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0 IntroductionInstantons plays an important role in modern �eld theory and mathematics. Till nowthe thorough studies of instantons were carried for gauge �elds and sigma models.Rigid string is another model of interest which was known to posses instantons. Themodel was originally considered as a string for gauge �elds. Unfortunately, rigidity hasquite complicated structure when expressed in ordinary string variables. This preventsany signi�cant progress in quantization. Certain rigid string instantons were derivedand investigated in [1, 2]. Despite this e�orts little was known about the generality ofthe proposed instanton equations and its signi�cance for physics of the model.In recent paper [3] we derived a new set of instanton equations for the 4d rigidstring. It was claimed this set is rich enough to have representatives for all topologicalsectors of the rigid string. Because the action of the model contains terms with fourderivative the relevant topological invariant is not only the genus of the world-sheetsurface but also the self-intersection number of the surface immersed in a target 4dspace-time. The instantons split not into two families - instantons and anti-instantonsbut into three families. We shall call them J (P )1 -instantons, anti-J (P )1 -instantons andminimal or J (P )2 -instantons. Minimal instantons are just minimal maps from the world-sheet to the target space-time. In general, intersection of these families is non-trivialeven in R4 what is also a novel feature. Unfortunately the equations seemed to be verydi�cult and a method (through the Gauss map) to solve them in full generality, failed.In this paper we are going to study the rigid string instantons of [3] in more generalsetting. Thus we shall consider the rigid string moving in a Riemannian 4-manifold Mwith the metric G(M)�� . Using the twistor method [4, 5] we shall be able to show that inmany cases one can give explicit formulas for the instantons. Moreover the constructionwill reveal an interesting structure of the equations, namely, the instantons will appearto be pseudo-holomorphic curves in the twistor space of M . This unexpected resultunfolds the underlying simplicity of the equations and lies foundation of the successfulsolution of the equations.It is worth to note that the subject touches Yang-Mills �elds in two points. Firstof all, pseudo-holomorphic curves were used to build the string picture of YM2 [6].Secondly the dimension of the moduli space of J (P )1 -instantons on R4 and S4 is exactly1



the same as those of SU(2) Yang-Mills instantons with the appropriate identi�cationof topological numbers.Content of the paper is the following: in Sec.1 we introduce the necessary notationand recall some results of [3]. In the next section we show how to solve the J (P )1 -instanton equations using the twistor method. We also calculate the dimension ofthe moduli space of the rigid string instantons. In sec.3 we derive explicit formulasfor the cases of M = R4 and M = S4. In the �nal section we speculate on newtopological (smooth) invariants of 4-manifolds. We also discuss connection of the rigidstring instantons to string description of Yang-Mills �elds and shortly discuss the caseof 3-dimensional target M .1 Rigid string instantons.In this section we introduce necessary notions and recall basic results of [3].We start with some generalities concerning the problem. We shall be interestedin maps X : � ! M which are immersions i.e. rank(dX) = 2 ( the tangent map isof maximal possible rank). Roughly speaking it means that the image of � in M issmooth. It means also that the induced metric gab � @a ~X@b ~X is non-singular. Anyimmersion de�nes the Gauss map t�� : � ! G4;2 = S2+ � S2�. The appearance ofproduct of two S2 corresponds to the fact that t�� can be decomposed into self-dualt��+ and anti-self-dual t��� part. If M has non-trivial topology we can not expect theGauss map to be de�ned globally. Thus we must introduce the so-call Grassmann�ber bundle over M with �bers G4;2. The map ~X to this bundle is called the Gausslift. Because the �ber of this bundle splits into self-dual and anti-self-dual part we canconsider Gauss lifts to each of them independently i.e. we can de�ne bundle of tensorstpmunu separately. This is a sphere bundle which shall play a crucial role in the nextsection.The action of the rigid string (without the Nambu-Goto term1) isZ�pggabrat��rbt�� = 2 Z�pg(�X�)(�X�)G(M)�� � 8��: (1)1The Nambu-Goto term breaks space-time scale invariance of the model thus prevents existence ofinstantons. 2



where t�� � �ab@aX�@bX�=pg are the element of the Grassmann manifold G4;2, G(M)��is the metric on M and gab � @aX�@bX�G(M)�� is the induced metric on a Riemannsurface of genus h. Tensors @aX� are components of T �� 
X�TM , where X�TM isthe pull-back bundle. The covariant derivatives are built with Levi-Civita connectionson T �� and TM . Explicitly rb@aX� = @b@aX� � �(�)cab @cX� + �(M)��� @aX�@bX�. TheEuler characteristic of the Riemann surface � is given by the Gauss-Bonnet formula� = 14� R�pgR.Immersions of Riemann surfaces in R4 are classi�ed by the self-intersection numberI [7]. General arguments based on singularity theory showed that rigidity separatestopologically di�erent string con�gurations. The derivation of instanton equations wasbased on the knowledge of relevant topological invariants. In our case these werethe above mentioned self-intersection number I and the Euler characteristic �. Theequations were derived using formulae for both invariants in terms of t��. Explicitly:� = I+�I�; I = 12(I++I�), where I� = � 132� R� �ab@at�� �@bt�� �t�� � and t��� � t���~t��.Standard reasoning yielded the following instanton equations (denoted as (+;�) withobvious sign convention)2:�rat+ �� � � bapg t+ �� rbt+ �� = 0 (2)Here the equations were adopted to the general manifold M . Analogous equationshold for the anti-self-dual part of t��. The (+;+) equations are equivalent to �X� = 0and their solutions will be called minimal instantons or J (P )2 -instantons. Appropriateequations for anti-self-dual part of t will give only J (P )1 -anti-instantons - the fourthpossibility appeared to be equivalent to the minimal instantons. Thus instantons form3 families. The former two families behave as true instantons and anti-instantons in thissense that they do not have continuation to the Minkowski space-time and their role isinterchanged under change of orientation of the space-time. Minimal instantons havecontinuation to Minkowski space-time what is a novel feature of this kind of solutions.It is also worth to note that change of orientation of the world-sheet (change of sign ofthe world-sheet complex structure) together with change of sign of t�� (change of signof the space-time complex structure) do not change any of the equations.2The minus � in front of the �rst term appeared in order to preserve notation of [3].3



In R4 the instanton families are not disjoint. Intersection of J (P )1 -instantons andminimal instantons gives rat+ �� = 0 while intersection of anti-J (P )1 -instanton and min-imal instantons gives rat� �� = 0. These equations have solutions in R4 [2] and S4[10, 4]. For R4 there is also one nontrivial intersection of J (P )1 -instantons and anti-J (P )1 -instantons at genus zero. The solution was found in [3] to be a sphere embeddedin R3 � R4. It has 5-dimensional moduli space - four positions and one breathingmode. The analogy with SU(2) Yang-Mills case is suggestive. In sec.2 we shall showthat in fact the dimension of the moduli space of J (P )1 -instantons on R4 and S4 isexactly given by the same formula as for the SU(2) Yang-Mills case with appropriateidenti�cation of topological numbers. We want to stress here that these properties ofthe three family of instantons were proven for M = R4 and may be modi�ed for other4-manifolds.The above mentioned spherical solution was found using properties of the Gaussmap of an immersion. Unfortunately we were not able to �nd other instantons withthis method. In the following section we shall use the twistors [4, 5] in �nding solutionsto Eqs.(2). The method appears so powerful that one can �nd closed formulae for allinstantons for many interesting spaces M .2 Twistor construction of instantonsIn this section we shall show that the rigid string instantons are pseudo-holomorphiccurves in the twistor space of the space-time M . This will directly lead to the explicitformulas on instantons for some manifolds M . Moreover, the method will allow tocalculate the dimension of the moduli space of instantons. In the following we shallconcentrate on the self-dual part of t�� only, understanding that the behaviour of theanti-self-dual part is analogous.Before we go to the main subject we recall some facts from complex geometry andtwistors. We shall heavily use certain properties of almost complex structures.33Several di�erent almost complex structure will appear in this paper. In order to clarify thenotation we decided to denote by � almost complex structures of 2d manifolds and by J almostcomplex structure of M and the twistor space PM . These will be supplemented with the appropriatesuperscript of the manifold. An almost complex manifold X with given almost complex structure Jwe shall denote as (X; J). 4



Thus, the space of all almost complex structures on R4 is O(4)=U(2) = S2 � Z2i.e. the space of all orthonormal frames up to unitary rotation which preserve choiceof complex coordinates. The Z2 factor is responsible for change of orientation of R4.Hence the bundle of almost complex structures over M (up to change of orientation)is just the sphere bundle PM i.e. a bundle with S2 as �bers. In other words, any pointp 2 PM , with coordinates in a local trivialization p = (u; x) 2 S2�R4, �xes an almostcomplex structure J on M at x = �(p) 2 M . This almost complex structure is givenby the coordinate u on the �ber S2.It appears that such sphere bundles have two natural almost complex structures.The reason is that the sphere S2 has two canonical complex structures ��(S). In theconformal metric on S2 we have (�(S))ij = �ij, where i; j = 1; 2. Out of ��(S) we buildtwo almost complex structures on PM . With the help of Levi-Civita connection onM we can decompose the tangent space TpPM at p 2 PM into the horizontal part Hpand the vertical part Vp: TpPM = Hp � Vp. The former is isomorphic to T�(p)M . Theisomorphism is given by the lift de�ned with help of the Levi-Civita connection on TM .The lift also de�nes the action of the almost complex structure J on Hp. The verticalspace Vp is tangent to the �ber (S2) and has the complex structure ��(S). It followsthat we can de�ne two almost complex structure at p 2 PM given by the formulasJ (P )1 = J � �(S)J (P )2 = J ���(S): (3)Both almost complex structures (3) will appear in the subsequent construction of therigid string instantons. The sphere bundle PM with given almost complex structureJ (P )1 or J (P )2 is sometimes called the twistor space [4] (see also [5]).Now let us recall that a (complex) curve y from a Riemann surface (�; �(�)) to amanifold (N;J) is said to be pseudo-holomorphic ifdy + J � dy � �(�) = 0 (4)where dy is the tangent map dy : T� ! TN . Sometimes, in order to indicate thealmost complex structure of the target space we shall call (4) J -holomorphic curvesuppressing reference to �(�) [9, 8]. In this paper we shall take �(�) to be complex5



structure given by (�(�)) ba = gac�cb=pg where g is the metric o n �. When we pullback the de�nition (4) on � we get@a ym + J mn @b yn � bapg = 0: (5)(a; b; c = 1; 2 m;n = 1; :::dimPM). For the conformal metric and complex coor-dinates on � (5) is �@ym � iJ mn �@yn = 0. Thus 12(1 � iJ) is the projector on theholomorphic part, while 12(1 + iJ) on anti-holomorphic part of (complexi�ed) TN .As it was established in the previous section any immersions de�nes a sphere bundle.Explicitly we de�ne PM as the bundle of normalized, self-dual tensors t��+ over M . The�ber of this bundle is homeomorphic to S2 (the normalization is t��+ t+�� = 4). TheGauss lift to this bundle will be denoted by ~X+.PM~X+% # �� X�! M (6)We see that this bundle is isomorphic to the bundle of almost complex structuresde�ned previously. This is the reason why we used the same notation in both cases.After establishing this simple fact we go to the instanton equation (2). We rewrite(2) and the equation which follows from de�nition of t+ in the conformal gauge for theinduced metric gab � @aX�@bX�G(M)�� / �ab.(+;�) = rt+ �� � it+ �� rt+ �� = 0�@X� � it+ �� �@X� = 0 (7)We have chosen complex coordinates on �, thus r is the anti-holomorphic part of thecovariant derivative.Next we show that Eqs.(7) give pseudo-holomorphic curves on PM with the twoalmost complex structures (3). Any Gauss lift de�nes t��+ and hence with the help ofthe metric G(M)�� we can write down an expression for the almost complex structureJ �� = t+ �� at X(z) 4. We emphasize that J depends on coordinates on the Grassmannbundle PM . This almost complex structure we decompose (the complexi�cation of) the4Strictly speaking it is an almost complex structure on X�TM but the di�erence will be unimpor-tant here 6



tangent space TX(z)M into holomorphic T (1;0)M and anti-holomorphic T (0;1)M part.5The former is de�ned as the space of vectors of the form T (1;0)M = f(1 � iJ)V ;V 2TMg while the latter are complex conjugate vectors. We also choose locally almosthermitian metric which provides the following identi�cation: T (0;1)M = T �(1;0)M andT �(0;1)M = T (1;0)M . Thus from tautology 12(1� iJ)12(1� iJ)12(1� iJ) = 12(1� iJ) weget 12(1 � iJ) 2 T (1;0)M 
 T �(1;0)M so J 2 T (1;1)M . >From JrJ = 0 we check that12(1� iJ)[(1� iJ)rJ ]12(1 + iJ) = (1� iJ)rJ i.e. (1 � iJ)rJ 2 T (1;0)M ^ T �(0;1)M �T (2;0)M . Similarly (1+ iJ)rJ 2 T (0;2)M . Any self-dual tensors decomposes into directsum T (2;0)�T (1;1)�T (0;2) in the almost complex structure de�ned by J . This can easilychecked in particular orthonormal basis of T (1;0)M � T (0;1)M , e.g. fe1; e2; �e1; �e2g. Inthis basis J = e1^�e1+e2^�e2 and the two other self-dual tensors are e1^e2; �e1^�e2. Wenote that rJ is also self-dual. Thus rJ 2 T (2;0)�T (0;2). As an immediate implicationwe infer that rJ span the tangent space to the space of almost complex structures atthe point J .Using the above we can built two almost complex structure on the �bers S2. Wede�ne �(S) to be such an almost complex structure that T (2;0)M are holomorphic vec-tors while T (0;2)M are anti-holomorphic vectors. The choice ��(S) would reverse holo-morphicity properties. Thus, (1 � iJ)rJ is holomorphic, while (1 + iJ)rJ is anti-holomorphic in the �(S) complex structure. One can easily �nd an explicit realizationof �(S) for M = R4. For J i0 � ni, ~n 2 S2 and the following coordinate system on S2~n = ( f �f � 11 + jf j2 ; �i f � �f1 + jf j2 ; f + �f1 + jf j2 ) (8)we get (1� iJ)�@J = 0 ) �@f = 0: (9)The above �(S) is just standard complex structure on S2. With the help of ��(S) wecan de�ne two almost complex structures (3) on the �ber bundle PM just as we did inthe beginning of this section.Now it is easy to see that rigid string instantons (7) are pseudo-holomorphic curves~X+ : � ! (PM ; J (P )1;2 ). Take J (P ) given by that of (3) and J; �(S) de�ned as above.5We shall suppress the index X(z) of the tangent space at this point.7



Hence if we split the map ~X+ into vertical and horizontal components of TPM thenapplying the notation of (3) we rewrite (4) as(1� iJ)dX = 0; (1� i�(S))(d ~X+)v = 0 (10)In the �rst equation we have identi�ed the horizontal component of the pseudo-holomorphic equation with its counterpart on M . In the second equation (d ~X+)vdenotes the vertical part of the map i.e. the space of T (2;0) � T (0;2) vectors. Thus,accordingly (1 � i�(S))(d ~X+)v = (1 � iJ)rJ . Recalling that J = t+, this implies that(10) is equivalent to (7). We conclude that for � = S2Pseudo-holomorphic curves (4) are solutions to the instanton equations (7).The above considerations were applied in [4] in the context of minimal and con-formal harmonic maps X : � ! M . In our present nomenclature these maps areJ (P )2 -holomorphic curves in PM . The almost complex structure J (P )2 is non-integrablewhat makes pseudo-holomorphic curves on the manifold (PM ; J (P )2 ) hard to explore.We shall not dwell upon the case any more referring the reader to the existing reviews[11, 12].On the other hand, the case of J (P )1 -instantons maybe relatively easy. The reasonis that in some cases the almost complex structure J (P )1 is integrable thus de�nes acomplex structure [14] on PM . There is a nice geometrical condition under whichthis happens. It states that M must be a half-conformally at manifold [14, 4]. Alot of classical 4-manifolds respect this condition. In this work we shall concentrateon M = R4; S4. The other examples are T 4; S1 � S3; CP 2; K3. Hence for thehalf-conformally at M there exists complex coordinates �i on PM and then (4) issimply �@�i = 0 (11)Thus J (P )1 -instantons are just holomorphic maps � ! PM . Another important factis that if J (P )1 is integrable then it depends only on the conformal class of the metricG(M) on M . This property gives J (P )1 -instantons on R4 if they are known on S4 becauseR4 is conformally equivalent to S4. The sphere bundle PM for the latter is CP 3 with8



unique complex structure being precisely J (P )1 . Following this facts we shall constructall J (P )1 -instantons for � = S2 explicitly in the next section.There is a remark necessary at this point. We have chosen to work in the conformalmetric gab = e��ab on � thus �xing the almost complex structure on � from the verybeginning. For higher genus surfaces Riemann surfaces � this is not possible globallyunless one allows for some singularities of the metric i.e. vanishing of the conformalfactor. In such a case solutions of the instanton equations will be so called branchedimmersions [4]. One may try to avoid this working with the most general complexstructure �(�). This causes problems with the de�nition of almost complex structureson PM . It is because, for the rigid string, �(�) is determined by the induced metric fromX, but not from ~X . The problem can be resolved if both metrics are the same whathappens for intersection of J (P )1 and J (P )2 families. It appears that if M = S4 then allminimal surfaces respect this condition [10].2.1 Moduli spaceWe de�ne the moduli space M of the problem (7) as the space of solutions moduloautomorphism group of solutions and reparameterizations of �. This moduli space isthe same as the moduli space of (4). One of interesting quantities is the dimension ofM. Unfortunately, �xing the metric on � to be conformal we have lost control (exceptthe case when � = S2) over the space of reparameterizations. Thus we �rst calculatethe dimension of the space ~M of solutions of (4) with �xed metric and then we shallargue how to correct formula in order to get dim(M).The (virtual) dimension of the moduli space dim ~M is expressed through an indexof an operator [15] The latter is a deformation of (4): ~X+ + � : � ! PM . After shortcalculations we get the deformation of (4):(1 � iJ (P ))r� � ir�J (P ) � (1 � iJ (P ))r� + O(�) = 0: (12)where O(�) denotes terms linear in � and not containing derivatives of �. The operatorin the square brackets is the elliptic (twisted) operator mapping ~X�+TPM ! �(0;1)�
~X�+TPM . Homotopic deformations of the O(�) part does not change its index [15, 8].Thus we can set it to zero and obtain the Dolbeault operator �@J = (1 � iJ (P ))�@.9



The index is given by general Atiyah-Singer theorem or by Hirzerbruch-Riemann-Rochtheorem. Index(�@J) = c1( ~X�+TPM) + 12 dimC(PM )c1(T�)= c1( ~X�+TPM) + 3(1� h): (13)Thus dimR( ~M) = 2c1( ~X�+TPM) + 6(1 � h). For g = 0 the moduli space M is ~Mdivided by the action of the group of automorphisms of S2 i.e. the M�obius group.Hence we obtain dimR(M) = 2c1( ~X�+TPM). For higher genus surfaces h > 0 if oneassumes that the metric on �h is elementary or induced from PM one would getdimR(M) = dimR( ~M)� 6(1 � h) = 2c1( ~X�+TPM): (14)The result agrees with [9] where M denotes the space of unparameterized pseudo-holomorphic curves � ! PM . It is interesting to notice that the formal expression ondimR(M) is independent on the almost complex structure on PM . Thus one can usethe same formula for both families of instantons [9, 6].It is known that for M = S4 the sphere bundle is CP 3. In this case we can easily �ndthe dimension ofM for maps from � = S2. If the map S2 ! CP 3 is given by the degreek polynomials in the variable z we get dimR(M) = 2c1( ~X�+CP 3) = 2kc1(CP 3) = 8k.3 Explicit formulae3.1 M = S4>From now on we shall discuss explicit solutions of the J (P )1 -instanton equations. Thereis vast literature for the minimal instanton case [4] and we are not going to review ithere.It is known that for S4 the appropriate twistor space is CP 3 which has only one com-plex structure. Complex projective space CP 3 is de�ned as projective subspace of C4i.e. CP 3 = C4= � where �means that we identify (Z1; Z2; Z3; Z4) and �(Z1; Z2; Z3; Z4)for all 0 6= � 2 C. We can cover CP 3 with four charts k = 1; :::4 for which Zk 6= 0respectively. In the k-th chart we introduce (inhomogeneous) coordinates: �i � Zi=Zk(i 6= k). Eq. (11) implies that �i are meromorphic functions of z on �. This yieldsinstantons on PM which next must be projected on S4. We do this with help of a very10



convenient representation of S4 as the quaternionic projective space [16]. We recallthat quaternions are de�ned as q = qm�m (m=0,..3), �m = (1; i; j; k) � (1; i~�)6 Thespace of quaternions is denoted by H and is isomorphic to C2. The isomorphism issuch that (Z1; Z2; Z3; Z4) $ (Z1+jZ2; Z3+jZ4) 2 H2. Multiplication and conjugationof quaternions follows from the above matrix representation. Now we haveS4 = HP 1 � H2= � (15)In the above � means that we identify (q1; q2) and (q1q; q2q) for all 0 6= q 2 H i.e. S4is quaternionic projective space (line). Quaternionic representation of S4 is so usefulbecause CP 3 is complex projective space in the same C4. Heaving a curve in CP 3we can represent it in H2 = C4 and then de�ne two maps H2 ! R4 which coverS4: (q1; q2) ! (q1;X+q1) for jq1j 6= 0, and (q1; q2) ! (X�q2; q2) for jq2j 6= 0. Themaps are stereographic projections of S4 from the north and south poles with thetransition function X� = 1=X+. The norm is jXj2 = (XyX) = XXy (the expression isproportional to the unit matrix). Explicitly we haveX+ = (Z3 + jZ4)(Z1 + jZ2)�1 = ( �Z1Z3 + Z2 �Z4) + j( �Z1Z4 � Z2 �Z3)jZ1j2 + jZ2j2 (16)Rotations SO(4) = SUL(2) � SUR(2)=Z2 act as X 0+ = (�L + j�L)X+(�R + j�R). Wesee that the action of both SU(2) groups (here unit quaternions) is equivalent.After these general remarks we go to the detailed description of the J (P )1 -instantonswith topology of sphere S2. Let us �rst reproduce the only compact J (P )1 -instantonfound in [3]. We take Zi = ai(z + bi) (i=1,...4) i.e. a complex line in C4. For genericchoice of fa1; a2; b1; b2g the quaternion q1 is not singular q1 = Z1 + jZ2 6= 0. By theconformal transformation (M�obius group), z ! �z+�z+� (�; �; ; � 2 C; ��� � = 1), wecan �x position of 3 point. Thus we choose b1 = 1; b2 = 0; a1 = a2. Going from C4 toCP 3 �xes a1 = a2 = 1 so (Z1 + jZ2) = (1 + jz). Then we getX+ = (Z3 + jZ4)(1 � �zj)1 + jzj2 = X0 + (Az + B) + j(� �B + �A)1 + jzj2 (17)6According to the standard notation, i on the l.h.s. of this de�nition denotes matrix, while on ther.h.s. it is the imaginary unit. This remark is applicable whenever we use quaternions.11



for some constants X0 2 H; A;B 2 C. Moding out by the rotation group leaves onlythe scale � and the position X0 as moduli . HenceX �X0 = �1 + jzj2 (z + j); � 2 R (18)what is exactly the result obtained in [3]. (18) represents sphere of radius �=2. Theabove shows that (18) is the most general J (P )1 -instanton with � = 2; I = 0.We can easily generalize this to other topological sectors. In order to get J (P )1 -instantons of the k-th sector the functions Zi which de�nes �i must be polynomials ofdegree k Zi = ai kYj=1(z � aij) i = 1; :::4 (19)Thus �i's are rational functions with poles at points where coordinates are ill de�ned.We can calculate dimension of the moduli spaceM directly from (16,19). The are 8k+6parameters involved in (16). Moding out by the M�obius group subtract 6 parametersyielding dim(M) = 8k. We can also divide by the rotation group dropping additional3 dimensions of the moduli space. The instanton sectors are characterized by the self-intersection number of the immersed surface in S4: I = k � 1. We shall obtain thisresult by simple means in the next subsection. The dimension of the moduli spaceis quite remarkable result, because it is exactly the dimension of the moduli space ofSU(2) instantons [16]. Moreover we for k = 1 topology of both spaces is exactly thesame. Topology of M for higher k remains to be investigated.3.2 M = R4It appeared that the rigid string instanton equations, which seemed so complicated [3],can be trivially solved in R4. Using the parameterization of (8) we can rewrite thesecond of Eqs.(7) as: �@ �X1+ + f �@X2+ = 0�f �@X1+ + �@ �X2+ = 0 (20)12



where X1+ = X0 + iX1; X2+ = X2 + iX3. This is enormous and unexpected simpli�ca-tion of the (1� it+)�@X = 0 equation. The �rst line of Eqs.(7) is�@f = 0 for J (P )1 -instantons (21)�@ �f = 0 for minimal instantons (22)Both system of equations are very simple and can be directly integrated. J (P )1 -instantons are identical with (17). ExplicitlyX1+ = �w1(�z)� �f(�z)w2(z)1 + jf j2 ; X2+ = �w2(�z) + �f (�z)w1(z)1 + jf j2 (23)Comparing with (16) we see that f = Z2=Z1. Because I+ is minus degree of the map:f : � ! S2 we get I+ = k. From the relation: I+ = I + �=2 follows that I = k � 1,what is the result quoted in the previous subsection.We want to stress that results on M = R4 and M = S4 are almost identical becauseS4 is conformally equivalent to R4 and the integrable J1 almost complex structure isconformally invariant [14]. We also notice non-triviality of the complex structure givenby f = f(z): holomorphic functions are �X1+ + f X2+ and �f X1+ + �X2+.Minimal instantons can also be integrated and as one could expect they give solu-tions of the equation �X� = 0. Contrary to the previous case they do not correspondto minimal surfaces on S4. We shall not dwell upon this subject referring to the richexisting literature [4, 10, 12].
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4 Speculations and �nal remarksIn this section we allude on some possible applications of the presented results to topol-ogy of 4-manifolds and indicate similarities with several proposals for string picture ofgauge �elds. We also shortly discuss the case of 3d target manifold.4.1 Topology of 4-manifoldsStarting from works of Gromov [9] and Witten [13] pseudo-holomorphic curves wereused to de�ne certain topological invariants, so called Gromov-Witten invariants [8] ofsymplectic manifolds (here denoted by N). The invariants can be de�ned geometri-cally in descriptive way as follows: take a set of homology cycles �i 2 Hdi(N;Z) andcount (with an appropriate sign) those pseudo-holomorphic curves representing 2-cycleA 2 H2(N;Z) which intersect all classes �i at some points. There is also \physicist"de�nition of the invariants through a correlation function in a topological �eld the-ory [13]. In this case the invariants can be formally de�ned on any almost complexmanifold.All of twistor spaces are almost complex and some of them are K�ahler (forM = S4; CP 2) so also symplectic. Thus following these de�nitions one could de-�ne appropriate invariants for the twistor spaces of 4-manifolds M considered in thiswork. The hypothesis is: the Gromov-Witten invariants of the twistor space PM de�nesome invariants of the 4-manifold M . These new invariants are well de�ned on Mif they are well de�ned on PM . Moreover we can de�ne two sets of invariants (if werequire that PM must be almost complex only) due to two natural almost complexstructures J (P )1;2 on PM .The real problem is what kind of topological information do they carry? Intersectionof cycles in the twistor space (say at p 2 PM) corresponds to the situation whenprojection of the cycles to M have common tangents at common point �(p) 2M . Thisproperty is invariant only under di�eomorphisms of M (class C1(M)) but not underhomeomorphisms of M !. It may be that the invariants carry some information aboutsmooth structures of M , so would be similar in nature to Donaldson or Seiber-Witteninvariants. The basic di�erence is that they are de�ned in purely geometrical wayavoiding any reference to gauge �elds. Moreover the invariants seems to be well de�ned14



on manifolds for which there are no other invariants. This includes very interestingcases M = R4; S4 discussed in this paper. Both cases are, of course, di�erent becausethere are no compact J (P )2 -instantons on R4. Contrary, the J (P )1 -invariants should bethe same due to one-to-one correspondence between spaces of instantons in both cases.This subject, if relevant, seems to be very exciting.4.2 Relation to gauge �eldsGoing back to physics we want to discuss striking relations of rigid string with gauge�elds. Of course both theories uses twistors in construction of instantons. Leaving thisaside we go to more quantitative comparisons. First of all, two-dimensional pseudo-holomorphic curves were used to build the string picture of YM2 [6]. Rigid stringinstantons provides natural generalization of these curves to 4-dimensions. One canperform a naive dimensional reduction of 4d instantons to 2-dimensions by suppressingtwo coordinates (say X2; X3). This results in taking jt01j = 1 (there is no distinctionbetween t� and t+). Thus we get two families of pseudo-holomorphic curves� baqdet(g) @bX� � iJ �� @aX� = 0 (24)where now J �� = G�� ���pdet(G) and G is the metric on M2. These are the maps of [6](here gab is the elementary metric). On this basis one can state a bold hypothesis thatYM4 is localized on the rigid string instantons7. All these similarities suggest that rigidstring instantons will play a signi�cant role in string description of YM �elds. Someother ideas along this line were posed in [18].We also notice strange coincidence of the dimensions of the moduli space of genuszero rigid string instantons on R4 and S4 and the moduli space of SU(2) Yang-Millsinstantons (with the appropriate identi�cation of topological numbers). For k = 1 bothmoduli spaces are identical. We do not know what happens for other k.4.3 3d manifoldsFinally we comment on 3d target manifolds. In this case the tensor t�� has 3 compo-nents. Classi�cation of immersions of surfaces in R3 is more complicated then for the7This is a natural generalization of [17]. 15
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