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Slightly more then 20 years ago I.Gelfand and me discussed several problems on
representations of real semisimple Lie groups. One of such questions was how to
see on the group Gp = SL(2;R) itself that some part of the regular representation
in L?(Gr) is decomposed on representations of the holomorphic discrete series? We
found that

(1) functions out of corresponding subspace L? , admit holomorphic extensions
on the domain G4 C Gg = SL(2;C) of contractions of upper half-plane
Cy ={2€C3z>0}.

Of course G4 is an open Stein submanifold of tube type in G¢ and Gp is
its edge (Shilov’s boundary) and in addition, for reasons which we did not
understood then

(2) G4 admits equivariant embedding as Zariski open part in the Siegel half-
plane of rank 2 (complex symmetric matrixes of order 2 with positive imag-
inary parts). Correspondingly SL(2;R) x SL(2;R) imbeds in Sp(2; R).

(3) On holomorphic functions in G4 a Hilbert norm of the Hardy type can
be defined so that on the corresponding space H*(G ), there are defined
boundary values as an isometry on L? . It is also possible to explicitly con-
struct a generalized Szegd operator of the projection of L?(Ggr) on H?*(G4.).

JFrom my point of view the most surprising element of this construction is that
in a natural problem of the theory of representations there appeares a manifold G
which is Ggp x Gr-invariant but inhomogeneous. We had many plans to develop
this observation. Groups of Hermitian type were only a first natural step but our
principal plans were of course connected with nonholomorphic discrete series. For
certain reasons we postponed the work on this project and published only a short
paper [GG]. It was not a standard publication: we had considered only the example
of SL(2;R) and did several general remarks. It was in a sense an invitation to the
project. Thanks to the kindness of Ol’shanskii it is now sometimes called “ Gelfand—
Gindikin program”. I myself never was seriously involved in its development but
only from time to time thought about some things which can be connect with it.
Nevertheless I want to use this an occasion and make a few remarks about how the
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situation looks for me 20 years later and which problems I believe are interesting.
As T am not an expert in the area my references can be very noncomplete.

Our invitation was accepted. Several people constructed [O1], [S], [HOO] the
complete theory of the Hardy spaces in the case of groups of Hermitian type and
investigated the connection with holomorphic discrete series. They added several
important points which we missed in our project. Ol’shanskii found that tubes
which have groups of Hermitian type as edges are non unique. They have structure
of semigroups. Using some Vinberg’s results he gave their classification. We knew
that G4 is the set of contractions but we did not paid an attention to the fact
that it is a semigroup. Hilgert, Olafsson and Orsted generalized the construction of
the tubes on the case of affine symmetric spaces of Hermitian type for which there
exist holomorphic discrete series. The important component of the theory was the
observation that on symmetric spaces of Hermitian type there is a causal structure
(cf. below). The theory contained a construction of the Szegé projector but no
explicit formula for the Szegod kernel. It is interesting and important point from
which I want to start our discussion.

Szego6 operators. Let us recall the construction of the Szegé operator in [GGJ.
We computed the character S(g) of the (reducible) representation of SL(2;R) in
L3 . by the direct summation of characters of irreducible representations of the
holomorphic discrete series with the corresponding Plancherel’s coefficients. We
remarked that the sum (which could be computed explicitly) can be (together with
characters of irreducible representations) holomorphicaly extend in the tube G4.
This character S(g) will give the kernel of the Szegd operator: the Szegd projector
will be a convolution with it. The final expression for S(g) looks very nice but
unfortunately does not contain any hint how the Szego6 kernels could be looked at
the general case.

Last couple years this direct way of computations of Szego kernels was realized
by Molchanov for hyperboloids [Mo] and by Ol’'shanskii for some classical groups
[O13]. Nontrival computations give some nice explicit algebraic functions but their
structure does not leave a lot of chances to guess a formula in the general case.
Below we will discuss a more simple way to compute the kernel in special cases but
for now I want to open my old plan of working with the Szego6 kernels.

The Szego operator gives an integral formula which reconstructs holomorphic
functions in Gt through its boundary values on the edge Gg. In multidimensional
complex analysis there is a standard way to obtain integral formulas - the Cauchy—
Fantappie formula. In the practice all known integral formulas can be realize as
special cases of the Cauchy—Fantappie formula. I consider the following problem
very important:

To giwe a construction of the Szego kernels for semigroups and other tubes using
the Cauchy—Fantappie formula.

It might be necessary to modify of the Cauchy—Fantappie formula since we have
a unbounded domain in a manifold (cf. its projective version in [GKh]), but I do not
see serious obstructions to realizing it this way. The result of such a construction
must be an integral representation of the Szego kernel through some geometrical
characterics of the boundary. The explicit computation of this integral may not
be simpler than the computation of the sum of characters, but I believe that this
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representation can be sufficient for computation of Plancherel’s coefficients. There-
fore the focus of the project is to find a geometrical way (without group invariance)
of presentation of Szego kernels and then to apply it to the computation of the
“holomorphic” part of the Plancherel formula - the way which is just the opposite
to one which uses for computations now.

There is an important analogy of this plan with the application of the inte-
gral geometry to the Plancherel formula for complex semisimple Lie groups (using
horospherical transform) [GGr], [G3]. There we obtain the inversion of the horo-
spherical transform as a special case of general inversion formula for problems of
integral geometry without a direct usage of groups. For real groups the integral
geometry does not worked in the general situation but it is natural for the holo-
morphic discrete series to consider the Cauchy—Fantappie formula as a surrogate of
the integral geometry. Let us recall that there is a view that the Cauchy—Fantappie
formula is a complex analog of the Radon inversion formula [G1]. It gives an extra
support to this a project.

Basic classes of manifolds. As we will operate with several classes of manifolds
and some of them have similar names, let us fixed basic objects:

(CH) Compact Hermitian symmetric spaces.

(NH) Noncompact Hermitian symmetric spaces. They are realized as domains
in dual CH.

(FT) NH of tube type. They realized as tubes in C". We will call them also flat
tubes to differ from tubes which are the subject of this paper.

(AH) Affine symmetric spaces of Hermitian type. This class includes groups of
Hermitian type which act in NH.

(R) Symmetric R-spaces- real forms of CH.

(CR) Edges (Shilov’s boundaries) of flat tubes. It is a special case of symmetric
R-spaces. They are compact Riemannian symmetric spaces (relative to maximal
compact subgroup of the group of automorphisms). Let us emphasize that we take
complete boundaries inside dual CH but not only inside C".

(CT) Curved tubes -tubes in complexifications of AH which have these AH as
the edges. In the case of groups they are semigroups in complex groups. In general
case they are orbits of semigroups.

(SS) Stein symmetric spaces. These affine symmetric spaces of the form YV =
G/K where G is a complex semisimple Lie group and K is a involutive complex
subgroup. As complex manifolds they are Stein manifolds. They are obtained
as results of complexifications of affine symmetric spaces (of groups and isotropy
subgroups). Complex semisimple groups are partial case of SS. Curve tubes (CT)
are domains in SS - complexifications of their edges, at that time as flat tubes (F'T)
are domains in another class of complex symmetric spaces - CH.

Generalized conformal structures. Let us talk now about the observation in
[GG] that the tube G4 can be extended up to the Siegel half-plane. The key
here lies in a generalized conformal structure [G2]. For a simplicity’s sake we
will give the definition in complex case. Let V be a conic (invariant relatively
(C\0)*) algebraic variety in C*. We call a generalized conformal V -structure on
n-dimensional manifold M a field of varieties V, C T, (M) (tangent spaces) which
all are linear equivalent to V. In the case when V is the quadratic nongenerate
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cone we have usual conformal structure. Of course it is possible to consider the
real version of this notion but it is important then to provide a possibility for a
cone V to be imagine and it is convenient to start from complex structures and
then to investigate their real forms (including imaginary ones). We can consider
conformal morphisms of such structures and a generalized conformal V-structure
on M is called flat if M with this structure is local isomorphic in neighborhoods
of all points to domains in C" where the structure is defined by translations of the
cone V.

The classical result of Pliicker is that the Grassmanian Gr(2,4) of lines in CP?
has a canonical flat conformal structure and can be interpret as the conformal
compactification of C*. Using the language of generalized conformal structures
(GCS) it is possible to generalize this fact. Let us consider for an example the

space c = M(n) of square matrixes of order n with the cone
V ={z € M(n);det z = 0}.

and the corresponding flat GCS. Then there is a conformal compactification of
this manifold which is isomorphic to Gr(n;2n): conformal automorphisms of the
compactification are exactly the automorphisms of the Grassmanian. Of course the
corresponding GCS on the Grassmanian admits a geometrical description on the
language of intersections of n-subspaces in C?>". The flatness of this structure can
beeen established by a generalization of the stereographic projection (cf. below).

Around 1985 I supposed that this a phenomena is a general one for compact
Hermitian symmetric spaces of rank more than 1. Namely, on each such manifold
there exists such a flat GCS that its automorphisms are exactly are automorphisms
of the symmetric space. Moreover local conformal automorphisms can be extend up
to global ones (generalized Liouville theorem). GCS connecting with Grassmani-
ans (they are defined by Segre cones) were considered earlier by Akivis. Goncharov
[Go] proved this conjecture for all compact Hermitian symmetric spaces of rank
more than 1. As the cone V we take in this construction the closure of an orbit
of the isotropy group on the tangent space. Goncharov worked with orbits of min-
imal dimension; another natural choice is orbits of codimension 1. Probably GCS
for closure of any orbit of positive codimension defines the geometry of Hermitian
spaces. Later Baston [B] also considered such GCS (he called them almost Hermit-
ian symmetric). Last years were published several results about GCS connecting
with Hermitian spaces. An interesting development was found by Neretin [N].

Between real forms of GCS the special interest have causal structures when real
conic variety V is a boundary of a convex sharp (without lines inside) cone. Such
structures were introduced by I.Segal. Ol’shanskii [O13] considered affine symmetric
spaces with invariant causal structures. Symmetric spaces of Hermitian type (AH)
are a subclass of causal ones [O]. Kaneyuki [K] considered flat causal structures
on egdes (CR) of flat tubes (FT) and proved that their automorphisms can be
extended as holomorphic automorphisms of tubes.

Let us illustrate the last fact. If in our example of M (n) we take the Hermitian
symmetric space - flat tubes (FT) - of matrixes z with positive skew Hermitian
part:

(1) 1/2i(z —2") >0
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then the induced GCS on the edge (Hermitian matrixes z = z*) can be defined
by the boundary of the cone of positive Hermitian matrixes. It will be causal and
flat. Last years there were considered some theorems of Liouville type for GCS on
symmetric R-spaces: Bertram [Bel] used the language of Jordan algebras, Kaneyuki
and me - graded Lie algebras [GK].

Now we will give an example of causal structures on symmetric spaces of Her-
mitian type (AH) and its complexifications. On SL(2) we take in the unit point e
the cone of singular elements

v ={g;det(g — ¢) = 0},

its image V in Lie algebra and the field of translations V; of the last cone in points
of the group. It is invariant GCS on SL(2;C) and its restriction on SL(2;R) is
causal.

The next important fact is that between invariant GCS on affine symmetric
spaces there can exist non trivial local isomorphisms. Let us include SL(2;R) =
Sp(1;R) in the family of symplectic groups (Sp(n;R) acts on the Siegel half-plane
and has the Hermitian type) and establish a local conformal isomorphism of the
group Sp(n; C) and the Lagrangian GrassmanianLl, = LGr(n) on which the group
Sp(2n; C) acts by biholomorphic automorphisms. Let us describe this an example
in more details. We start with the Grassmanian Gr(n;2n) which we realize as the
manifold of equivalency classes of n x 2n -matrixes Z relative to the relation

Z ~uZ,u € Gl(n;C).

Then L, is defined by the equation
(2) 7JZ" =0,
where J is a fixed nondegenerate real symmetric 2n x 2n-matrix; for example,

0 —I

= (1),

where I = I, is the unit matrix of the order n. The subgroup in the group SL(2n;C)
of automorphisms of the Grassmanian which conserve (1) is Sp(n;C). Different .J
give equivalent realizations of £, in the Grassmanian. In the intersection with
the coordinate chart Z = (I,z), where z is an n X n-matrix, £, coincides with

the space of symmetric matrices Sym(n). The dual symmetric domain Dy in £,
(Siegel half-plane) can be define by the condition

(3) 1/20ZJZ* >0
and in the coordinate chart of symmetric matrices by the condition
Sz > 0.

Its group of automorphisms will be Sp(n;R).
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Let us for Z € L,, define
vy ={Z,€L;27ZF =0}

be a field of conic subvarieties in £, and V7 be their tangent cones. The field Vy
defines on £, a generalized conformal structure. In the chart of symmetric matrixes
the field has the form

V., = {w;det(z —w) = 0}

Therefore we have on the space of symmetric matrizes the flat GCS and L, 1s its
conformal compactification.
On the group G = Sp(n; C) we consider the field of conic submanifolds

vy ={g1 € G; det(glg_1 —I)=0}

and their tangent cones V;. We obtain GCS and Sp(n; C) admits conformal imbed-
ding in £,,. We need only take the definition of Sp(n;C) :

(4) gJgt' =J,  g€Gln;0),

where J is a real symmetric matrix of the order n. If we take £, corresponding

J 0

=(5 )
then Sp(n;C) will coincide with the intersection with the coordinate chart Z =
(9,I). Correspondingly we have the embedding of the automorphism groups:
Sp(n;C) x Sp(n;C) in Sp(2n;C). This embedding commutes with taking of the
real forms Sp(n;R). As a consequence we obtain that GCS on Sp is flat ( which
was not evident apriori) and our embedding is a matrix analog of the stereographic
projection. It turns out that the preimage G4 of the tube Dy (8) for this imbedding
is exactly the semigroup with the edge Sp(n;R).

This construction put our observation from [GG] about SL(2;R) in more broad
context. Such an extension exists for several classical groups and symmetric mani-
folds of Hermitian type. The GCS on GL(n;C) is flat and equivalent to the GCS
on the Grassmanian Gr(n;2n) (cf. above), any U(p; ¢) is locally isomorphic to the
manifold of Hermitian matrixes of the order n = p+ ¢ and corresponding semigroup
G4 is compactified up to the symmetric space (1) [G4].

Embeddings of one symmetric space in another one with corresponding em-
beddings of groups in some classical examples were known for a long time. Let
us mention results of Makarevich on embeddings of symmetric spaces in symmet-
ric R-spaces [M]. Rallis and Piatetski-Shapiro [PR] applied the “doubling” of the
symplectic and other classical groups to constructions of L-functions. May be a
new element was only the interpretation on the language of GC'S and the remark
on the extentions of (inhomogeneous) curve tubes up to flat ones. Bertram [Be2]
considered the general problem about the equivalency of causal structures to flat
structures on R-spaces and connected the classification with the results of Makare-
vich. Let us emphasize that not all symmetric spaces of Hermitian type (including
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groups) admit conformal extension up to R-spaces and correspondingly not all
curved tubes can be extend up to flat tubes. May be it is true, that

Causal structures on affine symmetric spaces of Hermatian type are flat if and
only if they are isomorphic to causal structures on symmetric R-spaces (their com-
plexifications are then isomorphic to structures on compact Hermaitian symmetric
spaces) and then curved tubes extend up to flat ones and the corresponding Stein
symmetric spaces compactify up to compact Hermitian ones

It is possible to formulate such a conjecture for arbitrary causal symmetric
spaces. Classification from [Be2] can be the essential step for this fact.

Let us illustrate these constructions on the simplest example of classical confor-
mal structures (cf. details in [G6]). Let @ be the hyperboloid in R™:

(5) m(:z;,:z;):xf—l—---—l—x]%—x]%_i_l—---—:1;]23_1_(1:1, n=p+q.

Let Q¢ be its complexification and

(6) Q+ ={z € Qc;m(z,2) 2 0}.

The group SO(p, ¢) acts transitively on @ and @ will be an affine symmetric space
relative to this action. On Q¢ the conformal structure is defined by the field of
intersections of ()¢ with tangent hyperplanes and on ) by intersections with real
tangent hyperplanes. The last cones for ¢ = 0 will be imaginary. The conformal
compactification of @ will be the hyperboloid Q in the projective space R P"™:

(7) xf—l—---—l—x]%—x]%_i_l—---—xi—xg:0.

Corresponding domains Q+ are pseudo-Hermitian symmetric manifolds and for
p =2 Q4 is a Hermitian symmetric. For p = ¢ = 2 the hyperboloid @ coincides
with SL(2;R). Between affine forms of Q (their conformal compactifications are
@) there is a paraboloid P:

_ .2 2 2 2
Ty =Xy A AT, Ty e T

In this a situation the symmetric domains Py and @+ are isomorphic and they
both are conformal extensions of Q4. The group SO(p, q) is not transitive on Q4.
For p = 2 the hyperboloid @} will be a symmetric manifold of Hermitian type and
Q@+ will be the corresponding tube.

Some problems on GCS.
We will start from much more strong version of the problem from the last section.
1. On Hermitian symmetric compact spaces (CH) of rank more than 1 there are
flat GCS. I am sure that the condition of the existence of a conformal compactifi-
cation is extremely strong and I do not see obstructions to think that
CH of rank more than 1 are only compact complex manifolds with flat GCS.
More realistic is to consider this conjecture under conditions that this manifold is
homogeneous relative to automorphisms of the structure or to put some conditions
of homogeneity on the conic variety, defining the structure. Nevertheless it would be
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extremely interesting to find a geometrical characterization of Hermitian symmetric
spaces without the group language.

2. One more problem in a similar direction. As explained by old geometers,
starting with Sofus Lie, the isotropic submanifolds (whose tangent spaces lie inside
of isotropy cones V, defining the conformal structure) are most important objects
in the conformal geometry. It would be interesting to investigate systematically
maximal isotropic submanifolds for GCS. The 4-dimensional (complex) flat con-
formal manifold C* it is possible to realize either as a nondegenerate quadric in
CP?® or as the Grassmanian Gr(2;4) of lines in CP?. There are 2 one-parametric
families of isotropic submanifolds of dimension 2 in it (corresponding to points and
planes) and they are in the focus of Penrose’s theory of twistors. It is not difficult
to prove that if on a 4-manifold with GCS, codim V' = 1, there are 2 one-parametric
families of isotropic 2-submanifolds such that submanifolds in one family do not in-
tersecting and from different families have one-dimensional intersections then this
structure is the classical conformal flat structure (with qudratic cone). Hint: if
on a surface in the projective 3-space there are 2 one-parametrical families of lines
such that lines of one family do not intersect, but of different families do then this
surface is a hyperboloid. I believe that it is not difficult to generalize this result for
Grassmanians. It would interesting

to characterize Hermitian symmetric compact manifolds on the language of maz-
imal 1sotropic submanifolds.

3. Almost everything what we know about GCS is restricted by flat ones and
often only causal. I believe now is the time to think more about nonflat GCS and
noncausal GCS. One of first natural problems is to investigate invariant GCS on ar-
bitrary pseudo-Riemannian symmetric spaces X = Go/Kp. In non-Hermitian case
they are apparently must be non flat. Again it is natural to start with the complex-
ification - the Stein symmetric space Y = G/K where G, K are complexifications
of Gg, Ky. Real forms of GCS on Y can be on X imaginary. Natural candidates
for the conic varieties V' are orbits of K in the adjont representations. If there is
a geometrical realization of points of Y then usually it is possible to describe the
conic variety V, with the vertex in a point = as the tangent cone to the variety of
points in a nongeneric position to . The first problem is

to find for arbitrary Stein symmetric spaces (SS) GCS satisfying the Liouville
condition: the group of their automorphisms is the complete group G of automor-
phisms of the symmetric manifold Y.

Such a GCS can exist in symmetric spaces of rank 1. In [G9] we explain that in
the case of X = CP" the (conformal) Fubini-Study metric satisfies this condition
and we generalize this construction on the case of Grassmanians. Restrictions of
such structures on Riemannian symmetric spaces probably are always imaginary.

It is important to be flexible in the work with GCS. Invariant GCS on sym-
metric spaces might not be equivalent: GCS corresponding to different orbits on
tangent spaces can be nonequivalent. On one hand it is interesting to consider
“non-Liouville” GCS whose (local) automorphisms can not be automorphisms of
symmetric spaces and as the result we can consider conformal extensions. On the
other hand sometimes it is important to find such GCS for which automorphisms
are only authomorphisms of a symmetric manifold and defines in such a way its
geometry. For example, if X is Hermitian compact space (Gg is compact) then its



1L UDE DONMAILNDS IIN DL EIN 5YMMEPELRIC DFACEDS J

complexification Y will be a Zariski open part in X x X. On Y there is of course
the flat GCS (the direct product of structures on X and X) relative to which X x X
will be the conformal compactification of ¥ (and this extension is useful for some
constructions of representations. On other hand, as examples demonstrate, on Y
can exist GCS with Liouville property (its automorphisms are automorphisms of
Y) . Above mentioned Fubini-Study structures [G9] have this property. They are
more informative for representations: Hua and Schmid’s elliptic differential equa-
tions on X are confomal invariant relative to the 2nd structure and as the result
there is an important connection with discrete series of Gp.

4. Compact Hermitian symmetric manifolds are partial case of flag manifolds
F = G/P, G is a complex group, P is a parabolic subgroup. It is natural to
investigate invariant GCS on flag manifolds which again must be nonflat if F is not
symmetric. Let us consider the simplest example of F(CP?): flags on the projective
plane: pairs (f = (a,l);a € ), where a is a point, [ is a line. The isotropic cone
in the tangent space in a flag f is induced by a conic variety of flags which are not
in generic position with f (there is a incidence between corresponding points and
lines). Apparently conformal automorphisms of this structure will correspond to
maps of CP? conserving the set of lines and the corresponding Liouville theorem
will be the Darbox theorem (which call sometimes the fundamental theorem of
the projective geometry): all such maps are projective transformations. There is
an essential connection between GCS on flag manifolds and the Borel-Bott-Weil

theorem [GW] .

Analytic applications of GCS on compact Hermitian symmetric spaces. The
idea of [G4] was to use the embedding of some curved tubes in flat ones for inves-
tigation of Hardy spaces and Szego kernels. Namely flat tubes are symmetric and
Hardy spaces for them were studied in details including explicit formulas for the
Szego kernels. The crucial step is to extend functions on curve tubes and their
edges on their conformal extensions.

There is a pretty standard way to do it. If we have function on a manifold with
GCS, say on hyperboloid ¢ with usual conformal structure, we can extend them on
the conformal compactification (Q) as sections of an appropriate line bundle (in our
example as homogeneous functions of some degree in homogeneous coordinates in
the projective space). These sections can be then restricted on another affinization
where all considerations can be simpler (e.g. it can be homogeneous). In our
example of the paraboloid P there is a big abelian subgroup of automorphisms
which gives us the ability to apply the Fourier integral. For p = 2 the domain Py
is a (flat) tube domain (with the light cone) and we have the embedding of the
curve tube @)+ in the flat tube Py. The idea was to use homogeneous functions to

transfer functions from P, Py on @), @4, including Hardy spaces and Szego kernels.

This plan has a dangerous point which I missed in [G4] and which was observed
by Koufany and Orsted [KO] . Namely it is necessary to be careful when we trans-
form holomorphic functions in sections on conformal extensions. In the case of
the paraboloid P we need to extend functions out of L? for the invariant measure
as homogeneous functions of the degree of —(n 4 1)/2 (it is a consequence of the
“homogeneous” extension of the invariant measure on @}). So if n is even for holo-
morphic functions on P4 we obtain 2-valued holomorphic homogeneous functions
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and this property will conserve when we restrict them on Q4. So only for odd n
this trick works and gives the correct Hardy space and the Szegé kernel on Q1. For
even n we obtain formulas on Q4 for 2-valued (odd) holomorphic functions. This
space as well as spaces of holomorphic sections of other invariant line bundles are
interesting from a point of view of the theory of representations but we need to seek
other ways to work with the Hardy space in (. We have the similar situation for
some other curve tubes admitting generalized conformal extentions. Therefore only
under extra restrictions can we transfer Szego kernels from flat tubes on embed-
ded curve tubes but in any case it demonstrates several examples where the Szego
kernel can be explicitely compute.

Stein neighborhoods of Riemannian symmetric manifolds. I already men-
tioned that from my point of view the most unusual element of these constructions
is the appearance of inhomogeneous complex manifolds in the theory of repre-
sentations. There is one more example of such a phenomena. In the theory of
discrete series the crucial role play flag domains - open Gg-orbits on flag manifolds
F = G/P. Noncompact Herimitian and pseudo-Hermitian symmetric spaces are
special cases of flag domains when F' is symmetric and it is important that we go
outside of the class of symmetric spaces. In d-cohomology in flag domains there
are realized discrete series and some other important representations. An efficient
method of investigation of d-cohomology is the integration of them on compact
complex submanifolds (the Penrose transform). It is the reason why it is impor-
tant to investigate the manifold Z of such cycles. Wells and Wolf [WW] started
to consider it. If G is the group of Hermitian type then Z sometimes coincides
with the corresponding Hermitian symmetric space; this situation is degenerate
(but important nonetheless). If Go is non Hermitian type then the corresponding
Riemannian symmetric space X = Go/Ky (I is compact) is non Hermitian and
Z is Go-invariant but inhomogeneous. What we can say then about Z? Wolf [W]
proved that Z is the Stein manifold. If we exclude the cases when G is Hermitian
type and Z = X, then the parametrical space Z 1is an open submanifold in the Stein
symmetric space Y = G/K and Z contains X. Wolf and Zierau announced that if
the group Gy is of Hermitian type then in the generic situation Z = X x X.

Relative to the non-Hermitian case the first question is to find a way to describe
hypotetic inhomogeneous manifold Z. The first conjecture is that Z s independent
of a choice of a flag domain for Gg. So if we were to believe in this conjecture then
it must be an universal Stein neighborhood Z of X - the Stein crown -with some
remarkable properties. Akhiezer and me [AG] tried to start from another end and
to find Gop-invariant Stein neighborhoods of X in YV with some extra conditions.
We described some extensions on the language of Gp-orbits and between them one
is especially nice and, I believe, it coincides with Z . We could not prove in general
situation that this remarkable extension is a Stein manifold (it can be very difficult
to work with a union of orbits of a noncompact real group and prove in particular
that it is a Stein manifold!).

Now I want to explain another way to construct Stein neighborhoods of X (joint
work with H.-W.Wang). Let P; be a maximal parabolic subgroup of Gy. They cor-
respond to simple restricted roots. A function D;(x) on X is called an determinant
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function if
Di(xp) = a(p)Di(X),

where a(p) is a character of P;. Then D, are algebraic functions and D; have no
zeroes on X. We can extend them on Y and choose D; such a way that it will
holomorphic on Y. Let X be the connected component of the set

{z €Y;D;(z9) #0,9 € Go},

containing X. For precaution let us take all determinant functions in this definition,
but examples show however that in non-Hermitian case it is enough to take any
one of them (in the Hermitian case we can need two). It is evident that X is the
Stein manifold and Gg-invariant. The conjecture s that the Stein crown

Z=X

and it coincides with the domain constructed in [AG]. This conjecture is proved
in several cases. I believe that X universally arises in all analytic extensions from
Riemannian symmetric space X (e.g. it is the joint domain of holomorphy of all
solutions of Schmid elliptic equations).

Let us give a few examples. For Go = SL(n;R) the manifold X will be the
manifold of positive symmetric forms ) on R™ with the determinant 1, Y will be
the manifold of complex symmetric forms also with determinant 1 and X will be the
component of the set of such forms @ € Y that corresponding quadric Q(u,u) =0
has no real points different from 0.

For Go = SO(p, q) if twe were to fix a real form @ of signature (p, ¢) then points
of X are p-subspaces in R™ on which () is positive; points of Y are p-subspaces
of C* on which @ is nondegenarate, and X is the component of the set of such
subspaces that intersections with )-quadric have no real points different from 0.

If we were to compare this with the situation from which we started, we can see
that we have two pictures: in one we construct for a pseudo-Riemannian symmetric
space invariant but inhomogeneous Stein tube which has this manifold as the edge.
In other case we include a Riemannian symmetric space inside an invariant Stein
manifold. Both Stein manifolds lie in the Stein symmetric space Y. I thought many
years about these two very special constructions and could not understand why they
lie in “different baskets”. Only not long time ago, when I started to understand
more about Stein neighborhoods, I realized suddenly they are from the same basket.
Namely examples show that domains X are indeed (at least in many cases) are
tubes whose edges are some pseudo-Riemannian symmetric spaces with the same
group Go. Thus for SO(p, q) the edge is SO(p,q)/SO(p —1,1) x SO(1,q — 1), for
SL(n;R) the edge is disconnected and its components are SL(n;R)/SO(p,q),p #
0,9 # 0. We can see that these edges are causal symmetric manifolds but of
non Hermitian type. Thus such causal spaces also are associated with some curved
tubes but they are not orbits of semigroups and do not connected with holomorphic
discrete series (which do not exist for these groups). They are connected with
continuous series of representations. It is surprising that they did not appeared
earlier. The reason was probably that in the difference with causal structures it
was not an intrinsic definition of tubes: the definition was constructive and as far as
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all holomorphic discrete series were included it gave an impression that all curved
tubes were described. It would be interesting

to gwe an intrinsic definition of tubes in Stein symmetric spaces and connect
them with causal symmetric spaces.

I am sure that domains X = Z are very important for Harmonic Analysis and
deserve very serious attention. It is enough to mention that all representations
of discrete series of corresponding groups are realized in holomorphic subrepresen-
tations in these tubes. One from first tasks here to investigate their geometry,
especially their boundary components.

Non-Stein tubes in symmetric Stein spaces. We will discuss in the end the
problem which I believe is in the focus of this area. We will consider an affine sym-
metric manifold X = Go /Ky (important special case: X = G is a real semisimple
Lie group and Go = G x G; and Ky = G in the diagonal embedding). We con-
sider the complexification - the Stein symmetric space Y = G/K (in the case of
groups they will be the complex groups). In the case when the manifold X is of
Hermitian type (in particular when it is the group of Hermitian type) in Y there
are the Go-invariant curve Stein tubes T' with the edge X (orbits of semigroups)
and the part of the regular representation on X, corresponding to the holomorphic
discrete series, can be holomorfically extend in the smallest of them . This situation
was the subject of detailed investigation for the last 20 years.

There are also other Go-invariant tubes with the edge X in Y. We saw examples
of such tubes when consider the example of hyperboloids. They will not be al-
ready Stein manifolds so following to the standard philosophy of multidimensional
complex analysis we need to consider in them instead of holomorphic functions 0-
cohomology of appropriate dimension. I tried for 20 years to promote the problem
on functional spaces of d-cohomology in such invariant “nonconvex” tubes.

My basic conjecture is that

there is a number of invariant tubes Ty, ...,T; such that in appropriate Hardy
spaces of O-cohomology, such that in them can be realized all parts of the reqular
representation on X corresponding to different series of representations.

Let us emphasize that we talk here about all series not only discrete. The
examples of such tubes are domains (Q+ on the complex quadric Q¢ with the real
quadric @ as the edge. For p =2 @4 has 2 components which are Stein manifolds
corresponding to holomorphic and nonholomorphic series. The case p = ¢ = 2
corresponds to SL(2;R). Then we have 3 tubes: 2 components of Q4 and Q_;
continuous principal series are realized in 1-dimensional 0-cohomology of Q_.

It is not difficult to describe these tubes T;. Usually they are unions of regular
orbits of Gg on Y and are parameterized by Weyl chambers in some Cartanian sub-
groups. We can use the detailed results of Matsuki [Ma] about the parametrization
of orbits; Bremigan [Br| gave a convenient description in the case of groups. The
next step is to find for these tubes the invariant ¢ for which they are ¢-pseudoconcave
and to understand better their complex geometry.

Analytic problems have needed much more attention. We need to define a struc-
ture of Hardy space on cohomology and to define an operator of boundary values
from the Hardy space of cohomology to L?*(X). Already the tubes from the last
section which correspond to continuous series show that the situation can be more
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complicate. When many years ago I started to think about this problem I realized
that standard constructions of d-cohomology do not help too much in this situa-
tion. It was very unusual from point of view of multidimensional complex analysis
that d-cohomology in tubes with totally real edges can have functions as boundary
values on edges. Of course there was one remarkable example of such a phenomena
- Sato’s definition of hyperfunctions as d-cohomology, but I did not found other
examples.

The strategy was to start from the “flat case”. It turns out that in this general
(non-Stein) situation there are not only curved tubes in Stein symmetric spaces but
also flat tubes in compact Hermitian symmetric spaces. We can omit the condition
homogeneity in the beginning and consider tubes in C*: T = R" 41V, where V
is a cone in R™ not necessarilly convex. Under very strong geometrical conditions
on cones V (in a sense they must by a very regular way to unify convexity and
concavity) I developed the theory of Hardy spaces of 9-cohomology in T includ-
ing boundary values in functions in L*(R"). In these restrictions it is possible to
represent L?(R")[G5], [G6] as a direct sum of boundary values of d-cohomology in
some tubes. The crucial component of this construction was a new language for the
description of d-cohomology different from Cech and Dolbeault languages. It uses
essentially that we have infinite coverings by Stein manifolds (convex tubes) and we
work with de Rham complex of differential forms on the manifold parameterizing
the covering which also holomorphically depend on parameters in corresponding
manifolds of covering (continuos Cech cohomology). This part of results was gener-
alized in the general situation and one of the final products is a purely holomorphic
language for d-cohomology [G7], [EGW1], [EGW2] Another development of these
constructions is a theory of boundary values of cohomology in local curved tubes |
CGT].

Very interesting examples of nonconvex cones are cones V' which are affine sym-
metric spaces. Examples of such cones: nondegenerate symmetric matrixes of fixed
signature, cones bounded by quadrics (corresponding tubes are equivalent to do-
mains Py on complex quadrics), the cone of real matrixes with the positive deter-
minants etc. D’Atri and me were considered some classical cones and corresponding
tubes [DGJ; Faraut and me [FG] - the general case. The remarkable property of
these tubes is that they are Zariski open parts of some pseudo-Hermitian sym-
metric spaces. Faraut and me work now on the theory of d-cohomology in these
tubes. One of the central problems here is the possibility of extension of cohomol-
ogy in (flat) tubes up to cohomology in pseudo-Hermitian symmetric spaces with
coefficients in appropriate line bundles. Troubles here are similar to those which
we discussed in the connection of extension of holomorphic functions from curve
(Stein) tubes to flat ones. This problem is connected with interesting phenomena
in the theory of representation which was discovered by Kashiwara and Vergne.

These constructions for flat tubes give many hints on how to work on the conjec-
ture for tubes in Stein symmetric spaces, but it is necessary to do many things for
its proof. There is a situation when the conjecture is proved: when curved tubes
are extensions of some flat ones and the corresponding extension of cohomology is
possible. The simplest of such examples are hyperboloids in odd-dimensional space.

I am sure that the problems which we discussed are very important for more clear
understanding of representations, first of all in the direction of their connection with
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the complex analysis. Of course the connection of representations and complex
analysis is well known (e.g. realizations of discrete series) but I believe it is much
broader. From other side these problems must feed back multidimensional complex
analysis since they supplied by new phenomenas of complex geometry.
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