], [8], [9]. Thefusion procedure is based on the fact that at certain values of the spectral parameter u the R-matrixbecomes essentially a projector onto an irreducible representation space. The fusion rules are especiallysimple in the A1-case. For example, the R1;1(u)-matrix for two spin-1/2 representations in a certainnormalization of the spectral parameter is proportional to the projector onto the singlet (spin-0 state)at u = +2 and onto the triplet (spin-1 subspace) at u = �2, in accordance with the decomposition[1=2]+ [1=2] = [0]+ [1]. Then the transfer matrix T 12 (u) with spin-1 auxiliary space is obtained from theproduct of two spin-1/2 monodromy matrices T̂ 11 (u) with arguments shifted by 2:T 12 (u) = tr[1]�R1;1(�2)T̂ 11 (u+ 1)T̂ 11 (u� 1)R1;1(�2)� :A combination of the fusion procedure and the Yang-Baxter equation results in numerous functionalrelations (fusion rules) for the transfer matrix [7], [10]. They were recently combined into a universalbilinear form [11], [12]. The bilinear functional relations have the most simple closed form for the modelsof the Ak�1-series and representations corresponding to rectangular Young diagrams.Let T as (u) be the transfer matrix for the rectangular Young diagram of length a and height s. If �can not be represented in the form � = r1!1 + r2!2 with rational r1, r2 (below we always assume thatthis is the case; for models with trigonometric R-matrices this means that the quantum deformationparameter q would not be a root of unity), they obey the following bilinear functional relation:T as (u+ 1)T as (u� 1)� T as+1(u)T as�1(u) = T a+1s (u)T a�1s (u) : (1.7)Since T as (u) commute at di�erent u; a; s;, the same equation holds for eigenvalues of the transfermatrices, so we can (and will) treat T as (u) in eq. (1.7) as number-valued functions. The bilinear fusionrelations for models related to other Dynkin graphs were suggested in ref. [12].Remarkably, the bilinear fusion relations (1.7) appear to be identical to the Hirota equation (1.4).Indeed, one can eliminate the constants �; �;  by the transformation� (n; l;m) = (��=)n2=2(1 + =�)lm �n(l;m);so that�n(l + 1;m)�n(l;m+ 1)� �n(l;m)�n(l + 1;m+ 1) = �n+1(l + 1;m)�n�1(l;m+ 1) = 0 (1.8)and then change variables from light-cone coordinates n; l;m to the "direct" variablesa = n; s = l +m; u = l �m� n;�n(l;m) � T al+m(l �m � n): (1.9)At least at a formal level, this transformation provides the equivalence between eqs. (1.7), (1.4) and(1.8). In what follows we call eq. (1.8) (or (1.7)) Hirota's bilinear di�erence equation (HBDE).Leaving aside more fundamental aspects of this "coincidence", we exploit, as a �rst step, sometechnical advantages it o�ers. Speci�cally, we treat the functional relation (1.7) not as an identity but asa fundamental equation which (together with particular boundary and analytical conditions) completelydetermines all the eigenvalues of the transfer matrix. The solution to HBDE then appears in the formof the Bethe equations. We anticipate that this approach makes it possible to use some speci�c tools ofclassical integrability and, in particular, the �nite gap integration technique.The origin of T as (u) as an eigenvalue of the transfer matrix (1.5) imposes speci�c boundary conditionsand, what is perhaps even more important, requires certain analytic properties of the solutions. As ageneral consequence of the Yang-Baxter equation, the transfer matrices may always be normalized tobe elliptic polynomials in the spectral parameter, i.e. �nite products of Weierstrass �-functions (as in(1.3)). The problem therefore is stated as of �nding elliptic solutions of HBDE.A similar problem appeared in the theory of continuous soliton equations since the works [13], [14],wherein a remarkable connection between motion of poles of the elliptic solutions to the KdV equation3



and the Calogero-Moser dynamical system was revealed. Elliptic solutions to Kadomtsev-Petviashvili(KP), matrix KP equations and the matrix 2D Toda lattice (2DTL) were analyzed in the Refs. [15],[16], [17], respectively. It was shown, in particular, that poles of elliptic solutions to the abelian 2DTL(i.e. zeros of corresponding � -functions and Baker-Akhiezer functions) move according to the equationsof motion for the Ruijsenaars-Schneider (RS) system of particles [18].Analytic properties of solutions to HBDE relevant to the Bethe ansatz suggest a similar interpretationof Bethe ansatz equations. We will show that the nested Bethe ansatz for Ak�1-type models is equivalentto a chain of B�acklund transformations of HBDE. The nested Bethe ansatz equations arise as equationsof motion for zeros of the Baker-Akhiezer functions in discrete time (discrete time RS system 1). Thediscrete time variable is identi�ed with level of the nested Bethe ansatz.The paper is organized as follows. In Sect. 2 we review general properties and boundary conditionsof solutions to HBDE that yield eigenvalues of quantum transfer matrices. In Sect. 3 the zero curvaturerepresentation of HBDE and the auxiliary linear problems are presented. We also discuss the duality re-lation between "wave functions" and "potentials" and de�ne B�acklund ows on the set of wave functions.These ows are important ingredients of the nested Bethe ansatz scheme. For illustrative purposes, inSect. 4, we give a self-contained treatment of the A1-case, where major part of the construction containsfamiliar objects from the usual Bethe ansatz. Sect. 5 is devoted to the general Ak�1-case. We give ageneral solution to HBDE with the required boundary conditions. This leads to a new type of determi-nant formulas for eigenvalues of quantum transfer matrices. A sketch of proof of this result is presentedin the appendix to Sect. 5. Generalized Baxter's relations (di�erence equations for Qt(u)) are written inthe explicit form. They are used for examining the equivalence to the standard Bethe ansatz results. InSect. 6 a part of the general theory of elliptic solutions to HBDE is given. Sect. 7 contains a discussionof the results.2 General properties of solutions to Hirota's equation relevantto Bethe ansatz2.1 Boundary conditions and analytic propertiesHBDE has many di�erent solutions. Not all of them give eigenvalues of the transfer matrix (1.5). Thereare certain boundary and analytic conditions imposed on the transfer matrix (1.5).(i) It is known that T ks (u), the transfer matrix in the most antisymmetrical representation in theauxiliary space, is a scalar, i.e. it has only one eigenvalue (sometimes called quantum determinantdetq T̂s(u) of the monodromy matrix). It depends on the representation in the quantum space of themodel and is known explicitly. In the simplest case of the vector representation (one-box Young diagram)in the quantum space it is [20]:T ks (u) = �(u� s� k) k�1Yl=0 s�1Yp=1�(u+ s + k � 2l � 2p� 2) k�1Yl=1 �(u+ s + k � 2l); (2.1)T 0s (u) = 1: (2.2)These values of T 0s (u) and T ks (u) should be considered as boundary conditions. Let us note that theyobey the discrete Laplace equation:T ks (u+ 1)T ks (u� 1) = T ks+1(u)T ks�1(u): (2.3)This leads to the boundary condition (b.c.)T as (u) = 0 as a < 0 and a > k (2.4)(with this b.c. eq. (1.8) is known as the discrete two-dimensional Toda molecule equation [21], anintegrable discretization of the conformal Toda �eld theory [22]).1It should be noted that equations of motion for the discrete time RS system were already written down in the paper[19]. However, the relation to elliptic solutions of discrete soliton equations and their nested Bethe ansatz interpretationwere not discussed there. 4



(ii) The second important condition (which follows, eventually, from the Yang-Baxter equation) isthat T as (u) has to be an elliptic polynomial in the spectral parameter u. By elliptic polynomial we meanessentially a �nite product of Weierstrass �-functions. For models with rational R-matrix it degeneratesto a usual polynomial in u.To give a more precise formulation of this property, let us note that eq. (1.7) has the gauge invarianceunder a transformation parametrized by four arbitrary functions �i of one variable:T as (u)! �1(a + u+ s)�2(a� u+ s)�3(a + u� s)�4(a� u� s)T as (u) (2.5)These transformations can remove all zeros from the characteristics a� s � u = const. We require thatthe remaining part of all T as (u) should be an elliptic (trigonometric, rational) polynomial of one and thesame degree N , where N is the number of sites on the lattice (see (1.3)).One can formulate this condition in a gauge invariant form by introducing the gauge invariant com-bination Y as (u) = T as+1(u)T as�1(u)T a+1s (u)T a�1s (u) : (2.6)We require Y as (u) to be an elliptic function having 2N zeros and 2N poles in the fundamental domain.This implies that T as (u) has the general form2T as (u) = Aase�(a;s)u NYj=1�(�(u � z(a;s)j )) ; (2.7)where z(a;s)j , Aas , �(a; s) do not depend on u and the following constraints hold:NXj=1(z(a;s+1)j + z(a;s�1)j ) = NXj=1(z(a+1;s)j + z(a�1;s)j ) ; (2.8)�(a; s+ 1) + �(a; s� 1) = �(a+ 1; s) + �(a � 1; s) : (2.9)Another gauge invariant combination,Xas (u) = �T as (u+ 1)T as (u� 1)T a+1s (u)T a�1s (u) = �1� Y as (u) ; (2.10)is also convenient.As a reference, we point out gauge invariant forms of HBDE [12]:Y as (u+ 1)Y as (u� 1) = (1 + Y as+1(u))(1 + Y as�1(u))(1 + (Y a+1s (u))�1)(1 + (Y a�1s (u))�1) ; (2.11)Xas+1(u)Xas�1(u) = (1 +Xas (u+ 1))(1 +Xas (u� 1))(1 + (Xa+1s (u))�1)(1 + (Xa�1s (u))�1) : (2.12)It can be shown that the minimal polynomial appears in the gaugeT as (u)! T as (u) a�1Yl=0 s�1Yp=1�(u+ s + a� 2l � 2p� 2) a�1Yl=1 �(u+ s+ a� 2l)!�1 ; (2.13)where all the "trivial" zeros (common for all the eigenvalues) of the transfer matrix are removed (seee.g. [24]). The boundary values at a = 0; k then become:T 0s (u) = �(u+ s);T ks (u) = �(u� s � k) : (2.14)>From now on we adopt this normalization.2This di�ers from a more traditional expression in terms of Jacobi �-functions by a simple normalization factor.5



(iii) The analyticity conditions and b.c. (2.14) lead to a particular "initial condition" in s. It isconvenient, however, to take advantage of it before the actual derivation. The condition readsT as (u) = 0 for any � k < s < 0; 0 < a < k : (2.15)This is consistent with (1.7), (2.14) and impliesT a0 (u) = �(u� a) (2.16)for 0 � a � k.Under the analyticity conditions (i) and the b.c. (2.14) (and their consequences (2.15), (2.16)) eachsolution to HBDE (1.7) corresponds to an eigenstate of the Ak�1-transfer matrix.The same conditions are valid for higher representations of the quantum space. However, in thatcase there are certain constraints on zeros of �(u) (they should form "strings"), whence T as (u) acquiresextra "trivial" zeros. Here we do not address this question.2.2 Pl�ucker relations and determinant representations of solutionsClassical integrable equations in Hirota's bilinear form are known to be naturally connected [25], [26],[27], with geometry of Grassmann's manifolds (grassmannians) (see [28] [29], [30]), in general of an in�nitedimension. Type of the grassmannian is speci�ed by boundary conditions. Remarkably, the b.c. (2.4)required for Bethe ansatz solutions corresponds to �nite dimensional grassmannians. This connectionsuggests a simple way to write down a general solution in terms of determinants and to transmit theproblem to the boundary conditions. Numerous determinant formulas may be obtained in this way.The grassmannian Gr+1n+1 is a collection of all (r + 1)-dimensional linear subspaces of the complex(n + 1)-dimensional vector space Cn+1. In particular, G1n+1 is the complex projective space Pn. LetX 2Gr+1n+1 be such a (r+1)-dimensional subspace spanned by vectors x(j) =Pni=0 x(j)i ei, j = 1; : : : ; r+1,where ei are basis vectors inCn+1. The collection of their coordinates form a rectangular (n+1)�(r+1)-matrix x(j)i . Let us consider its (r + 1)� (r + 1) minorsdetpq (x(q)ip ) � (i0; i1; : : : ; ir); p; q = 0; 1; : : : ; r ; (2.17)obtained by choosing r + 1 lines i0; i1; : : : ; ir. These Cr+1n+1 minors are called Pl�ucker coordinates of X.They are de�ned up to a common scalar factor and provide the Pl�ucker embedding of the grassmannianGr+1n+1 into the projective space Pd, where d = Cr+1n+1 � 1 (Cr+1n+1 is the bimomial coe�cient).The image of Gr+1n+1 in Pd is realized as an intersection of quadrics. This means that the coordinates(i0; i1; : : : ; ir) are not independent but obey the Pl�ucker relations [29], [30]:(i0; i1; :::; ir)(j0; j1; :::; jr) = rXp=0(jp; i1; :::; ir)(j0; :::jp�1; i0; jp+1:::; jr) (2.18)for all ip; jp, p = 0; 1; : : :; r. Here it is implied that the symbol (i0; i1; : : : ; ir) is antysymmetric in allthe indices, i.e., (i0; : : : ; ip�1; ip; : : : ; ir) = �(i0; : : : ; ip; ip�1; : : : ; ir) and it equals zero if any two indicescoincide. If one treats these relations as equations rather than identities, then determinants (2.17) wouldgive a solution to Hirota's equations.The Plucker relations in their general form (2.18) describe fusion rules for transfer matrices corre-sponding to arbitrary Young diagrams. At the same time these general fusion rules can be recast [31]into the form of higher equations of the discrete KP hierarchy. These are n-term bilinear equations forfunctions of n variables [5] [32]. In this paper we restrict ourselvesto the three-term Hirota equation.In order to reduce general Pl�ucker relations to 3-term HBDE, one should take ip = jp for p 6= 0; 1.Then all terms but the �rst two in the r.h.s. of (2.18) vanish and one is left with the 3-term relation(i0; i1; : : : ; ir)(j0; j1; i2; : : : ; ir) = (j0; i1; i2; : : : ; ir)(i0; j1; i2; : : : ir) + (j1; i1; i2; : : : ; ir)(j0; i0; i2; : : : ir):(2.19)6



After the substitution (2.17) these elementary Pl�ucker relations turn into certain determinant identities.For example, choosing x(j)i0 = �pj , x(j)j0 = �qj , q 6= p, one can recast eq. (2.19) into the form of the Jacobiidentity: D[pjp] �D[qjq]�D[pjq] �D[qjp] = D[p; qjp; q] �D : (2.20)where D is determinant of a (r+1)� (r+1)-matrix and D[p1; p2jq1; q2] denotes determinant of the samematrix with p1;2-th rows and q1;2-th columns removed. Another useful identity contained in eq. (2.19)connects minors D[l1; l2] of a (r+3)� (r+1) rectangular matrix, where the two rows l1; l2 are removed:D[l1; l3] �D[l2; l4]�D[l1; l2] �D[l3; l4] = D[l1; l4] �D[l2; l3] ; l1 < l2 < l3 < l4 : (2.21)Identifying terms in eq. (2.19) with terms in HBDE (1.8), one obtains various determinant represen-tations of solutions to HBDE. Two of them follow from the Jacobi identity (2.20):�a(l;m) = det ��1(l + i� a;m� j + a)�; i; j = 1; : : : ; a; �0(l;m) = 1 (2.22)or, in "direct" variablesT as (u) = det �T 1s+i�j(u+ i+ j � a� 1)�; i; j = 1; : : : ; a; T 0s (u) = 1 : (2.23)This representation determines an evolution in a from the initial values at a = 1. The size of thedeterminant grows with a. A similar formula exists for the evolution in s:T as (u) = det �T a+i�j1 (u + i + j � s � 1)�; i; j = 1; : : : ; s ; T a0 (u) = 1 : (2.24)The size of this determinant grows with s. Determinant formulas of this type have been known in theliterature on quantum integrable models (see e.g. [23]). They allow one to express T as (u) through T a1 (u)or T 1s (u).A di�erent kind of determinant representation follows from (2.21):�a(l;m) = detMij ;Mji = � hi(u+ s+ a+ 2j) if j = 1; :::; k� a; i = 1; :::; k�hi(u� s+ a+ 2j) if j = k � a+ 1; :::; k; i = 1; :::; k (2.25)where hi(x) and �hi(x) are 2k arbitrary functions of one variable. Size of this determinant is equal to kfor all 0 � a � k. This determinant formula plays an essential role in what follows.The determinant representations give a solution to discrete nonlinear equations and expose the essenceof the integrability. Let us note that they are simpler and more convenient than their continuouscounterparts.2.3 Examples of di�erence and continuous A1-type equationsFor illustrative purposes we specialize the Hirota equation to the A1-case and later study it separately.At k = 2 eq. (1.7) is Ts(u+ 1)Ts(u � 1)� Ts+1(u)Ts�1(u) = �(u+ s)�(u � s � 2) (2.26)with the condition T�1(u) = 0 (here we set Ts(u) � T 1s (u)).This equation is known as a discrete version of the Liouville equation [21] written in terms of the� -function. It can be recast to somewhat more universal form in terms of the discrete Liouville �eldY 1s (u) � Ys(u) = Ts+1(u)Ts�1(u)�(u+ s)�(u � s � 2) (2.27)(see (2.6)), which hides the function �(u) in the r.h.s. of (2.26). The equation becomesYs(u� 1)Ys(u+ 1) = (Ys+1(u) + 1)(Ys�1(u) + 1) : (2.28)7



(Let us note that the same functional equation but with di�erent analytic properties of the solutionsappears in the thermodynamic Bethe ansatz [33], [34].)In the continuum limit one should put Ys(u) = ��2 exp(�'(x; t)); u = ��1x; s = ��1t. An expansionin � ! 0 then gives the continuous Liouville equation@2s' � @2u' = 2 exp(') : (2.29)To stress the speci�cs of the b.c. (2.15) and for further reference let us compare it with the quasiperi-odic b.c. Then the A1-case corresponds to the discrete sine-Gordon (SG) equation [35]:T a+1s (u) = e��2aT a�1s (u� 2); (2.30)where � and � are parameters.Substituting this condition into (1.7), we get:T 1s (u + 1)T 1s (u� 1)� T 1s+1(u)T 1s�1(u) = e��2T 0s (u)T 0s (u� 2); (2.31)T 0s (u+ 1)T 0s (u� 1)� T 0s+1(u)T 0s�1(u) = e��T 1s (u)T 1s (u+ 2): (2.32)Let us introduce two �elds �s;u and 's;u on the square (s; u) latticeT 0s (u) = exp(�s;u + 's;u); (2.33)T 1s (u+ 1) = �1=2 exp(�s;u � 's;u): (2.34)and substitute them into (2.31), (2.32). Finally, eliminating �s;u, one gets the discrete SG equation:sinh('s+1;u + 's�1;u � 's;u+1 � 's;u�1) = �sinh('s+1;u + 's�1;u + 's;u+1 + 's;u�1 + �) : (2.35)The constant � can be removed by the rede�nition 's;u ! 's;u � 14�.Another useful form of the discrete SG equation appears in variables Xas (u) (2.10). Under condition(2.30) one has Xa+1s (u) = Xa�1s (u� 2); �2Xa+1s (u + 1)Xas (u) = 1 ; (2.36)so there is only one independent functionX1s (u) � xs(u) = �e����1 exp �� 2's;u � 2's;u�2� : (2.37)The discrete SG equation becomes [35], [36], [37]:xs+1(u)xs�1(u) = (� + xs(u+ 1))(�+ xs(u� 1))(1 + �xs(u+ 1))(1 + �xs(u� 1)) : (2.38)In the limit �! 0 eq. (2.38) turns into the discrete Liouville equation (2.28) for Ys(u) = �1���1xs(u).3 Linear problems and B�acklund transformations3.1 Zero curvature conditionConsider the square lattice in two light cone variables l and m and a vector function  a(l;m) on thislattice. Let La;a0 (l;m) and Ma;a0(l;m) be two shift operators in directions l and m:Xa0 La;a0 (l;m) a0(l + 1;m) =  a(l;m);Xa" Ma;a0 (l;m) a0(l;m + 1) =  a(l;m): (3.1)The zero curvature condition states that the result of subsequent shifts from an initial point to a �xed�nal point does not depend on the path:L(l;m) �M (l + 1;m) =M (l;m) � L(l;m+ 1): (3.2)8



HBDE (1.7) possesses [3], [38] a zero-curvature representation by means of the following two-diagonalin�nite matrices: La;a0 = �a;a0�1 + �a;a0V al ;Ma;a0 = �a;a0 + �a;a0+1W am ; (3.3)where V al = �a(l + 1;m)�a+1(l;m)�a(l;m)�a+1(l + 1;m) ;W am = �a�1(l;m + 1)�a+1(l;m)�a(l;m)�a(l;m+ 1) : (3.4)More precisely, the compatibility condition of the two linear problems a(l;m)�  a+1(l + 1;m) = V al  a(l + 1;m) ; a(l;m)�  a(l;m + 1) =W am a�1(l;m+ 1) (3.5)combined with the b.c. (2.14) yields HBDE (1.8). Introducing an unnormalized "wave function"fa(l;m) =  a(l;m)�a(l;m) ; (3.6)we can write the linear problems in the form�a+1(l + 1;m)fa(l;m) � �a+1(l;m)fa(l + 1;m) = �a(l;m)fa+1(l + 1;m) ;�a(l;m+ 1)fa(l;m)� �a(l;m)fa(l;m+ 1) = �a+1(l;m)fa�1(l;m+ 1) ; (3.7)or in "direct" variablesT a+1s+1 (u)F a(s; u)� T a+1s (u� 1)F a(s + 1; u+ 1) = T as (u)F a+1(s + 1; u) ;T as+1(u� 1)F a(s; u)� T as (u)F a(s + 1; u� 1) = T a+1s (u� 1)F a�1(s + 1; u) ; (3.8)where F a(l +m; l �m � a) � fa(l;m).An advantage of the light cone coordinates is that they are separated in the linear problems (thereare shifts only of l (m) in the �rst (second) eq. (3.7)).The wave function and potential possess a redundant gauge freedom:V al ! �(a � l + 1)�(a� l) V al ; W am ! �(a� l)�(a� l � 1)W am;  a(l;m)! �(a� l + 1) a (3.9)with an arbitrary function �.The b.c. (2.4) implies a similar condition for the object of the linear problemsF a(s; u) = 0 as a < 0 and a > k � 1 (3.10)so that the number of functions F is one less than the number of T 's. Then from the second equation ofthe pair (3.8) at a = 0 and from the �rst one at a = k � 1 it follows that F 0(s; u) (F k�1(s; u)) dependson one cone variable u+ s (resp., u� s). We introduce a special notation for them:F 0(s; u) = Qk�1(u+ s); F k�1(s; u) = �Qk�1(u� s): (3.11)Furthermore, it can be shown that the important condition (2.15) relates the functions Q and �Q:�Qk�1(u) = Qk�1(u� k + 1): (3.12)The special form of the functions F a at the ends of the Dynkin graph (a = 0; k� 1) reects the speci�csof the "Liouville-type" boundary conditions. This is to be compared with nonlinear equations with thequasiperiodic boundary condition (2.30): in this case all the functions F depend on two variables andobey the quasiperiodic b.c. 9



3.2 Continuum limitIn the continuum limit l = ��t+; m = ��t�; �a ! �a2�a; fa ! �a2+afa; � ! 0, we recover theauxiliary linear problems for the 2D Toda lattice [39] (@� � @=@t�):@+ a =  a+1 + @+(log �a+1�a ) a;@� a = �a+1�a�1�2a  a�1 ; (3.13)or, in terms of fa, �a+1@+fa � (@+�a+1)fa = �afa+1 ;�a@�fa � (@��a)fa = �a+1fa�1 : (3.14)The compatibility condition of these equations yields the �rst non-trivial equation of the 2D Toda latticehierarchy: @+�a@��a � �a@+@��a = �a+1�a�1: (3.15)In terms of 'a(t+; t�) = log �a+1(t+; t�)�a(t+; t�)it has the familiar form @+@�'a = e'a�'a�1 � e'a+1�'a : (3.16)3.3 B�acklund owThe discrete nonlinear equation has a remarkable duality between "potentials" T a and "wave functions"F a �rst noticed in [38]. In the continuum version it is not so transparent. Eqs.(3.8) are symmetric underthe interchange of F and T . Then one may treat (3.8) as linear problems for a nonlinear equation onF 's. It is not surprising that one again obtains HBDE (1.7):F a(s; u+ 1)F a(s; u� 1)� F a(s + 1; u)F a(s � 1; u) = F a+1(s; u)F a�1(s; u) : (3.17)Moreover, conditions (3.10)-(3.12) mean that even the b.c. for F a(s; u) are the same as for T as (u) undera substitution �(u) by Qk�1(u). The only change is a reduction of the Dynkin graph: k! k� 1. Usingthis property, one can successively reduce the Ak�1-problem up to A1. Below we use this trick to deriveAk�1 ("nested") Bethe ansatz equations.To elaborate the chain of these transformations, let us introduce a new variable t = 0; 1; : : : ; k tomark a level of the ow Ak�1 ! A1 and let F at+1(s; u) be a solution to the linear problem at (k � t)-thlevel. In this notation, F ak (s; u) = T as (u) and F ak�1(s; u) = F a(s; u) is the corresponding wave function.The wave function itself obeys the nonlinear equation (3.17), so F ak�2(s; u) denotes its wave function andso on. For each level t the function F at (s; u) obeys HBDE of the form (3.17) with the b.c.F at (s; u) = 0 as a < 0 and a > t : (3.18)As a consequence of (3.18), the �rst and the last components of the vector F at (s; u) obey the discreteLaplace equation (2.3) and under the condition (3.11) are functions of only one of the light-cone variables(u+ s and u� s respectively). We denote them as follows:F 0t (s; u) � Qt(u+ s) ; F tt (s; u) � �Qt(u� s) ; (3.19)where it is implied that Qk(u) = �(u). It can be shown that ellipticity requirement (ii) and condition(2.14) impose the relation �Qt(u) = Qt(u� t).In this notation the linear problems (3.8) at level t,F a+1t+1 (s + 1; u)F at (s; u)� F a+1t+1 (s; u� 1)F at (s + 1; u+ 1) = F at+1(s; u)F a+1t (s + 1; u) ; (3.20)10



F at+1(s + 1; u� 1)F at (s; u)� F at+1(s; u)F at (s + 1; u� 1) = F a+1t+1 (s; u� 1)F a�1t (s + 1; u) (3.21)look as bilinear equations for a functions of 4 variables. However, eq. (3.20) (resp., eq. (3.21)) leavesthe hyperplane u � s + a = const (resp., u + s + a = const) invariant, and actually depends on threevariable.Restricting the variables in eq. (3.20) to the hyperplane u � s + a = v (where v is a constant), bysetting �u(t; a) � F ak�t(u+ a� v; u) (3.22)we reduce eq. (3.20) to the form of the same HBDE (1.8) in cone coordinates t and a. The b.c. is�u(t; 0) = Qk�t(2u� v); �u(t; k � t) = �Qk�t(v + t� k) = const: (3.23)Similar equations can be obtained from the second linear problem (3.21) by setting��u(b; t) = F k�t�bk�t (�v + b� u; u+ t � k) (3.24)(�v is a constant). This function obeys eq. (1.8),��u(b+ 1; t)��u(b; t+ 1)� ��u(b; t)��u(b+ 1; t+ 1) = ��u+1(b+ 1; t)��u�1(b; t+ 1) ; (3.25)where t now plays the role of the light cone coordinate m. The b.c. is��u(0; t) = �Qk�t(2u+ t� k � �v); ��u(k � t; t) = Qk�t(v) = const: (3.26)It is convenient to visualize this array of � -functions on a diagram; here is an example for the A3-case(k = 4): 0 1 00 Q1(u+ s) �Q1(u� s) 00 Q2(u+ s) F 12 (s; u) �Q2(u � s) 00 Q3(u+ s) F 13 (s; u) F 23 (s; u) �Q3(u� s) 00 �(u+ s) T 1s (u) T 2s (u) T 3s (u) ��(u� s) 0 (3.27)Functions in each horizontal (constant t) slice satisfy HBDE (3.17), whereas functions on the u�s+a =const slice satisfy HBDE (1.8) with t, a being light cone variables l, m respectively.A general solution of the bilinear discrete equation (1.7) with the b.c. (2.14) is determined by 2karbitrary functions of one variable Qt(u) and �Qt(u), t = 1; :::; k. The additional requirement (ii) ofellipticity determines these functions through the Bethe ansatz.3.4 Nested Bethe ansatz schemeHere we elaborate the nested scheme of solving HBDE based on the chain of successive B�acklund trans-formations (Sect. 3.4). This is an alternative (and actually the shortest) way to obtain nested Betheansatz equations (3.31). Recall that the function �u(t; a) = F ak�t(u + a; u) (3.22) (where we put v = 0for simplicity) obeys HBDE in light cone variables:�u(t+ 1; a)�u(t; a+ 1)� �u(t; a)�u(t+ 1; a+ 1) = �u+1(t+ 1; a)�u�1(t; a+ 1) : (3.28)Since �u(t; 0) = Qk�t(2u), nested Bethe ansatz equations can be understood as "equations of motions"for zeros of Qt(u) in discrete time t (level of the Bethe ansatz). The simplest way to derive them is toconsider the auxiliary linear problems for eq. (3.28). Here we present an example of this derivation inthe simplest possible form. 11



Let us assume that Qt(u) has the formQt(u) = e�t�u MtYj=1�(�(u� utj)) (3.29)(note that we allow the number of roots Mt to depend on t). Since we are interested in dynamics in tat a �xed a, it is su�cient to consider only the �rst linear equation of the pair (3.7):�u+1(t+ 1; a)fu(t; a)� �u+1(t; a)fu(t + 1; a) = �u(t; a)fu+1(t + 1; a) : (3.30)An elementary way to derive equations of motion for roots of �u(t; 0) is to put u equal to the rootsof fu(t + 1; 0), fu(t; 0) and fu+1(t + 1; 0), so that only two terms in (3.30) would survive. Combiningrelations obtained in this way, one can eliminate f 's and obtain the system of equationsQt�1(utj + 2)Qt(utj � 2)Qt+1(utj)Qt�1(utj)Qt(utj + 2)Qt+1(utj � 2) = �1 : (3.31)as the necessary conditions for solutions of the form (3.29) to exist. In the more detailed notation theylook as follows:Mt�1Yk=1 �(�(utj � ut�1k + 2))�(�(utj � ut�1k )) MtYk=1 �(�(utj � utk � 2))�(�(utj � utk + 2)) Mt+1Yk=1 �(�(utj � ut+1k ))�(�(utj � ut+1k � 2)) = �e2�(2�t��t+1��t�1) :(3.32)With the "boundary conditions" Q0(u) = 1; Qk(u) = �(u); (3.33)this system of M1 +M2 + : : : + Mk�1 equations is equivalent to the nested Bethe ansatz equationsfor Ak�1-type quantum integrable models with Belavin's elliptic R-matrix. The same equations can beobtained for the right edge of the diagram (3.27) from the second linear equation in (3.7). In Sect. 5 weexplicitly identify our Q's with similar objects known from the Bethe ansatz solution.Let us remark that the origin of equations (3.32) suggests to consider them as equations of motionfor the elliptic Ruijsenaars-Schneider model in discrete time. Taking the continuum limit in t (providedMt =M does not depend on t), one can check that eqs. (3.32) do yield the equations of motion for theelliptic RS model [18] with M particles. The additional limiting procedure � ! 0 with �nite �uj = xjyields the well known equations of motion for the elliptic Calogero-Moser system of particles.However, integrable systems of particles in discrete time seem to have a richer structure than theircontinuous time counterparts. In particular, the total number of particles in the system may depend on(discrete) time. Such a phenomenon is possible in continuous time models only for singular solutions,when particles can move to in�nity or merge to another within a �nite period of time.Remarkably, this appears to be the case for the solutions to eqs. (3.32) corresponding to eigenstatesof the quantum model. It is known that the number of excitations Mt at t-th level of the Bethe ansatzsolution does depend on t. In other words, the number of "particles" in the corresponding discrete timeRS model is not conserved. Though, the numbers Mt may not be arbitrary.In the elliptic case degrees of the elliptic polynomials Qt(u) are equal to Mt = (N=k)t (provided � isincommensurable with the lattice spanned by !1, !2 and N is divisible by k). This fact follows directlyfrom Bethe equations (3.31). Indeed, the elliptic polynomial form (3.29) implies that if utj is a zero ofQt(u), i.e., Qt(utj) = 0, then utj + 2n1!1 + 2n2!2 for all integers n1; n2 are its zeros too. Taking intoaccount the well known monodromy properties of the �-function, one concludes that this is possible ifand only if Mt+1 +Mt�1 = 2Mt ; (3.34)which has a unique solution Mt = Nk t (3.35)satisfying b.c. (3.33). This means that the nested scheme for elliptic Ak�1-type models is consistentonly if N is divisible by k. 12



In trigonometric and rational cases the conditions on degrees ofQt's become less restrictive since someof the roots can be located at in�nity. The equality in (3.35) becomes an inequality: Mt � (N=k)t. Amore detailed analysis [40] shows that the following inequalities also hold: 2M1 �M2, 2M2 �M1+M3,: : :, 2Mt �Mt�1 +Mt+1, : : :, N =Mk � 2Mk�1 �Mk�2.4 The A1-case: discrete Liouville equationIn this section we consider the A1-case separately. Although in this case the general nested scheme ismissing, the construction is more explicit and contains familiar objects from the Bethe ansatz literature.4.1 General solutionLet us consider a more general functional relation:Ts(u+ 1)Ts(u � 1)� Ts+1(u)Ts�1(u) = �(u+ s)��(u� s); (4.1)where the functions �, �� are independent and Ts(u) � T 1s (u). The auxiliary linear problems (3.8) acquirethe form Ts+1(u)Q(u+ s) � Ts(u� 1)Q(u+ s + 2) = �(u+ s) �Q(u � s � 1); (4.2)Ts+1(u) �Q(u� s+ 1)� Ts(u + 1) �Q(u� s � 1) = ��(u� s)Q(u + s + 2) : (4.3)Here we set Q(u) � Q1(u) and �(u) = Q2(u). Rearranging these equations, we obtain�(u� 2)Q(u+ 2) + �(u)Q(u� 2) = A(u)Q(u); (4.4)��(u) �Q(u + 3) + ��(u + 2) �Q(u� 1) = �A(u) �Q(u+ 1) (4.5)with the constraint T1(u)Q(u) � T0(u� 1)Q(u+ 2) = �(u) �Q(u� 1) (4.6)which follows from eq. (4.2) at s = 0. In these equations,A(u) = �(u� 2)Ts+1(u� s) + �(u)Ts�1(u� s� 2)Ts(u� s � 1) ; (4.7)�A(u) = ��(u+ 2)Ts+1(u+ s) + ��(u)Ts�1(u+ s+ 2)Ts(u+ s + 1) : (4.8)Due to consistency condition (4.1) A(u) and �A(u) are functions of one variable and do not depend on s.The symmetry between u and s allows one to construct similar objects which in turn do not depend onu. Functions A(u) and �A(u), in the r.h.s. of (4.4), (4.5) are the conservation lows of the s-dynamics.Let us note that the connection between � and ��, ��(u) = �(u� 2), and its consequence T�1(u) = 0(see (2.15)), simpli�es eqs. (4.4)-(4.8). Putting s = 0 and using the b.c. T�1(u) = 0, we �ndA(u) = �A(u) = T1(u) : (4.9)Therefore, the following holdsTs(u� 1)T1(u+ s) = �(u+ s � 2)Ts+1(u) + �(u+ s)Ts�1(u� 2); (4.10)Ts(u+ 1)T1(u� s) = �(u� s)Ts+1(u) + �(u� s� 2)Ts�1(u+ 2); (4.11)�(u� 2)Q(u+ 2) + �(u)Q(u� 2) = T1(u)Q(u) : (4.12)The �rst two equalities are known as fusion relations [7], [41], [42] while eq. (4.12) is Baxter's T -Q-relation [1], [43]. So Baxter's Q function and the T -Q-relation naturally appear in the context of theauxiliary linear problems for HBDE.A general solution of the discrete Liouville equation (for arbitrary � and ��) may be expressed throughtwo independent functions Q(u) and �Q(u). One may follow the same lines developed for solving the13



continuous classical Liouville equation (see e.g. [44], [45] and references therein). Let us consider eq. (4.4)(resp., (4.5)) as a second order linear di�erence equation, where the function A(u) ( �A(u)) is determinedfrom the initial data. Let R(u) (resp., �R(u)) be a second (linearly independent) solution of eq. (4.4)(resp., (4.5)) normalized so that the wronskians areW (u) = ���� R(u) Q(u)R(u+ 2) Q(u+ 2) ���� = �(u); (4.13)�W (u) = ���� �R(u) �Q(u)�R(u+ 2) �Q(u+ 2) ���� = ��(u+ 1) (4.14)and the constraint similar to (4.6) is imposed:T1(u)R(u)� T0(u� 1)R(u+ 2) = �(u) �R(u � 1) (4.15)Then the general solution of the eq. (4.1) is given in terms of Q and R:Ts(u) = ���� Q(u+ s+ 1) R(u+ s+ 1)�Q(u� s) �R(u� s) ���� ; (4.16)This formula is a particular case of the general determinant representation (2.25).Like in the continuous case, this expression is invariant with respect to changing the basis of linearlyindependent solutions with the given wronskians. The transformation of the basis vectors is describedby an element of SL(2). Due to relations (4.6), (4.15) �Q, �R transform in the same way as Q, R and theinvariance of eq. (4.16) is evident.For any given Q(u) and �Q(u) the second solution R(u) and �R(u) (de�ned modulo a linear transfor-mation R(u) ! R(u) + �Q(u) ) can be explicitly found from the �rst order recurrence relations (4.13),(4.14), if necessary. Let Q(u0) and R(u0) be initial values at u = u0. Then, say, for even r � 0,R(u0 + r) = Q(u0 + r)0@� r=2Xj=1 �(u0 + 2j � 2)Q(u0 + 2j)Q(u0 + 2j � 2) + R(u0)Q(u0)1A (4.17)and so on for other r's and �R(u).Finally, one can express solution to eq. (4.1) through two independent functions Q(u) and �Q(u):Ts(u+ s� 1) = Q(u+ 2s) �Q(u� 1)0@ T0(u� 1)Q(u) �Q(u� 1) + sXj=1 �(u+ 2j � 2)Q(u+ 2j)Q(u+ 2j � 2)1A : (4.18)where T0(u) can be found from (4.18) by putting s = 0:� T0(u� 1)Q(u) �Q(u� 1) + T0(u+ 1)Q(u+ 2) �Q(u+ 1) = �(u)Q(u)Q(u+ 2) � ��(u)�Q(u� 1) �Q(u+ 1) : (4.19)Note also the following useful representations:A(u) = Q(u+ 2)R(u� 2)�R(u+ 2)Q(u� 2); (4.20)�A(u) = �R(u+ 3) �Q(u� 1)� �Q(u+ 3) �R(u� 1); (4.21)which are direct corollaries of (4.4), (4.5).4.2 Equivalent forms of Baxter's equationThe key ingredient of the construction is Baxter's relation (4.12) and its "chiral" versions (4.4), (4.5).For completeness, we gather some other useful forms of them.Consider �rst "chiral" linear equations (4.4), (4.5) (thus not implying any speci�c b.c. in s). Assum-ing that Ts(u) obeys HBDE (4.1), one can represent eqs. (4.4), (4.5) in the form14



���������� Ts(u) Ts+1(u� 1) Q(u+ s + 1)Ts+1(u+ 1) Ts+2(u) Q(u+ s + 3)Ts+2(u+ 2) Ts+3(u+ 1) Q(u+ s + 5) ���������� = 0 ; (4.22)���������� Ts(u) Ts+1(u+ 1) �Q(u� s)Ts+1(u� 1) Ts+2(u) �Q(u� s � 2)Ts+2(u� 2) Ts+3(u� 1) �Q(u� s � 4) ���������� = 0 ; (4.23)respectively. This representation can be straightforwardly extended to the Ak�1-case (see eqs. (5.37),(5.38)).A factorized form of these di�erence equations is�e2@u � �(u)Q(u� 2)�(u� 2)Q(u)��e2@u � Q(u)Q(u� 2)�X(u � 2) = 0 ; (4.24)�e2@u � ��(u + 2) �Q(u� 1)��(u) �Q(u+ 1) ��e2@u � �Q(u+ 1)�Q(u� 1)� �X(u� 1) = 0 : (4.25)Here e@u acts as the shift operator, e@uf(u) = f(u + 1), and X(u) ( �X(u)) stands for any linear combi-nation of Q(u), R(u) ( �Q(u), �R(u)).Specifying eqs. (4.22), (4.23) to the b.c. T�1(u) = 0 (see (4.9)), we see that both of them turn intothe equation 2Xa=0(�1)aT a1 (u+ a � 1)X(u + 2a� 2) = 0 (4.26)that is Baxter's relation (4.12). Furthermore, the di�erence operator in (4.26) admits a factorization ofthe form (4.24):2Xa=0(�1)a T a1 (u+ a � 1)�(u� 2) e2a@u = �e2@u � �(u)Q(u� 2)�(u� 2)Q(u)��e2@u � Q(u)Q(u� 2)� ; (4.27)which is equivalent to the well known formula for T1(u) in terms of Q(u).4.3 Double-Bloch solutions to Baxter's equationIn this section we formulate the analytic properties of solutions to Baxter's functional relation (4.4) thatare relevant to models on �nite lattices.First let us transform Baxter's relation to a di�erence equation with elliptic (i.e. double-periodicwith periods 2!1=�, 2!2=�) coe�cients.The formal substitution ~	(u) = Q(u)P (u)�(u� 2) (4.28)with a (as yet not speci�ed ) function P (u) yields~	(u+ 2) + P (u+ 2)�(u� 4)P (u� 2)�(u� 2) ~	(u� 2) = A(u)P (u+ 2)�(u)P (u) ~	(u) : (4.29)Below we restrict ourselves to the case when the degree N of the elliptic polynomial �(u) (1.3) iseven. Then for any P (u) of the form P (u) = N=2Yj=1 �(�(u� pj)) (4.30)15



with arbitrary pj the coe�cients in (4.29) are elliptic functions. Indeed, for the coe�cient in front of~	(u� 2) this is obvious. As for the coe�cient in the r.h.s. of (4.29), its double-periodicity follows fromthe "sum rule" (2.8).Let us represent �(u) in the form �(u) = �0(u)�1(u) ; (4.31)where �0(u), �1(u) are elliptic polynomials of degree N=2 (of course for N > 2 there are many ways todo that). Specifying P (u) as P (u) = �1(u� 2) ; (4.32)we rewrite (4.29) in the form	(u + 2) + �0(u� 4)�1(u)�0(u� 2)�1(u� 2)	(u� 2) = A(u)�0(u)�1(u � 2)	(u) ; (4.33)where 	(u) = Q(u)�0(u� 2) : (4.34)Now, the coe�cients in eq. (4.33) being double-periodic, it is natural to consider its double-Blochsolutions. A meromorphic function f(x) is said to be double-Bloch if it obeys the following monodromyproperties: f(x+ 2!�) = B�f(x); � = 1; 2: (4.35)The complex numbers B� are called Bloch multipliers. It is easy to see that any double-Bloch functioncan be represented as a linear combination of elementary ones:f(x) = MXi=1 ci�(x� xi; z)�x=�; (4.36)where [17] �(x; z) = �(z + x+ �)�(z + �)�(x) ��(z � �)�(z + �)�x=(2�) : (4.37)and complex parameters z and � are related byB� = �2!�=� exp(2�(!�)(z + �))��(z � �)�(z + �)�!�=� (4.38)(�(x) = �0(x)=�(x) is the Weierstrass �-function). Considered as a function of z, �(x; z) is double-periodic: �(x; z + 2!�) = �(x; z):For general values of x one can de�ne a single-valued branch of �(x; z) by cutting the elliptic curvebetween the points z = ��. In the fundamental domain of the lattice de�ned by 2!� the function�(x; z) has a unique pole at the point x = 0:�(x; z) = 1x +O(1) :Coming back to the variable u = x=�, one can formulate the double-Bloch property of the function	(u) (4.34) in terms of its numerator Q(u). It follows from (4.36) that the general form of Q(u) isQ(u) = Q(u; �) = e��u MYj=1�(�(u � uj)) ; (4.39)where M = N=2 and � determines Bloch multipliers.For the trigonometric and rational degeneration of eqs. (4.4), (4.33), (4.39) the meaning of � is quiteclear: it plays the role of the "boundary phase" for twisted b.c. in the horizontal (auxiliary) direction.For each � eq. (4.12) has a solution of the form (4.39). The corresponding value of T1(u) = A(u) dependson � as a parameter: T1(u) = T1(u; �). If there exist � 6= � 0 such that T1(u; �) = T1(u; � 0), one may putQ(u) = Q(u; �), R(u) = Q(u; � 0). In the elliptic case the boundary phase in general is not compatiblewith integrability and so � should have a di�erent physical sense which is still unclear.16



4.4 Bethe equationsIt can be shown that for double-Bloch solutions the relation between � and ��, ��(u) = �(u� 2), implies�Q(u) = Q(u� 1); �R(u) = R(u� 1) ; (4.40)so that (see (4.16) Ts(u) = ���� Q(u+ s + 1) R(u+ s + 1)Q(u� s � 1) R(u� s � 1) ���� : (4.41)It is clear that if Q(u) and R(u) are elliptic polynomials of degree N=2 multiplied by an exponentialfunction (as in (4.39)), Ts(u) has the desired general form (2.7).Under condition (4.40) eq. (4.18) yields the familiar result:Ts(u) = Q(u+ s + 1)Q(u� s � 1) sXj=0 �(u� s + 2j � 1)Q(u� s + 2j + 1)Q(u� s + 2j � 1) : (4.42)This formula was obtained in [41], [42] by direct solution of the fusion recurrence relations (4.10), (4.11).Let uj and vj , j = 1; : : : ;M , be zeros of Q(u) and R(u), respectively. Then, evaluating (4.13) atu = uj, u = uj � 2 and u = vj , u = vj � 2 we obtain the relations�(uj) = Q(uj + 2)R(uj) ; �(uj � 2) = �Q(uj � 2)R(uj) ; (4.43)whence it holds �(uj)�(uj � 2) = �Q(uj + 2)Q(uj � 2) ; (4.44)�(vj)�(vj � 2) = �R(vj + 2)R(vj � 2) : (4.45)Equations (4.44) are exactly the standard Bethe equations (1.2). We refer to equations (4.45) ascomplementary Bethe equations. It is easy to check that eqs. (4.44) ensure cancellation of poles in(4.42). A more standard way to derive Bethe equations (4.44), (4.45) is to substitute zeros of Q(u)(or R(u)) directly into Baxter's relation (4.12). However, the wronskian relation (4.13) is somewhatmore informative: in addition to Bethe equations for uj, vj it provides the connection (4.43) betweenthem. In the next section we derive the system of nested Bethe ansatz equations starting from a propergeneralization of eq. (4.13).In the elliptic case degrees of the elliptic polynomialsQ(u), R(u) (for even N ) are equal toM = N=2(provided � is incommensurable with the lattice spanned by !1, !2). This fact follows directly fromBethe equations (4.44), (4.45) by the same argument as in Sect. 3.5.In trigonometric and rational cases there are no such strong restrictions on degrees M and ~M of Qand R respectively. This is because a part of their zeros may tend to in�nity thus reducing the degree.Whence M and ~M can be arbitrary integers not exceeding N . However, they must be complementaryto each other: M + ~M = N . The traditional choice is M � N=2. In particular, the solution Q(u) = 1(M = 0) corresponds to the simplest reference state ("bare vacuum") of the model.We already pointed out that the function Q(u) originally introduced by Baxter (see e.g. [1] andreferences therein) emerged naturally in the context of the auxiliary linear problems. Let us mentionthat for models with the rational R-matrix this function can be treated as a limiting value of Ts(u) ass!1 [7]. Rational degeneration of eqs. (2.7), (4.39) givesTs(u) = As NYj=1(u� z(s)j ) ; (4.46)Q(u) = e��u MYj=1(u � uj) ; (4.47)17



where As = sinh(2��(s+ 1))sinh(2��) : (4.48)(The last expression follows from (4.42) by extracting the leading term as u ! 1.) If the "boundaryphase" �i�� is real and � 6= 0, one has from (4.41):Q(u) = �2 sinh(2��)e��u lims!�1 e2��sT�s�1(u + s)(2s)N�M : (4.49)For each �nite s � 0 Ts(u) has N zeros but in the limit some of them tend to in�nity. The degeneratecase � = 0 needs special analysis since the limits � ! 0 and s!1 do not commute.Another remark on the rational case is in order. Fusion relations (4.10), (4.11) give "Bethe ansatzlike" equations for zeros of Ts(u) (4.46). Substituting zeros of Ts(u � 1) into (4.10), (4.11) and using(4.48) one �nds: sinh(2��(s+ 2))sinh(2��s) �(z(s)j + s� 1)�(z(s)j + s+ 1) = � NYk=1 z(s)j � z(s�1)k � 1z(s)j � z(s+1)k + 1 ; (4.50)sinh(2��(s+ 2))sinh(2��s) �(z(s)j � s� 1)�(z(s)j � s� 3) = � NYk=1 z(s)j � z(s�1)k + 1z(s)j � z(s+1)k � 1 : (4.51)These equations give the discrete dynamics of zeros in s. They are to be compared with dynamics ofzeros of rational solutions of classical nonlinear equations [13], [16]. It is an interesting open problem to�nd elliptic analogues of eqs. (4.49)-(4.51).5 The Ak�1-case: discrete time 2D Toda lattice5.1 General solutionThe family of bilinear equations arising as a result of the B�acklund ow (Sect. 3.4),F at (s; u+ 1)F at (s; u� 1)� F at (s + 1; u)F at (s � 1; u) = F a+1t (s; u)F a�1t (s; u) ; (5.1)and the corresponding linear problems,F a+1t+1 (s + 1; u)F at (s; u)� F a+1t+1 (s; u� 1)F at (s + 1; u+ 1) = F at+1(s; u)F a+1t (s+ 1; u) ; (5.2)F at+1(s + 1; u� 1)F at (s; u) � F at+1(s; u)F at (s + 1; u� 1) = F a+1t+1 (s; u� 1)F a�1t (s + 1; u) ; (5.3)subject to the b.c. F at (s; u) = 0 as a < 0 and a > t (5.4)They may be solved simultaneously by using the determinant representation (2.25). The set of functionsF at (s; u) entering these equations as illustrated by the following diagram:0 1 00 F 01 F 11 00 F 02 F 12 F 22 0� � � � � � � � � � � � � � �0 F 0t F 1t F 2t � � � F tt 0 (5.5)(cf. (3.27)). Functions in each horizontal slice satisfy HBDE (5.1). By level of eq. (5.1) we understandthe number t. Level 0 is introduced for later convenience. At the moment we do not assume any relationsbetween solutions at di�erent levels. 18



Determinant formula (2.25) gives the solution to these equations for each level t in terms of t arbi-trary holomorphic3 functions h(j)t (u + s) and t arbitrary antiholomorphic functions �h(j)t (u � s). This isillustrated by the diagrams:1h(1)1 h(2)1h(1)2 h(2)2 h(3)2� � � � � � � � �h(1)t h(2)t � � � h(t+1)t 1�h(2)1 �h(1)1�h(3)2 �h(2)2 �h(1)2� � � � � � � � ��h(t+1)t �h(t)t � � � �h(1)t (5.6)Then, according to (2.25), the general solution to eq. (5.1) isF at+1(s; u) = �at (u+ s)��at (u� s) ��������������������������������
h(t+1)t (u+ s� a+ 2) � � � h(1)t (u+ s � a+ 2)h(t+1)t (u+ s� a+ 4) � � � h(1)t (u+ s � a+ 4)� � � � � � � � �h(t+1)t (u+ s+ a) � � � h(1)t (u+ s + a)�h(t+1)t (u� s+ a� t) � � � �h(1)t (u� s + a� t)�h(t+1)t (u� s+ a� t+ 2) � � � �h(1)t (u� s + a� t+ 2)� � � � � � � � ��h(t+1)t (u� s� a+ t) � � � �h(1)t (u� s � a+ t)

�������������������������������� ; (5.7)where 0 � a � t + 1 and the gauge functions �at (u), ��at (u) (introduced for normalization) satisfy thefollowing equations: �at (u+ 1)�at (u� 1) = �a+1t (u)�a�1t (u) ;��at (u+ 1)��at (u� 1) = ��a+1t (u)��a�1t (u) : (5.8)(cf. (2.5)). The size of the determinant is t+ 1. The �rst a rows contain functions h(j)i , the remainingt � a + 1 rows contain �h(j)i . The arguments of h(j)i , �h(j)i increase by 2, going down a column. Notethat the determinant in (5.7) (without the prefactors) is a solution itself. At a = 0 (a = t + 1) itis an antiholomorphic (holomorphic) function. The required b.c. (3.19) can be satis�ed by choosingappropriate gauge functions �at , ��at .5.2 Canonical solutionThe general solution (5.7) gives the function T as (u) � F ak (s; u) in terms of 2k functions of one variablehik�1 and �hik�1. However, we need to represent the solution in terms of another set of 2k functions Qt(u)and �Qt(u) by virtue of conditions (5.4) in such a way that eqs. (5.2) (5.3) connecting two adjacent levelsare ful�lled. We refer to this speci�cation as the canonical solution.To �nd it let us notice that at a = 0 eq. (5.2) consist the holomorphic function Qt(u + s) and afunction F 1. According to eq. (5.7), F 1 is given by the determinant of the matrix with the holomorphicentries h(i)t (u+ s+1) in the �rst row. Other rows contain antiholomorphic functions only, so F 1t (u; s) =3Here we call holomorphic (antiholomorphic) a function of u+ s (resp., u� s).19



Pi h(i)t (u + s + 1)�i(u � s), where �i(u � s) are corresponding minors of the matrix (5.7) at a = 1.Substituting this into eq. (5.2) at a = 0 and separating holomorphic and antiholomorphic functions onegets relations connecting h(i)t ; h(i)t�1 and Qt(u); Qt+1(u). Similar arguments can be applied to eq. (5.3)at another boundary a = t + 1. The general proof is outlined in the appendix to this section. Here wepresent the result: h(1)t (u+ s) = Qt(u+ s) ; �h(1)t (u� s) = �Qt(u� s) (5.9)and Qt+1(u� 2)h(i)t�1(u) = ����� h(i+1)t (u� 2) Qt(u� 2)h(i+1)t (u) Qt(u) ����� ; (5.10)�Qt+1(u+ 1)�h(i)t�1(u + 1) = ����� �h(i+1)t (u) �Qt(u)�h(i+1)t (u+ 2) �Qt(u+ 2) ����� ; (5.11)where 1 � i � t. Functions �, �� in front of the determinant (5.7) are then �xed as follows:�at (u) = (�1)at0@a�1Yj=1Qt+1(u� a+ 2j)1A�1 ; a � 2 ;�0t (u) = Qt+1(u) ; �1t (u) = (�1)t ; (5.12)��at (u) = 0@t�aYj=1 �Qt+1(u+ a� t + 2j � 1)1A�1 ; a � t� 1 ;��tt(u) = 1 ; ��t+1t (u) = �Qt+1(u) : (5.13)It is easy to check that they do satisfy eqs. (5.8). The recursive relations (5.10), (5.11) allow one todetermine functions h(i)t and �h(i)t starting from a given set of Qt(u). These formulas generalize wronskianrelations (4.13), (4.14) to the Ak�1-case.Let us also note that this construction resembles the Leznov-Saveliev solution [46] to the continuous2DTL with open boundaries.5.3 The Bethe ansatz and canonical solutionThe canonical solution of the previous section immediately leads to the nested Bethe ansatz for ellipticsolutions.In this case all functions h(i)t , �h(i)t are elliptic polynomials multiplied by an exponential function:h(i)t (u) = a(i)t e�(i)t �u M(i)tYj=0 �(�(u � ut;ij )) ; (5.14)�h(i)t (u) = �a(i)t e��(i)t �u �M(i)tYj=0 �(�(u � �ut;ij )) : (5.15)This implies a number of constraints on their zeros.The determinant in (5.10) should be divisible by Qt+1(u� 2) and h(i)t�1(u), whenceh(i+1)t (ut+1j )h(i+1)t (ut+1j + 2) = Qt(ut+1j )Qt(ut+1j + 2) ; (5.16)h(i+1)t (ut�1;ij )h(i+1)t (ut�1;ij � 2) = Qt(ut�1;ij )Qt(ut�1;ij � 2) ; (5.17)20



where utj � ut;1j . Furthermore, it is possible to get a closed system of constraints for the roots of Qt(u)only. Indeed, choosing u = utj, u = utj + 2 in (5.10), we getQt+1(utj � 2)Qt�1(utj) = �Qt(utj � 2)h(2)t (utj) ; (5.18)Qt+1(utj)Qt�1(utj + 2) = Qt(utj + 2)h(2)t (utj) : (5.19)Dividing eq. (5.18) by eq. (5.19) we obtain the system of nested Bethe equations:Qt�1(utj + 2)Qt(utj � 2)Qt+1(utj)Qt�1(utj)Qt(utj + 2)Qt+1(utj � 2) = �1 ; (5.20)which coincides with (3.31) from Sect. 3.5.Similar relations hold true for the �h-diagram:�h(i+1)t (�ut+1j + 1)�h(i+1)t (�ut+1j � 1) = �Qt(�ut+1j + 1)�Qt(�ut+1j � 1) ; (5.21)�h(i+1)t (�ut�1;ij + 1)�h(i+1)t (�ut�1;ij � 1) = �Qt(�ut�1;ij + 1)�Qt(�ut�1;ij � 1) ; (5.22)�Qt+1(�utj + 1) �Qt�1(�utj + 1) = �Qt(�utj + 2)�h(2)t (�utj) ; (5.23)�Qt+1(�utj � 1) �Qt�1(�utj � 1) = � �Qt(�utj � 2)�h(2)t (�utj) ; (5.24)�Qt�1(�utj + 1) �Qt(�utj � 2) �Qt+1(�utj + 1)�Qt�1(�utj � 1) �Qt(�utj + 2) �Qt+1(�utj � 1) = �1 : (5.25)These conditions are su�cient to ensure that the canonical solution for T as (u) (i.e., for F ak (s; u))has the required general form (2.7). To see this, take a generic Q-factor from the product (5.12),(Qt+1(u�a+2j))�1. It follows from (5.16) that at its poles the j-th and j+1-th rows of the determinant(5.7) become proportional. The same argument repeated for �Q-factors shows that F at+1(s; u) has no poles.Finally, it is straightforward to see from (5.7) that the constraint �Qt(u) = Qt(u�t) leads to condition(2.15) (for �t � s � �1 two rows of the determinant become equal).To summarize, the solution goes as follows. First, one should �nd a solution to Bethe equations(3.31) thus getting a set of elliptic polynomials Qt(u), t = 1; : : : ; k � 1, Q0(u) = 1, Qk(u) = �(u) beinga given function. To make the chain of equations �nite, it is convenient to use the formal conventionQ�1(u) = Qk+1(u) = 0. Second, one should solve step by step relations (5.10), (5.11) and �nd thefunctions h(i)t (u), �h(i)t (u). All these relations are of the same type as the wronskian relation (4.13) in theA1-case: each of them is a linear inhomogeneous �rst order di�erence equation.5.4 Conservation lawsThe solution described in Sects. 5.2 and 5.3 provides compact determinant formulas for eigenvalues ofquantum transfer matrices. It also provides determinant representations for conservation laws of thes-dynamics which generalize eqs. (4.7), (4.8) to the Ak�1-case. The generalization comes up in the formof eqs. (4.22), (4.23) and (4.26). The conservation laws (i.e., integrals of the s-dynamics) follow from thedeterminant representation (5.7) of the general solution to HBDE.Let us consider (Cak + 1)� (Cak + 1)-matricesT aB;B0 (s; u) � T as+B+B0 (u� s + B � B0); B;B0 = 1; : : : ; Cak + 1 ; (5.26)�T aB;B0 (s; u) = T as�B�B0 (u+ s+ B �B0); B;B0 = 1; : : : ; Cak + 1 ; (5.27)where Cak is the binomial coe�cient. Let T a[P jR](s; u) be minors of the matrix (5.26) with row P andcolumn R removed (similarly for (5.27)). 21



Theorem 5.1 Let T as (u) be the general solution to HBDE given by eq. (5.7). Then any ratio of the formAa;RP;P 0 (s; u) � T a[P jR](s; u)T a[P 0jR](s; u) (5.28)does not depend on s. These quantities are integrals of the s-dynamics: Aa;RP;P 0 (s; u) = Aa;RP;P 0 (u). Simi-larly, minors of the matrix (5.27) give in the same way a complimentary set of conservation laws4.A sketch of proof is as follows.Consider the Laplace expansion of the determinant solution (5.7) with respect to the �rst a (holo-morphic) rows: T as (u) = CakXP=1 aP (u+ s) � aP (u� s) (5.29)Here P numbers (in an arbitrary order) sets of indices (p1; p2; : : : ; pa) such that k � p1 > p2 > : : : >pa � 1,  aP (u+s) is minor of the matrix in eq. (5.7) constructed from �rst a rows and columns p1; : : : ; pa(multiplied by �ak�1(u+ s)), � aP (u� s) is the complimentary minor (multiplied by ��ak�1(u� s)).Substitute R-th column of the matrix (5.26) by the column vector with components  aP (u+2B), B =1; : : : ; Cak + 1. The matrix obtained this way (let us call it (T a;R;P )B;B0 ) depends on R = 1; : : : ; Cak + 1,P = 1; : : : ; Cak and a = 1; : : : ; k�1. The "complementary" matrix ( �T a;R;P )B;B0 is de�ned by the similarsubstitution of the column vector � aP (u+ 2B), B = 1; : : : ; Cak + 1, into the matrix (5.27).Lemma 5.1 Determinants of all the four matrices introduced above vanish:det(T a) = det( �T a) = det(T a;R;P ) = det( �T a;R;P ) = 0 : (5.30)The proof follows from the Laplace expansion (5.29). >From this representation it is obvious thatCak + 1 columns of the matrices in (5.30) are linearly dependent. This identity is valid for arbitraryfunctions h(i)t (u+ s); �h(i)t (u� s) in eq. (5.7).The conservation laws immediately follow from these identities. Indeed, let us rewrite the determinantof the matrix T a;R;P as a linear combination of entries of the R-th column:det(T a;R;P ) = Cak+1XB0=1(�1)B0+R aP (u+ 2B0)T a[B0jR](s; u) = 0 : (5.31)Dividing by T a[P 0jR](s; u), we get, using the notation (5.28):Cak+1XB0=1;B0 6=P 0(�1)B0 aP (u+ 2B0)Aa;RB0 ;P 0(s; u) = (�1)P 0+1 aP (u+ 2P 0) : (5.32)The latter identity is a system of Cak linear equations for Cak quantities Aa;R1;P 0(s; u), Aa;R2;P 0 (s; u), : : : ;Aa;RP 0�1;P 0(s; u), Aa;RP 0+1;P 0 (s; u), : : :, Aa;RCak+1;P 0 (s; u). In the case of general position wronskian of thefunctions  aP (u) is nonzero, whence system (5.32) has a unique solution for Aa;RP;P 0 (s; u). The coe�cientsof the system do not depend on s. Therefore, Aa;RP;P 0 (s; u) are s-independent too. Similar arguments areapplied to minors of the matrix (5.27).Another form of eq. (5.31) may be obtained by multiplication its l.h.s. by � aP (u�2s) and summationover P . This yields Cak+1XB=1 (�1)BT as+B(u� s +B)T a[BjR](s; u) = 0 ; (5.33)which is a di�erence equation for T as (u) as a function of the "holomorphic" variable u + s with �xedu� s.4compare with (4.7), (4.8). 22



5.5 Generalized Baxter's relationsEquation (5.31) can be considered as a linear di�erence equation for a function  a(u) having Cak linearlyindependent solutions  aP (u). It provides the Ak�1-generalization of Baxter's relations (4.4), (4.5). Thisgeneralization comes up in the form of eqs. (4.22), (4.23) and (4.26).The simplest cases are a = 1 and a = k�1. Then there are k+1 terms in the sum (5.31). Furthermore,it is obvious that  1i (u) = h(i)k�1(u+ 1); � k�1i (u) = �h(i)k�1(u) : (5.34)Then eq. (5.31) and a similar equation for antiholomorphic parts read:k+1Xj=1(�1)jh(i)k�1(u+ 2j + 1)T 1[jjk + 1](s; u) = 0 ; (5.35)k+1Xj=1(�1)j�h(i)k�1(u + 2j) �T k�1[jjk+ 1](s; u) = 0 ; (5.36)where we put R = k+1 for simplicity. These formulas may be understood as linear di�erence equationsof order k. Indeed, eq. (5.35) can be rewritten as the following equation for a function X(u):�������������� T 1s (u) T 1s+1(u� 1) : : : T 1s+k�1(u � k + 1) X(u + s + 1)T 1s+1(u+ 1) T 1s+2(u) : : : T 1s+k(u� k + 2) X(u + s + 3): : : : : : : : : : : : : : :T 1s+k(u+ k) T 1s+k+1(u + k � 1) : : : T 1s+2k�1(u+ 1) X(u + s + 2k+ 1) �������������� = 0 ; (5.37)This equations has k solutions h(i)k�1(u), i = 1; : : : ; k. One of them is Qk�1 � h(1)k�1(u) (see eq.(5.9)).Similar equation (5.36) for the antiholomorphic parts,�������������� T k�1s (u) T k�1s�1 (u� 1) : : : T k�1s�k+1(u� k + 1) �X(u � s)T k�1s�1 (u+ 1) T k�1s�2 (u) : : : T k�1s�k (u� k + 2) �X(u � s + 2): : : : : : : : : : : : : : :T k�1s�k (u+ k) T k�1s�k�1(u+ k � 1) : : : T k�1s�2k+1(u+ 1) �X(u � s + 2k) �������������� = 0 ; (5.38)has k solutions �h(i)k�1(u), i = 1; : : : ; k. One of them is �Qk�1 � �h(1)k�1(u).Di�erence equations (5.37), (5.38) can be rewritten in the factorized form. This fact follows from amore general statement. Fix an arbitrary level k and set T as (u) = F ak (s; u), F a(s; u) = F ak�1(s; u) (as inSect. 3).Proposition 5.1 For each j = 0; 1; : : :; k � 1 it holds:�e@s+@u � R(j)j+1(s; u)��e@s+@u �R(j)j (s; u)� : : : �e@s+@u � R(j)1 (s; u)�F k�1�j(s; u) = 0 ; (5.39)�e@s�@u � �R(j)j+1(s; u)��e@s�@u � �R(j)j (s; u)� : : : �e@s�@u � �R(j)1 (s; u)�F j(s; u) = 0 ; (5.40)where R(k�1�j)i (s; u) = T js+i�1(u+ i� 1)T j+i�1s+i�2 (u� 1)T j+is+i (u)T js+i�2(u+ i � 2)T j+i�1s+i�1 (u)T j+is+i�1(u� 1) ; (5.41)23



�R(j)i (s; u) = T j+1s+i�1(u� l)T j�i+1s+l (u� 1)T j�i+2s+i�2 (u)T j+1s+i�2(u� i + 1)T j�i+1s+i�1 (u)T j�i+2s+i�1 (u � 1) (5.42)Proof. The proof is by induction. At j = 0 eq. (5.39) turns into�e@s+@u � T ks+1(u)T ks (u� 1)�F k�1(s; u) = 0 :This means that F k�1(s; u) does not depend on u+ s. Further,F a(s + 1; u) = �T as (u� 1)T a�1s (u) �e@s+@u � T as+1(u)T as (u� 1)�F a�1(s; u) ; (5.43)(see (3.8)). The inductive step is then straightforward. The proof of (5.40) is absolutely identical.Now, putting j = k � 1 we get the following di�erence equations in one variable:�e2@u+@s�R(k�1)k (s; u�s)��e2@u+@s�R(k�1)k�1 (s; u�s)� : : :�e2@u+@s�R(k�1)1 (s; u�s)�Qk�1(u) = 0 ; (5.44)(e�2@u+@s � �R(k�1)k (s; u+ s))(e�2@u+@s � �R(k�1)k�1 (s; u+ s)) : : : (e�2@u+@s � �R(k�1)1 (s; u+ s)) �Qk�1(u) = 0 :(5.45)Note that operators e�@s act only on the coe�cient functions in (5.44), (5.45). These equations providea version of the discrete Miura transformation of generalized Baxter's operators, which is di�erent fromthe one discussed in the Ref. [48] (see also below).Coming back to eq. (5.31) and using relations (5.10), (5.11), one �nds: k�1k (u) = h(1)1 (u+ k � 1) = Q1(u+ k � 1) ; (5.46)� 1k(u) = �h(1)1 (u) = �Q1(u) (5.47)(for the proof see Lemma 5.2 in the appendix to this section).Then, in complete analogy with eqs. (5.37), (5.38), one obtains from (5.31) the following di�erenceequations:�������������� T k�1s (u) T k�1s+1 (u� 1) : : : T k�1s+k�1(u� k + 1) X(u+ s + k � 1)T k�1s+1 (u+ 1) T k�1s+2 (u) : : : T k�1s+k (u� k + 2) X(u+ s + k + 1): : : : : : : : : : : : : : :T k�1s+k (u+ k) T k�1s+k+1(u+ k � 1) : : : T k�1s+2k�1(u + 1) X(u+ s + 3k � 1) �������������� = 0 ; (5.48)�������������� T 1s (u) T 1s�1(u� 1) : : : T 1s�k+1(u� k + 1) �X(u � s)T 1s�1(u+ 1) T 1s�2(u) : : : T 1s�k(u� k + 2) �X(u � s + 2): : : : : : : : : : : : : : :T 1s�k(u+ k) T 1s�k�1(u+ k � 1) : : : T 1s�2k+1(u+ 1) �X(u � s + 2k) �������������� = 0 (5.49)to which Q1(u) (resp., �Q1(u)) is a solution. The other k � 1 linearly independent solutions to eq. (5.48)(resp., (5.49)) are other algebraic complements of the last (�rst) line of the matrix in eq. (5.7) at a = k�1(a = 1) multipiled by �k�1k�1 (��1k�1). 24



Further speci�cation follows from imposing constraints (3.12) which ensure conditions (2.4) forcedby the usual Bethe ansatz. One can see that under these conditions eqs. (5.48) and (5.49) become thesame. Further, substituting a particular value of s, s = �k, into, say, eqs. (5.48), (5.37), one gets thefollowing di�erence equations: kXa=0(�1)aT a1 (u+ a� 1)Q1(u+ 2a� 2) = 0 ; (5.50)kXa=0(�1)aT a1 (u� a� 1)�(u � 2a� 2) Qk�1(u � 2a)�(u� 2a) = 0 (5.51)(we remind the reader that �(u) � Qk(u)). The latter equation can be obtained directly from thedeterminant formula (5.7): notice that under conditions (2.4) the determinants in eq. (5.7) becomeminors of the matrix h(i)k�1(u� 2k+2j), where i numbers columns running from 1 to k, j numbers linesand runs from 0 to k skipping the value k�a. Taking care of the prefactors in eq. (5.7) and recalling thath(1)k�1(u) = Qk�1(u), one gets eq. (5.51). These formulas give a generalization of the Baxter equations(4.4), (4.5), (4.12).At last, we are to identify our Qt's with Qt's from the usual nested Bethe ansatz solution. This isachieved by factorization of the di�erence operators in (5.50) and (5.51) in terms of Qt(u). Using thetechnique developed in the appendix to this section, one can prove the following factorization formulas:kXa=0(�1)a�kT a1 (u+ a� 1)�(u� 2) e2a@u =�e2@u � Qk(u)Qk�1(u� 2)Qk(u� 2)Qk�1(u)� : : :�e2@u � Q2(u)Q1(u� 2)Q2(u � 2)Q1(u)��e2@u � Q1(u)Q1(u� 2)� ; (5.52)kXa=0(�1)a�kT a1 (u � a� 1)�(u� 2a� 2) e�2a@u =�e�2@u � Q1(u)Q1(u� 2)��e�2@u � Q2(u)Q1(u� 2)Q2(u� 2)Q1(u)� : : :�e�2@u � Qk(u)Qk�1(u� 2)Qk(u� 2)Qk�1(u)� : (5.53)Note that these operators are adjoint to each other. The l.h.s. of eq. (5.52) or (5.53) is known as thegenerating function for T a1 (u); T as (u) for s > 1 can be found with the help of determinant formula (2.24).These formulas for the generating function coincide with the ones known in the literature (see e.g. [42],[49]). They yield T a1 (u) in terms of elliptic polynomials Qt with roots constrained by the nested Betheansatz equations which ensure cancellation of poles in T a1 (u).5.6 Appendix to Section 5Here we outline the proof of the result of Sect. 5. It is enough to prove that the canonical solution doessatisfy equations (5.2), (5.3) connecting adjacent levels. The idea is to show that they are equivalent tothe elementary Pl�ucker relation (2.21). We proceed in steps.First step: preliminaries. We need the determinant identitydet1�m;n�k0@������ am;n am;k+1am+1;n am+1;k+1 ������1A = 0@ kYj=2 aj;k+11A det1�m;n�k+1(am;n) (5.54)valid for an arbitrary (k + 1) � (k + 1)-matrix am;n, 1 � m;n � k + 1. It can be easily proved byinduction.Let us consider minors of the matrices h(j)t (u+ 2i), �h(j)t (u+ 2i), 1 � i; j � t+ 1 of size a� a:H(i1;i2;:::;ia)t (u) = det1��;��a�h(i�)t (u+ 2�� 2)� (5.55)25



and the same expression for �Ht's through �ht's. The following technical lemma follows directly fromeq. (5.54):Lemma 5.2 If relations (5.9)-(5.11) hold, thenH(i1;i2;:::;ia)t�1 (u+ 1)Qa�1j=1 Qt(u + 2j � 1) = H(i1+1;i2+1;:::;ia+1;1)t (u� 1)Qaj=1Qt+1(u+ 2j � 3) ; (5.56)�H(i1;i2;:::;ia)t�1 (u+ 1)Qa�1j=1 �Qt(u+ 2j) = �H(i1+1;i2+1;:::;ia+1;1)t (u)Qaj=1 �Qt+1(u+ 2j � 1) : (5.57)Relations (5.46), (5.47) are direct corollaries of the lemma.Second step: from h(i)t 's to qi's. Let us �x a level k and de�ne the quantitiesqi(u) = H(k;k�1;:::; dk�i+1;:::;1)k�1 (u� 2k + 4)Qk�2j=1 Qk(u� 2k + 2j + 2) ; (5.58)�qi(u) = �H(k;k�1;:::; dk�i+1;:::;1)k�1 (u� k + 2)Qk�2j=1 �Qk(u � k + 2j + 1) (5.59)for 1 � i � k. The hat means that the corresponding index is skipped. Due to Lemma 5.2 thesequantities actually do not depend on the particular value of k used in the de�nition. More precisely,de�ne qi(u), �qi(u) with respect to any level k0 > k, then they coincide with those previously de�ned for1 � i � k.With this de�nition, one can proveLemma 5.3 Fix an arbitrary level k > 1. Let m�, � = 1; 2; : : :; r, be a set of integers such thatk � m1 > m2 > : : : > mr � 1 and let ~m�, � = 1; 2; : : :; k � r, be its complement to the set 1; 2; : : : ; kordered in the same way: k � ~m1 > ~m2 > : : : > ~mk�r � 1. Then the following identities hold:det1��;��r(qm� (u + 2�� 2)) = det1��;��k�r(h( ~m� )k�1 (u+ 2r � 2k + 2�))Qk�r�1j=1 Qk(u+ 2r � 2k + 2j) ; (5.60)det1��;��r(�qm� (u+ 2�� 2)) = det1��;��k�r(�h( ~m� )k�1 (u+ 2r � k + 2�� 2))Qk�r�1j=1 �Qk(u+ 2r� k + 2j � 1) ; (5.61)Let us outline the proof. At r = 1, these identities coincide with the de�nitions of qi, �qi. At r = 2, theyfollow from the Jacobi identity (2.20). The inductive step consists in expanding the determinant in theleft hand side in the �rst row and then making use of determinant identities equivalent to the r+1-termPl�ucker relation.The identities from Lemma 5.3 allow one to express the canonical solution in terms of qi, �qi. The
26



Laplace expansion of the determinant in eq. (5.7) combined with eqs. (5.60), (5.61) yields:F at (s; u) = (�1)a(t�1) ������������������������������
qt(u + s + a) � � � q1(u + s + a)qt(u + s + a+ 2) � � � q1(u + s + a+ 2)� � � � � � � � �qt(u + s + 2t� a� 2) � � � q1(u + s + 2t� a� 2)�qt(u � s � a+ 1) � � � �q1(u � s � a+ 1)�qt(u � s � a+ 3) � � � �q1(u � s � a+ 3)� � � � � � � � ��qt(u � s + a� 1) � � � �q1(u � s + a� 1)

������������������������������ : (5.62)In particular, we have: F 0t (s; u) = Qt(u+ s) = det1�i;j�tqt+1�j(u+ s+ 2i� 2) ; (5.63)F tt (s; u) = �Qt(u� s) = det1�i;j�t �qt+1�j(u� s� t+ 2i� 1) : (5.64)Third step: the Pl�ucker relation. Consider the rectangular (t+3)�(t+1)-matrixSij , i = 1; 2; : : : ; t+3,i = 1; 2; : : :; t+ 1, given explicitly byS1j = �1j ;Sij = qt+2�j(u+ s + a+ 2i� 4) ; 2 � i � t � a+ 2 ;Sij = �qt+2�j(u� s + a+ 2j � 2t� 7) ; t� a+ 3 � i � t + 3 : (5.65)Applying the determinant identity (2.21) (the elementary Pl�ucker relation) to minors of this matrix, onegets eq. (5.2) for l1 = 1, l2 = 2, l3 = t � a + 2, l4 = t � a + 3 and eq. (5.3) for l1 = 1, l2 = t � a + 2,l3 = t � a+ 3, l4 = t+ 1. This completes the proof.Remark. Functions qi(u), �qi(u), i = 1; 2 : : : ; k, are linearly independent solutions to generalizedBaxter's equations (5.48), (5.49) respectively. To construct an elliptic polynomial solution for T as (u), itis su�cient to take them to be arbitrary elliptic polynomials of one and the same degree d,qi(u) = e�i�u dYl=1 �(�(u � v(i)l )); �qi(u) = e��i�u dYl=1 �(�(u� �v(i)l ));with the only conditions that �i � ��i, Pdl=1(v(i)l � �v(i)l ) do not depend on i = 1; 2; : : :; k. It is easy tocheck that in this case general conditions (2.8), (2.9) are ful�lled.6 Regular elliptic solutions of the HBDE and RS system indiscrete timeIn this section we study the class of elliptic solutions to HBDE for which the number of zeros Mt of the� -function does not depend on t. We call them elliptic solutions of the regular type (or simply regularelliptic solutions) since they have a smooth continuum limit. Although it has been argued in the previoussection that the situation of interest for the Bethe ansatz is quite opposite, we �nd it useful to brieydiscuss this class of solutions.It is convenient to slightly change the notation: � l;m(x) � �u(�m;�l); x � u�. HBDE (1.8) acquiresthe form � l+1;m(x)� l;m+1(x) � � l+1;m+1(x)� l;m(x) = � l+1;m(x+ �)� l;m+1(x� �) : (6.1)27



We are interested in solutions that are elliptic polynomials in x,� l;m(x) = MYj=1�(x� xl;mj ) : (6.2)The main goal of this section is to describe this class of solutions in a systematic way and, in particular,to prove that all the elliptic solutions of regular type are �nite-gap.The auxiliary linear problems (3.5) look as follows:	l;m+1(x) = 	l;m(x+ �) + � l;m(x)� l;m+1(x + �)� l;m+1(x)� l;m(x + �)	l;m(x) ; (6.3)	l+1;m(x) = 	l;m(x) + � l;m(x� �)� l+1;m(x+ �)� l+1;m(x)� l;m(x) 	l;m(x� �) : (6.4)(The notation is correspondingly changed: 	l;m(u�) �  u(�m;�l).) The coe�cients are elliptic func-tions of x. Similarly to the case of the Calogero-Moser model and its spin generalizations [15], [16] thedynamics of their poles is determined by the fact that equations (6.3), (6.4) have in�nite number ofdouble-Bloch solutions (Sect. 4).The "gauge transformation" f(x) ! ~f (x) = f(x)eax (a is an arbitrary constant) does not changepoles of any function and transforms a double-Bloch function into another double-Bloch function. If B�are Bloch multipliers for f , then the Bloch multipliers for ~f are ~B1 = B1e2a!1 , ~B2 = B2e2a!2 , where !1,!2 are quasiperiods of the �-function. Two pairs of Bloch multipliers are said to be equivalent if theyare connected by this relation with some a (or by the equivalent condition that the product B!21 B�!12 isthe same for both pairs).Consider �rst eq. (6.3). Since l enters as a parameter, not a variable, we omit it for simplicity of thenotation (e.g. xl;mj ! xmj ).Theorem 6.1 Eq. (6.3) has an in�nite number of linearly independent double-Bloch solutions withsimple poles at the points xmi and equivalent Bloch multipliers if and only if xmi satisfy the system ofequations MYj=1 �(xmi � xm+1j )�(xmi � xmj � �)�(xmi � xm�1j + �)�(xmi � xm+1j � �)�(xmi � xmj + �)�(xmi � xm�1j ) = �1 : (6.5)All these solutions can be represented in the form	m(x) = MXi=1 ci(m; z; �)�(x� xmi ; z)�x=� (6.6)(�(x; z) is de�ned in (4.37)). The set of corresponding pairs (z; �) are parametrized by points of analgebraic curve de�ned by the equation of the formR(�; z) = �M + MXi=1 ri(z)�M�i = 0 : (6.7)Sketch of proof. We omit the detailed proof since it is almost identical to the proof of the correspondingtheorem in [17] and only present the part of it which provides the Lax representation for eq. (6.5).Let us substitute the function 	m(x) of the form (6.6) into eq. (6.3). The cancellation of poles atx = xmi � � and x = xm+1i gives the conditions�ci(m; z; �) + �i(m) MXj=1 cj(m; z; �)�(xmi � xmj � �; z) = 0 ; (6.8)ci(m + 1; z; �) = �i(m) MXj=1 cj(m; z; �)�(xm+1i � xmj ; z) ; (6.9)28



where �i(m) = QMs=1 �(xmi � xms � �)�(xmi � xm+1s )QMs=1;6=i �(xmi � xms )QMs=1 �(xmi � xm+1s � �) ; (6.10)�i(m) = QMs=1 �(xm+1i � xm+1s + �)�(xm+1i � xms )QMs=1;6=i �(xm+1i � xm+1s )QMs=1 �(xm+1i � xms + �) : (6.11)Introducing a vector C(m) with components ci(m; z; �) we can rewrite these conditions in the form(L(m) + �I)C(m) = 0 ; (6.12)C(m + 1) =M(m)C(m) ; (6.13)where I is the unit matrix. Entries of the matrices L(m) andM(m) are:Lij(m) = �i(m)�(xmi � xmj � �; z); (6.14)Mij(m) = �i(m)�(xm+1i � xmj ; z): (6.15)The compatibility condition of (6.12) and (6.13),L(m + 1)M(m) =M(m)L(m) (6.16)is the discrete Lax equation.By the direct commutation of the matrices L, M (making use of some non-trivial identities for thefunction �(x; z) which are omitted) it can be shown that for the matrices L and M de�ned by eqs.(6.14), (6.10) and (6.15), (6.11) respectively, the discrete Lax equation (6.16) holds if and only if thexmi satisfy eqs. (6.5). It is worthwhile to remark that in terms of �i(m), �i(m) equations (6.5) take theform �i(m + 1) = ��i(m); i = 1; : : : ;M : (6.17)Eq. (6.12) implies that R(�; z) � det(L(m) + �I) = 0 : (6.18)The coe�cients of R(�; z) do not depend on m due to (6.16). This equation de�nes an algebraic curve(6.7) realized as a rami�ed covering of the elliptic curve.Solutions to eq. (6.5) are implicitly given by the equation�(~Uxl;mi + ~U+l + ~U�m + ~Z) = 0 ; (6.19)where the Riemann theta-function �( ~X) corresponds to the spectral curve (6.7), (6.18), components ofthe vectors ~U , ~U+, ~U� are periods of certain dipole di�erentials on the curve, ~Z is an arbitrary vector.Elliptic solutions are characterized by the following property: 2!i~U , i = 1; 2, belongs to the lattice ofperiods of holomorphic di�erentials on the curve. The matrix L(m) = L(l;m) is de�ned by �xing xl0 ;m0j ,xl0;m0+1j , i = 1; : : : ;M . These Cauchy data uniquely de�ne the curve and the vectors ~U , ~U+, ~U� and ~Zin eq. (6.19). The curve and vectors ~U , ~U+, ~U� do not depend on the choice of l0;m0. According to eq.(6.19), the vector ~Z depends linearly on this choice and its components are thus angle-type variables.The same analysis can be repeated for the second linear problem (6.4). Now m enters as a parameterand we set xl;m ! x̂li for simplicity. The theorem is literally the same, the equations of motion for thepoles being MYj=1 �(x̂li � x̂l+1j + �)�(x̂li � x̂lj � �)�(x̂li � x̂l�1j )�(x̂li � x̂l+1j )�(x̂li � x̂lj + �)�(x̂li � x̂l�1j � �) = �1 : (6.20)The corresponding discrete Lax equation isL̂(l + 1)M̂(l) = M̂(l)L̂(l) ; (6.21)where5 L̂ij(l) = �̂i(l)�(x̂li � x̂lj � �; z); (6.22)5A very close version of the discrete L-M pair appeared �rst in the Ref.[19] as an a priori ansatz29



M̂ij(l) = �̂i(l)�(x̂l+1i � x̂lj � �; z); (6.23)and �̂i(l) = QMs=1 �(x̂li � x̂ls � �)�(x̂li � x̂l+1s + �)QMs=1;6=i �(x̂li � x̂ls)QMs=1 �(x̂li � x̂l+1s ) ; (6.24)�̂i(l) = QMs=1 �(x̂l+1i � x̂l+1s + �)�(x̂l+1i � x̂ls � �)QMs=1;6=i �(x̂l+1i � x̂l+1s )QMs=1 �(x̂l+1i � x̂ls) : (6.25)All these formulas can be obtained from (6.5), (6.10)-(6.15) by the formal substitutions xmi ! x̂li,xm�1i ! x̂l�1i � �. According to the comment after eq. (6.19), the Cauchy data for the l-ow xl0 ;m0j ,xl0+1 ;m0j are uniquely determined by �xing the Cauchy data xl0;m0j , xl0;m0+1j for the m-ow and viceversa.7 Conclusion and outlookIt turned out that classical and quantum integrable models have a deeper connection than the commonassertion that the former are obtained as a "classical limit" of the latter. In this paper we have triedto elaborate perhaps the simplest example of this phenomenon: the fusion rules for quantum transfermatrices coincide with Hirota's bilinear di�erence equation (HBDE).We have identi�ed the bilinear fusion relations in Hirota's classical di�erence equation with particularboundary conditions and elliptic solutions of Hirota equation, with eigenvalues of the quantum transfermatrix. Eigenvalues of the quantum transfer matrix play the role of the � -function. Positions of zeros ofthe solution are determined by the Bethe ansatz equations. The latter have been derived from entirelyclassical set-up.We have shown that nested Bethe ansatz equations can be considered as a natural discrete timeanalogue of the Ruijsenaars-Schneider system of particles. The discrete time t runs over vertices of theDynkin graph of Ak�1-type and numbers levels of the nested Bethe ansatz. The continuum limit in tgives the continuous time RS system [18]. This is our motivation to search for classical integrabilityproperties of the nested Bethe ansatz equations.In addition we constructed the general solution of the Hirota equation with a certain boundaryconditions and obtained new determinant representations for eigenvalues of the quantum transfer matrix.The approach suggested in Sect. 5 resembles the Leznov-Saveliev solution [46] to the 2D Toda latticewith open boundaries. It can be considered as an integrable discretization of the classical W -geometry[47].We hope that this work gives enough evidence to support the assertion that all spectral characteristicsof quantum integrable systems on �nite 1D lattices can be obtained starting from a classical discretesoliton equations, not implying a quantization. The Bethe ansatz technique, which has been thoughtof as a speci�c tool of quantum integrability is shown to exist in classical discrete nonlinear integrableequations. The main new lesson is that solving classical discrete soliton equations one recovers a lot ofinformation about a quantum integrable system.Soliton equations usually have a huge number of solutions with very di�erent properties. To extractthe information about a quantum model, one should restrict the class of solutions by imposing certainboundary and analytic conditions. In particular, elliptic solutions to HBDE give spectral properties ofquantum models with elliptic R-matrices.The di�erence bilinear equation of the same form, though with di�erent analytical requirements, hasappeared in quantum integrable systems in another context. Spin-spin correlation functions of the Isingmodel obey a bilinear di�erence equation that can be recast into the form of HBDE [51], [52], [53].More recently, nonlinear equations for correlation functions have been derived for a more general classof quantum integrable models, by virtue of the new approach of Ref. [54].Thermodynamic Bethe ansatz equations written in the form of functional relations [33], [34] (seee.g., [50]) appeared to be identical to HBDE with di�erent analytic properties.30
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