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2 3. Twisted characters and modular transformations3A. Kac-Moody and lattice characters3B. Modular transformations of twisted characters3C. Small � asymptotics of twisted characters of A(G).4. A�ne orbifolds4A. Projection on a centralizer's irreducible representation4B. Asymptotic dimension. A�ne orbifold models for non-excep-tional �. Action of Z4C. Fusion rules.5. U(`) orbifolds as RCFT extensions of W1+16. Examples.6A. Lattice current algebras for c = 16B. SU(2) orbifolds6C. Modular S-matrix and fusion rules for an SU(3) orbifold.Appendix A Action of the center of a simply connected simple Lie groupon the coroots and fundamental weightsAppendix B Exceptional elements of a compact Lie groupReferences 0. IntroductionGiven a chiral conformal �eld theory (CFT) | i.e., a chiral algebra A anda family of positive energy A-modules (closed under \fusion") | there are twoways of constructing other CFT with the same stress-energy tensor T (z) andassociated central charge c. First, one can, in some cases, extend A by adjoiningto it local primary �elds. The stress energy tensor generates an RCFT for theminimal models [BPZ] corresponding to central charge c < 1. For c � 1 oneneeds in addition a chiral current algebra or a W -algebra to construct an RCFT(for special rational values of c). All RCFT extensions of the (c = 1)u(1)-current algebra have been classi�ed in [BMT]; all local extensions of the su(2)current algebras have been described in [MST]. The second path goes in theopposite direction: one restricts A to a distinguished subalgebra of \observables"including T (z); we shall be concerned here with the case in which the subalgebraA� consists of all elements of A invariant under a �nite automorphism group�. The resulting CFT is called a �-orbifold. Examples of orbifolds (�rst in thecontext of a \Gaussianmodel" [G] [H]) have been studied in detail in [DV3] wheresome general properties of arbitrary orbifold models have also been pointed out.Non unitary models of c = 1 have been considered in [F].The present paper provides a systematic approach to orbifold RCFT. Ourstarting point is a chiral algebra A = A(G) associated with a connected compactLie group G whose Lie algebra g is equipped with a negative de�nite integralinvariant bilinear form. It appears as a tensor product of a lattice chiral alge-bra A(L) and (chiral) a�ne Kac-Moody algebras (corresponding to the simplecomponents gj of g):(0.1) A(G) = A(L) 
 (
sj=1Akj (gj))



3where kj(2 Z+) is the level of the vacuum ĝj- module. The lattice L consistsof all vectors ! in the direct sum g0 of u(1)-components of the centre of g suchthat e2�i! = 1. To each ! of length square 2 we can associate a \charge shift"operator E! providing a non-abelian extension of the Lie algebra g0. Let Gcbe the corresponding maximal compact group extension of G. Its signi�cancestems from the fact that each �nite order inner automorphism of A(G) is givenby (the adjoint action of) an element of Gc.An orbifold chiral algebra is the �xed point set A� of a �nite group of auto-morphisms � of a chiral algebra A. For any \non-exceptional" �nite subgroup� � Gc we construct a �nite family of A�-modules V , which is complete in thesense that their characters transform among themselves under the modular groupSL(2;Z). Each V is labeled by a weight � (characterizing an A(G)-module), aconjugacy class �b � �, and an irreducible representation � = �b of the central-izer �b of an element b 2 �b in �. It involves a choice of \phases" �(b) 2 g, fornon-exceptional conjugacy classes, satisfying the following two conditions:(0.2) (i) b = e2�i�(b) ; (ii) �(gbg�1) = Adg�(b) for b 2 �b; g 2 � :Condition (ii) implies that the centralizer of b should stabilize �. Two �'s sat-isfying (0.2) di�er by a co root m which is also stabilized by �b. Any such mgives rise to a 1-dimensional representation �m of �b. The change � ! � +mcan be compensated by a change in the representation �:(0.3) V �+m�;�b;� = V ��;�b;�
��m :Thus the family of A�-modules is independent of the choice of � (allowing us toskip the superscript � on V ).Knowing the character �� of an A(G)-module V� [K1] we are able to calcu-late the A�- characters ��;�b;� of V�;�b;�. Similarly, the modular transformationproperties of �� [KP2] determine those of ��;�b;� and hence the orbifold fusionrules. We point out that the group factors of fusion coe�cients N�b1�1;�b2�2;�b3�3(�i 2 �̂bi) of an a�ne orbifold di�er from those of the associated Grothendieckring (see [Lus] as well as the discussion in Sect. 4 of [DV3]) due to multipliers�(hj��i) which de�ne (for b1b2b3 = 1) 1-dimensional representations of the in-tersection �b1 \�b2(3 h). This di�erence shows up already for (�nite) subgroupsof SU(2). For higher rank G it may yield a change of charge conjugation, as dis-played in the examples of a 1080 element subgroup of SU(3) which admits aconjugacy class of involutive elements with a non-abelian centralizer.We compute (in Sect. 4A) the asymptotic dimensions of orbifold characterssingling out, in particular, the non-trivial orbifold modules.If G is a simple simply-connected Lie group then the non-trivial elements of(0.4) Z = Z(G) \ � ;where Z(G) is the center of G, are exceptional | they cannot be written in theform (0.2) (with � satisfying (ii)). Each element of Z (di�erent from the group



4unit) is associated with a fundamental weight �j satisfying (�j j�) = 1 where� is the highest root. We associate with it (in Sect. 4) a permutation of theorbifold modules which maps, in particular, the (a�ne) vacuum weight ~�0 into~�j and thus cannot be viewed as an automorphism (\gauge transformation") ofthe (vacuum) chiral algebra. Knowing the action of e2�i�j on fV��b�g we canextend our treatment to all exceptional elements of a � � SU(n). The treatmentof Ad-exceptional elements (described in Appendix A), which are encounteredin other simple Lie groups, remains however, outside the scope of the presentpaper.Note an essential di�erence between coset models and orbifold models. Forthe construction of a modular invariant family of characters of coset modules itsu�ces to take characters of isotypic components of all (untwisted) modules ofthe chiral current algebra with respect to its chiral current subalgebra [KP0],[KP2], [KW], [K1]. In a sharp contrast, for an orbifold model one has to takein addition decompositions into isotypic components of twisted chiral currentalgebra modules which become untwisted when restricted to the orbifold chiralsubalgebra.As an application we construct a family of RCFT extensions of W1+1 -onefor each value l(2 N) of the central charge and for each �nite subgroup � of U(l).It is designed to provide a bridge between two current attempts to understandthe fractional quantum Hall e�ect in terms of chiral conformal algebras (see [FT]and [CTZ]).1. Chiral algebras associated with connected compact Lie groupsWe shall �rst recall the general notion of a chiral algebra and will then intro-duce a class of such algebras which appear to be of paramount importance inthe study of RCFT.1A. De�nition of a chiral algebra. Current algebras.The mathematical concept of a vertex or chiral algebra was introduced by R.Borcherds [Bor] and later developed by a number of authors (see, e.g. [FLM],[Go], [DGM], [FZ], [LZ], [FKRW], [KR2]). The version adopted here is a spe-cialization of [K2] to Z-graded algebras (restricting from the outset attention to�elds of a given conformal dimension).Let V be a Z+-graded inner product space with a unique vacuum state,(1.1) V = �1n=0V (n) ; dimV (0) = 1; dimV (n) <1 ;the gradation de�nes (and can be, conversely, de�ned by) a distinguished her-mitian operator L0 called the (chiral) energy operator such that(1.2) (L0 � n)V (n) = 0 :The unique (up to a phase factor) vector j0i 2 V (0) normalized by h0j0i = 1 iscalled the vacuum. A chiral �eld Y (s) of dimension s is a power series(1.3) Y (s)(z) =Xn2Z Ynz�n�s ; s 2Z+



5with Yn(= Y (s)n ) 2 EndV satisfying the commutation relations (CR)(1.4) [Yn; L0] = nYn , [L0; Y (s)(z)] = �z ddz + s�Y (s)(z) ;(1.5) Ynjvmi = 0 for vm 2 V (m) ; n > m :Equation (1.5) expresses the postulate that the vacuum is the lowest energy statein V . In physical terms V is the vacuum space of �nite energy states.A chiral (vertex) algebra structure on V is a linear map, called the state-�eldcorrespondence, from V (s) to the space of �elds of dimension s: V (s) 3 vs !Y (vs; z) = Pn Yn(vs)z�n�s, de�ned for all s 2 Z+ and satisfying the followingthree axioms:V1. Vacuum axioms: the vacuum vector corresponds to the identity operatorin V(1.6) Y (j0i; z) = 1V ;the �eld Y (vs; z) allows to recuperate the vector vs:(1.7)limz!0Y (vs; z)j0i = vs ; i.e.Y�s(vs)j0i = vs and Yn�s(vs)j0i = 0 for n > 0 :V2. The translation operator L�1 : V ! V de�ned by L�1vs = Y�s�1(vs)j0isatis�es the translation covariance condition:(1.8) [L�1; Y (vs; z)] = ddzY (vs; z) :V3. The chiral �elds are local:(1.9) (z � w)n[Y (vs; z); Y (vs0 ; w)] = 0 for n � s+ s0 :Note that the inner product is not logically necessary in this generality. It is,however, present in all CFT (being inde�nite for non-unitary theories) and givesrise to a distinguished (anti-involutive) star operation ([DGM]).We shall be concerned with (orbifolds of) chiral current algebras describedbelow. Let G be a compact Lie group of the form G = G0�G1�� � ��Gs whereG0 = U(1)r , and Gj ; j = 1; : : : ; s, are simple simply-connected groups. (Everycompact Lie group can be viewed as a product of the above form factored by a�nite central subgroup). Let gj denote the Lie algebra of Gj(j = 0; : : : ; s) andlet L = f! 2 g0j exp 2�i! = 1g. We assume that g is equipped with a symmetricintegral negative de�nite invariant bilinear form. A bilinear form on g is calledintegral if the length square of any a 2 igj (j = 1; : : : ; s) such that exp 2�i! = 1(resp. of any ! 2 L) is an even integer (respectively an integer). When restrictedto a simple gj , the integrality property means that the bilinear form is equal tokj(vjv0), where kj 2 N will be identi�ed with the level of the a�ne Kac-Moodyalgebra ĝj and (vjv0) = 12g_j trgj (advadv0)(g_j is the dual Coxeter number of gj ; recall that with such a normalization(�j�) = 2 for long roots �).In what follows we let also k0 = 1.



6Remark 1.1. Admitting lattice vectors � with odd square lengths requires, asit will become clear shortly, extending the Z+ gradation of the vacuum space(1.1) to a 12Z+ gradation. In physical terms it amounts to admitting locallyanti-commuting (Fermi) �elds of half-integer conformal dimensions in the chiralalgebra. Such �elds do not describe local observables (in the strict sense of theword) and could alternatively be incorporated in the positive energy represen-tations of a chiral Bose algebra corresponding to an even integral lattice. A wayto get rid of Fermi �elds is to go to a double cover of the group G, which makesthe lattice L even.Given the above data one can construct a chiral algebra(1.10) A(G) = A(L) 
 (
sj=1Akj (gj )) ;called an a�ne (or current) chiral algebra as follows.For each gj(j = 0; 1; : : : ; s) consider its a�nization [K1]:ĝj = C [t; t�1 ]
R gj + CKj :It is a Z-graded algebra, the energy operator L0 acting on it as �t ddt .Let V0(gj ; kj) denote the unique irreducible ĝj-module which admits a non-zero vector j0i such that (C [t]
 gj )j0i = 0 and Kj j0i = kj j0i. Given an elementv 2 gj and n 2 Zwe let vn denote the operator on V0(gj ; kj) corresponding totn 
 v. Let v(z) = �n2Zvnz�n�1 be the current corresponding to v.Then the chiral algebra structure Akj (gj) on the vacuum space V0(gj ; kj) isde�ned for each j = 1; : : : ; s by the following state-�eld correspondence:Y (v1�i1�1 : : : vn�in�1j0ij ; z) =: @i1v1(z) : : : @invn(z) : =i1! : : : in!(with appropriately de�ned normal products, [K2]).The vacuum space V is given by(1.11) V = V (L)

sj=1V0(gj ; kj) :In the next section we describe the �rst factor in (1.11) and the correspondingchiral algebra structure A(L) (cf. [K2], Sect. 5.4).1B. Lattice vertex algebras.Let C " [L] be the twisted group algebra of the lattice L with basis e!(! 2 L)and multiplication rules(1.12) e!e!0 = "(!;!0)e!+!0 ; !; !0 2 L ;where "(!1; !2) is a �1-valued cocycle:"(!; 0) = "(0; !) = 1 ;(1.13a) "(!;!0)"(! + !0; !00) = "(!;!0 + !00)"(!0; !00) :(1.13b)



7(Equation (1.13a) means that e0 = 1 and equation (1.13b) is equivalent toassociativity.)Let S = V0(g0; 1). This is the symmetric algebra over the positive energysubspace(1.14) ĝ0(+) = �n<0C tng0 :(Here and below we omit the tensor product sign between tn and g). The spaceV (L) is then de�ned as the tensor product(1.15) V (L) = S 
 C " [L] :It is an in�nite direct sum (over the lattice) of irreducible positive energy ĝ0modules with k0 = 1:(1.16) V (L) = �!2LS 
 e! :The corresponding ground state vectors are 1 
 e!; in particular, the V (L)vacuum is j0i = 1
 1. The chiral subalgebra A(S 
 1) is generated by currents.The ground state vector j!i � 1
 e! of each term in (1.16) is characterized bybeing an eigenvector of ĝ0(�) = �n�0C tng0:(1.17) (v0 � (vj!))j!i = 0 = vnj!i; n = 1; 2; : : :To display the full chiral algebra A(L) it remains to recall the Frenkel-Kac con-struction for the charged �elds [FK]:(1.18) Y (e!; z) = e!e'+(z;!)z!0e'�(z;!)where(1.19) '�(z; !) = � 1Xn=1!�n z�nn :Y (e!; z) is a primary �eld with respect to the current subalgebra A(S 
 1):(1.20) [v(z); Y (e!; w)] = (vj!)�(z � w)Y (e!; w) :Let p(!) 2 Z=2Zdenote the parity of (!j!); ! 2 L. The �elds Y (e! ; z) andY (e!0 ; z) are local if and only if(1.21) "(!;!0) = (�1)p(!)p(!0)+(!j!0)"(!0; !) :The state-�eld correspondence for the chiral algebra A(L) is de�ned by(1.22) Y (v1�i1�1 : : : vn�in�1 
 e!; z) =: @i1v1(z) : : : @invn(z)Y (e!; z) : =i1!:::in! :



8 Note that a 2-cocycle "(!;!0) satisfying (1.21) always exists and the chiralalgebra A(L) is independent of the choice of this cocycle.The conformal properties of Y (e!; z) are given by(1.23)[T (z); Y (e!; w)] = �(z�w) @@wY (e!; w)+ j!j22 Y (e! ; w) @@w�(z�w); j!j2 � (!j!) :Here T is the stress energy tensor(1.24) T (z) =Xn Lnz�n�2 ([vm; Ln] = mvm+n)expressed in terms of an orthonormal basis vi(z) of u(1) currents, (vijvj) = �ij ,by the Sugawara formula(1.25) T (z) = 12 rXi=1 : (vi(z))2 : ;where the normal product can be thought as a limitlimz1;2!z�vi(z1)vi(z2)� 1z212�(see comment following Eq. (1.36) below). The fusion rules for the A(L) vertexoperators have the form(1.26) limz!wf(z � w)�(!j!0)Y (e!; z)Y (e!0 ; w)g = "(!;!0)Y (e!+!0 ; w) ;the operator product expansion for oppositely charged �elds can be written inmore detail as(1.27) zj!j212 Y (e! ; z1)Y (e�!; z2) =: exp�Z z1z2 !(z)dz� : ; z12 = z1 � z2 :(The normal ordered exponential is de�ned in such a way that the nth term ofits Taylor expansion is an integral over a single quasiprimary �eld of dimensionn | cf. [FST]).1C. Current chiral algebras associated to simple Lie algebras.The CR between two currents Y (t�1vi; zi), i = 1; 2, for two arbitrary elementsv1 and v2 of ĝ are given by(1.28) �Y (t�1v1; z1); Y (t�1v2; z2)�Y �t�1[v1; v2]; z2� �(z12)� (v1jv2)�0(z12) :Here and further z12 = z1 � z2. We shall write down for later reference theserelations for the Chevalley-Cartan basis of a simple component gj of g. We shallset(1.29) (v1jv2)k = kj(v1jv2) for v1; v2 2 gj :



9Restricting attention to a simple component we skip the index j on g. We choosea Cartan subalgebra h in g and a basis �i; i = 1; : : : ; l, of simple roots in its dualthus introducing a standard partial order in h�, which from now on we shallidentify with h using the bilinear form (:j:).To each positive root � > 0 we associate a certain current representing thecorresponding coroot �_:(1.30) H�(z) =Xn H�n z�n�1;H�0 = �_ := 2�j�j2 ; j�j2 = (�j�) :We shall use the positive integer marks ai (and a_i ) of the Dynkin diagram of gwhich enter the expression for the highest root(1.31) � = lXi=1 ai�i = lXi=1 a_i �_i = �_(see [K1], Chap. 4, Tables). Their ratio relates the Cartan matrix aij of g to thesymmetric Gram matrix of the coroots,(�_i j�_j ) = aij aia_j (aij = ��_i j�j)�while the sum of check marks of the extended Dynkin diagram gives the dualCoxeter number(1.32) g_ = 1 + a_1 + � � �+ a_l �tr (adv1adv2) = 2g_(v1jv2)� :The set of indices (j 2)J for which the exponentials e2�i�j of the correspond-ing fundamental weights �j generate the center Z(G) of the simply connectedgroup G with the Lie algebra g is given by(1.33) J = fj = 1; : : : ; lj aj = 1g :Let E� be a raising or a lowering operator, depending on the sign of �. Thenthe current CR (1.28) assume the form:[H�(z1); E�(z2)] = (�_j�)E�(z2)�(z12) (�; � roots) ;(1.34) [H�(z1);H�(z2)] = k(�_j�_)�0(z12);[E�i(z1); E��j (z2)] = 0 for i 6= j;[E�(z1); E��(z2)] = H�(z2)�(z12) � 2kj�j2 �0(z12) :The a�ne chiral algebra Ak(g) contains the Sugawara stress energy tensor(see e.g. [K2] Sect. 5.7.):T (z) = 12h (X�>0 (�j�)2 : (E�(z)E��(z) +E��(z)E�(z)) :+ lXi=1 : Hi(z)Hi(z) :) ; h = k + g_ :(1.35)



10 Here Hi and Hi correspond to dual bases in the Cartan subalgebra:(1.36) Hi = �_i ; Hi = �i ; (�_i j�j) = �ij :The normal product :: can be de�ned by either subtracting the singular in z12part of an ordinary product Ja(z1)Ja(z2) or by ordering the frequency parts ofthe currents (inequivalent de�nitions of the normal product used in [FST] and[K2] yield the same expression for the stress energy tensor). Equations (1.34)(1.35) imply the Virasoro CR(1.37)[T (z1); T (z2)] = �(z12)@2T (z2) + 2T (z2)@2�(z12) + c12@32�(z12)�@2 � @@z2�where the Virasoro central charge exceeds the rank l of g. Denoting by d(g) thedimension of g, we have(1.38) c = ck(g) = khd(g) � l :The positive integer h entering (1.35) and (1.38) (the sum of the level and thedual Coxeter number) is called the height. The last inequality in (1.38) followsfrom the fact, that T can be split into a sum of two commuting terms, the stresstensor TH of the Cartan subalgebra and a remainder TR:(1.39) T = TH + TR ; TH(z) = 12k lXi=1 : Hi(z)Hi(z) :We �nd, as a consequence of (1.34), (1.35) and (1.36)(1.40a) [TH(z1);Hi(z2)] = @2(�(z12)Hi(z2)) = [T (z1);Hi(z2)]and hence(1.40b) [TR(z1);Hi(z2)] = 0 = [TR(z1); TH(z2)]For a level k > 1 simply laced (A-D-E) simple Lie algebra the RCFT with stressenergy tensor TR correspond to (generalized) G/H parafermions | see [KP0]and [Gep]. For a simply laced level 1 ĝ we have c1(ĝ) = l and hence TR = 0.Note that the lattice chiral algebra A(L) could also contain a level 1 simplylaced current subalgebra. In fact, each even (integral) lattice Lr has a sublatticeWr�� � L� � Lr of the same dimension r. Here Wr�� is the root lattice of adirect sum of A-D-E (simple) Lie algebras, generated by vectors of length square2, and L� is its orthogonal complement (with no vector of length square 2), sothat L=(Wr�� � L�) is a �nite abelien group, the glue group.The stress energy tensor T (z) of the chiral algebra A(G) is de�ned as the sumof the stress energy tensors of the factors of A(G).



112. Twisted modules of a current chiral algebra2A. Positive energy irreducible A(G)-modules.Let A(G) = A(L) 
 (
sj=1)Akj (gj) be a current chiral algebra. Its positiveenergy irreducible modules are tensor products of such modules for each factor.Let L� = f� 2 g0j(�j!) 2 Zfor all ! 2 Lg be the dual lattice. It is easyto see that the positive energy irreducible modules over A(L) are labeled bythe elements of the �nite abelian group L�=L as follows. Extend the cocycle"(!1; !2) to L� in such a way that (1.13) holds for !;!0 2 L an !00 2 L�. Wechoose a vector � of a coset of L� mod L, and let(2.1) V�(L) = X!2�+LS 
 e! :Then Eqs. (1.18), (1.19) and (1.22) de�ne an irreducible positive energy moduleover A(L).As a consequence of the Sugawara formula (1.25), the ground state energy�(�) of the module V�(L) is given by(2.2) �(�) = (�j�)2 ; if � is a minimal length vector in �+ L :Let g be the Lie algebra of a simple connected compact Lie group and let k bea non-negative integer. Then the integrable positive energy irreducible modulesover ĝ of level k are labeled by the highest weight � of g in the lowest energysubspace (which is a �nite-dimensional irreducible g-module). We denote thesemodules by V�(g; k). Recall that � then satis�es the integrability condition([K1], Chap. 12):(2.3) (�j�_i ) 2Z+ for i = 1; : : : ; l ; (�j�) � k :Each of the ĝ-modules V�(g; k) extends to a Ak(g)-module and all positiveenergy irreducible Ak(g)-modules are obtained in this way [FZ].As a consequence of Eq. (1.35), the ground state energy (= conformal dimen-sion) �(�) of the module V�(g; k) is given by:(2.4) �(�) = (� + 2�j�)2h ; where h = k + g_; 2� = X�>0� :2B. ZN-twisted current chiral algebra modules.Let G0 be the connected compact Lie group whose maximal torus is U(1)r =Rr=L, i.e. L is the coroot lattice of G0. (G0 contains the torus U(1)r but can,in general, be larger due to the presence of !'s in L of length square 2; thesemi-simple part of G0 is a product of simply laced compact simple Lie groups).Let(2.5) Gc = G0 �G1 � � � � �Gs ;



12the corresponding decomposition of Lie algebras being(2.6) g = g0 � g1 � � � � � gs :Let Zj � Gj denote the center of Gj ; j = 1; : : : ; s, and let Z0 = L�=L (Z0is central subgroup of G0). The following �nite subgroup of Gc will play animportant role in the sequel:(2.7) Z(Gc) = Z0 � Z1 � � � � � Zs :Recall (see (1.33)) that the center of a simple connected simply connected com-pact Lie group consists of 1 and the elements(2.8) exp 2�i�j ; where j 2 J :Recall that if Y (v1; z) =Pn2Z Yn(v1)z�n�1 is a �eld of conformal dimension1 of a chiral algebra, then Y0(v1) is a derivation of A and expY0(v1) converge inany positive energy A-module (see e.g. [K2], Sect. 4.9.). Since such derivations ofthe chiral algebra A(G) form the Lie algebra gC (the complexi�cation of g), thegroup Gc acts on A(G) by automorphisms, and moreover, acts on each positiveenergy A(G)-module U in a consistent way (i.e. g(au) = g(a)g(u) for g 2 Gc,a 2 A(G), u 2 U) preserving the Hilbert metric.It follows from the usual properties of the Casimir operator that the stressenergy tensor T (z) is a Gc-invariant observable:(2.9) T (z) 2 A(G)Gc :Now we recall brie
y the notion of a twisted module U over a chiral algebra A.Let b be an automorphism of order N of A; then we get a Z=NZ-gradingA = �m2Z=NZAm ;where Am is the exp 2�im=N eigenspace of b. A b-twisted A-module U is a linearmap a 7! �(a) from A to the space of �elds with values in End U such that thetwisted Borcherds identity holds (see e.g. [KR2]), in particular all the CR arepreserved and(2.10) e2�iL0�(a)e�2�iL0 = (�1)p(a)e 2�imN �(a) for a 2 Am :If A = A0, we get a usual (untwisted) A-module.Returning to A(G), �x � 2 ig such that the corresponding element b =exp 2�i� 2 Gc has �nite orderN and choose a Cartan subalgebra of g containingi�.Given a positive energy representation � of A(G) in a vector space U , weconstruct a b-twisted representation �� in U as follows. First, due to the de-composition (1.10) of A(G) and the corresponding decomposition U = 
sj=0U j ,



13it su�ces to construct the bj -twisted representation ��j in U j for each j, where� =Pj �j is the decomposition (2.6) and bj = exp 2�i�j .Next, for a positive energy representation � of A(g) we let(2.11) ��(E�(z)) = �(E�(z))z�(�j�) =Xn2Z E�n+(�j�)z�n�(�j�)�1 ;and extend to the whole A(g) using the twisted Borcherds identity.In order to preserve CR we should have(2.12) ��(H�(z)) = �(H�(z)) � k(�_j�)z :Similarly, for a positive energy representation � of A(L) we let(2.13) ��(Y (e!; z)) = �(Y (e!; z))z�(!j�) ;(2.14) ��(!(z)) = �(!(z)) � (!j�)z ;and extend to A(L) using the twisted Borcherds identity.The constructed b-twisted A(G)-module will be denoted by U (�).Going to the stress tensor, which is a sum of a torus part, TL (1.25), and acontribution of type (1.35), (1.39) for each simple factor in G, we shall see thatonly the Cartan part(2.15) Th = TL + TH ; TL = 12 rXi=1 : vi(z)z : ; TH = 12k lXj=1 : HjHj : (z)changes following (2.12), (2.14) while the remainder TR in (1.39) is left un-changed.Proposition 2.1. If we set(2.16a) ~Th = Th � 12�(z) + 12z2 (�j�)k ; ~TR = TRimplying for the Laurent modes of ~T(2.16b) ~Ln = Ln � �n + 12(�j�)�n0 ;where (�j�)k = kj�j2 for each simple component of (2.6), then ~T and ~J satisfythe same CR as T and J (J standing for any of the g-currents, H�; E�; vi) e.g.(2.17) h~Ln; ~J(z)i = ddz �zn+1 ~J(z)� :Proof. It is straightforward to verify that the commutator of ~Ln with ~E� ���(E�) (2.11) reproduces (2.17). One further uses the fact that �� de�nes a Liealgebra homomorphism on the currents, preserving their CR. The constant termin ~L0 is obtained by computing [~L1; ~L�1]. �



14 3. Twisted characters and modular transformationsThe complete character of a positive energy A(G)-module V is de�ned on theproduct of the upper half plane � and the group G as follows:(3.1a) �V (�; z; u) = e2�i(k;u)trV �qL0� ck24 e2�iz� :Here(3.1b) q = e2�i� (jqj < 1); z 2 ig; (k; u) = u0 + sXj=1 kjuj ;uj are auxiliary (complex) parameters, L0 is the chiral energy operator (1.2),(1.4) (the zero mode of the stress energy tensor (1.24)), ck is the Virasoro centralcharge (cf. (1.38)):(3.1c) ck = r + sXj=1 ckj (gj) :If V is irreducible then �V splits into a product of Kac-Moody and latticecharacters; we reproduce their expressions and transformation properties sepa-rately. This will allow us to write down the general orbifold characters.3A. Kac-Moody and lattice characters.Let now G be a connected simply connected compact Lie group with a simpleLie algebra g. We shall use the following notation: M� is the weight lattice dualto the co root lattice M ; the set of level k dominant weights is [K1](3.2) P k+ = n� 2M�j(�j�_i ) � 0; i = 1; : : : ; l; (�j�_) � ko ;Q � M� is the root lattice; the quotient M�=kM is a �nite abelian group oforder jM�=kM j = kljM�=M j. The values of jM�=M j may be found e.g. in [KW](in the simply laced case jM�=M j is the determinant of the Cartan matrix). TheKac-Moody character ��(�; z; u) � �V�(g;k)(�; z; u) can be expressed in termsof classical � functions of weight l=2 and certain almost holomorphic modularforms c�� , the string functions, of opposite weight ([K1], Eq. (12.7.12)):(3.3a) ��(�; z; u) = X�2M�=kM���2Q c��(� )�M�k(�; z; u) ;(3.3b) �M�k(�; z; u) = e2�iku X
2M+�k q k2 (
j
)e2�ik(
jz) :We assume here that iz is an element of g and choose a Cartan subalgebracontaining iz.



15The modular transformation law for � is given by (see Theorem 13.5 of [K1]):S = � 0 �11 0 � : �M�k(�; z; u)! �M�k ��1� ; z� ; u� (zjz)2� �= (�i� )l=2jM�=kM j�1=2 X�02M�=kM e�2�i (�j�0)k �M�0k(�; z; u) ;(3.4)(3.5) T = � 1 10 1� : �M�k(�; z; u)! �M�k(� + 1; z; u) = ei� (�j�)k �M�k(�; z; u) :The characters �� span a �nite dimensional representation of SL(2;Z) as well(see [KP] or Theorem 13.8 of [K1]):(3.6) ����1� ; z� ; u� (zjz)2� � = X�02Pk+ S��0��0(�; z; u) ;here the S��0 are given by the Kac-Peterson formula:(3.7) S��0 = ij�+jjM�=kM j�1=2 Xw2W (g) "(w) exp��2�i (� + �jw(�0 + �))h � ;where j�+j is the number of positive roots, W (g) is the Weyl group of g; "(w) =� according to the parity of w, 2� and h are de�ned in (2.4),(3.8) ��(� + 1; z; u) = e2�im���(�; z; u) ;(3.9) m� = �(�)� ck(g)24where �(�) is the conformal dimension (2.4), ck(g) is the Virasoro central charge(1.38).In the special case of g = su(2) we have(3.10a) S��0 =p2=h sin� (� + 1)(�0 + 1)h ; h = k + 2 ;(3.10b) m� = �(� + 2)4h � c24 ; c = ck(su(2)) = 3kh :Note that for a simply laced a�ne algebra at level 1 (so that c = l) there isonly one non-zero string function, which is a negative power of the Dedekind�-function: c��(� )jk=1 = (�(� ))�l. Recall the transformation properties of the�-function:(3.11) �(�1� ) = (�i� )1=2�(� ) ; �(� + 1) = e�i=12�(� ) :



16 The matrix S simpli�es in this case as it coincides with that for the latticecharacters (see (3.14) below).It is clear from the construction that the lattice character �� of the moduleV�(L) is given by(3.12) ��(�; z; u) = (�(� ))�r�L�1(�; z; u) :Here, as before, z is an element of g0 and we choose a Cartan subalgebra contain-ing z. (The expression (3.12) has, of course, the same form as the level 1 simplylaced Kac-Moody character; it coincides with (3.3), (3.11) for L = M; r = l).The modular transformation law for �� can be read o� (3.4), (3.5) and (3.11)(the expression for S in the counterpart of (3.6) being simpler than (3.7)):(3.13) ����1� ; z� ; u� 12� jzj2� = X�02L�=LS��0��(�; z; u)where(3.14) S��0 = jL�=Lj�1=2e�2�i(�j�0) ;(3.15)��(� + 1; z; u) = e2�im���(�; z; u) ; m� = �(�) � r24 ; �(�) = 12 j�j2 :As mentioned above, an irreducible positive energy A(G)-module V is the tensorproduct of the A(L)-module V�(L) and A(gj)-modules V�j (gj). Hence positiveenergy irreducible A(G)-modules are parameterized by the setP k+ = (L�=L)� P k1+ � � � � � P ks+ :We let � = �0, call � = Psj=0 �j the highest weight of V , and write V = V�.The character of V�, � 2 P k+, is the product(3.16) ��(�; z; u) = sYj=0��j (�; zj ; uj) :3B. Modular transformations of twisted characters.Recall that the a�ne chiral algebra A(G) is de�ned by the data consistingof a compact group G and an invariant bilinear form on its Lie algebra g. Thisinvariant bilinear form looks as follows:(3.17a) (xjy)k � rXj=0 kj(xj jyj) :We will also use the normalized invariant bilinear form(3.17b) (xjy) = rXj=0(xj jyj) :



17Let now � 2 ig be such that b = exp 2�i� 2 G has �nite order and choose aCartan subalgebra of g containing i�. It follows from (2.16b) and (3.1) that thevalue of the character of the b-twisted A(G)-module V (�)� at e2�i� 2 G is givenby the following formula:��;�� (� ) � trV�qL0��+12 (�j�)k� ck24 e2�i�= e�i(�j�)k����; �� ��;�12(�� ��j�)� :(3.18)Each factor in (3.18) can be written in a similar form for the Kac-Moody andthe lattice case (assuming that � and � lie in the same Cartan subalgebra):��;�� (� ) = X�2M�=kM���2Q c��(� )��;��k (� )(3.19) ��;�� (� ) = [�(� )]�r��;��1 (� )(3.20)where in both cases(3.21)��;��k (� ) = ei�k(�j�)�M�k��; �� ��; 12(�� � �j�)� = X
2M+�k q k2 j
��j2e2�ik(
j�)(We can read o� the lattice �-function from (3.21) setting M = Q = L, � = �,k = 1).The modular transformation law for twisted characters is deduced from theknown transformation properties of Kac-Moody and lattice characters (3.6{3.9)and (3.13{3.15) using the following lemma (cf. [KP2] and [K1]).Lemma 3.1. Let the �nite set of functions fFi(�; z; u); i 2 Ig be closed undermodular transformations:(3.22) Fi�a� + bc� + d ; zc� + d ; u� c(zjz)2(c� + d)� =Xj2I AijFj(�; z; u) ; Aij 2 C ;for � a bc d�2 SL(2;Z). De�neF�;�i (� ) = Fi��; �� ��;�12(� � ��j�)� :(3.23)Then F�;�i �a� + bc� + d� =Xj2I AijF d��b�;a��c�j (� ) :(3.24)



18Proof. If we set�� � a� + bc� + d = ~zc� + d ; with ~z = d�� b� � (a� � c�)�then F�;�i �a� + bc� + d� = Fi�a� + bc� + d ; ~zc� + d ; ~u� c(~zj~z)2(c� + d)�where ~u = 12 (zjc�� a�). The law (3.24) then follows from (3.22). �It is now straightforward to apply Lemma 3.1 to (3.18) to �nd the transforma-tion formula of twisted A(G)-characters ��;�� using the transformation formulafor complete characters from the previous section. Introduce the following no-tation: S�;�0 = sYj=0S�j ;�0j ;(3.25a) m� = sXj=0m�j ;(3.25b)where the S�j;�0j are given by (3.7) and (3.14) and the m�j are given by (3.9)and (3.15). Then we have��;�� ��1�� = e2�i(�j�)kX�0 S��0��;���0 (� ) ;(3.26) ��;�� (� + 1) = e2�i(m�+12 (�j�)k)����;�� (� ) :(3.27)3C. Small � asymptotics of twisted characters of A(G).The small � asymptotics will be used in the sequel for singling out non-trivialorbifold modules. Since the parameter � = 2�i � (which has a positive realpart) can be interpreted as inverse temperature, the small � asymptotics can beinterpreted as the high temperature behavior.Lemma 3.2. (a) The q-expansions of ��;��k (� ), qck=24c�� (� ) and qck=24��;�� (� )involve only non-negative powers of q.(b) The q-expansion of ��;��k (� ) has a non-zero constant term i� � � k� 2kM . This constant term equals e2�i(�j�)k.(c) The q-expansion of qck=24c�� (� ) has a non-zero constant term i� � = k�jwith j 2 J (see (1.33)) or � = 0, and �� � 2 kM . This constant termequals 1. (Recall that �j are fundamental weights).(d) The q-expansion of qck=24��;�(� ) has a non-zero constant term i� � =k�j with j 2 J or � = 0, and �� k� 2 kM . This constant term equale2�i(�j�)k.



19Proof. (a) and (b) are clear. (c) is proved in [KW]. (d) follows from (b) and (c)by making use of (3.19). �The modular inversion S relates low temperature to high temperature behav-ior and is a key to computing small � asymptotics.By Lemma 3.2(a) and (d) each term in the expansion of e� �ick12� ��;�� (� 1� )vanishes exponentially for � # 0 unless � = k�j with j 2 J or � = 0, and�� k� 2 kM , hence, by Lemma 3.2(d):lim�#0 e� �ick12� ��;�� ��1��= � e2�i(�j�)k for � = k�j, j 2 J , or � = 0, and �� k� 2 kM ,0 otherwise:(3.28)Similarly, we have:(3.29) lim�#0 e� �ick12� ��;�� ��1�� = � e2�i(�j�) for � � � 2 L,0 otherwise:Substituting � by � 1� in (3.26):��;�� (� ) = e2�i(�j�)kX�0 S��0��;���0 ��1�� ;we �nd, using (3.28) and (3.29), that e� �ick12� ��:�� (� ) � jL�=Lj�1=2 e2�i(�0j�)Qsj=1 S�j;
j , as � # 0, where 
j = kj�i with i 2 J j or 
j = 0, if � +Psj=1 
j2 L� (�sj=1M j ), and tends to 0 otherwise. Recalling that [KW](3.30) S�;k�j = S�;0e�2�i(�j�j) if j 2 J ;we arrive at the following result.Proposition 3.1. The high temperature asymptotics of twisted A(G) charactersis given bylim�#0 e��ick12� ��;�� (� ) = � S�;0e2�i(�j�)k if exp 2�i� 2 Z(G)0 otherwise:Here Z(Gc) is the �nite central subgroup of Gc de�ned by (2.7) and weuse (2.8).



20 4. Affine orbifolds4A. Projection on a centralizer's irreducible representation. Asymp-totic dimension.Let as before � 2 ig be such that b = exp 2�i� 2 Gc has �nite order. Given apositive energy A(G)-module U , we have the b-twisted module U (�) constructedin Sect. 2B. Consider the chiral subalgebra A(G)b of �xed elements of A(G) withrespect to Adb. When restricted to A(G)b, U (�) becomes an untwisted A(G)b-module. This simple, but important observation allows one to construct in manycases all untwisted modules of a chiral algebra (see e.g. [KR2]).We shall use in the sequel the following orthogonality relations of irreduciblecharacters of a �nite group � :1j�jXh2���(h)�0(hg) = �(g)�(1) ��;�0 ; �; �0 2 �̂ ;(4.1) 1j�gjX�2�̂��(g)�(h) = ��g;�h ; g; h 2 � :(4.2)Here and further �̂ denotes the set of all irreducible characters (= represen-tations) of �, �� stands for the complex conjugate character, �g stands for thecentralizer of g 2 �. We shall also denote by �g the conjugacy class of g in �.Recall that j�j = j�gjj�gj.Let � be a �nite subgroup of the compact groupGc. We shall consider � as thegauge group of our CFT and de�ne the chiral subalgebra A� of gauge invariantobservables as the set of Ad�-invariant elements of A(G). This is called anorbifold chiral algebra. One can ensure that A� only contains local Bose �elds(even when A(L) involves fermionic vertex operators) replacing L by Leven (themaximal even sublattice of L) and � by its extension by L=Leven. It will be theobjective of this section to construct a set of positive energy representations ofA� which again give rise to an RCFT. That will be demonstrated in the nextsection by displaying the SL(2;Z) properties of their characters. (This is, ingeneral, not the case if the subgroup � of G is in�nite.) The A�-modules inquestion are obtained by splitting the twisted A(G)-modules into A�-invariantparts.Remark 4.1. It is clear that A� = A�Z(Gc) where �Z(Gc) is the �nite subgroupof Gc generated by � and Z(Gc). Hence the orbifold model does not change ifwe enlarge � by the central group Z(Gc) and in principle we may assume that� contains Z(Gc) (but we shall not do that).Pick b 2 � and write it in the form b = exp 2�i�, where i� 2 g. Let ��be the stabilizer of � in � with respect to the adjoint action of � on g. Thenthe twisted A(G)-module U (�) becomes untwisted with respect to the chiralsubalgebra A(G)�� of �xed elements with respect to ��. It follows from theconstruction that the group �� acts on U (�).Let � be an irreducible character of the group ��. It follows from (4.1) that



21the projector on the �-isotypic component of a representation of �� is given by(4.3) P� = �(1)j��j Xh2�� ��(h)h :The subspace P� U (�) is irreducible with respect to the pair (�� ;A(G)�� ). Thiscan be proved in the same way as Theorem 1.1 from [KR2]. It follows that theA(G)�� -module P�U (�) is isomorphic to the sum of �(1) copies of an irreduciblemodule which we denote by U (�)� .Since the a�ne orbifold A(G)� is contained in A(G)�� , we obtain a A(G)�-module U (�)� by restriction. Take now U = V�. It follows from (3.18) and (4.3)that the character ���;� = trqL0��+12 (�j�)k� ck24 of the A(G)�-module V (�)�;� is givenby(4.4) ���;�(� ) = 1j��j Xh2��h=e2�i�;[�;�]=0��(h)��;�� (� ) :Applying the orthogonality relation (4.2), we can invert (4.4):(4.5) ��;�� (� ) = Xh2�̂� �(h)���;�(� ) for h = e2�i� :Let Z = � \ Z(Gc) denote the small center of the subgroup � of Gc.Theorem 4.1. The orbifold character ���;�(� ) is nontrivial i� � and � agreeon Z:(4.6) �jZ = �jZ :Provided that (4.6) holds, one has:(4.7) lim�#0 e� �ic12� ���;�(� ) = S�;0�(1)jZj=j��j :Proof. It is clear from the construction that V (�)�;� = 0 if (4.6) fails. Furthermore,by Proposition 3.1 and (4.4) we have:lim�#0 e� �ic12� ���;�(� ) = S�;0j��j Xh2Zh=e2�i� ��(h)e2�i(�j�)k :It follows from the orthogonality (4.1) of characters of the group Z that thisis zero unless (4.6) holds, in which case it is given by the right-hand side of(4.7). The latter is positive since S�;0 is a positive real number (see discussionbelow). �



22 An important characteristic of a chiral algebra module V is its asymptoticdimension [KP2] [KW] and Sect. 13.13 of [K1]. It is de�ned as the coe�cienta(V ) of the leading term of the small � (or high temperature) expansion of thespecialized character �V :(4.8) �V (� ) = trV q(L0� c24 ) � a(V )e �ic12� :For example Theorem 4.1 states that the asymptotic dimension of the orbifoldmodule V (�)�;� is given by the right hand side of (4.7) provided that condition (4.6)holds. The positive reals a(V ) have multifold interpretations. If A(V1) � A(V2)are two chiral algebras (with V1 � V2) then a(V2)=a(V1) gives the index ofembedding of the associated von Neumann algebras (see [R], [LR] and [RST] andreferences therein). If V�k is an a�ne algebra module and V0k the correspondingvacuum module of height h then ah(�)=ah(0) is the \quantum dimension" of V�[V]. In the case at hand the knowledge of a(V ) appears as an e�cient tool forsingling out non-trivial orbifold modules, and, as we shall see, for handling thesplitting of reducible modules into irreducible components.An A(G)-module V� appears as an outer product of representation of thechiral algebras A(L) and Akj (gj ). (We use the term outer tensor product to bedistinguished from the tensor product of representations of a group G that isagain regarded as a representation of G rather than as a representation of thedirect product G�G.)The asymptotic dimension of an outer product of representations obviouslyequals the product of asymptotic dimensions of factors. Hence the asymptoticdimension a(V�) of a A(G)-module V� is equal to the product of a(V�(L)) anda(V�j (gj )), j = 1; : : : ; s. The asymptotic dimension of lattice modules is inde-pendent of �:(4.9) a(V�(L)) = S�;0 = jL�=Lj� 12 :The asymptotic dimension of Kac-Moody modules is given by (see [KP],[KW]or [K1](13.8.10)):(4.10) a(V�(g)) = S�;0 = jM�=hM j� 12 Y�>0 2 sin �(� + �j�)h :This number is positive since (�j�) � k and (�j�) � (�j�) = g_ � 1, so that(� + �j�) < h = k + g_.4B. A�ne orbifold models for non-exceptional �. Action of Z. Mod-ular transformations.In order to construct a modular invariant family of �-orbifold modules weneed to impose some restrictions on the subgroup � of Gc. Let Z be the smallcenter of �.De�nition 4.1. An element b 2 � is called non-exceptional if there exists �(b) 2ig such that b = exp 2�i�(b) and �b = ��. The subgroup � of the compact group



23Gc is called a non-exceptional subgroup if for any g 2 � there exists � 2 Z suchthat �g is a non-exceptional element of �.An element g 2 Gc is called Ad-exceptional element of Gc if it cannot bewritten in the form g = b�, where b is a non-exceptional element of Gc and� 2 Z(G). Obviously, a subgroup � of Gc containing Z(Gc) (recall that, dueto Remark 4.1, we may assume that � � Z(Gc)) which does not contain Ad-exceptional elements of Gc is a non-exceptional subgroup of Gc. We shall de-scribe Ad-exceptional elements of a compact group G in Appendix B. Here weonly note that U(n) contains no exceptional elements and SU(n) contains noAd-exceptional elements. Any connected simple compact Lie group other thanSU(n) does contain Ad-exceptional elements.>From now on let � be a non-exceptional �nite subgroup of the compact Liegroup Gc.It follows from the de�nition that for each g 2 � there exists a � 2 Z suchthat b = ��1g is non-exceptional. Moreover for each g of a conjugacy class �g wecan choose the same � 2 Z and a map � : �b! ig satisfying(4.11) b = e2�i�(b) ; �(hbh�1) = Adh�(b) for all b 2 �b; h 2 � :Note that a choice of �(b) such that �b = ��(b), determines uniquely the map �satisfying (4.11).A quadruple (�; b; �; �) where � 2 P k+, b is a non-exceptional element of �,� is a map satisfying (4.11) and � 2 �̂� is called an admissible quadruple ifthe compatibility condition condition (4.6) holds. Due to Theorem 4.1 the A�-module V (�(b))�;� is nontrivial for any admissible quadruple (�; b; �; �); we shalldenote it by V ��;b;�. We have for any g 2 � the identity(4.12a) V Adg��;gbg�1;�g = V ��;b;� ;where �g 2 �̂gbg�1 is de�ned by(4.12b) �g(h) = �(g�1hg) :We thus obtain the �rst equivalence of admissible quadruples:(4.13) (�; b; �; �) � (�; gbg�1; Adg�; �g) :Recalling that (4.11) de�nes a map � : �b ! ig and dropping the superscript gon � we may denote the character of the module (4.12) by ���;�b;�. Furthermore,if �(b) is replaced by �(b) +m where(4.14) e2�im = 1 ; [�(b);m] = 0 ; ��(b)+m = �b ;then(4.15a) V �+m�;b;�
�m = V ��;b;� ;where �m is a 1-dimensional representation of �b de�ned by(4.15b) �m(h) = e2�i(mj�)k for h = e2�i� 2 �b :Here and further we are using the following simple fact.



24Lemma 4.1. Let G be a connected compact Lie group with Lie algebra g andlet � 2 ig be a weight, i.e.(4.16a) e2�i(�jm) = 1 if e2�im = 1 and [�;m] = 0 :Then � de�nes a 1-dimensional representation �� of its stabilizer G� by theformula(4.16b) ��(g) = e2�i(�j
) for g = e2�i
 2 G�; 
 2 ig� :Proof. Since the group G� is connected, it is generated by elements g of theform (4.16b). The map �� is independent of the choice of 
 representing g due to(4.16a). If gj = e2�i
j 2 G� where 
j 2 ig�, j = 1; 2, then the Cambell-Hausdor�formula implies ��(g1g2) = expf2�i[(�j
1 + 
2) + (�j
)]g where 
 is a linearcombination of commutators [
1; 
2]; : : : ; [[
i1 ; 
i2 ]; : : : ; ], for i1; i2; : : : 2 f1; 2g.But (�j[
1; 
2]) = ([�; 
1]j
2) = 0 and the same holds for multifold commutatorsof 
j . Thus (4.16b) does indeed de�ne a 1-dimensional representation of G�.� The isomorphism (4.15) gives a second equivalence relation for admissiblequadruples:(4.17) (�; b; �(b); �) � (�; b; �(b) +m;� 
 �m)provided that m 2 ig satis�es (4.14). In deriving the equality of the correspond-ing characters we use the identity(4.18) e�2�i(mj�)k��;�+m� (� ) = ��;�� (� ) :The least obvious equivalence relation appears when two non-exceptional el-ements of � are obtained from each other by multiplication with an element� 2 Z.Every element of Z can be written in the form� = (�(0)j0 ; : : : ; �(s)js ) 2 Z0 � � � � � Zs ; �(�)j = e2�i�(�)j or 1 :Here f�(0)j g generate the �nite abelian group L�=L; for each simple componentg the fundamental weight �j belongs to the set j of indices with aj = 1, see(1.33). If both b and �jb are non-exceptional we can writek�(�jb) = k�(b) + k�j +m(4.19a) Ad�b(k�j +m) = k�j +m ; e2�im = 1 :(4.19b)We proceed to de�ne the action �j on � and �. According to Lemma 4.1 thephase factor(4.20) �j(b0) = e2�i(k�j+mj�0) for b0 = e2�i�0 ; Ad�b�0 = �0



25gives rise to a 1-dimensional representation �j of �b. The transformation � !�j(�) of a lattice weight � 2 L� is given by �j(�) = (� + �j) mod L. If g is asimple rank ` Lie algebra and � 2 P k+, then �j(�) is de�ned by(4.21a) �j(�) = k�j + wj�where wj is the unique element of the Weyl groupW of g that permutes the setf��; �1; : : : ; �`g and satis�es(4.21b) �wj� = �j :Theorem 4.2. The pair of non-exceptional quadruplesx = (�;�b; �; �) ;  � = sX�=0��! and�(x) =  X� (wj��� + k��j� ); �b; � +X� ��j� + m�k� � ; � 
 (
��j� )!(4.22)gives rise to the same orbifold module leaving the same corresponding characterinvariant.The action of the center on non-exceptional quadruples for which b and �bbelong to the same conjugacy class �b has no �xed points for level k = 1 in thesimply laced case, but may have a �xed point for higher levels. For G = SU(2)this happens for even k and � = 12k. An example of this type is provided inSect. 6 (see Example 6.4). The corresponding twisted orbifold module turns outto be reducible in this case. Understanding its splitting into irreducible com-ponents requires more work and will be postponed to a subsequent publication.Here we shall restrict our attention to the case when Z acts on the admissiblequadruples without �xed points (thus including all level 1 orbifolds, all SU(p) orb-ifolds (with p prime) for levels not divisible by p, as well as all � � G orbifoldswith a trivial small center).We denote by X the set of equivalence classes of all admissible quadrupleswith equivalence relations (4.13), (4.17) and (4.22).One may use the following description of X . Consider the action of Z � �on � for which Z acts by multiplication and � by conjugation. Choose a subsetB � � consisting of non-exceptional representatives of orbits of this action, andfor each b 2 B choose �(b) 2 ig satisfying (4.11). We call such B an admissiblesubset of �. Then X may be identi�ed with the set of admissible quadruples(�; b; �(b); �), where � 2 P k+; b 2 B;� 2 �̂b; with the equivalence relation thatoccurs only if(4.23a) �b = gbg�1 for some � 2 Z and g 2 � :Then we let (cf. (4.22)):(4.23b)(�; b; �(b); �) �  X� (wj��� + k�j� ); b; �(b); � 
 ��P�m� 
 �(1�Adg�1 )�(b)! :We can state now our main result.



26Theorem 4.3. (a) Under the modular inversion S the characters �x(x 2 X )transform among themselves:(4.24a) ���;�b;� ��1�� = X�g=�0b0�� Xb=e2�i�2�bb0=e2�i�02b0[�;�0]=0 X�02�̂bX�0 S��0S��b�;�b0�0��0;�b0;�0 (� )where S��0 is the a�ne Kac-Moody S-matrix (3.25a), and the \group theoretic"factor looks as follows:(4.25) S��b�;�b0�0 = 1j�j Xb2�b;b02b0bb0=b0b �0(b)�(b0)e�2�i(�(b)j�(b0))k :For levels and groups � � G for which the small center Z acts without �xedpoints each equivalence class of quadruples in X is encountered jZj times and wecan write(4.24b) ���;�b;� ��1�� = X(�0;b0;�0;�0)2X jZjS��0S��b�;�b0�0��0�0;�b0;�0(� ) :(b) If the lattice L is even then the characters �x are eigenfunctions of themodular translation T :(4.26) ���;�b;�(� + 1) = exp�2�i�m� + 12 (�(b)j�(b0))k�� ��(b)�(1) ���;�b;�(� ) :They are eigenfunctions of T 2 also for odd lattices.(c) The inverse matrix S�1 is complex conjugate to S. The matrix S in(4.24b) is manifestly symmetric and hence also unitary.(d) The matrix elements of S and T remain unchanged under the equivalencerelations (4.13), (4.17), (4.22), (4.23).(e) The charge conjugation operator C = S2 gives rise to the following in-volutive permutation of the set X :(4.27a) C : (�; b; �(b); �) 7�! (�c; b�1; �(b�1); �c)where �c = �� in the lattice case, �c is the highest weight of the con-tragredient to � representation of g in the a�ne case, and(4.27b) �c(h) = ��(h)e2�i(�(b)+�(b�1)j�)k for h = e2�i� 2 �b :



27Proof of Theorem 4.2. We shall content ourselves with verifying the equality ofcharacters for admissible quadruples (4.22). The crux of the argument is theproof of the relation(4.28) ��;�+�j+mk�j+wj� (� ) = e2�i(�j+mj�)k��;�� (� )(for an appropriate choice of m 2 M) in the case of a (rank `) simple Liealgebra g. To prove it we use the Weyl-Kac formula for the a�ne characters ([K1]Chap. 10). We �rst extend the coroot and weight spaces of g by introducing thecentral element(4.29) K = X̀�=0 a_��_� �$ �_0 = K � �_�and the gradation operator d($ �L0) (see Chap. 7 of [K1]). The bilinear form(:j:) is extended to the resulting `+ 2 dimensional space by(4.30) (KjK) = (djd) = 0 = (Kj�i) = (dj�i) ; i = 1; : : : ; ` ; (Kjd) = 1 :The Weyl-Kac formula then gives:(4.31) ��;�kd+�(� ) = P ~w "( ~w)e2�i��� j�j22 K���d�+�j ~w(kd+�+~�)�P ~w "( ~w)e2�i��� j�j22 K���d�+�j ~w~��where the sum is over the a�ne Weyl group W (ĝ), ~� is de�ned by(4.32) ~� = g_d+ � ; � = X̀i=1 �i ;and "( ~w) = �1 according to the parity of ~w. We de�ne the element ~wj of theextended a�ne Weyl group Ŵ as follows (cf. Sect. 1 of [FKW] and Appendix Bbelow): ~wj = tjwj ; tjd = d+�j � j�jj22 K ; tjv = v � (vj�j)K(v 2 h) ;wjd = d ; ~wjK = K ;(4.33)(where wj 2W (g) is de�ned on h as above).We shall use the following three properties of ~wj:(i) it preserves the extended Killing form;(ii) it leaves ~� invariant;(iii) it normalizes W (ĝ).



28 They allow us to write down the exponent in the numerator of (4.31) as� ~wj �� � j�j22 K � � � d�+ �� jw f ~wj (kd+�) + ~�g� =� k2 jwj� +�j j2 � k (wj�j�j + (wj�� � (d+�j + wj�) jw f~�+ ~wj(kd+�)g) :It follows that(4.34) �wj�;wj�+�j~wj(kd+�) (� ) = e2�ik(wj�j�j)��;�kd+�(� ) :Observing on the other hand the invariance relation�w�1j �;w�1j �kd+� (� ) = ��;�kd+�(� )and the fact that ~wj(kd+�) can be substituted by �j(kd+�) in the expression(3.18) for the character, we complete the proof of (4.28). It remains to insertthe result into (4.4) in order to conclude that(4.35) ��+�j+mwj�+�j ;��j�b;�
�j (� ) = ���;�b;�(� ) ;thus proving Theorem 4.2. �Proof of Theorem 4.3. We use the assumption that � is a non-exceptional sub-group of G in order to express h in the formula (4.4) for the orbifold characterby a non-exceptional element b0�1:(4.36a) h = �b0�1 = e2�i(��+�0�)where(4.36b) � = e2�i�� 2 Z ; [�� ; �(b)] = 0 ; b0�1 = e2�i�0� :This allows to rewrite (4.4) in the form(4.37) ���;�b;�(� ) = 1j�jXb2�b Xh=�b0�12�b[�(b);�0�]=0 �(b0)��0�;�� (� )where we have used the relation(4.38a) ���+�0�;�� (� ) = e2�i(�j��)kX�0�;�� (� )for e2�i(mj��) = 1 whenever m 2M , [��;m] = 0, implying(4.38b) ��(h)���+�0�;�� (� ) = �(b0)��0�;�� (� )



29for �jZ = �jZ (we have also used ��(b0�1) = �(b0)). Inserting the modularinversion law (3.26) into (4.37) we �nd(4.39a) ���;�b;� ��1�� = 1j�jXb2�b Xh=�b0�1b02�b�;��0� �(b0)e2�i(�j�0�)kX�0 S��0��;��0��0 (� ) ;where, in view of (4.5), we can write(4.39b) ��;��0�� (� ) = X���0�2�̂b ���0�(b)���0��0 ;�b0;���0� :Finally, we would like to substitute the upper index of � by the phase �0 of b0which di�ers from ��0� by a coroot:(4.40) b0 = e2�i�0 ) e�2�i(�0+�0�) = 1 ([�0 + �0�; �] = 0) :Applying (4.15) we obtain���;�b;� ��1��= 1j�j X�g���g=�0b0 Xb=e2�i�2�bb0=e2�i�02�b0bb0=b0b X�02�̂bX�0 �(b0)�0(b)e�2�i(�j�0)kS��0��0�0;�b0;�0(� )(4.41)where(4.42) �0(b) = ���0�(b)e2�i(�0+�0�j�)k :If the small center Z acts on admissible quadruples for which �b 2 �b without�xed points, then each term in the sum is encountered exactly jZj times and weend up with (4.24b), (4.25).The T -transformation law (4.26) follows from Eq. (3.27):���;�b;�(� + 1) = e2�ifm�+12 (�j�)kg Xh2�bh=e2�i�[�;�]=0 ��(h)����;�� (� )= e2�ifm�+12 (�j�)k�(�j�)g���;�b;�(� ) :(4.43)Here we have used the fact that b is in the center of �b and �(2 �̂b) is irreducible,so that(4.44a) ��(h) = ��(hb�1)��(b)�(1)



30where the last factor is a complex number of absolute value 1 which can bewritten as(4.44b) ��(b)�(1) =: e�2�i(�j�) :(Equation (4.44b) thus de�nes a linear functional (�j�) in � whose exponentialagrees with the value of � on Z.)Using once more Lemma 3.1 for the inverse transformation� 0 1�1 0� to (3.4)we derive S�1 = S�, where � stands for complex conjugate. The symmetry of Sis manifest from the expressions for S��0 and S��b�;�b0�0 .To prove the invariance of S-matrix elements with non-exceptional entriesunder the equivalence relation (4.23) we use an extension of (3.30):(4.45) S�j(�);�0 = e�2�i(�j j�0)S��0 ;(cf. [KW]) and the fact that �0 and �0 coincide on the central element �j. Toverify that T is also invariant under �j one uses (�j�j +m) = (�j�j +m) and(wj�j�j) = (�jw�1j �j) = (�j�j +m0) (m0 2M) to prove that the phase�(kd+�; �; �) = 12k (kd+�+ 2~�jkd+�)� (�j�) + k2 j�j2changes by an integer:�� = k2 (j�j j2 � j�j +mj2) + (�jm0 �m) + (�� �j�j +m)= (�jm0 �m)� kf(�jjm) + 12 jmj2g 2Z() e2�i�� = 1) :We �nally proceed to prove (4.27). To this end we compute C = S2 byapplying Lemma 3.1 to the central element of SL(2;Z).�0 �11 0 �2 = ��1 00 �1� :This gives (C�)��;�b;�(� ) =X�0 C��0 1j�bj Xb02�b ��(b0)���(b0);��(b)�0 (� )=X�0 C��0X�b0�0 C� �0�b�;�b0�0��0�0;�b0;�0(� ) ;where C��0 = ����0 is known from the modular properties of a�ne Kac-Moodycharacters ([K1] Chap. 13), while the second factor is computed to be(4.46) C� �0�b�;�b0�0 = �b�1;b0��c;�0��;��0 : �



31We note that the equivalence class v of the vacuum admissible quadruple,i.e. that corresponding to the vacuum A(G)�-module, is selfconjugate:v := class of (0; 1; 0; 1) = Cv:Note also the following formula for any x = (�; b; �(b); �) 2 X :Sx;v = S�;0 j�bjj�j�(1) :Remark 4.2. It follows from Lemma 3.2d that the eigenvalues of L0 are strictlypositive in all A(G)-modules Vx, x 2 X , except for the vacuum module Vv. The0-th eigenspace of L0 in Vv is C j0i.Remark 4.3. The A(G)�-modules Vx and VCx (x 2 X ) are contragredient.4C. Fusion rules.We can summarize the most important features of the outcome of the previoussection as follows.Starting with a compact Lie group G = (Rr=L)�G0, where G0 is simply con-nected, and a negative de�nite integral invariant bilinear form on its Lie algebrawhich is even on the lattice L, we have constructed for every non-exceptional�nite subgroup � of G a collection of A(G)�-modules parametrized by a �niteset X . This set is equipped with an involutive permutation C (corresponding totaking a contragredient module) and a distinguished element v (corresponding tothe vacuum module) such that Cv = v. We have also matrices S = (Sxy)x;y2Xand T = (Txy)x;y2X satisfying the following three properties, provided that thesmall center Z acts on X without �xed points:(a) S is symmetric and T is diagonal,(b) the map � 0 �11 0 �) S;� 1 10 1�) T;��1 00 �1�) C give a unitaryrepresentation of the group SL2(Z).(c) Sxv > 0 for all x 2 X .Following Verlinde [V], introduce the fusion algebra A(X ) = �x2XC x by theformula:(4.47a) xy = Xz2X NxyzCz ;where the fusion coe�cients Nxyz are de�ned by(4.47b) Nxyz = Xa2X SaxSaySaz=Sav :It follows from the above properties of S that the fusion algebra A(X ) isa �nite-dimensional commutative associative semisimple algebra with identity



32element v and involutive automorphism C. All homorophisms of the algebraA(X ) to C are labeled by elements y 2 X and given by(4.48) chy(x) = Sxy=Svy (x 2 X ) :The positive real number chv(x) is the relative (= quantum) dimension.The basic observation of [V] is that the fusion algebras arising in a RCFThave the following fundamental property:(d) Nxyz 2Z+.Denote by Xaf the set P k+ labeling all positive energy irreducible represen-tations of the chiral algebra A(G) with vacuum element v = 0, conjugationC� = �c, S-matrix Saf = (S��0) and T -matrix T af = e2�im����0 . It followsfrom [KP2] that the properties (a)-(c) hold, and it is a very di�cult theoremestablished by the e�orts of many people that (d) holds as well. Denote byN��0�00(2 Z+) the fusion coe�cients.Similarly, let X gr denote the set of all pairs (�g; �), where �g is a conjugacyclass of � and � is an irreducible character of �g. Let v = (1; 1) be the vacuumelement and let C(�g; �) = (g�1; �c) where �c is de�ned by (4.27b). Let Sgr�b�;g0�0be the matrix de�ned by the right-hand side of (4.25) and let (cf. (4.26)):(4.49) T gr�g�;g0�0 = e2�i(�j�)k ��(b)�(1) :It follows from the remarks of the previous section that the properties (a), (b)and (c) hold. It can be demonstrated by an appropriate, example of an SU(2)subgroup of level 1 (see Example 6.5), that property (d) does not hold in general.Lusztig [Lus] studied the \limiting" case of our X gr when in (4.26), (4.27b)and (4.49) one sets all �(b) equal zero and b = g. In this case (d) holds due tohis interpretation of the fusion algebra as the Grothendieck ring of the categoryof �-equivariant vector bundles.Whenever the center of G is trivial like in the case of E8 the fusion rulesfactorize: Nxx0x00 = N��0�00Ng00�;g0�0;g00�00 . In particular, for a level 1 orbifoldlike A1(E8)� they coincide with the group theoretic fusion rules which we proceedto compute.The following cubic sum rule tells us that the fusion coe�cient(4.50) N�g1�1;�g2�2;�g3�3 =X�h� S�g1�1;�h�S�g2�2;�h�S�g3�3;�h�S11;�h�vanishes unless there are triples gj 2 �gj, j = 1; 2; 3 such that g1g2g3 = 1.Proposition 4.4. ( [Gor] Theorem 2.12) Let �gi, i = 1; 2; 3, be three conjugacyclasses in a �nite group �. The number n123 of triples gi 2 �gi such that g1g2g3 =1 is given by n123 = j�g1jj�g2jj�g3jj�j X�2�̂ 1�(1)�(g1)�(g2)�(g3) :In deriving the fusion rules we follow [DV3], but compute explicitly the phasefactors.



33Theorem 4.5. The fusion rules (4.50) can be expressed in either of the twoforms: N�b1�1;�b2�2;�b3�3 = 1j�jXh2� Xbi2bi\�hb1b2b3=1 �1(h)�2(h)�3(h)�(hj��i)(4.51a) N�b1�1;�b2�2;�b3�3 =XO12 1j�b1;b2j Xh2�b1;b2 �1(h)�2(h)�3(h)�(hj��i) :(4.51b)Here the multiplier � is given by(4.52) �(hj��i) = e2�i(�jP�i)k ; �i = �(bi) ; h = e2�i� :The outer sum in (4.51b) is over di�erent orbits O12 of pairs (b1; b2) underthe adjoint action of �; the number jO12j of such orbits is determined from therelation jO12jj�12j = j�j :The proof uses the form(4.53) S�gj�j;�h� = 1j�hj Xbj2�bj\�h �j(h)�(bj )e�2�i(�j�j)kof (4.25) for the three factors in the numerator of (4.47) and reduces to a straight-forward application of Proposition 4.4 (noting the conjugation invariance of �).(For x3 = v (the vacuum module) �b3 = �1, �3 = 1 (�3 = 0) we reproduce as aspecial case the charge conjugation matrix (4.46): C�g1�1;�g2�2 = N�g1�1;�g2�2;�11.)The multiplier (4.52) does not depend on the choice of the phase � of hprovided it belongs to the stabilizer gb1;b2 of the pair (b1; b2) in g; � thus de�nesa representation of �b1;b2 according to Lemma 4.1 applied to G = Gb1 ; � = �2.5. U(l) orbifolds as RCFT extensions of W1+1What is now called W1+1 �rst appeared as the (unique nontrivial) centralextension D̂ of the Lie algebra D of di�erential operators on the circle [KP1]. Itsrepresentation theory (including the classi�cation of quasi-�nite positive energyrepresentations) was developed in [KR1,2] and [FKRW]. It has also attractedthe attention of physicists, in particular, the most degenerate `minimal series' ofunitary representations of W1+1 of [FKRW] are being applied in the study ofquantum Hall 
uids [CTZ]. (More reference to both physical applications andrelated mathematical developments are cited in the above papers and in thebibliography to [AFMO].) The vacuum D̂-module (corresponding for unitaryrepresentation to a positive integer central charge c = l) was shown [FKRW] tocarry a canonical chiral (vertex) algebra structure. The resulting chiral algebraW (l)1+1 was described in [BGT] in terms of a series of quasi primary �elds ofdimension � + 1; � = 0; 1; : : : :(5.1a)V �(z) =XV �n z�n���1 ; [Lm; V �(z)] = zm�z ddz + � + 1�V (z)� ; m = 0 ; �1;



34satisfying local CR such that(5.1b)[V �m; V �n ] = (�m� �n)V �+��1m+n + � � �+ c (�!)4(2�)! �m+ �m� � � 1� �m;�n��� ; c = l :The (quasi �nite) irreducible positive energy modules V~r ofW (l)1+1 are character-ized by l exponents (see [KR1,2]) ~r = (r1; : : : ; rl) that take real values for unitaryrepresentations. Each V~r has a cyclic minimal energy vector j~ri such that(5.2) V �n j~ri = 0 for n = 1; 2; : : : ; fV �0 � v�(~r)gj~ri = 0wherev0(~r) = lXi=1 rl ;v�(~r) = (� � 1)!�!(2�)! ��1Xj=0��j�� �j + 1� lXi=1(ri � j) : : : (ri + � � j � 1)ri :(5.3)In particular V 1(z) = T (z) so that the ground state energy eigenvalue is v1(~r) =12~r2 = Pli=1 r2i :(5.4)�L0 � 12~r2� j~ri = 0 (L0 = V 10 ) ; v2(~r) = 13 lXi=1 r3i ; v3(~r) = 14Xi (r4i + 15r2i ) :The vacuum D̂-module contains for c = l 2 N a unique singular vector of degreel+1 such that the quotient by the submodule generated from this singular vectoris irreducible [KR1]. This irreducible quotient (together with its chiral algebrastructure) is isomorphic to a (level l) W (ul) vacuum module | see [FKRW],Sect. 5. As a result, any irreducible representation of W (l)1+1 has a canonicalstructure of an irreducible representation of W (ul) of level l, and all irreduciblerepresentations of W (ul) with central charge l arise in this way.Any V~r splits into a tensor product of a W (su(l)) module of central chargel� 1 and a W (1)1+1-module. To see this we rescale the u(1) current and split thestress energy tensor as in (1.39):(5.5a)J(z) = 1pl V 0(z) ; T (z) = TJ (z) + Tsu(z) ; TJ = 12 : J2 : �= 12l : (V 0)2 :� ;(5.5b) [Tsu(z); J(w)] = 0 :The minimal eigenvalue of the energy of the second term, Lsu0 is then given bythe di�erence(5.6) 12~r2 � 12l  rXi=1 ri!2 = 12lXi<j (ri � rj )2 =: !l(~r)



35A W (l)1+1-module V~r is degenerate if some of the di�erences ri � rj are integer.It is maximally degenerate if all ri � rj are integer (such representations aretermed minimal [CTZ]); the representation of the second (su)-factor is indeedthen a limit of the Zamolodchikov-Fateev-Lukyanov Wl(p)-models of centralcharge c = (l � 1)n1� l(l+1)p(p+1)o as observed in [CTZ]. Since every V~r can beviewed as a tensor product of maximally degenerate (including c = 1) moduleswe shall turn our attention to the case of integer ri�rj . Assume that ri�rj 2Z,we then arrange the ri's in a decreasing order and denote the set of such ~r's asP+:(5.7) P+ = f~r 2 Rljr1 � r2 � � � � � rl; ri � rj 2Zg :If we interpret the ordered set � = (�1; : : : ; �l�1) of di�erences(5.8) �i = ri � ri+1 ; i = 1; 2; : : : ; l � 1as de�ning a highest weight of SU(l), then for the fundamental weights �1 =(1; 0; : : : ; 0); : : : ;�l�1 = (0; : : : ; 0; 1) the ground state energy eigenvalues (5.6)coincide with the level 1 eigenvalues of the ŝul current algebra A1(su(l)):(5.9) !l(~r(i)) = (�i + 2�j�i)2(l + 1) for r(i)j � r(i)j+1 = �ij(which can be veri�ed by a direct computation). It is natural to expect thatthe W (sul) representations of such weights obey fusion rules given by the tensorproduct expansion formulae for SU(l) (see Conjecture 6.1 of [FKRW]).It follows that a CFT with chiral algebra W (su(l)) and a highest weightmodule V~r with ri � rj non-zero integers has an in�nite number of sectors andhence is not a rational CFT. (We are using here the basic property of anyquantum �eld theory to be closed under fusion.) This `irrationality' can also beseen from an analysis of the characters of these representations (computed in[FKRW]). The orbifold construction of the previous sections allows to de�ne alarge class of RCFT extensions of W1+1 with the same stress energy tensor.In fact the embedding of the vacuum module ofW (l)1+1 into the Fock space Flof l free complex fermion �elds, used from the outset in [FKRW] and [KR2], doesprovide one such (chiral superalgebra) extension. So does its even (bosonic) partwhich coincides with the level 1 current algebra of the rank l (even) orthogonalgroup A1(so(2l)). (Indeed, if we separate the real and imaginary part of the freefermions writing them as(5.10) j = 1p2('2j�1 � i'2j) ; j = 1; : : : ; l ; then Jjk(z) = i'j(z)'k(z) (j < k)satisfy the commutation relations of level 1 so(2l) currents. The complex struc-ture selects a Cartan subalgebra that includes V 0:(5.11) Hj(z) =:  �j (z) j (z) := J2j�1;2j(z) ; V 0(z) = lXj=1Hj (z) :



36Then we can de�ne W (l)1+1 as the U(l)-invariant subalgebra of A1(so(2l)) (u(l))and so(2l) sharing the same Cartan subalgebra). A more general RCFT ex-tension of W (l)1+1 is provided by the chiral algebra associated with the compactgroup U(l), equipped with a lattice structure Q (see Sect. 1). Here Q is anl-dimensional even integral lattice whose sublattice of vectors of length square 2includes the (rank l�1) su(l) lattice. (The root lattices of rank l semi-simple Liealgebras- so(2l), su(l + 1), su(l) � su(2)) | appear then as special cases. Notethat the su(l) Cartan currents are orthogonal to V 0 (5.11) (or J (5.5)); they are(5.12) H�i(z) = Hi(z) �Hi+1(z) ; i = 1; : : : ; l � 1 ;�1; : : : ; �l�1 being the simple roots of su(l). Any of the extensions A(Q) ofW (l)1+1 where Q is a (rank l) lattice with the above properties admits a �nite setof positive energy CFT representations whose characters span a (�nite dimen-sional) representation of SL(2;Z). All these extensions involve, in particular, lcommuting u(1) currents and can be thus related to the approach of Fr�ohlich,Thiran et al. to the quantum Hall e�ect (see [FT] and references therein). Alarge family of intermediate observable algebras is provided by � orbifolds ofA(Q) where � is any �nite subgroup of U(l). If � is not contained in any properLie subgroup of SU(l) then A� only involves a single u(1) current | the onebelonging to W (l)1+1. Such A� could be viewed as RCFT extensions of minimalW (l)1+1 models (exploited in [CTZ]).We proceed to state the precise results for the Fock space Fl of l free (complex)fermions and its orbifolds.Theorem 5.1 [FRKW]. The fermion Fock space Fl viewed as a representationof the pair (U(l);W l1+1) splits into an in�nite direct sum of tensor products(5.13) Fl = �~r2P+F (~r)
 L(~r) ;where P+ = f~r = (r1; : : : ; rl) 2 Zljr1 � � � � � rlg, F (~r) is the �nite dimensionalirreducible U(l)-module of highest weight ~r, L(~r) is a unitary W (l)1+1 positiveenergy module with exponents ~r and specialized character(5.14) �~r(� ) = trL(~r)qL0� l24 = q 12~r2��l(� ) Y1�i<j�l(1 � qri�rj+j�i) :The following result is a specialization of Theorem 3.2 applied to the chiralalgebra A(Zl)� where Zl is the integral lattice with the standard bilinear form,and � is a �nite subgroup of U(l). Recall that A(Zl) has a unique irreduciblerepresentation, hence we may skip the index �.Theorem 5.2. Let � be a �nite subgroup of U(l). Write each b 2 � in the formb = exp 2�i� where i� 2 u(l) is �xed by Ad�b . Let f�i(~r)g denote the set ofeigenvalues of � in F (~r). Given an irreducible character � of �b, letm~r;�;�(q) = q 12 (�j�)Xi m~r;�;�i(~r)q��i(~r) ;



37where m~r;�;�i(~r) is the multiplicity of � in the �i(~r)-eigenspace of � in F (~r).Then the A(Zl)�-characters can be written in the following form:(5.15) ���b;�(� ) = X~r2P+m~r;�;�(q)�~r(� ) :All these characters are modular functions and their C -span is invariant underthe transformation � 7! � 1� .In particular, for �b = �1, we have � = 0 and all m~r;�� (q) 2 Z+ and we�nd the characters of untwisted orbifold modules, which, unlike �~r are modularfunctions of � . This special case of Theorem 5.2 provides a family of solutionsto the following problem: �nd non negative integers n(~r) such thatX~r2P+ n(~r)�~r(� )is a modular function of � . Each pair � � U(n) (� �nite subgroup), � 2 �̂ givesa solution to this problem with n(~r) = n��(~r) being the multiplicity of � in F (~r)viewed as a �-module.Proof of Theorem 5.2. In view of (4.4) and (3.18) we can write(5.16) ���b;�(� ) = 1j�bj Xa2�ba=exp2�i�[�;�]=0 ��(a)�(�; � � ��; 12(�j�� )) ;where, due to (5.13)(5.17) �(�; z; u) = e2�iu X~r2P+ �~r(� )trF (~r)e2�iz :Hence we have:(5.18) ���b;�(� ) = X~r2P+ �~r(� )q 12 (�j�) Xa2�b ��(a)trF (~r)(aq��) :Since �b �xes �, each eigenspace of � in F (~r) is �b-invariant. The contribution ofthe �i(~r)-eigenspace to the inner sum of (5.18) is clearly equal m~r;�;�i(~r)q��i(~r).This proves (5.15). �Remark 5.1. Theorem 5.2 can be generalized to any simply laced simple Liealgebra g of rank l and � 2 P 1+. Namely, formula (5.15) holds for any non-exceptional element b, where the sum is taken over � 2 (� +Q) \ P 1+, and (see[K1], Exercise 12.17):��(� ) = q 12 (�j�)��l(� )Y�>0 �1� q(�+�j�)� :



38We have:(5.19) ���;�b;�(� ) = X�2(�+Q)\P+m�;�;�(q)��(� ) :The character ���;�;b(� ) is a modular function and their C -span is SL2 (Z)-invariant provided that � is a non-exceptional �nite subgroup of our simple Liegroup.Remark 5.2. Taking � = f1g in Remark 5.1 we arrive at the following curiousidentity by comparing two expressions for �-orbifold characters for each weight� and real number m:jf� 2 �+Qj(�j�) = mgj = X�2�+Q(�j�)=mY�>0 (� + �j�)(�j�) :6. Examples.6A Lattice current algebras for c = 1.The simplest (c = 1) case of a lattice current algebra is worth singling out forat least two seasons: (1) the basic �-functions encountered here also appear inthe SU(2) a�ne orbifold model; (2) the lattice part of a U(l) orbifold encounteredin a W1+1 theory is of this (U(1)�)type.A 1-dimensional lattice L = Z! is characterized by a single natural numberm = j!j2; we shall denote A(L; j!j2 = m) by A(m). Note that m is twice thedimension of the basic charged �elds Y (e�! ; z), while v(z) = m� 12!(z) is thecorresponding u(1) current (see Sect. 1B). The dual lattice is L� = Z!� where(!�j!) = 1) j!�j2 = 1m . The factor group L�=L is the cyclic group of order m;there are, correspondingly, m untwisted modules whose weights will be labeledby minimal length representatives(6.1) �!� 2 L�=L ; m� 12 � � � m2 ; � 2Z:The specialized character of the positive energy A(m)-module V� (of groundstate j�!�i) is given by (see [DFSZ] [PT])(6.2) K�(�;m) = 1�(� )�L�1(�; 0; 0) = 1�(� )Xn2Z qm2 (n+ �m )2 :This set spans a representation of SL(2;Z) in the case of a bosonic algebra (meven) and requires supplementing it with Ramond sector (Z2 twisted) modulescorresponding to half-odd integer �'s in the interval (6.1) form odd and splittingeach integer � character into two (corresponding to summing over even and oddn's in (6.2)).For m = 2s even the modular transformation law for K� is given, accordingto (3.15), by(6.3) K�(� + 1; 2s) = ei�(�22s � 112 )K�(�; 2s)



39(6.4) K���1� ; 2s� = 1p2s sX�=1�s e�i� ��s K�(�; 2s):Example 6.1. AZN-orbifold of A(m) is given by the chiral algebra A(N2m) (andits positive energy modules). If indeed we introduce the inner automorphism(6.5a) A(m) 3 A! UAU�1 ; U = e2�i!�0=N(6.5b) Ue!U�1 = e2�i=N e! (UJ(z)U�1 = J(z))(J being the u(1) current J(z) = Y (t�1 !pm ; z); !�0 = 1pmJ0, cf. Sect. 1B), thenthe vertex operators Y (e�N!; z) generate the gauge invariant subalgebra(6.6) A(m)ZN = A(N2m) :The Z2-orbifold of A(m) with m odd has an even gauge invariant subalgebraA(4m). The representation theory of A(m), m = 2�+1; � 2Z+, can be deducedfrom this remark.Example 6.2. Modular properties of characters of A(m = 2� + 1) derived fromthose for A(4m). The characters K�(�;m), m odd, � = 12Z mod m are ex-pressed in terms of K�(�; 4m) as follows:(6.7) K�(�;m) = K2�(�; 4m) +K2�+2m(�; 4m) :The periodicity relation(6.8) K�+m(�;m) = K�(�;m)allows to replace (if necessary) the indices in the right hand side of (6.7) by equiv-alent ones in the canonical interval (6.1). The resulting SL2(Z) transformationproperties of K�(�;m) then read(6.9a) K�(� + 1;m) = ei�� �2m � 112� �K2�(�; 4m) + (�1)2�+mK2�+2m(�; 4m)	K���1� ;m� = 1pm mX�=1�m(�2Z) e�2�i��=mK2�(�; 4m)= 1pm X� mod m e� 2�i��m K�(�;m) :(6.9b)Thus, for m odd, only the entire set of 4m characters K�(�; 4m) is closed underSL2(Z). The original set fK�(�;m); � 2 Z=mZg, corresponding to the Neveu-Schwarz sector of the supersymmetric theory, is however invariant under the



40subgroup of the modular group generated by T 2(� ! �+2) and S. It is remark-able that the diagonal partition function (in which we restore the dependenceon the u(1) variable z),(6.10) Z(�; z) = X� mod m��m(�; z)���m(�; z)where(6.11) ��m(�; z) =Xn q 12m (mn+�)2e2�izmn+�mis related to the Laughlin plateaus of the quantum Hall e�ect (correspondingto �lling factor � = 1m , charge nm and fractional spin J = n22m ; n 2 Z| see[CZ]). (The characters used in [CZ] di�er from (6.11) by a non-analytic factor,expf� �m (Imz)2Im� g corresponding to a modi�ed Hamiltonian and ensuring invari-ance under z ! z + � .)Example 6.3. Charge conjugation orbifolds. The involutive lattice conjugation(6.12) CL : e! ! e�! ; J ! �Jprovides, for m 6= 2, an example of an outer automorphism of the chiral algebraA(m). Our construction of orbifold modules does not apply, strictly speaking,to this case. Nevertheless, it is easy to construct a modular invariant set of CL-orbifold characters. We shall write them down for the bosonic (m = 2s, s 2 N)case.The CL-orbifold chiral algebra A(2s)CL is generated by a single primary �eld� = �(z; !) with respect to its A(S
1)CL subalgebra, the real part of the vertexoperator Y (e!; z): �(z; !) = 1p2 �Y (e! ; z) + Y (e�! ; z)	 :Here A(S
1) is the u(1) chiral current subalgebra corresponding to the subspaceS
1 (1.16). The operator product expansion of two �'s involves the stress energytensor T and the Virasoro primary �eld : J4(z) : that generates A(S
1)CL. Thechiral algebra splits into a CL-even and a CL-odd parts. The vacuum modulecharacter splits, accordingly, into two pieces:(6.13a) K0(�; 2s) = K+0 (�; 2s) +K�0 (�; 2s)where(6.13b) K�0 (�; 2s) = 12 fK0(�; 2s)� (K0(�; 8) �K4(�; 8))g :The di�erence ofZ2 twisted level 1 A(1)1 characters (that appears in parentheses)can be written in the form(6.13c) K0(�; 8) �K4(�; 8) = 1�(� )Xn (�q)n2 :



41Each pair of representations of weights ��!� of A(2s)(j!�j2 = 12s ) for 1 �� � s� 1 gives rise to a single representation of the gauge invariant subalgebraA(2s)CL . The charactersK�0 (6.13), being expressed in terms ofK�, have knownmodular transformation properties; in particular,K�0 (�1� ; 2s) = 12p2snK+0 (�; 2s) +K�0 (�; 2s) +Ks(�; 2s)+ 2 sX�=1K�(�; 2s)o � 1p2(K1(�; 8) +K3(�; 8)) :(6.14)Analyzing this relation together with the unitarity requirement for the S-matrixone concludes that there are altogether s + 7 inequivalent representations ofA(2s)CL (see [DV3]) corresponding to s + 3 untwisted and 4 twisted orbifoldmodules. The � = s A(2s)-module splits, in particular, into two A(2s)CL -modules with the same specialized character(6.15) 12Ks(�; 2s) = 1� 1Xn=0 qs(n+12 )2Similarly, there are two pairs of twisted representations with charactersKi(�; 8),i = 1; 3, each Ki appearing twice (with a coe�cient � 12p2) in (6.14).For s = 1 the model reduces to a Z2 a�ne orbifold. For s = 2; 3; 4 and 6it has been identi�ed with known models in [DV 3]. We conjecture that theseCL-orbifolds can be shown to exist for all values of s using the vertex operatorconstruction of Sect. 1A.6B. SU(2) orbifolds.The �nite subgroups of SU(2) being thoroughly studied,1 the Ak(su(2)) orb-ifold characters and their modular properties can be worked out quite explicitly.Noting that the Cartan subalgebra of su(2) is 1-dimensional we can expressits elements �; �; 
; � by (rational) numbers identifying each of them with thecoe�cient to �_1 = 12�3 (�j are the Pauli matrices | see (6.23)); thenj
 � �j2 = 12(2n+ �k � �)2 ; n 2Z; � = 1� k; : : : ; 0; 1; : : : ; k ;(
j�) = �n+ �2k�� ; �; � 2 Q :(6.16)The character (4.36), (3.18), (3.3) can be written in the form(6.17) ���;�b;�(� ) = kX�=1�k���22Z c�� (� )���;k;�(� ) ;1For a modern treatment based on the McKay correspondence | see [Kos].



42where(6.18) ���;k;�(� ) =Xn2Z q k4 (2n+�k��)2�2kn+� ;(6.19) �2kn+� = 1j�bj Xh2�btrh=2 cos�� ��(h)ei�(2kn+�)� :For b 6= 1 and non-exceptional, �b is abelian and h can be assumed diagonal.We have treated in Sects. 2, 3 and 6A the case of a ZN orbifold (as anautomorphism group of A(SU(2));ZN appears as a subgroup of SO(3); � inthis case should be identi�ed with its double cover Z2N � SU(2)). Each ZNautomorphism group leaves a u(1) (Cartan) current invariant. The remainingnon-abelian subgroups of SO(3) can be described as groups on two generators, sand t, obeying three relations:(6.20) sn1 = tn2 = (st)n3 = 1 ; 1n1 + 1n2 + 1n3 = 1 + 2jAd �j > 1(n1; n2; n3 are natural numbers and we denote the group unit by 1). The doublecover �(� SU(2)) of Ad � is again generated by two elements s and t but thegroup unit in the �rst relation (6.20) is replaced by the non-trivial central element" of SU(2):(6.21) s; t 2 �) sn1 = tn2 = (st)n3 = " ; "2 = 1(j�j = 2jAd �j) :Example 6.4. The H 8 � SU(2) orbifold. The abstract group of quaternion unitshas 8 elements, f1; "; qi; "qi; i = 1; 2; 3g; they obey multiplication rules q2i = ",q1q2 = q3 which �t (6.21) with n1 = n2 = n3 = 2. It corresponds (according toMcKay) to the a�ne Dynkin diagram D(1)4 (see [K1] Chap. 4, Table A� 1). Thedimensions of its non-trivial representations coincide with the coe�cients aj inthe expansion of the highest root � of D4 in terms of simple roots:(6.22) � = �1 + 2�2 + �3 + �4 :We shall denote the (equivalence classes of) irreducible representations (IR) ofIH8 by the simple roots �� of D(1)4 (�0 corresponding to the trivial representa-tion). Then �2 maps IH8 into a subgroup of SU(2):(6.23)�2(qj ) = 1i �j ; j = 1; 2; 3 ��1 = � 0 11 0� ; �3 = � 1 00 �1� ; �2 = i�1�3� :We reproduce in Table 1, for reader's convenience, the character table for � = IH8also indicating the centralizer �g of an element in each conjugacy class (CC).



43Table 1. � = IH8: characters and centralizers.IR-cc 1 " fq1; "q1g fq2; "q2g fq3; "q3g�0 1 1 1 1 1�1 1 1 1 �1 �1�2 2 �2 0 0 0�3 1 1 �1 1 �1�4 1 1 �1 �1 1�g � � Z4 Z4 Z4Using Table 1 and symmetrizing with respect to 2kn+� we compute the sum(6.19) for the untwisted characters (i.e., for �g = �, � = 0):(6.24) (�0)2kn+� = 18[1 + (�1)�][1 + 3(�1)kni�] ;(�j)2kn+� = 18[1 + (�1)�][1� (�1)kni�] ; j = 1; 3; 4 ;(�2)2kn+� = 14[1� (�1)�] :Inserting these expressions in (6.17), (6.18) we recover for k = 1 the characters(6.13) of the CL-orbifold for s = 4:(6.25a)k = 1 : �0;1;�0(� ) = 14�(� )Xn [1 + 3(�1)n]qn2 = K+0 (�; 8) ;�0;1;�j(� ) = 12�(� )Xn q(2n+1)2 = 12K4(�; 8) ; j = 1; 3; 4 ; m = 0; 1 ;�1;1;�2(� ) = (�1)m2�(� ) Xn q 14 (2n+1)2 = K2(�; 8)�= 12K1(�; 2)� ;where(6.25b) K+0 (�; 8) = K0(�; 8) � 12K4(�; 8) :



44 The characters of the Z2-twisted orbifolds are also computed from (6.17),(6.18) for � = 12 and �(q�j ) = i��(q�j ; � 2 Z=4Z is the general form of anelement of the centralizer Z4 of qj). Equation (6.19) then gives(6.26) �2kn+� = 14 X� mod 4 i2kn+���)� = 1 + (�1)���4 [1 + (�1)kni���] ;reproducing, for k = 1 the CL-twisted characters of A(8):(6.27) �0;�qj;0(� ) =Xn q 14 (4n�12 )2 = K1(�; 8) = �1;�qj ;1(� ) ; j = 1; 2; 3 ;�0;�qj;2(� ) = K3(�; 8) = �1;�qj;�1 :(We label throughout the irreducible representations of Z4 | and their charac-ters | by the exponents � = 0;�1; 2.)The number of inequivalent orbifold modules of a level 1 current algebra (fora simple g) is(6.28) N(� � G; k = 1) = 1jZjX�g�� j�̂gj :In the case at hand it is 12(5 + 5+ 3� 4) = 11 thus coinciding with the numbers+ 7 of CL-orbifold modules for s = 4.Equations (6.24) and (6.26) also allow to compute orbifold characters forhigher levels; in particular, for k = 2; g = 1, we obtain (expressing the stringfunctions c�� in terms of the branching coe�cients b�� = �lc�� , for a rank l g |see [K1] Sect. 12.12):(6.29a) ��;1;�0(� ) = 1�(� ) (b�0 (� )Xn q2n2 � 12b�2 (� )Xn q 12 (2n+1)2)= b�0 (� )K0(�; 4)� 12b�2 (� )K2(�; 4) ; � = 0; 2 ;(6.29b) ��;1;�j (� ) = 12b�2 (� )K2(�; 4) ; j = 1; 3; 4 ; � = 0; 2 ;(6.29c) �1;1;�2(� ) = b11(� )K1(�; 4) (since b�� = b���) :Similarly, using (6.26), we can evaulate the twisted characters. For those per-muted by the action of the centre we �nd(6.30a) �0;�qj;0(� ) = b00(� )K1(�; 4) = �2;�qj;2(� ) ;�2;�qj;0(� ) = b20(� )K1(�; 4) = �0;�qj;2(� ) ; j = 1; 2; 3 :



45The remaining twisted characters are split by the action of the centre, and weonly obtain their sums:(6.30b) �+1;�qj ;1(� ) + ��1;�qj;1(� ) = b11(� )K0(�; 4) ;�+1;�qj;�1(� ) + ��1;�qj;�1(� ) = b11(� )K2(�; 4) :Here the branching coe�cients can be expressed in terms of the Virasoro char-acters ��(�; c) of the Ising model (corresponding to c = 12 ;� = 0; 116 ; 12 ):(6.30c) b00(� ) = b22(� ) = �0��; 12� ;b20(� ) = b02(� ) = � 12 (�; 12) ;b11(� ) = b1�1(� ) = � 116 ��; 12� :It follows from (6.29) and (6.30) that there are 2�4+1 = 9 untwisted and 3�6 =18 twisted level 2 orbifold modules or altogether 27 A2(su(2))IH8-representations.Example 6.5. Group theoretic S-matrix and fusion rules for IH8 � SU(2) andfor IH8 � SU(2) � E8. The simply connected compact group E8 is singled out(among the Lie groups with simple simply laced Lie algebras) for having a trivialcentre. The corresponding current algebra has a single level 1 representation,the vacuum A1(E8) module; the modular S-matrix is then the identity operator(multiplication by 1). Hence, if � is a (non-exceptional) �nite subgroup of E8then the � � E8 group theoretic S-matrix coincides with the A1(E8)� orbifoldS-matrix. The possiblity to embed the pair IH8 � SU(2) in E8 thus provides anadditional justi�cation for the study of the group theoretic S-matrix per-se.We observe that the S-matrix elements depend on both the Lie group Gcontaining the pair IH8 � SU(2) and on the level of embedding of SU(2) in Gwhich is de�ned as follows. Let the bases in su(2) and g be chosen in such away that the Cartan generator H of su(2) is expressed as a linear combinationof the Cartan generators Hi with non-negative integer coe�cients mi : H =Pli=1miHi. Then the integers mi satisfy the quadratic relation12 lXi;j=1miaijmj = lXj=1mj =: N ;where, for a simply laced g; (aij ) is its Cartan matrix. The positive integer N isthe level of embedding of su(2) in g.For a level 1 embedding the S-matrix elements involving at least one non-exceptional entry are independent of G. In the case of H 8 the phase factor in(4.25) for a non-exceptional b and an arbitrary g is only non-trivial if both b andg belong to the same conjugacy class qj . We shall then set(6.31)�("mq3) = (�1)m�14 �3 ) expf�2�ik(�("mqj)j�("nqj))g = exp�(�1)m+n k�4i �



46Omitting the upper index � on S (for this �xed choice) we obtain(6.32a) 4S"m��;�qj� = (�1)m���(qj)(6.32b)2S�qj�;�qj�0 = i�+�02 ne�i k�4 + (�1)�+�0ei k�4 o = cos��� + �0 � k2� �2� :(In computing the sum in the 2 elements b = �qj of the conjugacy class �qj in theexpression (4.25) for S it is important to change at the same time � accordingto (4.12). This yields (6.32b).)The only G dependence appears if the central element " of � is present inboth entries:(6.33a) 8S"m��;"n�� = pmnk" (�1)n��2+m��22��2+��2 ; p" := e�2�ij�(")j2 ;where �(") = 0 if G = SU(2), or, more generally, if it is an exceptional elementof � � G, while(6.33b) p" = �1 if ��(") = �"(in a level 1 embedding). It turns out that the fusion rules involving a pair ofqj and an " are integer i� " is a regular element of � � G (i.e., if (6.33b) takesplace). Indeed we haveN�qj�1;�qj�2;1�� = 1 + (�1)�1+�2+��24 ��(1) + ��(qj)2 cos��1 � �22 ;which is a k independent non-negative integer, butN�qj�1;�qj�2;"�� = 1 + pk"(�1)�1+�2+��24 ��(1) + ��(qj )2 cos�k � �1 � �22 ��which is only integer for odd k if p" = �1.Remark 6.1. Equation (6.33b) always takes place for a level 1 embeddingSU(2) � E8. In spite of the fact that " is an involution ("2 = 1) and ev-ery involution in E8 is exceptional (as a consequence of the description of �-nite order automorphims of a simple Lie algebra presented in Appendix B) "is not exceptional in � � SU(2) � E8 whenever SU(2) is generated by a pairof opposite roots of E8 | which is always the case (up to conjugation) for alevel 1 embedding. In other words (E8)�(") is strickly smaller than (E8)" butSU(2) \ (E8)�(") = SU(2) \ (E8)". By contrast, for the maximal embeddingSU(2) � E8 given by E = 8Xi=1 E�i ; H = 2� ;



47" is exceptional in � � E8. However, the level of this embedding,N = 2(�j�) = g_ dimE8=6 = 1240 ;is divisible by 4, hence the group theoretic fusion rules (with �(") = 0 = 1� p")coincide with those of the Grothendieck ring proven to be non-negative integersin [Lus1]. We have an exceptional subgroup � � SO(3) � E8 in this case. Theimage of any 4-th order element of ~� � SU(2) is an involution whose centralizerin SO(3) is disconnected (see the discussion at the end of Appendix B). It islikely that at least in the case when orders of all elelments of � divide N thecorresponding twisted orbitold modules do exist and the resultuing modular S-matrix consider with the one for the Grothendieck ring. To compute the fusionrules for the Ak(SU(2))� orbifold we shall use the (non-factorizable) jX j � jX jS-matrix of the full theory.For the level 1 orbifold ordering the states as (�;�b; �) = (0; 1; �� ); � = 0; 1; 3; 4,(1; �1; �2), (0; �qj ; 0)(' (1; �qj ; 1)); (1; �qj ;�1)(' (0; �qj ; 2)); j = 1; 2; 3, we can writethe 11� 11 S-matrix as2p2S = 266666666666666664
12 12 12 12 1 1 1 1 1 1 112 12 12 12 1 1 1 �1 �1 �1 �112 12 12 12 1 �1 �1 1 1 �1 �112 12 12 12 1 �1 �1 �1 �1 1 11 1 1 1 �2 0 0 0 0 0 01 1 �1 �1 0 p2 �p2 0 0 0 01 1 �1 �1 0 �p2 p2 0 0 0 01 �1 1 �1 0 0 0 p2 �p2 0 01 �1 1 �1 0 0 0 �p2 p2 0 01 �1 �1 1 0 0 0 0 0 p2 �p21 �1 �1 1 0 0 0 0 0 �p2 p2

377777777777777775 :The resulting fusion rules di�er, in general, from the group theoretic ones evenfor admissible entries. We have, for instance,N0�qj0;��qj��;11�2 = 1 for � = 0; 1 ; while N�qj0; �qj � �; �1�2 = 1 + (�1)1��2 ;N0�qj0;1�qj�1;0�1�� = 1� ��(qj )2 for � 6= 2 :while N�qj0; �qj � 1; 1�� = 0 for � 6= 2 :Example 6.6. The A2(su(2))H 8 orbifold and its Cli�ord algebra extension. Thestudy of level 2 SU(2)-orbifolds is simpli�ed by the observation that A2 �A2(su(2)) is the even part of the Cli�ord algebra Cl3 of 3 anticommuting Major-ana-Weyl spinor �elds  j (z), j = 1; 2; 3. Indeed, the � = 2 A2-module is gen-erated by an \isotopic triplet" of primary �elds of dimension �� = 14h�(� + 2)(for � = k = 2; h = k + 2 = 4), the Virasoro central charge being c = 3 kh = 32 .The �elds  j (z) are single-valued in the vacuum (Neveu-Schwarz) sector andsatisfy the canonical anticommutation relations (and hermiticity)[ i(z);  j (w)]+ = �ij�(z �w) ;  �j =  j ; i; j = 1; 2; 3 :



48The Z2 graded algebra Cl3 (with odd generators  j(z)) provides a superconfor-mal extension of A2 whose SU(2) invariant subalgebra is generated by the � = 32partner(6.34a) G(z) = i 1(z) 2(z) 3(z)(= G�(z))of the stress energy tensor(6.34b) T (z) = T1(z) + T2(z) + T3(z) ; Tj(z) = 14 : [@ j(z);  j (z)]which can be viewed a as composite of two G-�elds. The generator G(z) of thesuper-Virasoro algebra is a primary �eld with respect to T but not with respectto A2; its commutator with a Cartan current is[J(z); G(w)] = �0(z � w) 3(w) for J(z) = �i 1(z) 2(z) :It intertwines the � = 0 and � = 2 Neveu-Schwarz modules mapping the � = 1Ramond sector into itself.Each subgroup � of SU(2) acts on Cl3 by automorphisms which form theadjoint group(6.35) Ad� = �=Z2 � SO(3) ; for � = H 8 ; Ad� =Z2�Z2 :In the (orthonormal SO(3)) basis f jg the non-trivial elements Ej = �2(qj )of Z2�Z2 act as diagonal matrices:(6.36) E1 = 0@ 1 0 00 �1 00 0 �11A ; E2 = 0@�1 0 00 1 00 0 �11A ; E3 = E1E2 :The Ad�(=Z2�Z2) invariant subalgebra Cl�3 (� = H 8 ) of the Cl3 superalgebrais generated by G and by the individual stress-tensors Tj of the 3 \Ising mod-els" (associated with each  j) | see (6.34b). The 3 commuting (� = 2) �eldoperators Tj (z) give rise to the even part A�2 of this superalgebra. Its positiveenergy representations are tensor products of irreducible representations of the3 (minimal) Ising models. There are, as expected, 33 = 27 such A�2 orbifoldmodules. In particular, the characters of the �xed point modules split into asum of two irreducible characters:�1;�qj;1(� ) = b11(� )K0(�; 4) = b11(� )�[b00(� )]2 + [b20(� )]2	 ;�1;�qj;�1(� ) = b11(� )K2(�; 4) = 2b11(� )b20(� )b00(� ) :(6.37)The asymptotic dimensions of b11(b�0 )2 for � = 0; 2 indeed coincide, (the quan-tum dimension of the (c = 12 ;� = 12 ) module being 1. Here we have used the



49expression (6.30) of the Ising model characters in terms of the branching coef-�cients. The remaining orbifold modules are identi�ed in the tensor product(�1;�2;�3)(�i = 0; 116 ; 12 ) of three Ising modules as follows:(0; �1; �0) = (0; 0; 0) (2; 1; �0) = �12 ; 12 ; 12�(0; �1; �1) = �0; 12 ; 12� (2; 1; �1) = �12 ; 0; 0�(0; �1; �3) = �12 ; 0; 12� (2; 1; �3) = �0; 12 ; 0�(0; �1; �4) = �12 ; 12 ; 0� (2; 1; �4) = �0; 0; 12�(1; �1; �2) = � 116 ; 116 ; 116�(0; �q1; 0) = �0; 116 ; 116� (2; �q1; 0) = �12 ; 116 ; 116�(0; �q2; 0) = � 116 ; 0; 116� (2; �q2; 0) = � 116 ; 12 ; 116�(0; �q3; 0) = � 116 ; 116 ; 0� (2; �q3; 0) = � 116 ; 116 ; 12� ;(6.38a)the reducible (�xed point) modules with characters (6.37) split according to thelaw (1; �q1; 1) = � 116 ; 0; 0�+� 116 ; 12 ; 12�(1; �q1;�1) = � 116 ; 12 ; 0�+� 116 ; 0; 12� ; etc.(6.38b)The AH 82 S-matrix is the tensor product of 3 Ising model S-matrices of the form(6.39) SIsing = 12 0@ 1 p2 1p2 0 �p21 �p2 1 1A :We note that while S1�q1�;1�q2�0 = 0 according to (4.25) (since the conjugacyclasses �q1 and �q2 do not contain commuting elments) the corresponding splitS-matrix elements do not vanish:�S 116�2�3;�01 116�03� = 14 0B@ 1�1�1 1�1 1 1�1�1 1 1�11�1�1 11CA ;(�i;�j) = (0; 0);�12 ; 12� ;�12 ; 0��0; 12� :(6.40)



50Note that the sum of A�2 -modules in each line of equation (6.38) is irreduciblewith respect to the conformal superalgebra Cl�3 . The characters of the subsetof Neveu-Schwarz modules spanned by the direct sum of � = 0 and � = 2representations give rise to a 7-dimensional representation of the subgroup �0(2)of SL2(Z) generated by T 2 and S. In particular, the Neveu-Schwarz S-matrixis(6.41) SNS = 14 0BBBBBBB@ 1 1 1 1 2 2 21 1 1 1 2�2�21 1 1 1�2 2�21 1 1 1�2�2 22 2�2�2 0 0 02�2 2�2 0 0 02�2�2 2 0 0 01CCCCCCCA :The importance of this example stems from the fact that it has a bearing on otherSU(2) orbifold models. The three conjugacy classes of imaginary quaternionunits f�qj ; j = 1; 2; 3g of H 8 combine in a single 6-element conjugacy class inthe binary tetrahedral group ~A4 which in turn is a part of a 12-element conjugacyclass of the binary octahedral group ~S4 and of a 30 element class of the binaryicosahedral group ~A5. Here Sn is the permutation group of n letters, An is itsalternating invariant subgroup, ~G � SU(2) denotes, in general, the double coverof a subgroup G of SO(3). In all three cases the centralizer �qj of an element qjof this conjugacy class is Z4. Hence, the reducible character �1�qj� is the samefor all three orbifold modules and splits in the same way | according to (6.37)| for all three binary polyhedral groups. There are no other conjugacy classes �bin either ~A4 or ~A5 such that both b and "b belong to �b. Futhermore, for all �niteSU(2) subgroups � the Neveu-Schwarz module of Cl�3 contain no �xed pointsand give rise to a �0(2)-invariant subset of characters. Furthermore, a similarargument extends to a level n representation of SU(n) which also involves �xedpoints of the action of the centre. Indeed, there is a conformal embeddingAn � An(su(n)) � A1(spin(n2 � 1))�c = 12(n2 � 1)�allowing to extend an A�n orbifold to a Cl�n2�1-orbifold.The k = 1 tetrahedral ( ~A4 � SU(2)) orbifold and its fusion rules are displayedin [DV3]. The octahedral ( ~S4 � SU(2)) and the icosahedral ( ~A5 � SU(2))orbifolds can be studied with equal ease. We shall reproduce in Table 2 for alater reference the character table for the 120 element binary icosahedral group~A5 (associated with E(1)8 under the McKay correspondence).Equation (6.28) implies: N( ~A5 � SU(2); k = 1) = 12 (9�2+10�4+6�2+4) =37. It is a straightforward exercise to write down, using Table 2, the charactersof A1(su(2)) ~A5 .



51Table 2. Characters of A5 = ~A5=Z2 and of its double cover � = ~A5.cc-IR 1 fp; p4g fp2; p3g ft; t2g E = �2(q)�0 1 1 1 1 1�2 3 x+ x� 0 �1�4 5 0 0 �1 1�6 4 �1 �1 1 0�8 3 x� x+ 0 �1(A5)g A5 Z5 Z5 Z3 Z2�Z2cc-IR 1 " p p4 p2 p3 t t2 q�1 2 �2 x+ �x+ �x� x� 1 �1 0�3 4 �4 1 �1 �1 1 �1 1 0�5 6 �6 �1 1 1 �1 0 0 0�7 2 �2 x� �x� �x+ x+ 1 �1 0�g � = ~A5 Z10 Z10 Z6 Z4A5 = �2( ~A5), x� = 1�p52 , � = �1( ~A5) ' ~A5, p5 = t3 = q2 = ",�E8 = 2(�1 + �7) + 3(�2 + �8) + 4(�3 + �6) + 5�4 + 6�5.



52 6C. A level 1 SU(3) orbifold. Charge conjugationassociated with a non-abelian centralizer.We shall consider the subgroup � of SU(3) of order j�j = 1080 which is a non-trivial central extension of the simple alternating group A6 : 1 ! Z3 ! � !A6 ! 1. It is generated by the (60 element) isoahedral group A5 � SO(3) and byone more element of order 2. In a basis in which a selected Z2�Z2 subgroup ofA5 (see Table 2) is generated by any two of the matrices Ei (= �2(qi), i = 1; 2; 3)given by (6.36) while the generators of its Z3 and Z5 subgroups are chosen as(6.42) t = 12 0@x� 1 �x+1 x+ �x�x+ x� �1 1A ; p = 12 0@�x� 1 �x+�1 x+ �x�x+ �x� 1 1A ;where t3 = p5 = (tp)2 = 1, tp = E2, and the additional involutive generator E4of � is given by (!2 + ! + 1 = 0):(6.43) E4 = �0@ 0 ! 0�! 0 00 0 11A ; E24 = 1 = (E3E4)2 :It is the 360 element factor group A6 = �=Z3 that acts by non-trivial automor-phisms on the su(3) current algebra. There are 17 conjugacy classes of � versus7 of A6. Both are listed in the combined character table below (see Table 3).We observe that to each of the �rst 5 conjugacy classes in A6 correspond 3such classes (of the same size) in � while the last two are mapped into classesof triple size: j�t�j = 3j�tA6 j = 3 � 40(= j�t0�j). The essential di�erence betweenA6 = �=Z3 and the subgroups �=Z2 of SO(3) is the presence of elements E(2 �E)with a non-abelian centralizer �8. Table 4 is its character table (E5 = E3E4,q = E4E2, q3 = E2E4).We note that the centralizer Z4 of q in A6 is a normal subgroup of �8.There are (according to (6.28)) altogether 13P�g�� j�̂gj = 17 + 3:15 + 12 +3 + 3 = 80 level 1 � � SU(3) orbifold modules. Although it is not practical towrite down the 80�80 S-matrix, one can extract the relevant information aboutE-twisted orbifolds.The multipliers �(hjP�i) give rise to a new notion of conjugation wheneverthe class �E of involutions labels a sector. To display this fact we �rst observe thatthe set of (45)2 pairs (E;E0) splits into 9 di�erent orbits displayed in Table 5.The stabilizer �E;E0E of the pair E;E0E in � is the direct product of the cen-tral subgroupZ3 with the above �(0)E;E0E � A6. To verify the data of Table 5 oneneeds to construct a representative pair in each orbit. The number of elementsof such an orbit is jA6j = 360 devided by j�(0)E;E0E j. For instance, the orbit O�p isobtained by conjugation of the pair (Ep; E1) whereEp = p�1E3p = 12 0@�x� 1 x+1 �x+ �x�x+ �x� �1 1A ;E1Ep = E2p�1E2 2 �p  x� = 1�p52 ! :



53We shall now prove that the oppositely ordered pairs (E2; E4) and (E4; E2)belong to di�erent orbits O�q although they belong to the same SU(3) orbit. Tothis end we construct the most general u 2 SU(3) such that(6.44a) uE2u� = E4 ; uE4u� = E2 ;it is given by a 2(real) parameter family.(6.44b)u =0@ u1 u2 0���u2 ��u1 00 0 ��1A with j�j2 = 2ju1j2 = 2ju2j2 = 1 ; 2��u1u2 = �! :Table 3. Â6 � �̂: Zero versus non-zero triality representationsTable 3a. Â6.IR-cc 1 E(E2 = 1) q(q2 2 E) p(p5 = 1) p2 t(t3 = 1 = t03) t01 1 1 1 1 1 1 15 5 1 �1 0 0 2 �150 50 1 �1 0 0 �1 28 8 0 0 x+ x� �1 �180 80 0 0 x� x+ �1 �19 9 1 1 �1 �1 0 010 10 �2 0 0 0 1 1(A6)g A6 �8 Z4 Z5 Z5 Z23 Z23



54 Table 3b. �̂.IR-cc 1 ! !2 E !E !2E q !q !2q p !p !2p p2 !p2 !2p2 t t03! 3 3! 3!2 �1 �! �!2 1 ! !2 x+ !x+ !2x+ x� !x� !2x� 0 03�! 3 3!2 3! �1 �!2 �! 1 !2 ! x+ !2x+ !x+ x� !2x� !x� 0 030! 3 3! 3!2 �1 �! �!2 1 ! !2 x� !x� !2x� x+ !x+ !2x+ 0 030�! 3 3!2 3! �1 �!2 �! 1 !2 ! x� !2x� !x� x+ !2x+ !x+ 0 06! 6 6! 6!2 2 2! 2!2 0 0 0 1 ! !2 1 ! !2 0 06�! 6 6!2 6! 2 2!2 2! 0 0 0 1 !2 ! 1 !2 ! 0 09! 9 9! 9!2 1 ! !2 1 ! !2 �1 �! �!2 �1 �! �!2 0 09�! 9 9!2 9! 1 !2 ! 1 !2 ! �1 �!2 �! �1 �! �!2 0 015! 15 15! 15!2 �1 �! �!2 �1 �! �!2 0 0 0 0 0 0 0 015�! 15 15!2 15! �1 �!2 �! �1 �!2 �! 0 0 0 0 0 0 0 0�g � Z3� �8 Z12 Z15 Z15 Z23 Z23jgj 1 45 90 72 72 120 120It remains to prove that this family of 3� 3 matrices does not intersect ourgroup �. To this end we note that j tr(u + uE1)j = j2u1j = p2; a glance atTable 3 tells us that this cannot be the case for u 2 �. It turns out that thesame 2-parameter family of u's is the most general subset of SU(3) elements thattransforms the two O �E orbits among themselves:(6.45) uE3u� = E3 ) uE1u� = uE2E3u� = E4E3 = E5 :This completes the proof that each of the two pairs of representatives in the lastcolumn of Table 5 belongs to a di�erent �-orbit. We �nally note that the sumof all jO�gj(4:360 + 2:180 + 2:90 + 45) adds up, as it should, to (45)2 = 2025.



55Table 4. Characters of �8 = �E3 � A6.IR-cc 1 E3 E1; E2 E4; E5 q; q310 1 1 1 1 111 1 1 1 �1 �112 1 1 �1 1 �113 1 1 �1 �1 12 2 �2 0 0 0�E3;g �8 �8 Z2�Z2 Z2�Z2 Z4Proposition 6.1. The charge conjugation matrix (4.27) for the A1(su(3))� orb-ifold involves a non-trivial involution � ! �c for b 2 E, � 2 �̂E :(6.46) C�0E3�;�0E3�0 = ��0�c ; �c = �� 
 �E ; �E = e2�i(2�3j�(h))where �E =Z3� �8, �� = � (i.e., �(!h) = �(h) for h 2 �E),�i = �(Ei) : �3 = 12 0@ 1 0 00 1 00 0 �21A)�1 = 12 0@�2 0 00 1 00 0 11A ; �2 = 12 0@ 1 0 00 �2 00 0 11A ;�45 == 14 0@ �1 �3! 0�3�! �1 00 0 21A :(6.47)
Proof. The statement is a straightforward consequence of (4.27) (Theorem 4.3e)and of the observation that �3 = �(E3) = �(E�13 ). The representation � istrivial on Z3 (and hence, selfconjugate; see Table 4), since it has to agree withthe representation �0 = 0 of SU(3) on the small center. �Remark 6.2. The appearance of a non-trivial conjugation depends on the choiceof a representative in a class of equivalent quadruples. Had we chosen instead of



56 Table 5. Orbits O(i)E0E of pairs (E;E0) � �Eand their stabilizers (i = 1; 2):CC of E0E �(0)E;E0E � A6 ���O(i)E0E��� Representative pairsE0E = 1(E = E0) �8 45E0E = EE0 2 �E Z2�Z2 ���O(i)�E ��� = 90 ; O(1)�E = O(E1; E2) ;i = 1; 2 O(2)�E = O(E5; E4)E0E 2 �q Z2 ���O(i)�q ��� = 180 ; O(1)�q = O(E2; E4) ;i = 1; 2 O(2)�q = O(E4; E2)E0E 2 �pn ; n = 1; 2 f1g 360E0E 2 �t or �t0 f1g 360the involution element E3 2 �E a representative of a minimal phase like �!E3 2!2 �E for which(6.48) ~�3 := �(�!E3) = 16 0@�1 0 00 �1 00 0 21A so that j~�3j2 = 16 �= 19 j�3j2� ;then we would have dealt with complex representations since(6.49a) ��3�0; �E;�(� ) = �~�3�2;!2 �E;�2(� ) with �2(h) = �(h)e2�i(�2 j�)where �2 is the fundamental weight of the \antiquark" representation 3�,(6.49b)�2 = 23 0@�1 0 00 �1 00 0 21A = ~�3 � �3 ; h = e2�i� ; [�;�2] = 0(= [�; �3]) :The charge conjugation matrix in these new labels would assume its usual formwith non-zero entry(6.50) C�2b�2;��2b�1��2 = 1 ; b 2 !2 �E ; b�1 2 ! �E :



57I.T. acknowledges the support of a Fulbright grant 19684 and the hospitality of the Depart-ment of Mathematics at M.I.T. during the course of this work. Both authors acknowledge thehospitality of the Erwin Schr�odinger International Institute for Mathematical Physics wherethis paper was completed. The authors thank Bojko Bakalov who took part in the computa-tions of the S matrix and the associated fusion rules presented in Sect. 6B.Appendix A. Action of the center of a simply connectedsimple Lie group on the coroots and fundamental weightsWe shall display the action of wj for the classical Lie algebras as well as forE6 and E7 (the simply connected groups with Lie algebras G2; F4 and E8 havea trivial center). We let ~J = J [ f0g, a0 = a_0 = 1.A1. Simply laced algebras (�_i = �i; a_i = ai).The center Zl+1 of SU(l + 1) acts on both the (co) roots and weights of A(1)lvia cyclic permutations:w1(�0; �1; : : : ; �l) = (�1; �2; : : : ; �l:�0) ; wj = wj1~w1(~�0; ~�1; : : : ; ~�l) = (~�1; ~�2; : : : ; ~�l; ~�0) ; wl+11 = 1 :(A.1)Here ~�� are the extended fundamental weights(A.2) ~�� = d+�� + ��Kchosen to have equal norm squares:(A.3) j~��j2 = 2�� + �(l + 1� �)l + 1 = 2�0 :The set ~J consists of all indices 0; 1; : : : ; l. The element w1 is a Coxeter element ofthe �nite Weyl groupW (Al) = Sl+1. In terms of the elementary Weyl re
ectionssi it is written as:(A.4) w1 = s1 : : : sl ) w1�j = �j � �1 � � � � � �j :The center of the simply connected group Spin (2l) with Lie algebra Dl isZ2�Z2 for l even andZ4 for l odd. To exhibit its action on roots and weights ofD(1)l it is convenient to use an orthonormal basis feig in the l dimensional rootspace of Dl setting(A.5) �i = ei� ei+1 ; i = 1; : : : ; l� 1 ; �l = el�1+ el ; �0 = K � e1� e2 ;(A.6) �i = iXs=1 es ; �l�1 = �l � el ; �l = 12 lXi=1 ei :



58The set ~J of indices � for which a� = 1 consists of 4 elements: 0; 1; l � 1; l.Writing again(A.7a) ~�� = a�d+�� + ��Kwe restrict �� demanding that the norm squares of ~��(� 2 ~J) coincide:(A.7b) j~�0j2 = 2�0 = j~�j j2 = 1 + 2�1 = l4 + 2�l�1 = l4 + 2�l :We shall �rst determine the �nite part wl of ~wl de�ned by wl�0 = wl(��) = �land hence (being a permutation of ��; � 2 ~J), wl�1 = �l�1. As a consequenceof invariance of inner products we further deduce wl�i = �l�i; i = 1; : : : ; l � 2;hence, in view of (A.5),(A.8a) wlei = �el+1�i ; i = 1; : : : ; l � 1 ;wlel is then determined from the condition that an element of W (Dl) shouldinvolve an even number of re
ections:(A.8b) wlel = �(�1)le1As a result, we have w2l = w1 for l odd, w2l = 1 for l even; in both cases �w21 = 1;(A.9) w1(e1; e2; : : : ; el�1; el) = (�e1; e2; : : : ; el�1;�el)The corresponding permutations of fundamental weights are~wl~�0 = ~�l ; ~wl�1~�1 = ~�l�1 ; ~wl~�l�� = � ~�� for l even~�1�� for l odd � = 0; 1 ;~w1~�0 = ~�1 ; ~w1~�l = ~�l�1 ; ~w21 = 1 ; ~wl�1 = ~w1 ~wl :(A.10)The center of the group E6 is Z3. Choosing a basis of simple roots of E6 insuch a way that the highest root is � = �2 + �4 + 2(�1 + �3 + �5) + 3�6 wehave ~J = f0; 2; 4g. The center acts on an arbitrary weight � according to thelaw ~wj� = k�j + wj�, j = 2; 4, where(A.11a)w2(��; �1; �2; �3; �4; �5; �6) = (�2; �3; �4; �5;��; �1; �6) ; w22 = w4(A.11b) w2�2 = �4��2 = 13(�5 ��3 +2�4� 2�2)) ~w2~�2 = ~�4 ; w32 = 1 :Here we have used the expressions for the fundamental weights in terms of simpleroots:�2 = �1 + 13(4�2 + 5�3 + 2�4 + 4�5 + 6�6) ;�4 = �1 + 13(2�2 + 4�3 + 4�4 + 5�5 + 6�6) ; �j�2j2 = j�4j2 = 43�



59as well as the relations ~�� = d+�� + ��K withj~�0j2 = j~�2j2 = j~�4j2 ) 2�0 = 43 + 2�2 = 43 + 2�4 or �2 = �4 = �0 � 23 :The center of E7 is Z2. Choosing a basis of simple roots of E7 such that thehighest root is � = �6+2(�1+�5+�7) +3(�2+�4) +4�3, we have ~J = f0; 6g.The non-trivial element of the center is ~w6 = t6w6 where(A.12a) w6(��; �1; �2; �3; �4; �5; �6; �7) = (�6; �5; �4; �3; �2; �1;��; �7)(A.12b)w6�6 = ��6 ) ~w6~�6 = ~�0 for �6 = �1+2�2+3�3+2�5+ 12(5�4+3�6+3�7) :Here again ~�� = d+�� + ��K where j~�6j2 = 2�6 + 32 = 2�0.A2 Z2 action on Bl and Cl.The simple roots, the highest root and the fundamental weights of Bl can bewritten in an orthonormal basis feig as�i = ei � ei+1 ; i = 1; : : : ; l � 1 ;�l = el ; � = �1 + 2(�2 + � � � + �l) = e1 + e2�i = iXs=1 es ; i = 1; : : : ; l :(A.13)The centerZ2 of the simply connected group Spin (2l+1) acts on (�0 = K��; �i)and on (�0;�i) as ~w1 = t1w1 where(A.14a) w1(e1; e2; : : : ; el) = (�e1; e2; : : : ; el)(A.14b)t1�_ = �_ � (�_ j�1)K for �_ 2M ; t1~�� = ~�� + (~�� jK)~�1 for ~�� 2M� ;thus t1w1�0 = t1(K + �1) = �1 ; w1�i = �i = t1w1�i for i = 2; : : : ; l ;t1w1�0 = t1(��) = �� +K = �0 ;t1w1~�0 = t1 ~�0 = ~�0 + ~�1 ;t1w1(~�0 + ~�1) = t1(~�0 � ~�1) = �0 � �1 +�1 = �0The simple roots, the highest root and the fundamental weights for Cl areexpressed as �i = 1p2(ei � ei+1) ; i = 1; : : : l� 1 ;�l = p2el ; � = 2 l�1Xi=1 �i + �l = p2e1�i = p2 iXs=1 es ; i = 1; : : : ; l � 1 ; �l = 1p2 lXs=1 es :(A.14)



60The non-trivial element ~wl = tlwl of the center Z2 of Sp(2l) acts on theseorthonormal basis ei as(A.16) wl(e1; e2; : : : ; el�1; el) = (�el;�el�1; : : : ;�e2;�e1) ;hence(A.17a) wl(��; �1; : : : ; �l) = (�l; �l�1; : : : ; �1;��) ;~wl~�0 = ~�l(= d+�l + �lK) ; wl�l = ��l ) ~wl~�l = ~�0�j~�0j2 = 2�0 = j~�lj2 = 2�l + l2� :(A.17b)Appendix B. Exceptional elements of a compact Lie group.Let G be a connected compact Lie group with a simple Lie algebra g ofrank l, and let AdG denote the adjoint group. An element g 2 G is called ad-exceptional if it cannot be written in the form g = exp 2�i�, where � 2 ig issuch that Adgx = x i� [�; x] = 0 for all x 2 g. Note that an element g 2 G isAd-exceptional i� it is ad-exceptional or its centralizer in G is not connected.(Recall that in a simply connected G the centralizer of any element is connected.)In this Appendix we classify ad-exceptional elements of �nite order of the groupAdG.The �nite order inner automorphisms of the simple Lie algebra g belong toAdG and can be described as follows (see Theorem 8.6 and Proposition 8.6bof [K1]).Proposition B.1. Each order N inner automorphism of g is conjugate to(B.1) Adb(s) ; b(s) = exp 2�i�(s) ;where(B.2) �(s) = 1N lXj=1 sj�_jand s0; sj ; j = 1; : : : ; l are relatively prime non-negative integers such that:(B.3) s0 + lXj=1 ajsj = N :Here �_j are the fundamental co-weights:(B.4) (�ij�_j ) = (�_i j�j) = �ij ; i; j = 1; : : : ; l :



61Proposition B.2. The centralizer of Adb(s) in g is generated by the E��� ,� = 0; 1; : : : ; l, for which s� = 0 and by the Cartan subalgebra.According to De�nition 4.1 an element b 2 � is exceptional if there is no � 2 gsuch that(B.5) b = e2�i� and �b = �� :As noted, G = U(l) has no exceptional elements. By contrast, for each partitionof the positive integer n � 2 of the type(B.6) n = k1 + � � � + k� ; kmin = min(k1; : : : ; k�) = 2there are exceptional elements of SU(n) conjugate to diagonal matrices with kjeigenvalues exp(2�i �jN ), j = 1; : : : ; �, where the �j are subject to the conditions:(i) (�1; : : : ; ��;N) = 1 (i.e. these � + 1 integers have no common factor) andPj kj�j = kN with 1 � k < kmin. For n = 2; 3 all such elements belong tothe center Zn of SU(n). More generally, for any n, one can �nd an element� 2 Zn such that g = b� is non-exceptional. (In the above example it su�ces tochoose � = exp(�2�i kn).) This agrees with the remark (of Sect. 4B) that SU(n)contains no exceptional subgroups.Recall that an element b 2 G is Ad-exceptional if b� is exceptional for anychoice of � 2 Z(G). The following theorem describes all �nite order ad-excep-tional elements of AdG (for a simple g), and hence all �nite order Ad-exceptionalelements of a simply connected G.Proposition B.3. The �nite order automorphism Adb(s) is ad-exceptional i�the marks a� with s� > 0 have a non-trivial common factor.Proof. It follows from Proposition B.2 that it su�ces to study the commutatorof �(s) with E�� for those �(= 0; : : : ; l) for which s� = 0.This commutator is trivial for j = 1; : : : ; l and sj = 0 since Eqs. (B. 1-4)imply(B.7) [�(s); E�j ] = (�j j�(s))E�j ; (�j j�(s)) = sj = 0 :Thus Adb can only be ad-exceptional if s0 = 0; in this case(B.8) [�(s); E�0 ] = [�(s); E��] = �s0N � 1�E�0 = �E�0 :This is still not su�cient to assert that Adb is ad-exceptional since �(s) is notunique: we can add to itPli=1mi�_i for mi 2Zwithout changing the automor-phism. That would give[�(s) +Xi mi�_i ; E��] =0B@�1�Xisi 6=0 aimi1CAE��



62which can be made zero i� the ai in the sum have no common factor. �Proposition B.3 shows that SU(l) has no Ad-exceptional elements, whereas allother simple simply connected compact groups do. Examples of Ad-exceptional bare provided by the special elements with �(s) = 1aj�_j for aj > 1, correspondingto s� = ��j . Such is, for instance, the diagonal symplectic matrixb1 = e2�i�1 = 0B@�1 0 0 00 1 0 00 0 1 00 0 0 �11CA 2 Sp(4) = fg 2 SU(4)jtgCg = Cg ;C = 0B@ 0 0 0 10 0 1 00 �1 0 0�1 0 0 01CA ; �1 = 12�_1 = 12 0B@ 1 0 0 �11CA(= �1 + 12�2) :
(B.9)
(�1 is only stabilized by U(2) while the centralizer of b1 in Sp(4) is SU(2) �SU(2)).If �1 � SU2 is the binary icosahedral group, then � =< b1;�1 > ��1��1 �Sp(4) is clearly an exceptional subgroup containing the center of Sp(4).The simplest example of a non-special Ad-exceptional element is provided bythe simply laced Lie algebra D5 (corresponding to the simply connected groupSpin (10)). If we label the nodes of the a�ne diagram D(1)5 so that a2 = a3 = 2(while a0 = a1 = a4 = a5 = 1) then the non-special Ad-exceptional element ofSpin (10) correspond to � = 14 (�_2 +�_3 ).An example of an element of SO(3) = AdSU(2) with a disconnected centralizeris provided by either of the diagonal matrices Ei, i = 1; 2; 3 of Eq. (6.36). Indeed,there is no Cartan subalgebra of SO(3) containing the in�nitesimal generatorsof both E1 and E2. Note that the preimages of Ei in the simply connecteddouble cover SU(2) of SO(3) do not commute (in fact, they anticommute). Thisexample extends to the n3 element Heisenberg subgroup Hn of SU(n) generatedby the n� n matrices a and b satisfying(B.10) an = bn = 1 ; ab = e�i=nba :Clearly, Ada and Adb commute but their in�nitesimal generators do not. Thishappens sinceAdSU(n) (unlike SU(n)) is not simply connected and the centralizerof either Ada or Adb is disconnected.References[AFMO] J.H. Awata, M. Fukuma, Y. Matsuo, S. Odake, Representation theory of the W1+1,vol. 118, Prog. Theor. Phys., Proc. Suppl., 1995, pp. 343{373.[BGT] B.N. Bakalov, L.S. Georgiev, I.T. Todorov, A QFT approach to W1+1, New Trendsin QuantumField Theory, Proc. of the 1995 Razlog (Bulgaria) Workshop, A. Ganchevet al. (eds.), Heron Press, So�a, 1996, pp. 147{158.
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