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ABSTRACT. We obtain here some inequalities for the eigenvalues of Dirichlet and
Neumann value problems for general classes of operators (or system of operators)

acting in L?(Q) (or L?(Q,C™)), QC R d > 1.

1. INTRODUCTION

1. Let ©Q be an open domain in R% d > 1, and 0 < Ay < Ay < ... be the
eigenvalues of the Dirichlet boundary problem for the Laplace operator —AP in Q.
Denote by |Q| the Lebesgue measure of the domain Q and by LY = vy (27)7¢ =
2=4x=4/2 /T(1 + d/2), where vq is the volume of the unit ball in R% Li and Yau
[LY] proved that the eigenvalues \j satisfy the following inequality

d )
1.1 A\ > L)~ ka Ee N
(1.1) d+2( 1Q2])” a, vk e N

The constant LY, the so called “classical constant”, appears in the Weyl asymptotic
formula for the counting function of eigenvalues. The proof of (1.1) is based on a
sharp inequality concerning the sum of the first eigenvalues

k
(1.2) Sz T L 1N EE, vkeN

J=1

The constant in the right hand side of (1.2) cannot be improved because it coincides
with the asymptotical constant for the sum in the left hand side of (1.2) as k — oc.

An opposite inequality can be obtained for the eigenvalues of the Neumann
boundary problem. Let 0 = p3 < p2 < ... be the eigenvalues of the Neumann
Laplacian —A" in a bounded domain § with piecewise smooth boundary. By
adapting the approach of Li and Yau to this problem, Kroger [K1] proved the
upper estimate

d+2\2/d
(1.3) ”“1<<TT» L)~ T, vkeN
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The key inequality here was the upper estimate for the sum of the first eigenvalues
[’

k
S < =g jah R, vieN
P d+2

In this paper we show that the inequalities (1.1) and (1.3) are corollaries of
general (sharp) trace inequalities for convex functions of operators. In particular,
(1.1) and (1.3) can be extended to the Dirichlet and Neumann boundary problems
for various classes of (systems) differential and pseudodifferential operators with
constant coefficients (for example (—A)¥, « > 0, operator of classical elasticity,
etc). This approach can be also easily extended to operators acting on functions
with values in a Hilbert space. We shall not consider this case here only because it
requires many additional notations and assumptions.

Notice that the inequality Ay > Cy |Q|_2/dk_2/d with a constant Cy < d/(d +
2) (L5)~%/? was proved for bounded domains in [BS] and [C] and later for arbitrary
domains in [R1,2], [M] and [Lbl] (see also [L]).

G. Pélya conjectured in [P] that (1.1) should hold without the multiplier d/(d +
2). He proved this conjecture for “tiling” domains @ C R? i.e. copies of Q fill
the plane without gaps. In Subsection 2.3 we notice that Theorem 2.1 allows us to
justify this conjecture for domains Q = Q; x Qy C RO x R, d) +dy =d, dy > 2,
dy > 1, as long as the Dirichlet Laplacian in L*() satisfies the Pélya conjecture
and {23 is an arbitrary domain whose dz - Lebesgue measure is finite (see Theorem
2.8 and Corollary 2.9).

In [LP] the method of [LY] was applied to the Dirichlet boundary problem for
(systems of ) differential operators of a higher order. The method presented here,
however, allows us to obtain the same constants for differential operators and better
constants than in [LP] for systems of differential operators (see Corollary 2.9 and
Remark 2.10).

In Section 4 we obtain some more inequalities on the eigenvalues of —AP and,
in particular, we give an upper bound for the eigenvalues A\;, assuming only that
the spectrum of —AP in Ly() is discrete.

In what follows we shall be dealing with different classes of vector functions on
R? with values in C", R, = (0, +0), D = —i0/dz. By @ we denote the following

convex function
(1) = (A—1) { A—t, t<A,
A= 7 o, £\

Assuming that a selfadjoint operator B > 0 has a discrete spectrum accumulating
at infinity, we denote by N(A, B) its counting function of the spectrum

N\ B) = #{k: A\ < A}.
If A is an m X m complex matrix, then A* is its adjoint matrix.

Acknowledgements. 1 am grateful to T. Hoffman-Ostenhof for inviting me to the
International Erwin Schrodinger Institute in Vienna in April 1997, where some of
the ideas of this paper were conceived. I would also like to express my gratitude
to O. Safronov and M. Solomyak for useful discussions which improved the text of
the paper.
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2. DIRICHLET BOUNDARY VALUE PROBLEM

1. Let Q be an open measurable subset in [RY. We shall deal with various classes
of functions with values in C", m € N The norm and the scalar product in C" is
denoted by || - || and (-,-) respectively. Let

L?(Q,(Cm):{u: Ay\u(x)y\de<m}.

The class of smooth vector valued function with compact support C5°(Q,C") C
L3(Q,Cm) is dense in L2(Q,Cm).

Let A(£) be a complex m x m matrix function, £ € RY. We assume, for simplicity,
that there is » € Ry and a constant C' such that

(2.1) 0< A < Clel”,  ceR

Let @ be the Fourier transform of the vector function v € L*(RY Cm). We
introduce a sesqui-linear form ‘B defined on the vector functions from the class

cee(Q,Cn)
(22) Bofu.v] = (27) /Rd (A(E)a(€), A(E)3(6)) de
— (2m) /@d (BO)a().5(6) e, uyv € Co(0,Cm),

where B(£) = A*(£)A(€). The completion of the class C5°(Q2, C") with respect to
the quadratic form Bglu,u] + v|[u]|?, v > 0, defines a Hilbert space H~[Bq] C
L3(Q,Cm). ;From (2.1) it follows that the Sobolev space HZ (2, ™) is a subspace
of H,[Bgq]. The closed quadratic form B defined on H.[Bg], gives a selfadjoint
pseudodifferntial operator which we denote by Bp.

If Q = RY then the above construction leads to a closed quadratic form B .
The selfadjoint operator defined by Bpu is denoted by B. Both operators Bp and
B can be considered as the Friedrichs extension of the pseudodifferntial operator

Ba(Djule) = (22)7¢ [ B Euty) dya
IR

defined on the intersection C{°(RY, C )N L2(Q, C™) and C2°(RY, Cn) respectively.
We naturally identify the extention Bp with Dirichlet boundary value problem for
B in Q.

The next statement deals with a trace type inequality which is a partial case of
the Berezin-Lieb inequality (see [Bz1,2], [Lb2], [S] and for its generalizations [LS]).
We include the proof of this statement for the sake of completeness.

Theorem 2.1. Let Q C RY be an open set of finite measure, |Q| < oo and let the
spectrum of the operator Bp consist of eigenvalues 0 < Ay < Ay < ... such that
A — 00, as k — oo. Assume that for some X >0

(2.3) /Rd Troa(B(£)) dé < oo.
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Then the following inequality holds

24) Tepa(Bp) = (0= Moy < (20710 [ T = (B} ¢

k

— (2r)4J9] /@d Trpa(B(€)) de.

Proof. Let wy,ws,... be the orthonormal basis in L?(Q, C™) consisting of the eigen-
functions of the operator Bp whose corresponding eigenvalues are 0 < Ay < Ap <
. and let I be the unit matrix in C". Then

S =)y =Y (M- (%Q[wk,wk])>+
=S (en [ 01 - Benaoene) ),
<m0 Y [ (OT= BeNae.aue)), de

Denote by {r;(£)}7, and {7;({)}}, the eigenvalues and the eigenvectors of the
matrix B(£). The right hand side of the last inequality can be rewritten as

) dZZ/ — O (@ulO): TP de

=1 k

(27) diZ/ — (€ ‘/ (@67, k(x)>dx2

=1 k R

d¢

m

=Y [ =l On @ 0,0

el Y [ @ ds = 2m7 9] [ TOT - B©)s e

The proof is complete. [

Remark. The proof of Theorem 2.1 remains almost the same if instead of (" we
consider an infinite dimensional Hilbert H.

Definition 2.2. We say that B(¢) is a positively homogeneous symbol of degree «,
a > 0, if there exists a family of unitary in C" matrix-function U(\, £), such that

B(XE) = AU (N, E)B(EU(NE), A > 0.
It B(¢) is now a homogeneous symbol, then
Troa(B(€)) = ATr 1 (A B())
= MTrer (DY BOTY U (A7, 6)) = ATren (BOT/26)).

If we integrate both sides of the last equality with respect to ¢ and change the
variables A~1/¥¢ — ¢, then we derive the following statement:
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Corollary 2.3. Let B(£) be a positively homogeneous symbol of degree . Then
under the conditions of Theorem 2.1 we obtain

(25) Y (A= Ay < AFEEnT Q) /@d Troi(B(€))dE, A > 0.

Remark 2.4. The constant in the right hand side of (2.5) is the best possible since
it appears in the corresponding asymptotic formula for >, (A — Ag)4, as A — oo.

2. We use the results of Subsection 2.1 in order to deduce an upper estimate for
the counting function of the spectrum of the operator Bp.

Theorem 2.5. Let Q C RY be an open set of finite measure, |Q| < co and B(€) be
a positively homogeneous symbol of degree oo. Then

g d 1+%
20 NOBp) <o e S (149) T [ Treme) s
a d T
Proof. Obviously
1 [~ 1
Ne=pB) <> [ (=0 dNw B =2 Y= Mas 03050,
0 k

Therefore Corollary 2.3 implies

1+d/o

Ny —p.Bo) < Lo 2m 0] [ Tee(Be) e

Choose n = (14 7)X and p = 7A. Then

(1 T T)l—l—d/oz

(27)  N(\Bp) < AU nti0l [ TreBe) de

The minimum value of (14 T)1+d/a7'_1 is reached at 7 = a//d. By substituting this
value in (2.7) we obtain (2.6). O

Let m =1 and B(§) = |£|¥. Then the operator Bp coincides with the operator
of Dirichlet boundary problem for (—A®/2). In this case

4
=

en S (142 [ memends =1 (14.%)

[a%

and we obtain

Corollary 2.6. Let Q C RY be an open set of finite measure, |Q| < oo. Then

d

O\ a
(2.8) N (=AY p) < A LY (1 + 3) 9.

Remark 2.7. If o = 2, then (2.8) is equivalent to the inequality (1.1) proved by Li
and Yau in [LY].
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3. We show here that in some special cases Theorem 2.1 implies the Pélya conjec-

ture.

Theorem 2.8. Let Q =Q x Qo C RY x R, where dy +do =d, di =2, dy > 1.
Suppose that the operator of the Dirichlet boundary problem in L*(§2;) satisfies
the Polya conjecture and o 18 an arbitrary domain whose ds-Lebesque measure s
finite. Then

N\, —AP)y < A2 L, A >0,

or equivalently,

e = (L QD4R ke N

Proof. Let —A]D be the Dirichlet Laplacian in €2, 7 = 1,2. Since Q = @ x {22, the
eigenvalues of —AP in Q are equal to

ik = p1 + i, LkelN

where p; and 7y, are the eigenvalues of —AP and —AP respectively. Our assump-
tions on —AP imply
D d l
N(p,—AP) < ph/2 I 16

Therefore
(2.9) N\, —AP) = #{(1,k) e Nx N: pj + 51 < A}
=#{(1Lk) e Nx Nt pr < (A = i)y} LG [0] Y (A=)t /2,
k

Let us first assume that d; = 2. Then by applying (2.5) to —AP we find

NO=AP) € A I 2 0] [ (1 e e
R 2

2
— /\1—|—d2/2 Lcl Lcl Q019 = /\d/2 Lcl Ql.
L, s o] 9] = M2 L0
Let )
- - F'(p)I'e)
B(p,q :/ P =) dy =
=) H=v) T(p+4q)

be the Beta function. If d; > 2, then using the same arguments we find

(210) Y (A -} =B(d/2-1,2)70 Y /Oo v g — vy dy

k k:A>ng
<Bl/2-127 Y [0
k 0

2
dy +2

LY B(di/2—1,2)7' B(di/2 — 1,d2/2 + 2).

< B /2- 127l s L [ ay
0

=\
| zld2+2

Collecting together all the constants in (2.9) and (2.10) we complete the proof. O
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Corollary 2.9. Under the conditions of Theorem 2.8 if 0y C R? is a tiling domain,
then the Polya conjecture holds true.

4. Let us consider the eigenvalue problem for the equations of classical elasticity

(2.11) —aAUj—(a+b)i(V-u):/\Uj,
Oz
(2.12) il =0, =123, ze€QcR,

where ¢ and b denote the Lame constants, a,b > 0 and v = (uq, ug, us) is the elastic
displacement vector. In this case B(¢) is equal to the matrix

Tl + & €162 183
B(&) = (a+b)- £260 aib|§|2 + &3 263 , ¢ e R,
§3&1 362 aib|§|2 + &2

Its eigenvalues are
= alél’, w=al(f’, and vy =(2a+D)[¢]*

Thus we obtain

_87r

[ B = 3

<a3/2 + (2a + 6)3/2>.

Applying Theorem 2.5 with a = 2 we derive

Corollary 2.10. Let Q C R? be an open set of finite measure, |Q| < oo. If Bp is
the operator of classical elasticity (2.11), (2.12), then

N\, Bp) < A2 (2x2) 7152572 (2 4 (20 40 ) |0,

or equivalently

3a 3 23 ,2x2fN2/3
2.13 A 2 . ,
(2.13) 7y <2—|—(2—|—b/a)—3/2> < Q)] >

Remark 2.11. Formula (2.13) is an improvement of the inequality (1.19) obtained
in [LP]. This became possible because the right hand side in (2.6) involves the
trace Trq(B(§)) rather than m - maxj—1 _m, v;(B(§)), where v;(B({)) are the

eigenvalues of the matrix B(¢).
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3. NEUMANN BOUNDARY VALUE PROBLEM

1. Let us consider a differential operator

A(Dyu(x) =Y AgD’u(x),  ueC™(Q,C"),
gl

where Q C R?is an open set and the coeffitients 43 are m x m-matrices independent
of € ). Let us introduce a quadratic form

Bofu, u] = / JADWP de,  ue (@, T,

where  is the closure of the set €. This form is semibounded from below. We
assume that the form Bg is closable. Then Bg defines a semibounded selfadjoint
operator in L?(Q,C") which we denote by By. The symbol of this operator is
B(&) := A*(&)A(E). The operator Bas can be naturally considered as an operator
of the Neumann boundary problem in the domain 2 for the differential operator
whose symbol is equal to B(§).

Let us assume that the spectrum of this operator is discrete, consists of 0 = py <
po < p3 < ..., and pp — oo, as k — oo.

We put aside the problem of the existence of the closure of the form Bg and
the discreteness of the spectrum of Bps. For example, in the scalar case when
B(&) = |€]*! the discreteness of the spectrum of this operator is equivalent to the
compactness of the embedding H!(Q) — L?(Q). The latter requires some restrictive
assumption on ). The precise conditions of the compactness of this embedding are
given in [Mz].

Therem 3.1. Let |Q] < oo,

(3.1) /@d Trpu(B(E)) dE < o0

for some p > 0 and assume that the spectrum of the operator Bas is discrete,
pp — o0 as k — oo. Then

(3.2) S > o)1) [ Trg,(Be)de

k

Proof. Let wy, be the orthonormal basis of eigenfunctions of the operator By whose
respective eigenvalues are pg, k = 1,2,.... Denote

(2) = { exp(ixz€), asx € Q,
A 0, as x ¢ €,
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and introduce the orthonormal basis {7;({)}]L, consisting of the eigenvectors of

the matrix B(¢). Then

(383) S — )y = TrouBy) = 3 oulius) / lwr(o)]]? da

k

= @)Y ) /Rd k(€)1 de

k

=20 Y puliu) /

(
k=1 TR

@k(€), i (E)I* de.

Let E,, v € R, be the spectral projection of the selfadjoint operator Bar. We can
now rewrite (3.3) as

Trou(By)

:/}Rd zk:‘rou(ﬂk);/g/Q<wk(:1?),7'j(§)eg(:li)> (Tj(f)eg(y),wk(yD dy dx d§
= ;/Rd /OOO eu(v) (dEyeeT;(§), ecT;(£)) dE.

Since

|Q|_1/ (dEyectj, eeTj) =1, veeRYE j=1.,2,...,m,
0
then by using the Jensen inequality we obtain
m 1 o0
Trou(Ba) 2 10 | Y wu(ir | v (dBueers(€),eems(€))) de.
- €2 o

Notice that

/0 v(dE eetj, ceTj) = Bglee;(£), eei ()]

= /Q [A(D)eer; ()| da = QI | A7 (I = Q0 (B(&) 75(£), 7(£))-
Since 7;j(£) are the eigenvectors of the matrix-function B(¢), we have
m 1 o0
> o | vtaBcen o). cene) = TrouBe)
This leads to (3.2) and completes the proof. 0O

2. Apply now the inequality (3.2) to the counting function of the spectrum of the
operator Bs.
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Theorem 3.2. Let Q C RY be an open set of finite measure, || < oo and B(€)
be a positively homogeneous symbol of degree 21. Then under the assumptions of
Theorem 3.1 we have

4

(3.4) N, Ba) =y (2m)70 |9 /@d Tegu(B(E)dE, >0,

Proof. Since the first eigenvalue of the operator Bas is equal to zero we obtain that

1
N(p, By) = "  (p—pr)y,  p>0.
k

Theorem 3.1 and the homogeneity of the matrix B(¢) lead us to

N Ba) > 7 0] [ oo, B

= 1/2(2m) = | /@d Tr o1 (B(6)).

1
1

4

Let m = 1 and B(¢) = |£]?!, I € N Then the operator Bys coincides with the
operator of the Neumann boundary problem for (—A!). In this case

21

(2”)_d/ﬂ@¢1(3(§))d§ :Lilm-

and (3.3) implies

Corollary 3.3. Let Q C RY be an open set of finite measure, |Q| < oo. Then

2
(3.5) N(p, (=AYx) = ' LY

— Q.
T

Remark 3.4. If 1 =1, then (3.5) is equivalent to the inequality (1.3) proved in [K1].

4. MORE EIGENVALUE ESTIMATES FOR THE DIRICHLET LAPLACIAN

Let Bp = —AP in L?(Q), @ c R? and let us assume that the spectrum of this

operator is discrete. Let wi,wsq,... be the orthonormal basis of eigenfunctions of
the operator Bp whose respective eigenvalues are 0 < Ay < Ay < .... Denote
(4.1) W =sup |wi(x)|.

x€Q

Using the argument similar to those we used in Section 3 we can prove the following
statement.
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Theorem 4.1. Let the spectrum of the operator —AP in L*(Q) be discrete. Then
for any A > 0 we have

B 14d/2 ;o1 2 ~_
(4.2) Troa(~AP) = zk:(x — e > (=ML s

Proof. The functions
Oe(z) := wie H@E) ¢ e R,

belong to the domain of the operator —AP. Obviously
Trc,oA(—AD) = Z c,oA(/\k)/ lwi|? de > &2 Z c,oA(/\k)/ w1 wi|? dx
k k

— (2n)" 52 %:¢A(Ak)/‘/wk95(x)dx‘2d§.

If the spectral projection of the operator —A?P is denoted by E,, then the last
expression can be rewritten as

Tr@A(—AD)Z(Qﬁ)_dG_Z/Rd/ oA(V)(dE, 8¢, 8¢) dE.
0
Clearly

/0 (AE, 66.0¢) = 102200y = 1 ey = 1.

and by using the Jensen inequality we obtain

(4.3) Troa(—AP) > (2r) 152 /a,oA(/Oooy(dEn 95,95)> de.

A simple calculation gives

(4.4) | vtas, b6 = [ 96E e = (1P + )

Combining (4.4) in (4.3) we arrive at

N_ L2
Troa(—AP) > (27)7 7577 / ex([E]* + A1) dE = (A — A1)5””2 Ldld—w ?
T +2

The theorem is proved. O

In particular, if A = Az in (4.2), then we obtain the following upper estimate for
the difference of the two first eigenvalues for the Dirichlet Laplacian.
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Corollary 4.2. Under the conditions of Theorem 4.1 we have

2 \"2/d
/\2 — /\1 < <L§ld—|—2> w4/d.

Remark 4.3. Some other upper estimates on Ay — Ay were studied in [PPW] and
[SWYY] (see also [SY]).
If A > Ay, then

N\, —AP) > — Ty (—AP)
A— M

and by using (4.2) we derive

Corollary 4.4. If the conditions of Theorem 4.1 are satisfied, then for any A > A\

we obtain 5
N APy > (A=) ——— 572,
( b ) ( 1) d d_|_2w
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