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ON THE NODAL LINE CONJECTUREM. Ho�mann-Ostenhof, T. Ho�mann-Ostenhof, and N. NadirashviliAbstract. We consider Dirichlet eigenfunctions of membrane problems. Acounterexample to Payne's nodal line conjecture is given, i.e. a domain in R2(not simply connected) whose second eigenfunction has a nodal set disjointfrom the boundary. Also a domain in R2 is given whose second eigenvalue hasmultiplicity three.Furthermore, some su�cient conditions are given which imply that aneigenfunction of a Dirichlet membrane problem inRn has a zero set which hitsthe boundary. 1. IntroductionLet D be a bounded domain in Rn and consider the corresponding Dirichleteigenvalue problem ��ui = �iui; i = 1; 2; : : :(1.1)with the eigenfunctions ui 2 W 1;20 (D) (the closure of C10 (D) in the W 1;2-norm[6]), and with eigenvalues �1 < �2 � �3 � : : :(1.2)Let us consider a solution ui of (1.1). We denote byN (ui) = fx 2 D : ui = 0gthe nodal set of ui. The nodal domains of ui are the connected components ofDnN (ui). Courant's nodal theorem shows that# nodal domains of ui � i:(1.3)This holds also if we have degeneracy of eigenvalues in the following way: Suppose�k = �k+1 = � � � = �k+l, then each u in the corresponding l + 1-dimensionaleigenspace has at most k nodal domains.It is well known that u1 can to be chosen to have one sign. u2 must then haveexactly 2 nodal domains.There are many interesting problems concerning the eigenvalues and eigenfunc-tions of such membrane problems (see e.g., [3, 17, 18]). One which has been aroundfor about 30 years is the nodal line conjecture �rst stated by Payne in 1967 [14].1991 Mathematics Subject Classi�cation. 35B05.Supported by Federal Ministry of Science of Research, Austria.Work partially supported by the European Union TMR grant FMRX-CT 96-0001.1



2 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, AND N. NADIRASHVILIPayne considered u2 for the 2-dimensional one and conjectured thatN (u2) \ @D = fx1; x2g(1.4)where x1; x2 2 @D satisfy x1 6= x2.In 1982 Yau in his collection of problems [17] asked the same question for convexdomains. Melas [12] has settled the convex case for C1 boundary and this wasextended to general boundary by Alessandrini [1]. Earlier Jerison [10] had alreadyshown that (1.4) holds for su�ciently long thin convex domains in Rn; n � 2N (u2) \ @D 6= ;:(1.5)Also, Yau [18] asked in his recent collection of problems whether there are suitableextensions of the nodal line conjecture in the sense of (1.5) for higher dimensionsand eigenfunctions corresponding to higher eigenvalues. We should also mention theinteresting results concerning the location of N (u2) for long thin convex domains[9], [7].In this paper we shall construct a counterexample to the nodal line conjecture inR2 for some non simply connected domains. As a consequence of this constructionwe shall give also an example of a membrane in R2 for which the second eigenvaluehas multiplicity 3. This seems to be new; multiplicity 3 was only known for 2-dimensional Riemann surfaces such as S2. These results will be given in section 2below.1In section 3 we give various su�cient conditions forN (u) \ @D 6= ;including non convex domains and higher dimensional cases.2. The CounterexampleWe �rst describe the domain. We use polar coordinations r = jxj, x1 = r cos!,x2 = r sin!, �� � ! � �.Let 0 < R1 < R2 and BRi = fx 2 R2 : r < Rig; i = 1; 2 and the annulusMR1;R2 = BR2nBR1 . We pick R1 and R2 such that�1(BR1 ) < �1(MR1 ;R2) < �2(BR1 )(2.1)where the �i(�) denote the corresponding Dirichlet eigenvalues. LetDR1 ;R2 = BR1 [MR1 ;R2then �1(DR1;R2 ) = �2(BR1 );�2(DR1;R2 ) = �1(MR1;R2)�3(DR1;R2 ) = min(�2(BR1 ); �2(MR1;R2)):(2.2)Next we carve holes into @BR1 so that DR1 ;R2 , which is not connected, becomesa domain. Let N 2 N and " < �N . The domain DN;" is de�ned byDN;" = DR1;R2 [ [N�1J=0 �x 2 R2 : r = R1; ! 2 �2�jN � "; 2�jN + "��(2.3)(see Figure 1 with N = 4).1The counterexample is also going to appear in a forthcoming paper [8]
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Figure 1Theorem 2.1. Pick R1 and R2 so that (2.1) holds. There is an N0 2 N suchthat for N � N0 and su�ciently small 0 < " = "(N ) the following holds:(i) �2(DN;") is simple(ii) The second eigenfunction u2(DN;") has a closed nodal line in DN;", i.e.,N (u2) \ @DN;" = ;:Remark 2.1. As can be seen from the proof below, one can replace DN;"by a domain which is obtained by �rst picking 0 < R01 < R02 < R03 such that�1(BR01 ) < �1(MR02 ;R03) < �2(BR01 ) and then by opening passages between BR01 andMR02;R03 as in the construction of DN;".Remark 2.2. DN;" has N + 1-boundary components. We have not tried toget an explicit bound on the constant N0 which occurs in our theorem. Thiswould require controling various quantities simultaneously in our proof, and wouldprobably lead to an astronomical number.Clearly the interesting question is whether there exists a simply connecteddomain for which u2 has a closed nodal line. We conjecture that this cannot happen.The more general question is: what is the smallest possible N0 for which a domainwith N0 + 1 boundary components exists such that the corresponding u2 has aclosed nodal line. Before starting the proof of Theorem 2.1 we want to give someheuristic argument. Consider �rst u2(D). Since D is not connectedu2 = (u1(MR1 ;R2) in MR1;R20 in BR1 :(2.4)If we carve a small hole into @BR1 ; u2 of the resulting domain D� will have bothsigns in D� and will live for small � almost entirely inMR1;R2 . (Here � denotes as inthe construction ofDN;" the width of the hole). If we assume that N (u2)\@D� 6= ;we expect N (u2) to look as indicated in either of the diagrams in Figure 2Now if we believe that nodal lines are not too curved without reason (thisis admittedly a very vague statement), N (u2) should rather look like the N (u2)depicted in the left-hand �gure than in the right-hand �gure. If we now carve twoholes into @BR1 , both small and close to each other, we would expect on the samegrounds that N (u2) should touch @BR1 only twice. If we �nally carve many littleholes into @BR1 in a regular fashion, then N (u2) should not hit @BR1 at all. Ofcourse it would be nice to make this heuristic argument rigorous.Proof of Theorem 2.1. We �rst note some well known properties of thezero set of u2:
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Figure 2(i) If u2(x0) = 0 for x0 2 DN;", then it must have both signs in a neighbourhoodof x0.(ii) u2 cannot have a zero of order � 2, [4], [13], since this would lead to morethan 2 nodal domains of u2 contradicting Courant's nodal theorem.The boundary of @DN;" is not at all smooth, but we haveProposition 2.1. For �xed N the eigenvalue �i(DN ; "); i = 1; 2 are monoton-ically decreasing in " and converge to �i(D) as " # 0. The corresponding ui(DN;")converge pointwise to ui(D).Proof of Proposition 2.1. This follows from a recent result of Stollman[16].By construction DN;" has following symmetry properties: It is invariant withrespect to re
ections through the N lines labelled by the angles !i = (i � 1) �N ,i = 1; 2 : : :N , which pass through the origin. This implies also by composition ofsuch re
ections that DN;" is invariant with respect to rotations with angle 2�jN ; j =1; 2 : : :N � 1.FromProposition 1 it follows immediately that �2(DN;") for " su�ciently small.This is simple because �2(DN;") ! �2(D) = �1(MR1;R2) as " # 0 and �2(D) issimple according to (2.1). This implies also that u2(DN;") enjoys all the symmetryproperties of DN;" for " su�ciently small.From now on we assume N > 1 and that " is su�ciently small so that �2(DN;")is simple.Lemma 2.1. If N (u2) \DN;" 6= ; then for x 2 [Nj=1Jju2(x) 6= 0where the line segments Jj are given byJj = nx 2 R2 : r 2 [0; R1); ! = (2j � 1) �N o :This means that one of the two nodal domains of u2 is contained inDN;" = DN;"n [Nj=1 Jj(see Figure 3 for N = 4).Proof of Lemma 2.1. The simplicity of �2(DN;") follows from Proposition2.1. This then implies the symmetry of u2.
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Figure 3If the nodal line of u2 hits the boundary of @DN;" Lemma 2.1 implies that�1(DN;") < �2(DN;"):(2.5)We shall eventually obtain a contradiction to (2.5) for su�ciently large N and small" > 0. This can be interpreted as making the heuristics above for this special caserigorous.Obviously we have �1(MR1 ;R2) = �2(D) > �2(DN;"):For given � > 0 we can close " so that �1(MR1 ; R2) � �2(DN;") < � by usingProposition 2.1. This observation also implies that there is an R = RN;" such that�1(BR) = �2(DN;"); R < R1:(2.6)RN;" tends for " # 0 to R0; R0 < R1 with �1(BR0 ) = �1(MR1 ;R2), again this followsfrom Proposition 2.1. We can also require that jR0 � Rj < � for given � > 0 bypicking " su�ciently small. Let 
N;" = DN;"nBR:It is easy to see that the variational principle implies�1(
N;") � �2(DN;"):(2.7)From (2.5) and (2.7) it follows now that�1(DN;") � �1(
N;"):(2.8)To keep notation simple we will frequently suppress the dependence of variousquantities on N and ", assuming always that " > 0 is chosen su�ciently small.Let f and g be the positive Dirichlet ground states of 
 and D respectively, sothat ��f = �1(
)f��g = �1(D)g(2.9)By symmetry f is also the ground state ofT = TN;" = DN;" \
N \ n! : j!j < �N o(2.10)with suitable boundary conditions. Let @T be given by@T = A� [B� [C [D [E



6 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, AND N. NADIRASHVILIwhere (we use polar coordinates)A� = fx 2 R2 : r 2 (R;R1); ! = � �N gB� = fx 2 R2 : r 2 (R1; R2); ! = � �N gC = fx 2 R2 : r = R2; j!j � �N gD = fx 2 R2 : r = R1; ! 2 [��N ;�"] [ ["; �N ]gE = fx 2 R2 : r = R;! � �N g:Obviously we have f = 0 in E [D [C and @f@n = 0 in A� [B� where @g@n denotesthe outward directed normal derivative. So f is the ground state of T with thesemixed Neumann and Dirichlet boundary conditions.Moreover, g is the ground state of T (1)N;" = DN;" [ fj!j < �N g where we haveeverywhere Dirichlet boundary conditions at @T (1)N;" except for B� where we haveNeumann conditions.We will arrive at a contradiction if with the above boundary conditions on TN;"respectively T 1N;" �1(TN;") > �1(T 1N;")(2.11)for su�ciently large N and small " > 0.Using (2.9) and noting that T � T 1 we have that(�1(
) � �1(D)) ZT fgdx = � ZE g @f@nd� + ZA+[A� f @g@nd�:(2.12)We assume f and g to be positive.In the followingwe will show that the right hand side becomes negative for largeN and small "(N ). This proves (2.11) which contradicts (2.8) and hence �nally theassumptions in Lemma 2.1 that N (u2) \ @DN;" 6= ;.We now investigate f and @f@n respectively g and @g@n .Lemma 2.2. Suppose that supx2Mr1;r2 f = 1(2.13)where r1 = R + 13(R1 � R); r2 = R+ 23(R1 � R):Then infx2Mr1;r2 f(x) > C1(�;R;R1)(2.14)where C1 is bounded away from zero uniformly for large N . Furthermore there is aconstant C2(�1; R;R1) <1 such that����@f@n ���� < C2 for x 2 EN;"(N)(2.15)Here � = �1(
N;").



ON THE NODAL LINE CONJECTURE 7Proof of Lemma 2.2. Inequality (2.14) is an immediate consequence of Har-nack's inequality [6]. That C1(�;R;R1) is bounded away from zero uniformly in Nfollows from the fact that, as mentioned above, jR�R0j is small for " small.Next we consider j @f@n(R!)j. Suppose ' is a positive radial C2-function satisfy-ing '(R) = 0 and '(r2) = 1. If in addition��' � �1(
)'(2.16)in MR;r2 , then the following standard argument implies ' � f in MR;r2 : Assumeindirectly that G = fx 2 MR;r2 : f > 'g 6= ;, then ��(f � ') � �1(f � ') in G.So RG jr(f�')j2dx � �1(
) RG jf�'j2dx contradicting then �1(
) < �1(G), so Gmust be empty. Now let ' be the Dirichlet ground state inMR;R1 (which is radiallysymmetric) and normalize ' such that '(r2) = 1. Obviously �1(MR;R1 ) > �1(
)and ' satis�es (2.16), hence ' � f in MR;r2 and in particular j@'@r j > j@f@r j for x 2 Eproving (16) since @'@r (R) remains uniformly bounded for large N .Next we investigate g. We start with a simple result we shall need to boundj @g@n j from below for x 2 A.Lemma 2.3. Suppose 
 � R2 and B�(y) = fx 2 R2 : jx � yj < �g � 
 with@B� \ @
 6= ;. Suppose u > 0 in 
, u 2 C0(
) and ��u = �u in 
, � � 0. Ifx0 2 @B� \ @
 and u(x0) = 0 then����@u@n (x0)���� � 13�u(y)(2.17)where @@n denotes the outward directed normal derivative with respect to @
.Remark. This Lemma can be viewed as an explicit variant of Hopf's boundarypoint lemma [6].Proof of Lemma 2.3. Without loss we may assume y = 0. Since � � 0; v =u(x1; x2)ep�x3 is harmonic in 
 � R1. We use Harnack's inequality for harmonicfunctions in B� = fx 2 R3 : jxj < �g � 
�R1. We have [2]v(x) � �1� jxj� ��1 + jxj� ��2 v(0) 8x 2 ~B�:In particular for x3 = 0 this becomesu(x) � (1 � jxj=�)(1 + jxj=�)�2u(0) 8x 2 B�:(2.18)Now �x 0 < �0 < � and let � = �0=�. De�neh(x) = h(r) := 1� �(1 + �)2 1j ln �ju(0)( ln � � ln r); (r = jxj):Then �h = 0 and (19) implies since h(x) = 0 � u(x) for jxj = �, by the maximumprinciple that h(x) � u(x) in B�nB�0 . So����dhdr (�)���� = ����@h@n (x)���� � ����@u@n (x)����for x 2 @B� \ @
 if u(x) = 0. Now pick � = 1=4, then (2.17) follows.



8 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, AND N. NADIRASHVILIWe normalize g so that supj!j� �N g(r0; !) = 1(2.19)with r0 := R+ R12 :Using Lemma 4 we now show thatZA+[A j @g@n jfd� � C3 > 0(2.20)for su�ciently small " and where C3 does not depend on N . LetQN;�r = nx"R2 : j!j < �N ; r < �ro :(2.21)We note that g(r; !) = g(r;�!) in QN;R1 . Let !0 be chosen such that g(r0; !0) = 1and suppose without loss that !0 > 0. We have with � = r0 sin( �N � !0) andy0 = (r0 cos!0; r0 sin!0) that B�(y0) � QN;R1 provided N is su�ciently large.Let y+ = (r0 cos( �N � !0) cos �N , r0 cos( �N � !0) sin �N ) then y+ 2 @B�(y0) \ A+.Lemma 2.3 applies and gives����@g@n (y+)���� � 13r0 sin( �N � !0) � C4N(2.22)for some positive constant not depending on N . (2.18) implies now thatg � 29 for x 2 B�=2(y0)(2.23)and we can use Lemma 2.3 again to obtain���� @g@n ���� � C5N for x 2 A+ \BC6=N (y+)for some N -independent positive constants C5; C6. This givesZA+ ����@g@n ����d� � C5 ZA+\BC6=N (y+)Nd� � C7 > 0(2.24)with C7 again N -independent. Inequality (2.20) now follows from (2.24) and (2.14).The proof that the right hand side of (2.12) is negative and hence the proof ofour result will be complete once we show thatZE g @f@nd� ! 0(2.25)for large N . This will follow using (2.15) by showing that g satis�es for x 2 Eg(R!) � C8�Rr0�C9N(2.26)with some N -independent constants C8; C9, where r0 was de�ned in (2.19). To seethat (2.26) holds let v = p2� rr0 �
 cos N4 ! with
 = (14 � �1(DN;")r20 + �N4 �2)1=2 � 12



ON THE NODAL LINE CONJECTURE 9(we assume N so large that 
 is real). A simple calculation shows that��v � �1(DN;")vfor x 2 QN;r0 and that v � g in @QN;r0 . Since �1(DN;")r20 stays bounded forlarge N we again can use a comparison argument as in the proof of Lemma 2.2 toconclude that v � g in QN;r0 showing (27).This �nally proves Theorem 2.1.The construction of our counterexample also lends itself to an example where�2 has multiplicity 3.Theorem 2.2. Let N � 3 then �2(DN;") has multiplicity 3 for suitable " > 0.Remark 2.3. To our knowledge this is the �rst example of a domain in R2where the second eigenvalue has multiplicity 3. In [11] it is claimed that themultiplicity of �2 is always at most 2, but probably the author had the simplyconnected case in mind.Proof of Theorem 2.2. We �rst note that the eigenfunction of a disk BR2satisfy �1(BR2 ) < �2(BR2 ) = �3(BR2) < �4(BR2 ) = �5(BR2 ) < �6(BR2 ):(2.27)u1 and u6 are radially symmetric, hence invariant with respect to inversion at theorigin, whereas u2; u3; u4; u5 are antisymmetric with respect to inversion.Now consider DN;". We have DN; �N = BR2 :We also can distinguish between eigenfunctions which are symmetric, respectivelyantisymmetric with respect to inversion of the origin. For " = 0, u1(DN;0), u2(DN;0)are symmetric and u3(DN;0) is antisymmetric with respect to inversion at the origin.Hence �2(DN;") will approach �6(BR2 ) for " ! �N , whereas �3(DN;") will tend to�2(BR2 ), hence these two curves must cross leading to a �2(DN;") with multiplicity3 for a suitable ". 3. Su�cient conditionsIn the following we give some su�cient conditions such that the nodal set of aneigenfunction of a Dirichlet problem hits the boundary. Thereby we shall not strivefor generality but rather present the main ideas together with some examples.Let D � Rn be a bounded domain and suppose that @D is C2. Suppose that@D has N components such that@D = [i=1@D(i):(3.1)Our su�cient conditions for the nodal line conjecture to hold will be based on thefollowing simple observation.Theorem 3.1. Suppose D satis�es the assumptions above. Let uk(D) be aneigenfunction of the corresponding Dirichlet problem�uk(D) + �k(D)uk(D) = 0(3.2)for some k.Suppose there exists a function f : D ! R such thatf 2 C2(D) \C1(D)(3.3)



10 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, AND N. NADIRASHVILIwith (� + �k)f = 0:(3.4)Suppose further that there is one component of @D, say @D�, such thatf � 0 in @D�;f j @D� 6� 0(3.5)and f � 0 in @Dn@D�:(3.6)Then N (uk(D)) \ @D� 6= ;:Remarks 3.1. (i) Our regularity conditions for @D and f j @D are certainlymuch too strong but we keep them in order to avoid certain technicalities.(ii) Actually we have a stronger result: @u@n must change sign in @D�. (Here @u@ndenotes the outward directed normal derivative.)(iii) Theorem 3.1 has obvious generalizations to Dirichlet problems on manifoldswith boundary or Schr�odinger operators on bounded domains with zero-Dirichletboundary conditions.(iv) Theorem 3.1 is a su�cient condition but not a necessary one. It is easyto construct examples where a domain has an eigenvalue of multiplicity > 1 andwhere in the corresponding eigenspace there is one function u with N (u)\@D = ;.But by linear combination of the eigenfunction in this eigenspace one can alwaysforce a function to have a zero hitting the boundary. Such an example is given forthe square membrane in the book of Courant and Hilbert [5].Proof of Theorem 3.1. Equations (3.2) and (3.4) imply thatu�f � f�u = 0(We suppress the indices.) By Green's second identity we have using (3.6)Z@D u@f@nd� � Z@D f @u@nd� = � Z@D� f @u@nd� = 0:This implies that @u@n changes sign in @D� or @u@n � 0 in @D�. But this is impossiblesince by assumption @D 2 C2, hence D satis�es an interior sphere condition, whichin turn means that Hopf's boundary point lemma [6] applies implying that @u@n 6= 0for all y 2 @D�nN (u). Hence if N (u) \ @D� = ; we have the desired contradic-tion.Theorem 3.1 looks nice, but given a domain D it is not at all clear how tocheck for a speci�c eigenfunction and eigenvalue whether we can �nd a function fsatisfying (3.3-3.6).In the following we describe two families of domains for which we can applyour results.The �rst family is related to balls in RnB(n)R = fx 2 Rn : jxj < Rg:We also need Bessel functions and denote by j�;l the l-th zero of the Bessel functionJ�(r). (r = jxj). The J�(r) are in a well known way related to the Dirichleteigenfunctions of balls [3].



ON THE NODAL LINE CONJECTURE 11Let qn = min� jn2 ;1jn2�1;1 ; jn2 �1;2jn2 ;1 � :(3.8)E.g. q2 � 1:43; q3 � 1:39; : : : ; q8 � 1:11:(3.9)Theorem 3.2. Let D � Rn be a bounded domain in Rn with only one boundarycomponent and @D 2 C2.Let BR1 � D � BR2(3.10)and ZBR2nD dx > 0:(3.11)If 1 � R2R1 � qn(3.12)then N (uk(D)) \ @D 6= ;for k � n + 1.Proof of Theorem 3.2. We prove just the 2-dimensional case, the n-dimen-sional is almost identical.Let D � R2 be simply connected and consider u2(D). (The proof for u3(D) isidentical.) First we note that (3.10) implies�2(D) 2 (�2(BR2 ); �2(BR1 )]:(3.13)This follows from the well known fact that if D1 � D2 the Dirichlet eigenvaluessatisfy �k(D1) � �k(D2). Now consider the Dirichlet eigenvalues of the disk. Wehave (see also (2.27))�1(BR) < �2(BR) = �3(BR) < �4(BR) = �5(BR) < �6(BR):With the above de�ned j�;l we have [3]p�1(BR) = j0;1R ;p�2(BR) = j1;1R ;p�4(BR) = j2;1R ;p�6(BR) = j0;2R ;(3.14)u1(BR) and u6(BR) have spherical symmetry andN (u6) is a circle. Equation (3.13)implies that there is an R 2 (R1; R2] such that �2(BR) = �2(D). We can also �ndR < R such that �2(BR) = �1(BR) = �6(BR):(3.15)This means that N (u6(BR)) = @BR:So if BR � D � BRwe are done for f := u6(B �R) will do the job since with the appropriate choice ofsign f � 0 in @D and f 6� 0 in @D because of (3.11).



12 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF, AND N. NADIRASHVILILet us de�ne R1 and R2 by�2(BR1 ) = �6(BR1)�2(BR2 ) = �1(BR2)It su�ces to show that R2 � R1 < R2 � R1(3.16)is satis�ed. Using (3.14) this means thatR2 = j0;1j1;1R2 � R1R1 = j0;2j1;1R1 � R2must hold. But this is exactly the requirement.R2R1 � q2proving our result for u2(D). For u3(D) the proof is identical.For D � Rn we just note that �2(B(n)R ) is n-fold degenerate and that in (3.14)the corresponding zero's of the Bessel functions have to be used so that (3.8) turnsup. Remarks 3.2. (i) Again we stress that the assumption @D 2 C2 can be weak-ened considerably.(ii) Due to the n-fold degeneracy of �2(B(n)R ) we get the result for uk(D),k 2 [3; n+ 1] for free. But at the expense that qn! 1 for n!1.(iii) Similar arguments allow us to treat also higher eigenvalues. For instanceif for D � R2, BR1 � D � BR2 and R2R1 � 1 is su�ciently small, N (u4) and N (u5)must hit @D (provided D is simply connected).One way to interpret the underlying construction which led to Theorem 3.2(e.g., for n = 2) is the following: we took a disk B�1 and considered its groundstate u1(B�1 ) with eigenvalues �1(B�1 ). Then we noticed that u1(B�1 ) can beextended so that it does not change sign in the annulus B�2nB�1 . If we have now asimply connected domainD such that �2(D) = �1(B�1 ) we can apply Theorem 2.1with f being the extension of u1(B�1 ) to B�2 .But instead of B�1 we can consider other domains and try to extend theirground states to larger domains.We shall use re
ections to extend domains whose boundaries have 
at pieces.Thereby we shall illustrate the main ideas by examples rather than stating somegeneral theorems (which would have to be quite complicated and lengthy). Figure 4demonstrates the underlying principle.Let D be again a bounded domain and � some Dirichlet eigenvalue and u oneof the corresponding eigenfunctions. Suppose we can cut D into two pieces (or aswill be seen later chop o� several pieces) as shown in Figure 4. We again assume@D 2 C2 and for simplicity that @D consists of only one component, such thatD = D1 [D2 [�, where D2 is the domain to the right of the dashed line � and D1
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Figure 5the domain to the left. Suppose that �1(D2) = �(D) and that the shaded re
ectionD�1 of D1, satis�es D�1 � D2 and RD2nD�1 dx > 0 thenN (u) \ @D1n� 6= ;:(3.17)To see why (3.17) holds in this case we consider ' the Dirichlet ground state ofD2 and assume that � = fx 2 D : x1 = 0g and that D2 � fx 2 Rn : x1 > 0g, thenf = ('(x1; x2; : : : ; xn) for x 2 D2�'(�x1; x2; : : : ; xn) for x 2 D1(3.18)can be used to apply Theorem 3.1 since f does not change sign in @D1n� since@D1n�1 � D�2 and �f + �f = 0 in D.Naturally by the same reasoning we could chop o� many pieces, as illustratedin Figure 5. If the domain without the shaded pieces has a Dirichlet �rst eigenvalue� which coincides with some Dirichlet eigenvalue � of the whole domain D we canargue as above to show that the corresponding u satis�es N (u) \ @D 6= ;. But ingeneral it is not clear how to check for a given domain whether we can for someeigenvalue � chop o� pieces in the way described above. However, for domainswhich consist of separated identical pieces which are connected by thin channels(hence a semi-classical situation) we can often use the approach above. To be moreprecise let us give an explicit example.Let D0 = [Ni=1BR(xi)(3.19)
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Figure 6where the BR(xi) = fx 2 Rn : jx� xij < Rg andjxi � xij > 2CR for some C > 1:(3.20)We make D0 into a domain by connecting the BR(xi) with thin channels. So letM be these channels and D =M [D0 [ (M \D0)(3.21)where M = [Kk=1M (k), K �nite. We illustrate this in Figure 6.We also assume that @D 2 C2 (also not essential). Now if M has su�cientlysmall measure " then for i � N �i(D) < �2(BR)(3.22)since �i(D0) = �i(BR) for i = 1; : : : ; Nand lim"!0�i(D) = �1(BR):This can be easily seen by Dirichlet Neumann bracketing [15], but here C > 1 in(3.20) is important.Now we assume that there is one component @D� of @D such that for each i,@D� \@BR(xi) contains a set �i which after a suitable rigid motion to shift BR(xi)into BR(0) is given by� = fx 2 @BR : x1 > 
Rg for some 0 < 
 < 1:By picking " su�ciently small (depending on 
)N (uk) \ @D� 6= ;(3.23)where k � N . To prove (3.23) we chop o� from each BR(xi) the set (after rigidmotion to BR(0)) x1 > 
R so that we obtain a domain without the shaded regions
. See Figure 7. The Dirichlet ground state energy will be larger than �N (D) forsu�ciently small ". But we can individually make the shaded regions smaller sothat we eventually arrive at domains Di such that�1(Di) = �i(D) i = 2; : : : ; Nand so for each Di we can use the re
ections described above. Hence the groundstate of Di continued by re
ections in each BR(xi) in the way described by (3.18)will serve as a function f allowing to apply Theorem 3.1.
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Figure 7The above example is rather special. We could have replaced the BR(xi) byindividually di�erent domains satisfying some spectral and geometrical conditionsetc., and again @D 2 C2 can be relaxed considerably.It seems to be di�cult to characterize the domains for whichN (u2)(D) \ @D 6= ;can be shown using Theorem 3.1 together with the re
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