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§0. INTRODUCTION.

The aim of this paper is to give a new, simple, and direct approach to represen-
tation theory of S(n).

Basically there are two ways to construct irreducible complex representations of
S(n). The first is based on representation theory of GL(N) and duality between
S(n) and GL(N) in the tensors

(CN®(CN®...®(CN7

n times

which is called the Schur—Weyl duality (see [W]). The Schur functions, which are
characters of GL(N), play the key role in this approach. This was the way Frobenius
originally described the characters of S(n). It is explained in the book [M].

The other way (historically it was the first one) which is usually attributed to
Young with the later contributions by Weyl and von Neumann, is based on the
combinatorics of Young diagrams and tableaux. Irreducible representations arise in
this approach as common components of two simple induced representations (s.c.
Specht’s modules). This way is traditional and one can find it in almost all text-
books and monographs on the subject, for example, in one of the last books [JK].
It requires considerable efforts to obtain any explicit formulas for representations
characters and the proof of the main fact of the theory - the branchig rule.
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Both ways are deep and important as well as indirect. In both cases we are
being told that diagrams, tableaux and the nontrivial combinatorics which is used
in the considerations are necesessary and consist the natural things in representation
theory of symmetric groups - for which we can verify later.

The following reasons show us that the traditional approach is not entirely ade-
quate. We believe that representation theory of the symmetric groups must statisfy
the following conditions:

(1) Symmetric groups are Coxeter groups and the methods of their representa-
tion theory should apply to all classical series of Coxeter groups,

(2) Symmetric groups form a natural series and their representaion theory
should be recursive with respect to the series, which means that repre-
sentation theory of S(n) should rely on representation theory of S(n — 1)
foralln =1,2....

(3) The combinatorics of the Young diagrams and Young tableaux, which re-
flects the branching rule for restriction

must be introduced not as an auxiliary tool of construction, but intrinsically,
starting from the inside structure of the symmetric groups. It means that,
say, Young diagrams must appear as result of the analysis of the groups and
its representations but not apriori as in usual approach. In this case the
branchig rule (which is one of the main theorem of the theory) will appear
naturally and not as a last corollary after developing the whole theory.

Traditional representation theory of symmetric groups does not satisfy these
principles and it puts the theory in a specific position in general representation
theory. Here we suggest new approach which makes the whole theory more natural
and simple.

For our method the following three notions become very important:

(1) Gelfand-Zetlin (GZ) algebra and basis for series Sy,

(2) Jucys-Murphy (JM) elements,

(3) algebras with local system of the generators (ALSG) as a general context for
the theory

GZ basis was defined for the unitary and orthogonal groups by I.M.Gelfand and
M.L.Zetlin in fifties [GZ1-2]. The general notion of GZ algebra for inductive limit
of algebras can be introduced in the same way for an arbitrary inductive limit
of semisimple algebras (it was done, for example, in [KV]). The notion of ALSG
generalizes the relation of Coxeter groups, braid groups, Hecke algebras and so on
(see [V1]). This idea gives us the rule of induction process for the construction of the
representation. Very convenient special generators of GZ algebras - JM generators,
were independently introduced for symmetric groups by A.-A.A.Jucys [Ju] and
G.E.Murphy [Mu]. There exist an invariant way (see below) for their definition
and this way could be used for the definition of its analogs for very general class of
ALSG algebras, in articular for all Coxeter groups.

One of the main advantages of our version of the representation theory of sym-
metric (and of other series of the Coxeter groups) is the following: we obtain «
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branching rule simultaneosly with the description of the representations and intro-
duce Young diagrams and tableauz into the theory only using the analysis of the
spectra of JM elements of the GZ algebra (see content vectors below).

The complexity of the symmetric group (compared to GL(N)) lies in the fact
that the Coxeter relations

S¢Si415¢ = Si+15¢S¢+1

for the generators of S(k) are not commutation relations. Moreover, there is no any
big commutative subgroup of S(k) that could play the role of a Cartan subgroup.

However, it is possible to develop a representation theory for S(n) in some sense
similar to Cartan highest weight theory for GL(N) using the Gelfand-Zetlin com-
mutative subalgebra in the group algebra (JS(n)]. The generators of this algebra,
the so called Jucys-Murphy elements,

Xi= (L) + 20+ + (=10, i=12..n

which were introduced independently in [Ju] and [Mu], have nice commutation
relations with the generators s;. For example, we have

(0.1) i Xy +1=X,118,

for all s.

These commuting elements diagonalize simultaneously in any representation of
S(n) and the whole representation theory of S(n) can be deduced from the informa-
tion which eigenvalues of these elements are possible and which of them occur in the
same irreducible representation. This problem is parallel to the description of the
highest weights of irreducible representations of a reductive group. The basis which
diagoinalizes those elements is just GZ basis, for symmetric groups it coincides with
the Young basis.

We solve this problem by using induction on n and simple representation theory
of the algebra H(2) generated by s; and two commuting elements X;, X;y; subject
to the relation (0.1). In a sense this algebra plays the same role as gl(2) plays for
reductive groups.

As an application of these results we derive the classical Young formulas for the
action of generators s; of S(n) and a new proof of the Murnaghan-Nakayama rule
for the characters of S(n). The final step in the proof of the Young formulas is the
same as in [Mu]; in fact, Young formulas is what Murphy introduced the elements
X, and calculated their eigenvalues for. The novelty of our approach is that we
do not assume any knowledge of the representation theory of S(n) and build the
theory just starting from simple commutation relations.

The first attempt to get a new version of the representation theory of symmetric
group in order to avoid the incompleteness of ordinary theory which were mentioned
above was given in the paper [V1, V2] where ALSG was defined. The branching
rule and a Young orthogonal form was deduced in [V1] from Coxeter relation for
generators of S(n) and the assumption that the branching graph (see below) of
S(n) is a Hasse diagram of the distributive lattice. But the right generators of the
GZ algebra (as JM-generators) aloow us to eliminate any additional assumptions.
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In this paper we study only symmetric groups but our scheme now can be carried
out for some other ALSG (in the sence of [V1]) and first of all to the Coxeter
groups of series B-C-D and to the wreath products of the symmetric group with
some finite groups. The genereal definitions of JM elements could also be done in
the very general context. All this generalizations will be considered elsewhere.

We do not attempt to give here a complete bibliography on subject. Proper
analogs of Jucys-Murphy elements for the infinite symmetric group S(oo) proved
themselves to be a very powerfull tool in the infinite-dimensional representation
theory [01,02]. About infinite symmetric group see [V3, VK, KOV, KOOV] JM ele-
mentsv for Coxeter groups also were defined in [N,R]. Applications of JM elements
to classical representation theory are also numerous (see, for example, [DG]). In the
papers [C,D] JM elements in fact were considered in the context of the theory of the
degenerate affine Hecke algebras. The idea to revise classical theory in the spirit
which was decribed above was discussed also by the second author in connection of
asymptotic theory of symmetric groups, see [V1,2,3].

The reader is supposed to be familiar only with the elementary facts from ab-
stract representation theory of finite groups. We will not use any facts from the
representation theory of the symmetric groups.

We would like to thank M. Nazarov for useful information about literature, and
S. Kerov and G. Olshanski for helpful discussions about the theory of representa-
tions of symmetric groups.

A short announcement of our results was made in [OV].

§1. GELFAND-ZETLIN BASIS FOR INDUCTIVE FAMILIES.

Let
(1.1) {1} =G0) CG) CcG?2)C....

be a chain of finite groups. By G(n)" denote the set of equivalence classes of
irreducible complex representations of the group G(n). The branching graph (or
Bratteli diagram) of (1.1) is by definition the following oriented graph. The vertices
of the branching graph are the elements of the set

U G(n)".

n>0
Two vertices u € G(n —1)" and A € G(n)" are joined by k oriented edges if
k = dim Hom g, —1)(V*, V)‘),

that is if k£ 1s the multiplicity of p in the restriction of the representation A to the
group G(n—1). We call the set G(n)" the n-th level of the branching graph. Write

p A
if ;1 and A are connected by an edge in the branching graph; write

pCA,
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where u € G(k)™, A € G(n)", and k < n, if the multiplicity of p in A is nonzero. In
other words, ¢ C A if there is a path from g to A in the branching graph. Denote
by @ the unique element of G(0)". The same definition of the branching graph is
good for any chain

M) C M(1)Cc M(2)C...

of finite-dimensional semisimple assosiative algebras.
In the case

G(n)=5S(n), n=12,...
we always have

ke {0,1},

which means that the branching graph is multiplicity free. A proof of this well
known fact (see, for example [JK]) will be given below. We assume k € {0,1} in
the sequel. In this case the decomposition

VA = - v
REG(n—1)N,pu/ A

into the sum of irreducible G(n — 1)-modules is canonical. By induction, we obtain
a canonical decomposition of the module V* into irreducible G(0)-modules (that is

simply 1-dimensional subspaces)
=P
T

indexed by the all possible chains

(1.2) T=X,/M/ ./ \n

where \; € G(7)" and A,, = A. Such are paths from @ to A in the branching graph.
Choose a vector vy € Vi such that

(vp,or) =1,

where (-, -) is the G(n)-invariant inner product in V*. The basis {vr} is called
the Gelfand-Zetlin (GZ) basis. In [GZ1,GZ2] was defined basis for representation
of SO(n) and U(n); we use the same name in the general situation (see [VK]). We
shall consider also non-normalized Gelfand-Zetlin basis vectors. By definition

(1.3) dGc @) -vr, i=1,2,...,n,

is the irreducible G(7)-module V. Tt is clear also, that v is the unique (within a
scalar factor) vector with this property.

By Z(n) denote the center of (JG(n)]. Let A(n) c G(n)] be the algebra
generated by the subalgebras
201), 2(2), .., Z(n)

of QG(n)]. Tt is readily seen that A(n) is commutative. The algebra A(n) is
called the Gelfand-Zetlin subalgebra( GZ-algebra). Recall the following fundamental

isomorphism

(1.4) QG = @ End(V?).

AEG(n)A
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PROPOSITION 1. The GZ-algebra (= A(n)) is the algebra of of all operators diago-
nal in GZ-basis. In particular, it is a mazimal commutative subalgebra of JG(n)].

PROOF. Denote by Pr € A(n) the product of central idempotents
P)\1PA2...P)\, PM EZ(i),

corresponding to A1, Az, ..., A respectively. Clearly, Pr is the projection onto Vr.
Hence A(n) contains the algebra of operators diagonal in the basis {vr}, which
is a maximal commutative subalgebra of (JG(n)]. Since A(n) is commutative the
proposition is proved. [

REMARK 1.1. Note that by the theorem any vector from the Gelfand-Zetlin basis
for any irredusible representation of G(n) is uniquely (within a scalar) determined
by the eigenvalues of the elements of A(n) on it.

REMARK 1.2. In general situation (for an arbitrary branching rule with the multi-
plicities of the edges -see above definition) Gelfand-Zetlin algebra is not a maximal
abelian subalgerba of the whole algebra: maximality of tha algebra takes place iff
the multiplicities are equal to zero or one.

§2. Jucys-MURPHY ELEMENTS.

. From now on we consider the case
G(n) = S(n).
In section 4 we shall prove that any irreducible S(n)-module is indeed a multiplicity-
free S(n — 1)-module. The Gelfand-Zetlin basis for the symmetric group is known

as the Young basis.
For i = 1,2,...,n consider the following elements X; € (JS(n)]

Xi=(1)+20)+---+(—11).
In particular, X; = 0. Following M. Nazarov we call them Jucys-Murphy elements

or JM-elements; they were introduced independently in [Ju] and [Mu].
It is clear that

X, = sum of all transpositions in S(1) —
(2.1) sum of all transpositions in S(v — 1),

that is a difference of an element of Z(¢) and an element of Z(¢ — 1). Therefore
X; € A(n) for all © < n. In particular, the JM elements commute. The following
proposition will be proved in the section 4. The fact that JM elements generate a
maximal commutative subalgebra in (JS(n)] is well-known (see [DG]).

PROPOSITION 2.1. The elements X1,...,X, generate the algebra A(n).

Another way to introduce the elements X; is the following. There exists the
unique map
S(n+1)— S(n)
which commutes with the right and left multiplication by elements of S(n); it
removes the number n+1 from the cyclic notation of a permutation [KOV]. Extend
this map to a map of group algebras by linearity

s +1)] - QS(n].
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PROPOSITION 2.2. The affine space in the algebra (QS(n 4 1)] which is the inter-
section of the preimage (under that projection) of the identity element of (JS(n)]
with the commutant of the subalgebra (S(n)] is spanned by indentity element of
AS(n +1)] and the element nt — 1)X 41,

This proposition gives us an invariant definition of JM elemenmts; it could be
extend to many series of ALSG algebras and groups which have a similar projection,
f.e. JM elements for the general Coxeter groups could be defined in such a way.
We will not use this fact.

The Young basis is the common eigenbasis of JM elements. If v is a Young basis
vector, then by

alv) =(a,...,a,) € C
denote the eigenvalues of X1,...,X,, on v. Let us call the vector a(v) the weight
of v. Denote by
Spec(n) = {a(v), v € Young basis}
the spectrum of JM elements. By proposition 2 and remark 1 a point a(v) €
Spec(n) determines v up to a scalar factor (denote by v, any Young basis vector
corresponding to a point o € Spec(n)). It follows that

| Spec(n)| = Z dim A
AES(n)N

By definition of the Young basis the set Spec(n) is in a natural bijection with the
set of all paths (1.2) in the branching graph. Denote these correspondences by

T—aoT), a—T,.
There is a natural equivalence relation ~ on Spec(n). Write

a~ 3, «f € Spec(n),

if v and vg belong to the same irreducible S(n)-module, or, equivalently, the paths
T, and T have the same end. Clearly,

| Spec(n)/ ~ | =|S(n)"].
Our plan is to

(1) describe the set Spec(n),

(2) describe the equivalence relation ~,

(3) calculate matrix elements in the Young basis,

(4) calculate characters of irreducible representations.

§3. AcCTION OF COXETER GENERATORS AND THE ALGEBRA H(2).
The Coxeter generators of the group S(n)
si=i+1), ¢=1,...,n—1,

commute except for neighbors. Such generators were called local generators in [V].
Here, as in physics, “local” means that remote generators do not affect each other
(commute). The Young basis is also local in the following sence.
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PRrOPOSITION 3. For any vector

or, T=Xo /.. Xpy N €SEN
and any k =1,...,n — 1 the vector

Sk - OT

18 a linear combination of vectors

o, T'=Xy /. A, Ae SN
such that

No= )N, 1#£k.

In other words, the action of si affects only the k-th level of the branching graph.
PROOF. Suppose ¢ > k. Since s; € S(¢) and the module

as()] - vr

1s irreducible we have

(3.1) s sg -vr = S3H)] - vp = VN,
where Vi is the irreducible S(i)-module indexed by \; € S(:)".

Suppose 1 < k. Since s; commutes with S(¢) we have (3.1) again. Now it follows
from (1.3) that sj - vy is a linear combination of desired vectors. O

In the same way it is easy to show the the coefficients of this linear combination
depend only on Ag_1, Ak, A}, Ak41 and the choice of the scalar factors in Young
basis vectors. That is the action of sj affects only the k-th level and depends only
on levels number & — 1,5,k 4+ 1 of the branching graph.

The proposition can be also easily deduced from the obvious relations

(3.2) 5, X; = Xjs,, JF i+ 1.
The elements s;, X;, and X,y satisfy a more interesting (and well-known relation)
(3.2) i Xy +1=X,118,

which is evident rewritten as
5;Xis; 5= Xiq1.
Denote by H(2) the algebra generated by elements s,Y7,Y5 subject to the fol-

lowing relations

52 == 1, Y1Y2 == YQYl, SY1 + 1= YQS .

This algebra will play the central role in the sequel. It is the simplest example of
the degenerate affine Hecke algebra.
The action of JM elements on the Young basis i1s also local. It readily follows
from (2.1) that if
T=X /... A\
and
a(T) = (ay,...,an)
Then aj, 1s the difference of a function of A; and a function of Arp_; for all k.
Another important property of Coxeter generators and JM elements is that the
relations between them are stable under a shift of indices. Such relations were called
stationary relations in [V1]. We can consider an algebra H(2)) as right "increment”

which we have to add to algerba (JS(n)] in order to obtain the algebra (JS(n +1)].
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64. CENTRALIZERS.

Suppose we have a group G, an irreducible G-module V, a subgroup H C G,
and an irreducible H-module U. The multiplicity of U in V equals the dimension
of the vector space

Hompy (U, V).

This vector space, as it follows from (1.4), is an irreducible module over the cen-

tralizer
aar”
of the group H in (JG]. In this section we study the centralizers
Z(Lk)=Qs(1 + 1)°D,
The following theorem was proved by G. Olshanski.
THEOREM 4. The algebra Z(1, k) is generated by the elements
Xittyeoo, Xk,

the group S(k), which permutes the numbers {I+1,.... 14+ k}, and the center Z(1)
of Gs(1)].

PROOF. Let us assume that & = 2. The general case is similar. The sums of the
two following kinds form a linear basis in Z(I, k)

Z(ml,mg,...) =
= > (T4 1,an, .y am Y H2,01, b )t om0 )
al,a2,...,am1,b1,...
Z'(ml,mg,...) =
= > (T4 1 a1, amy L+ 2,01, b )1y Cmg) ()
al,a2,...,am1,b1,...
where ay,ay,...,by,... range over all possible subsets of {1,...,{} of cardinality

|m| = >_m,. Clearly,
Z'(ml,mg,...) = (Z—|— 1,Z—|—2)Z(m1,m2,...).

Introduce a filtration of Z(1,2) whose n-th subspace is spanned by X(mq,mao,...)
and X'(mqy,ma,...) with |m| < n. It is easy to see that

Z(ml,mg,...) =

(X)) ( Xig2 — s141)™? (Z(Cl, ceyCmg )l ). ) + lower terms.

Clyeen
Here “lower terms” means an element of the lower filtration subspace. Note that the

sum over ¢y, . .. is an element of Z(I). Now induction on |m| proves the theorem. O

In particular, the algebra
Qs(n +2)°

is generated by Z(n) and homomorphic image of H(2).
Now we can prove proposition 2.
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CORROLARY 4.1. The elements X1,...,X, generate the algebra A(n).

PROOF. By induction, it suffices to check that Z(n) belongs to the algebra gen-
erated by Z(n — 1) and X,. This follows from the above theorem and obvious
inclusion

Z(n) C Z(n—1,1). O

CORROLARY 4.2. Let V* be an irreducible S(1)-module, and let V> be an irreducible
S(I + k)-module. Then the multiplicity of V* in V> is not greater than k!. In
particular, if k =1 then V* is a multiplicity-free S(1)-module.

PrROOF. The multiplicity is the dimension of
(4.1) Hom gy (V*, V),

which is an irreducible Z(I, k)-module. The algebra Z(I) acts by scalar operators
in this module. The elements X;y1,..., X;4; commute and hence have a common
eigenvector v in (4.1). It follows from the relations (3.2,3.3) that the vector space
spanned by the vectors

s-v, s € S(k),
is Z(l, k)-invariant and hence equals (4.1). It follows that
dim Homg(y(V*, V) < kl. O

It is easy to see from the explicit construction of representation (see below) that
this upper bound is sharp.

In terms of the branching graph this proposition can be restated as follows. By
the very definition of the Young basis the space (4.1) has a natural basis indexed
by paths from g to A in the branching graph. Suppose

To=up /... A
is such a path. Then the corresponding homomorphism
Ve — VA

takes a vector vy € VH to the vector

UTr+Ty 5

where T + T} stands for junction of T" and Tj.
The estimate (4.2) for k = 2 implies that there are only three possibilities:

(1) the multiplicity of x in A equals 0 and g and A are not connected in the
branching graph;
(2) the multiplicity equals 1 and the interval between p and A is a chain

p—v—A;
(3) the multiplicity equals 2 and the interval between p and A is a square

YN
SN
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In the case of the chain the generator s;y; multiplies all vectors

vp, T=.../ unw,/ v,/ XN/ ..

by a constant, which equals £1 by virtue of 3?_1_1 =1
We consider the case of the square in the next section.

REMARK 4.3. The algebra generated by the group S(n) and commuting elements
Yi,..., Y, subject to relations

sV +1=Yips, Y, =Y, 5 #0141,

is called the degenerate affine Hecke algebra. We denote it by H(n). We see that
(4.1) is an irreducible H(k) module where Y; acts as Xjy;.
REMARK 4.4. Algebra Z(k,l is a homomorphic image of the degenerated Hecke
algebra,- see [D,C].

§5. IRREDUCIBLE REPRESENTATIONS OF H(2).

We already know that all irreducible of H(2) are not more than 2-dimensional
and have a vector v such that

Yiv=av, Ysv=0bv, abeC.
If the vectors v and sv are independent then the relation
(51) SY1 + 1= YQS

implies that Y7 and Y3 act in the basis v, sv as follows

a —1 b 1 0 1
(o) (o) = (00)
If b # a £ 1 this representation is irreducible; denote it by 7, 5. If v and sv are

proportional then
sv = Fv

and it follows from (5.1) that
b=a+1

in this case.

If @ = b then the operators m, 4(Y;) are not semisimple and therefore such rep-
resentations cannot appear in the action on the Young basis. If ¢ # b then the
operators 7, 5(Y;) can be diagonalized, for example, as follows

0 b 0 %a 1—$
(5.2) Y1:<g b>, Y2:<0 a>7 :<b1 @ >>‘
a—>b

Let us formulate our results as a proposition.
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PROPOSITION 5. Suppose

a=(a1,...,a;,ai11,...,a,) € Spec(n).

Then

(1) ai # a;41 for all i,
2) if ajg1 = a; £ 1 then s; - vy = Fv,,
) if aip1 # a; £ 1 then

o =s;-a=(ay,...,a;41,a;,...,a,) € Spec(n)

and o' ~ . Moreover,

1
Vot = | 8 — ——— | vy
i1 — Uy

and the elements s;, X;, Xi41 act in the basis vy, vo by formulas (5.2) with
Y1 replaced by X; and Y, replaced by X;41.

Let us call a transposition s; as in part (3) of the proposition an admissible
transposition. Admissible transpositions preserve the set Cont(n ) (see next section).
Evidently, the two cases in this proposition are the cases of the chain and square
from the previous section.

§6. MAIN THEOREMS

In this section we shall describe the set Spec(n) and the equivalence relation ~.
Introduce the set Cont(n) of content vectors (or Young wvector) of length n. By
definition

a=(ay,...,ay) € Cont(n)

if « satisfies the following conditions
(1) a1 = 0,
(2) {ag —l,a0+1}N{ar,...,a40-1} # D forall ¢ > 1,
(3) if @, = a4 = a for some p < ¢ then

{a—1,a+1} C{apq1,...,aq-1}-

It is clear that
Cont(n) C 7" .

THEOREM 6.1.
(6.1) Spec(n) C Cont(n).

We shall need the following lemma
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LEMMA 6.1. Suppose

a=(ay,...,a,)

and a; = @42 = a;41 — 1 for some t. Then
« ¢ Spec(n).

PROOF OF THE LEMMA. Suppose « € Spec(n). By proposition 5, part (2)
S$iVaq = Vay Si4+10a = —Va
which contradicts the Coxeter relation

SiSe¢+151 = Si415:¢Si+1 - U

PROOF OF THE THEOREM. Suppose & = (ay,...,a,) € Spec(n). Since X; =0 we
have a; = 0.

Let us verify the conditions (2) and (3) by induction on n. The case n = 2 is
clear.

Suppose {a, — 1,a, + 1} N{ay,...,ap—1} = F. Then the transposition of n — 1
and n is admissible and

(a1,...,apn_2,0an,an_1) € Spec(n).
Hence (ay,...,an—2,a,) € Spec(n — 1) and clearly
{ap, — L,ap + 1} 0 {ay,...,ap_2} =T

in contradiction to the inductive assumption. This proves the necessity of (2).
Suppose a, = a, = a for some p < n and, say,

a—1 % {ap+17"'7an—1}'
We can assume, that p is choosen maximal, that is
a % {ap-i—lv' . 7an—1} .

Then, by the inductive assumption, the number a + 1 appears in {ap41,...,an-1}
at most once. That is we have two possibilities: either

(ap,... an) = (a,*, ..., % a),
or

(ap,... an) = (a,%, ..., x,a+ 1% ... %.a),

where *,...,* stands for a sequence of numbers different from a — 1, a, a + 1.
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In the first case applying n — p — 1 admissible transpositions we get
"
a~a' =(..,a,a,...),

S a

which contradicts proposition 5, part (1).
In the second case by the same argument

a~ao =(..,a,a+1,a,...),

which is impossible by the lemma O

We shall need one more equivalence relation. Write

O{%ﬂ’ a76€@7

if 4 is a permutation of entries of a. The set Cont(n) with the relation ~ has the

following simple combinatorial interpretation.

Denote by Y the Young graph. By definition, the vertices of Y are Young dia-
grams and two vertices v and 5 are joined by an oriented edge iff v C 5 and n/v is
a single box. Write v " 1 in this case. Recall that, given a box O € 7, the number

¢(d) = x-coordinate of O — y-coordinate of OJ

is called the content of 0. By Tab(v) denote the set of paths in Y from @ to v,
such paths are called standard or Young tableaux. The convenient way to represent

a path T € Tab(v)
S=vy ... vy, =v

is to write the numbers 1,...,n in the boxes vy /v, ..., vn/vp—1 of v, respectively.

Put
Tab(n) = U Tab(v).

lv|=n
The following proposition can be easily checked

PROPOSITION 6.2. Suppose

T=vy,/ ...,/ vy € Tab(n).

The map
T (c(ri/vo)y. . c(Vn/Vn=1))

is @ bigection of Tab(n) and Cont(n). We have a ~ 3, a,3 € Cont(n) iff the

corresponding paths have the same end, that is ioff they are tableaux on the same

diagram.

In terms of Young tableaux, admissible transpositions are transpositions of num-

bers from different rows and columns.
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LEMMA 6.3. Any two Young tablew Ty, Ty € Tab(v) on a diagram v can be obtained
from each other by admissible transpositions. In other words, if a, f € Cont(n) and
o & [ then 3 can be obtained from « by admassible transpositions.

Proof. Let us show that by admissible transpositions we can take any Young tableau
T € Tab(v) to the following tableau

1 2 1
T = 1/1—|—1 1/1—|—1/2 5

which corresponds to the following element of Cont(n)
a(T”)=1(0,1,2,...,0n —1,=1,0,...,v9 —2,=2,—1,...).

To that end consider the last box of the last row of v. Let ¢ be the number written
in this box of T'. Transpose ¢ and ¢ + 1, then ¢+ + 1 and ¢+ + 2,..., and finally n — 1
and n. Clearly, all these transpositions are admissible, and we obtain a tableux
with the number n written in the last box of the last column.

Now the number n is in the right position, so we can forget about it and repeat
the same procedure forn — 1,n —2,.... O

COROLLARY 6.3. If o € Spec(n) and a ~ 3, € Cont(n), then 3 € Spec(n) and
a~ 3.
REMARK 6.3. Our chain of transpositions linking 7" and T is a minimal possible

in the following sense. Denote by s the permutation, which maps T to T”. Let ((s)
be the number of inversions in s, that is

Us) = #{(1,7) € {1,...,n}[1 < jys(i) > s(5)} -

It is well known that s can be written as a product of ((s) transpositions s; and
cannot be written as a shorter product®. It is easy to see that our chain contains ex-
actly ((s) admissible transpositions. In other words, Cont(n) is a “totally geodesic”
subset of Z™ for the action of S(n).

THEOREM 6.4. Y is the branching graph of the symmetric groups, Spec(n) =
Cont(n) and ~=r.

PRrROOF. Consider the coset Cont(n)/ ~. We have
#{ Cont(n)/ ~ } = #{partitions of /\} :

By the corollary 6.3 each equivalence class in Cont(n)/ & either contains no ele-
ments of Spec(n) or is a subset of an equivalence class in Spec(n)/ ~. Since

#{ Spec(n)/ ~ } = #{S(n)A} = #{partitions of /\} \
all classes in Cont(n)/ ~ are classes in Spec(n)/ ~. In other words,
Spec(n) = Cont(n) and ~=r .

Clearly, this implies that Y is the branching graph of the chain of symmetric
groups. [

3simply because £(s;9) = £(g) £ 1 for all i and g € S(n).
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§7. YOUNG FORMULAS.

So far Young basis vectors vy were considered up to scalar factors. In this section
we shall specify the choice of these factors.

Let us start with the tableau 7% defined in the proof of the lemma 6.3. Choose
any non-zero vector vpa corresponding to this tableau.

Given a tableau T € Tab(\) put

UT) = s),

where s is the permutation, which maps T* to T. Recall that Pr denotes the
orthonormal projection onto Vi (see §1). Put

(7.1) vr = Pr-s-vpa

By lemma 6.3 the permutation s can be represented as a product of ¢(T') admissible
transpositions. Therefore, by definition (7.1) and the formulas (5.2)

(7.2) s vpy = v + Z YRUR
RETab(A),0(R)<((T)

where yg are some rational numbers. In particular, suppose 7' = s;T and

T > (T).
Let

a(T) = (ay,...,a,) € Cont(n)
be the sequence of contents of boxes in T. Then by (5.2), (7.1), and (7.2) we have
1
(73) S; rvp = v + —oT.
Ai41 — &

And again by (5.2)

1 1
(7.4) sirvpp=(1— ———— Jop— ————v7r.
(aig1 — a;)? Qi1 — Gy

This proves the following

PROPOSITION 7.1. There exists a basis vr of V> in which the generators s; act by
the formulas (7.3,7.4). All irreducible representations of S(n) are defined over the

field Q.

Another way to prove this proposition is to verify directly that these formulas
define a representation of S(n) (that is to verify the Coxeter relations).

This basis is called the Young seminormal form of V*. If we normalize all
vectors v we obtain the Young orthonormal form of V*. This form is defined
over IR, Denote the normalized vectors by the same letters v7. Then s; acts in the
two-dimensional space spanned by vy and vy by an orthogonal matrix. Therefore

(7.5) N L
' S NV ) —p1 ’
where
r=4da;41 — a; .

This number is usually called the azial distance - see [JI].
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PROPOSITION 7.2. There exists an orthonormal basis vy of V> in which the gen-
erators s; act by the formulas (7.5).

REMARK. Since the weight a(T?) of vpa is the biggest weight in V* with respect
to the lexicographic order, we can call the weight a(T?) the highest weight of VA
and call the vector vy the highest vector of V.

The same formulas give the action of symmetric group in the representations
assosiated to skew Young diagrams.

Suppose |p| =1, |\| = I + k. Denote by VA# the Z(I, k)-module
VA/N == Homg(l)(V’“‘, VA) 5

which was considered in §4. Clearly, this module has a similar Young orthonormal
basis indexed by all Young tableaux on the skew diagram A/u. The generators

Xipi, i=1,...k

of Z(1, k) act in this basis by multiplication by the content of the i-th box and the
Coxeter generators of the subgroup S(k) C Z(1, k) act by formulas (7.5).

§8. CHARACTERS OF SYMMETRIC GROUPS.

In this section we prove the Murnaghan-Nakayama rule for characters of the
symmetric groups. The key fact we use is the Proposition 8.2, which is based on
the theorem 4.

Recall that a Young diagram + is called a hook if, v = (a + 1,1%) for some
a,b € 7, . The number b is called the height of the hook 7. Recall also that a
skew diagram A/u is called a skew hook, if it is connected and does not have two
boxes on the same diagonal. The content vector (or spectrum of JM elements) of
the standard Young tableaux with skew hook as corresponding diagram is a vector
without equal coordinates. In other words, A\/u is a skew hook if the contents of
the boxes of A\/u form an interval in Z of cardinality |\/u|. The number of rows
taken occupied by A/u minus 1 is called the height of A/u and is denoted by (A/u).
Put & = |A\/pu|. Let VM® be the S(k)-module corresponding to the skew diagram
A/, and let y** be the corresponding character. Our aim is to prove the following
well-known theorem

THEOREM 8.

—1)Mm 7 15 @ skew hoo
(8.1) Wu((lz..k))z{( WA shew ook

0, otherwise .

Now suppose that p is a partition of k. Consider the following permutation from
the conjugacy class corresponding to p

(12...p0(p1+1.opidp)o)e.n

It is clear that applying theorem 8 several times we get the following classical
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MURNAGHAN-NAKAYAMA RULE. Let p be a partition of k. The value Xﬁ/“ of the
character xM* on a permutation with cycle type p equals

X;‘/” — Z(_1)<S>

S

, where the sum s over all sequences S
/,L:/\()C/\lC/\Q"':/\,

such that A\;/Xi—1 18 a skew hook with p; bozes, and

(S) = (Ai/Aic1)

7

It is well-known and can be easily proved (see, for example [M], Ch. 1, Ex. 3.11)
that this rule is equivalent to all other descriptions of the characters of symmetric
groups, for example, to the following symmetric functions relation [M]

A
pP:ZXp‘S)\7
A

or to the determinantal formula [M,JK]. Note that the theorem we are going to
prove is a special case of the Murnaghan-Nakayama rule. The same proof of the
following proposition was also given in [DGJ.

PROPOSITION 8.1. The formula (8.1) s true for p = @.

PROOF. It is easy to see (for example, by induction) that

(8.2) X2 X5 ... X) =sum of all k-cycles in S(k) .

The eigenvalue of (8.2) on any Young basis vector in V* equals
(=1 (k — b —1)!

if A is a hook of height b, and equals zero otherwise. Clearly, the number of k-cycles
in S(k) equals (k — 1)! and
k—1
dim A =
i ( : ) ,

if \is a hook of height b. Taking the trace of (8.2) in V* proves the proposition. [

PROPOSITION 8.2. For any vector v from the Young basis of V*#

QS(k)) -0 = VA"

PrOOF. The vector space VA is an irreducible H(k)-module. The vector v is by
assumption a common eigenvector for all X;. By commutation relations in H (k)

Qs(k)] v

is H(k)-invariant and hence equals V#, O

the space
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PROPOSITION 8.3. If A\/i is not connected then

YMH(12...k) = 0.

PROOF. Suppose \/u = vy U vy, where vy, vy are two skew Young diagram which
have no edge in common. Put a = |11|, b = |v2]. Consider the Young tableaux on
A/ that have the numbers 1,2, ..., a in v; and the numbersa+1,...,k in 1. Con-
sider the subspace of VM* spanned by all Young basis vectors with such tableaux
and consider the action of the subgroup S(a) x S(b) of S(k) on this subspace. It is
clear that as S(a) x S(b)-module this subspace is isomorphic to

Vi vz,
By proposition 8.2 we have the following isomorphisms
(8.3) Indg(o) s V" @V — V.

It is easy to see that the dimension of the both sides of (8.3) equals

k
( ) dimr; dimvy .

a

Hence (8.3) is an isomorphism.

In the natural basis of the induced representation the permutation (12...%) (as
well as any permutation which is not conjugated to an element of S(a) x S(b)) has
only zeroes on the diagonal. This proves the proposition. O

PROPOSITION 8.4. If A/ u has two boxes on the same diagonal then

YME(12.. k) =0.

PROOF. Suppose there are two such boxes. Then there is a diagram 7 such that
pwCnCA
and n/p is a 2 X 2 square

n/p="H.

That is VM* contains a S(4)-submodule V&, By proposition 8.2 we have an epi-
morphism

(8.4) Indgy) VE — VA0,

By the branching rule and Frobenius reciprocity the left-hand side of (8.4) contains
only such S(k)-modules V? that @ C ¢. In particular, § cannot be a hook and
therefore

6
X°((12...k)) =0,
by proposition 8.1. This proves the proposition. [
In fact, we have proved that under the assunptions of the proposition 8.4

Hom gy (V7, V#) = 0,

for all hook diagram ~.
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PROPOSITION 8.5. Suppose A/ is a skew hook. Then for any hook v = (a+1,1%)

C b=\,

0, otherwise.

Homs(k)(VV, VA/N) = {
PROOF. Since translation of A\/x do not change the corresponding S(k)-module we
can assume that A and p are choosen minimal, that is
AL >, AL > ph
Show that if b < (A/u) then
Homs(k)(VV, VA/N) =0.
Indeed, the module V7 has a nonzero S(k — b)-invarinat vector and there is no such
vectors in VA # since there is no such vectors in V* (this follows from the branching
rule). The case b > (A/u) is similar.
Now suppose b = (A/u). Consider the vector space

Homs(k)(VV, VA) .

It is easy to see from the following picture (and Young formulas) that

| ]

1
— [
SN .

this space is the irreducible S(|¢|)-module V#. Therefore
Homs(k)xs(|u|)(V7 X V“, VA) = (C,

and thus
Hom g (V?, VM1 =C. O

The theorem follows evidently from the proved propositions.
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