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ON THE NODAL LINE CONJECTURE

M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and N. Nadirashvili

ABSTRACT. We consider Dirichlet eigenfunctions of membrane problems. A
counterexample to Payne’s nodal line conjecture is given, i.e. a domain in R?
(not simply connected) whose second eigenfunction has a nodal set disjoint
from the boundary. Also a domain in R? is given whose second eigenvalue has
multiplicity three.

Furthermore, some sufficient conditions are given which imply that an
eigenfunction of a Dirichlet membrane problem in R™ has a zero set which hits
the boundary.

1. Introduction

Let D be a bounded domain in R™ and consider the corresponding Dirichlet
eigenvalue problem

(1.1) —Au; =Ny, 1=1,2,...
with the eigenfunctions u; € Wy *(D) (the closure of C$°(D) in the W' %norm
[6]), and with eigenvalues
(1.2) Al <A <Az <L
Let us consider a solution u; of (1.1). We denote by
N(u;)) ={z € D :u; =0}

the nodal set of u;. The nodal domains of u; are the connected components of
D\N(w;). Courant’s nodal theorem shows that

(1.3) # nodal domains of u; < 4.

This holds also if we have degeneracy of eigenvalues in the following way: Suppose
A = Agg1 = -+ = Ak4t, then each w in the corresponding ! 4+ 1-dimensional
eigenspace has at most £ nodal domains.

It is well known that w; can to be chosen to have one sign. us must then have
exactly 2 nodal domains.

There are many interesting problems concerning the eigenvalues and eigenfunc-
tions of such membrane problems (see e.g., [3, 17, 18]). One which has been around
for about 30 years is the nodal line conjecture first stated by Payne in 1967 [14].
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Payne considered us for the 2-dimensional one and conjectured that
(14) /\/’(Uz)m@D: {1‘1,1‘2}

where 1,22 € JD satisfy zq1 # zs.

In 1982 Yau in his collection of problems [17] asked the same question for convex
domains. Melas [12] has settled the convex case for € boundary and this was
extended to general boundary by Alessandrini [1]. Earlier Jerison [10] had already
shown that (1.4) holds for sufficiently long thin convex domains in R” n > 2

(1.5) N(uz) NOD £ 0.

Also, Yau [18] asked in his recent collection of problems whether there are suitable
extensions of the nodal line conjecture in the sense of (1.5) for higher dimensions
and eigenfunctions corresponding to higher eigenvalues. We should also mention the
interesting results concerning the location of A (us) for long thin convex domains
9], [7).

In this paper we shall construct a counterexample to the nodal line conjecture in
R? for some non simply connected domains. As a consequence of this construction
we shall give also an example of a membrane in R? for which the second eigenvalue
has multiplicity 3. This seems to be new; multiplicity 3 was only known for 2-
dimensional Riemann surfaces such as S%. These results will be given in section 2
below.!

In section 3 we give various sufficient conditions for

N@)NoD £

including non convex domains and higher dimensional cases.

2. The Counterexample

We first describe the domain. We use polar coordinations » = |z|, 1 = r cosw,
ry =rsinw, -7 <w < 7.

Let 0 < Ry < Ry and Bg, = {x € R? : » < R;},i = 1,2 and the annulus
Mg, r, = Br,\Br,. We pick Ry and R such that
(21) /\1(331) < /\1(M31732) < /\2(331)

where the A;(-) denote the corresponding Dirichlet eigenvalues. Let

Dp, r, = Br, U Mg, R,

then
A1 (Dg,,r,) = A2(BRr, ),
A2(Dr,,r,) = M (MR, Rr,)
(2.2) A3(Dr, ,r,) = min(Az(Br, ), A2 (Mg, r,))-

Next we carve holes into 0 Bg, so that Dg, g,, which is not connected, becomes

a domain. Let N € N and ¢ < %. The domain Dy is defined by
27j 27j
(2.3)  Dy. = Dp, g, UUYZL {x €R%:r=Rywe (% —e +e)}

(see Figure 1 with N =4).

!The counterexample is also going to appear in a forthcoming paper [8]
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FIGURE 1

THEOREM 2.1. Pick Ry and Ra so that (2.1) holds. There is an Ny € N such
that for N > Ny and sufficiently small 0 < e = ¢(N) the following holds:

(i} A2(Dn ) is simple

(ii) The second eigenfunction us(Dy ) has a closed nodal line in Dy ., i.e.,

N(Uz) n 81)]\77E = @

REMARK 2.1. As can be seen from the proof below, one can replace Dy .
by a domain which is obtained by first picking 0 < R} < R, < R% such that
/\1(BR/1) < Al(MR;,Rg) < AZ(BRII) and then by opening passages between Bg/ and
Mp;, gy as in the construction of Dy ..

REMARK 2.2. Dy . has N + 1-boundary components. We have not tried to
get an explicit bound on the constant Ny which occurs in our theorem. This
would require controling various quantities simultaneously in our proof, and would
probably lead to an astronomical number.

Clearly the interesting question is whether there exists a simply connected
domain for which us has a closed nodal line. We conjecture that this cannot happen.
The more general question is: what is the smallest possible Ny for which a domain
with Ny 4+ 1 boundary components exists such that the corresponding us has a
closed nodal line. Before starting the proof of Theorem 2.1 we want to give some

heuristic argument. Consider first us(D). Since D is not connected

(2.4) g = {Ul(MRl,RQ) in Mg, r,
0 in Bg,.

If we carve a small hole into 0Bg,, us of the resulting domain Ds will have both
signs in Ds and will live for small § almost entirely in Mg, g,. (Here § denotes as in
the construction of Dy . the width of the hole). If we assume that N (us)NIDs # 0
we expect A (uz) to look as indicated in either of the diagrams in Figure 2

Now if we believe that nodal lines are not too curved without reason (this
is admittedly a very vague statement), A (uz) should rather look like the A (us)
depicted in the left-hand figure than in the right-hand figure. If we now carve two
holes into dBg,, both small and close to each other, we would expect on the same
grounds that A (uz) should touch §Bg, only twice. If we finally carve many little
holes into dBg, in a regular fashion, then A (u2) should not hit dBg, at all. Of
course it would be nice to make this heuristic argument rigorous.

ProOOF OF THEOREM 2.1. We first note some well known properties of the
zero set of us:
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FIGURE 2

(1) If us(x0) = 0 for 29 € Dy ¢, then it must have both signs in a neighbourhood
of zg.

(ii) uz cannot have a zero of order > 2, [4], [13], since this would lead to more
than 2 nodal domains of us contradicting Courant’s nodal theorem. O

The boundary of 0Dy is not at all smooth, but we have

PROPOSITION 2.1. For fized N the eigenvalue \;(Dy,¢),i = 1,2 are monoton-
ically decreasing in € and converge to X;(D) as ¢ | 0. The corresponding u;(Dn )
converge pointwise to u; (D).

Proor orF ProrosiTION 2.1. This follows from a recent result of Stollman
[16]. O

By construction Dy . has following symmetry properties: It is invariant with
respect to reflections through the N lines labelled by the angles w; = (i — 1)%,
¢t = 1,2...N, which pass through the origin. This implies also by composition of
such reflections that Dy . is invariant with respect to rotations with angle %j,j =
1,2...N — 1.

From Proposition 1 it follows immediately that Ay (D ) for € sufficiently small.
This is simple because Ay(Dn:) = A2(D) = A (Mg, r,) as ¢ | 0 and Ay(D) is
simple according to (2.1). This implies also that us(Dn ) enjoys all the symmetry
properties of Dy . for ¢ sufficiently small.

From now on we assume N > 1 and that ¢ is sufficiently small so that Ay (Dy . )

is simple.
LEMMA 2.1. If N(u2) N Dy . # 0 then for xz € Uj»\;ljj
uz(x) #0
where the line segments [J; are given by
J; = {x ER2:r€[0,Ry),w = (2j — 1)%}.
This means that one of the two nodal domains of us ts contained in
Dy =Dy \UL, Jj
(see Figure 3 for N = 4).

Proor oF LEMMA 2.1. The simplicity of A2(Dy ) follows from Proposition
2.1. This then implies the symmetry of u,. O
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FIGURE 3

If the nodal line of us hits the boundary of 0Dy . Lemma 2.1 implies that
(2.5) AM(Dne) < Aa(Dne).

We shall eventually obtain a contradiction to (2.5) for sufficiently large N and small
€ > 0. This can be interpreted as making the heuristics above for this special case
rigorous.

Obviously we have

/\1(MR1,R2) = /\Q(D) > Az(DNya).

For given 6 > 0 we can close ¢ so that A\ (Mg,, R2) — A2(Dn,:) < & by using
Proposition 2.1. This observation also implies that there is an R = Ry . such that

(2.6) M(Br) = M\o(Dn.), R< Ri.

Ry . tends for ¢ | 0 to Ry, Ro < Ry with A1(Bgr,) = A (Mg, r,), again this follows
from Proposition 2.1. We can also require that |Ry — R| < ¢ for given § > 0 by
picking e sufficiently small. Let

QN,& = DN,& \B_R

It is easy to see that the variational principle implies

(2.7) AM(Qne) > Aa(Dne).
From (2.5) and (2.7) it follows now that
(2.8) AM(Dne) < A(Qne).

To keep notation simple we will frequently suppress the dependence of various
quantities on N and £, assuming always that € > 0 is chosen sufficiently small.

Let f and g be the positive Dirichlet ground states of €2 and D respectively, so
that

—Af=MQ)f
(2.9) —Ag =M (D)yg
By symmetry f is also the ground state of
T
(2.10) szkgzDNﬁﬂQNﬂ{wﬂwM:N

with suitable boundary conditions. Let 97 be given by
T = ATuBtUCUDUE
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where (we use polar coordinates)
AT ={reR?:.re (R, R1),w = :I:%}
B = {x €R?:r € (Ry, Ry),w :i%}

C:{xERZ:r:R2,|w|§%}

-7 T
D= R*:r=R —, —]U[e, —
{l‘E r 1awE[Na ] [’N]}
E={zcR*:r=Ruw< i}
- N
Obviously we have f =01in FU D UC and % =0in A* U B* where g—z denotes
the outward directed normal derivative. So f is the ground state of 7" with these
mixed Neumann and Dirichlet boundary conditions.

Moreover, ¢ is the ground state of TJ(\}; = Dy U{|w| < %} where we have
everywhere Dirichlet boundary conditions at 3TJ(\,12 except for B¥ where we have
Neumann conditions.

We will arrive at a contradiction if with the above boundary conditions on Ty .
respectively T .

(2.11) M(Twe) > M(Ty,)

for sufficiently large N and small ¢ > 0.
Using (2.9) and noting that 7' C T we have that

(2.12) (A () —Al(D))/ngdx = _[Egg—ida+[4+uA_ fg—ida.

We assume f and g to be positive.

In the following we will show that the right hand side becomes negative for large
N and small (N). This proves (2.11) which contradicts (2.8) and hence finally the
assumptions in Lemma 2.1 that N (us) NdDn . # 0.

We now investigate f and % respectively ¢ and g—g.

LEMMA 2.2. Suppose that

(2.13) sup f=1
zEMyy r,
where
1 2
7“1:R+§(R1—R), ro = R+ g(Rl—R)
Then
(214) xEJI\?rf;,rQ f(l‘) > Cl(/\, R, Rl)

where (1 is bounded away from zero uniformly for large N. Furthermore there is a
constant Cy(A1, R, R1) < oo such that

0
(2.15) ‘a—i‘ < O forx € En ()

Here A= X ().
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ProOF oF LEMMA 2.2. Inequality (2.14) is an immediate consequence of Har-
nack’s inequality [6]. That C1(A, R, Ry) is bounded away from zero uniformly in NV
follows from the fact that, as mentioned above, |R — Ry is small for ¢ small.

Next we consider |%(Rw)|. Suppose ¢ is a positive radial C?-function satisfy-
ing ¢(R) = 0 and ¢(rz) = 1. If in addition

(2.16) —Ap > A (Q)p

in Mg r,, then the following standard argument implies ¢ > f in Mg ,,: Assume
indirectly that G = {& € Mg,, : f > ¢} # 0, then —A(f — ¢) < /\1(f ¢) in G.
So [ IV(f—¢)Pde < A (Q) [, |f—¢|*dx contradicting then A1 () < A1 (G), so G
must be empty. Now let ¢ be the Dirichlet ground state in Mg g, (which is radially
symmetric) and normalize ¢ such that ¢(r2) = 1. Obviously /\1(MR R) > A1(Q)

and ¢ satisfies (2.16), hence ¢ > f in Mg, and in particular |6T | > |af| forz € E
®

proving (16) since g—T(R) remains uniformly bounded for large N. O
Next we investigate g. We start with a simple result we shall need to bound

|69| from below for « € A.

LEMMA 2.3. Suppose 2 C R? and B,(y) = {z € R?: |z — y| < p} C Q with
OB, MO # 0. Suppose u > 0 in Q, u € C°Q) and —Au = Au in Q, A > 0. If
xg € 9B, N O and u(xo) = 0 then

ou

2 (z0)| 2 2 uly)

(2.17) 5

where a_ denotes the outward directed normal deriwative with respect to 982.

REMARK. This Lemma can be viewed as an explicit variant of Hopf’s boundary
point lemma [6].

Proor oF LEMMA 2.3. Without loss we may assume y = 0. Since A > 0,v =

u(x1, xz)e\/xxf" is harmonic in Q x R'. We use Harnack’s inequality for harmonic
functions in B, = {z € R?: |z]| < p} C 2 x R!. We have [2]

v(z) > (1 @ |)< —|—|z|)_2v(0) Yz € B,.

In particular for 3 = 0 this becomes

(2.18) u(@) > (1= [2|/p)(1+ 2|/p)"*u(0) Vi € B,.
Now fix 0 < pg < p and let & = pg/p. Define
ha)=h(r) = —2 L ) (mp= v, (r=]a]).

(14+a)?|In «af

Then Ak =0 and (19) implies since A(z) = 0 < u(x) for |z| = p, by the maximum
principle that h(z) < u(z) in Bp\B,,. So
dh Oh Ju
50| = i) < |

for x € 9Bp N IQ if u(x) = 0. Now pick o = 1/4, then (2.17) follows. O
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We normalize g so that

(2.19) sup g(ro,w) =1
lw|< &
with
R4+ Ry
o = .
2

Using Lemma 4 we now show that

0
(2.20) / 199 | fdo > C5 > 0
Atua On
for sufficiently small ¢ and where (5 does not depend on N. Let
T
(2.21) Qnr= {xa]RZ w] < v < f} :

We note that ¢g(r,w) = g(r, —w) in Qn g, . Let wg be chosen such that g(ro, wo) =1
T _

and suppose without loss that wg > 0. We have with p = rg sin(N wp) and
Yo = (rocoswy, rosinwg) that B,(yo) C Qw g, provided N is sufficiently large.

Let y, = (rocos(3 — wo)cos 17, 1o cos(7 — wo)sin %-) then yy € 9B, (yo) N AT,
Lemma 2.3 applies and gives
Oy 1
2.22 — — > (4N
( ) ‘3n(y+) = 3rosin(§ —wo) — 4

for some positive constant not depending on N. (2.18) implies now that
2
(2.23) g> g for 2 € B2 (yo)

and we can use Lemma 2.3 again to obtain

dg

> C5N for v € AT N Begyn ()
n

for some N-independent positive constants C5,Cs. This gives
dg

(2.24) /A+ 5

with C'7 again N-independent. Inequality (2.20) now follows from (2.24) and (2.14).
The proof that the right hand side of (2.12) is negative and hence the proof of
our result will be complete once we show that

af
(2.25) /Ega—nda 0

for large N. This will follow using (2.15) by showing that g satisfies for z €

dUZCS/ Ndo > C7 >0
AtnBeg /n(Y+)

(2.26) §(Rw) < Ci (E)CQN

To
with some N-independent constants Cs, Cg, where ry was defined in (2.19). To see

that (2.26) holds let v = V2 (%)W cos %w with

1 N
={ 2 \(Dn )2+ — — =
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(we assume N so large that v is real). A simple calculation shows that
—Av > M (Dye)v

for x € Qn,y, and that v > g in dQn,,. Since A\ (Dn.)ri stays bounded for
large N we again can use a comparison argument as in the proof of Lemma 2.2 to
conclude that v > ¢ in Qu r, showing (27).

This finally proves Theorem 2.1. O

The construction of our counterexample also lends itself to an example where
Az has multiplicity 3.

THEOREM 2.2. Let N > 3 then Ao(Dy ) has multiplicity 3 for suitable ¢ > 0.

REMARK 2.3. To our knowledge this is the first example of a domain in R?
where the second eigenvalue has multiplicity 3. In [11] it is claimed that the
multiplicity of A, is always at most 2, but probably the author had the simply
connected case in mind.

Proor oF THEOREM 2.2. We first note that the eigenfunction of a disk Bg,
satisfy

(2.27) A1(Br,) < A2(Br,) = A3(Br,) < A4(Br,) = As5(Br,) < Ae(Br,)-

uy and ug are radially symmetric, hence invariant with respect to inversion at the
origin, whereas usg, us, ug, us are antisymmetric with respect to inversion.
Now consider Dy .. We have

DN,% = BRQ.
We also can distinguish between eigenfunctions which are symmetric, respectively
antisymmetric with respect to inversion of the origin. For ¢ = 0, u1(Dn,0), u2(Dn o)
are symmetric and us (D o) s antisymmetric with respect to inversion at the origin.
Hence A2(Dy ) will approach A¢(Bpr,) for ¢ = 7, whereas A3(Dy ) will tend to

A2(BR,), hence these two curves must cross leading to a Ay (Dy o) with multiplicity
3 for a suitable ¢. O

3. Sufficient conditions

In the following we give some sufficient conditions such that the nodal set of an
eigenfunction of a Dirichlet problem hits the boundary. Thereby we shall not strive
for generality but rather present the main ideas together with some examples.

Let D C R” be a bounded domain and suppose that 8D is C?. Suppose that
0D has N components such that

(3.1) dD = U= 0D
Our sufficient conditions for the nodal line conjecture to hold will be based on the
following simple observation.

THEOREM 3.1. Suppose D satisfies the assumptions above. Let ux(D) be an
etgenfunction of the corresponding Dirichlet problem
(3.2) Aup(D) 4+ A (D)up(D) =0
for some k.

Suppose there exists a function f: D — R such that
(3.3) fec*pynct(D)
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with

(3.4) (A+Xg)f=0.

Suppose further that there is one component of 0D, say dD*, such that
f>0indD",

(3.5) fl1oD* £0

and

(3.6) F=0in dD\OD".

Then

N (ug(D)) N OD* # 0.

REMARKS 3.1. (i) Our regularity conditions for 8D and f | D are certainly
much too strong but we keep them in order to avoid certain technicalities.

(i) Actually we have a stronger result: g—z
denotes the outward directed normal derivative.)

(iii) Theorem 3.1 has obvious generalizations to Dirichlet problems on manifolds
with boundary or Schrodinger operators on bounded domains with zero-Dirichlet
boundary conditions.

(iv) Theorem 3.1 is a sufficient condition but not a necessary one. It is easy
to construct examples where a domain has an eigenvalue of multiplicity > 1 and
where in the corresponding eigenspace there is one function u with A'(u)NdD = .
But by linear combination of the eigenfunction in this eigenspace one can always
force a function to have a zero hitting the boundary. Such an example is given for
the square membrane in the book of Courant and Hilbert [5].

must change sign in 3D*. (Here g—z

ProoF oF THEOREM 3.1. Equations (3.2) and (3.4) imply that

uAf — fAu=20
(We suppress the indices.) By Green’s second identity we have using (3.6)
/ ua—fda— fﬁ—udaz— fﬁ—udazo.
8D 671 8D 671 aD* 671

This implies that g—z changes sign in D* or g—z = 0 in 0D*. But this is impossible
since by assumption 9D € C?, hence D satisfies an interior sphere condition, which
in turn means that Hopf’s boundary point lemma [6] applies implying that g—z #0
for all y € D*\N (u). Hence if N'(u) N dD* = §§ we have the desired contradic-

tion. O

Theorem 3.1 looks nice, but given a domain D it is not at all clear how to
check for a specific eigenfunction and eigenvalue whether we can find a function f
satisfying (3.3-3.6).

In the following we describe two families of domains for which we can apply
our results.

The first family is related to balls in R™

B = {z €R": |z| < R}.

We also need Bessel functions and denote by j,; the I-th zero of the Bessel function
Ju(r). (r = |z|). The J,(r) are in a well known way related to the Dirichlet
eigenfunctions of balls [3].
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Let
(3.8) ¢n = min (—j%’l j—%_l’z) .
Jz-11 Jz1
E.g.
(3.9) go~ 143, ¢3~139,...,¢9s~ 1.11.

THEOREM 3.2. Let D C R” be a bounded domain in R™ with only one boundary
component and 0D € C2.

Let
(3.10) Br, C D C Bg,
and
(3.11) / dx > 0.
Br,\D
If
R
3.12 1< —=<q,
(3.12) <R S¢
then
N(ug(D)NnoD £
fork<n+41.

PrOOF OF THEOREM 3.2. We prove just the 2-dimensional case, the n-dimen-
sional is almost identical.

Let D C R? be simply connected and consider us(D). (The proof for uz(D) is
identical.) First we note that (3.10) implies

(3.13) A2(D) € (A2(Br,), A2(Br,)]-

This follows from the well known fact that if Dy C Dy the Dirichlet eigenvalues
satisfy Ag(D1) > Ar(D2). Now consider the Dirichlet eigenvalues of the disk. We
have (see also (2.27))

A (Br) < A2(Br) = A3(Br) < A4(Br) = As(Br) < As(Br).
With the above defined j,; we have [3]

(3.14) /M (Bgr) = %,\//\Q(BR) 71 L/ Ma(Br) = 221 \/X6(Br) = J%Z,

u1(Bpr) and ug(Bpr) have spherical symmetry and N (ug) is a c1rc1e. Equation (3.13)
implies that there is an R € (Ry, Ra] such that Ay(Bgr) = A2(D). We can also find
R < R such that

(3.15) A2(Br) = A1 (Br) = As(Bp).
This means that
N(us(Bg)) = 0Bg.
So if
BrCDCBg

we are done for f := ug(Bpg) will do the job since with the appropriate choice of
sign f > 0in 8D and f Z 0 in 0D because of (3.11).
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Let us define Ry and R» by

It suffices to show that
(3.16) Ry < Ri < Ry<R;
is satisfied. Using (3.14) this means that

9 = j.o—’le <Ry
Ji1

R = j.o_,le > Rs
Ji1

must hold. But this is exactly the requirement.

R
Rl_fh

proving our result for uz(D). For uz(D) the proof is identical.

For D C R™ we just note that /\Q(BJ(R”)) is n-fold degenerate and that in (3.14)
the corresponding zero’s of the Bessel functions have to be used so that (3.8) turns
up. O

REMARKS 3.2. (i) Again we stress that the assumption 9D € C? can be weak-
ened considerably.

(ii) Due to the n-fold degeneracy of /\Q(BJ(R”)) we get the result for ug(D),
k € [3,n+ 1] for free. But at the expense that ¢, — 1 for n — co.

(iii) Similar arguments allow us to treat also higher eigenvalues. For instance
if for D C R? Br, C D C Bg, and g—f — 1 is sufficiently small, AV'(u4) and N (us)
must hit D (provided D is simply connected).

One way to interpret the underlying construction which led to Theorem 3.2
(e.g., for n = 2) is the following: we took a disk B,, and considered its ground
state ui(B,,) with eigenvalues A1(B,,). Then we noticed that ui(B,,) can be
extended so that it does not change sign in the annulus B,,\B,, . If we have now a
simply connected domain D such that Ay (D) = A (B,,) we can apply Theorem 2.1
with f being the extension of u1(B,,) to B,,.

But instead of B,, we can consider other domains and try to extend their
ground states to larger domains.

We shall use reflections to extend domains whose boundaries have flat pieces.
Thereby we shall illustrate the main ideas by examples rather than stating some
general theorems (which would have to be quite complicated and lengthy). Figure 4
demonstrates the underlying principle.

Let D be again a bounded domain and A some Dirichlet eigenvalue and u one
of the corresponding eigenfunctions. Suppose we can cut D into two pieces (or as
will be seen later chop off several pieces) as shown in Figure 4. We again assume
dD € C? and for simplicity that @D consists of only one component, such that
D = D1 UDy;UT, where Dy is the domain to the right of the dashed line I' and Dy



ON THE NODAL LINE CONJECTURE 13

FIGURE 4

FIGURE b

the domain to the left. Suppose that Ay (D2) = A(D) and that the shaded reflection
D7 of Dy, satisfies DT C D5 and fD2\D* dx > 0 then

(3.17) N (u) N OD\T # 0.

To see why (3.17) holds in this case we consider ¢ the Dirichlet ground state of
Dy and assume that T'= {# € D : 23 = 0} and that Dy C {# € R": ; > 0}, then

(3 18) f:{gp(xlax%"'axn) for x € D>

—p(—x1,29,...,2y) foraze Dy

can be used to apply Theorem 3.1 since f does not change sign in dD;\T since
IDI\T'1 C D5 and Af+Af =0in D.

Naturally by the same reasoning we could chop off many pieces, as illustrated
in Figure 5. If the domain without the shaded pieces has a Dirichlet first eigenvalue
A which coincides with some Dirichlet eigenvalue A of the whole domain DD we can
argue as above to show that the corresponding u satisfies A'(u) N 9D # . But in
general it 18 not clear how to check for a given domain whether we can for some
eigenvalue A chop off pieces in the way described above. However, for domains
which consist of separated identical pieces which are connected by thin channels
(hence a semi-classical situation) we can often use the approach above. To be more
precise let us give an explicit example.

Let

(3.19) Do = UL, Br(z;)
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FIGURE 6

where the Br(z;) = {# € R" : | — ;] < R} and
(3.20) |#; — 2| > 2CR for some C' > 1.

We make Dy into a domain by connecting the Br(z;) with thin channels. So let
M be these channels and

(3.21) D =M U Dy U (M N Dg)

where M = UleM(k), K finite. We illustrate this in Figure 6.
We also assume that D € C? (also not essential). Now if M has sufficiently
small measure ¢ then for ¢ < N

(322) A (D) < /\Q(BR)
since
/\Z(Do) = /\Z(BR) for i = 1, . .,N
and
gl_I}(l) /\Z(D) = /\1(33).

This can be easily seen by Dirichlet Neumann bracketing [15], but here C' > 1 in
(3.20) is important.

Now we assume that there is one component dD* of §D such that for each i,

ID* NOBg(x;) contains a set 1; which after a suitable rigid motion to shift Br(x;)
into Br(0) is given by

n={x € 0Bg:x >R} for some 0 < v < 1.
By picking ¢ sufficiently small (depending on =)
(3.23) N(ug)NoD™ £

where k < N. To prove (3.23) we chop off from each Bg(z;) the set (after rigid
motion to Br(0)) #1 > R so that we obtain a domain without the shaded regions
2. See Figure 7. The Dirichlet ground state energy will be larger than Ax (D) for
sufficiently small . But we can individually make the shaded regions smaller so
that we eventually arrive at domains D; such that

M(D)=X(D) i=2,...,N
and so for each D); we can use the reflections described above. Hence the ground

state of D; continued by reflections in each Bg(z;) in the way described by (3.18)
will serve as a function f allowing to apply Theorem 3.1.
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FIGURE 7

The above example is rather special. We could have replaced the Bgr(z;) by
individually different domains satisfying some spectral and geometrical conditions
ete., and again 0D € C? can be relaxed considerably.

It seems to be difficult to characterize the domains for which

N(u2)(D) N OD # 0

can be shown using Theorem 3.1 together with the reflection procedure. In partic-
ular we do not know whether convex domains in R? or R” can be treated in this
way.
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