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TUBE DOMAINS IN STEIN SYMMETRIC SPACESSimon GindikinAbstract. We formulate several problems about invariant tubes in Stein symmetricspaces whose edges are a�ne symmetric spaces.Subj.Class.:Topological Groups. Lie Groups. Several Complex Variables andAnalytic Spaces1991 MSC: 22E30, 22E46, 32L25, 32M15Keywords: Tubes, edges, symmetric manifolds, representations, generalized con-formal structuresSlightly more then 20 years ago I.Gelfand and me discussed several problems onrepresentations of real semisimple Lie groups. One of such questions was how tosee on the group GR = SL(2;R) itself that some part of the regular representationin L2(GR ) is decomposed on representations of the holomorphic discrete series? Wefound that(1) functions out of corresponding subspace L2hol admit holomorphic extensionson the domain G+ � GC = SL(2; C ) of contractions of upper half-planeC+ = fz 2 C ;=z > 0g .Of course G+ is an open Stein submanifold of tube type in GC and GR isits edge (Shilov's boundary) and in addition, for reasons which we did notunderstood then(2) G+ admits equivariant embedding as Zariski open part in the Siegel half-plane of rank 2 (complex symmetric matrixes of order 2 with positive imag-inary parts). Correspondingly SL(2;R)� SL(2;R) imbeds in Sp(2;R).(3) On holomorphic functions in G+ a Hilbert norm of the Hardy type canbe de�ned so that on the corresponding space H2(G+), there are de�nedboundary values as an isometry on L2hol. It is also possible to explicitly con-struct a generalized Szeg�o operator of the projection of L2(GR ) on H2(G+).>From my point of view the most surprising element of this construction is thatin a natural problem of the theory of representations there appeares a manifold G+which is GR � GR -invariant but inhomogeneous. We had many plans to developthis observation. Groups of Hermitian type were only a �rst natural step but ourprincipal plans were of course connected with nonholomorphic discrete series. Forcertain reasons we postponed the work on this project and published only a shortpaper [GG]. It was not a standard publication: we had considered only the exampleof SL(2;R) and did several general remarks. It was in a sense an invitation to theproject. Thanks to the kindness of Ol'shanskii it is now sometimes called \ Gelfand{Gindikin program". I myself never was seriously involved in its development butonly from time to time thought about some things which can be connect with it.Nevertheless I want to use this an occasion and make a few remarks about how theTypeset by AMS-TEX1



2 SIMON GINDIKINsituation looks for me 20 years later and which problems I believe are interesting.As I am not an expert in the area my references can be very noncomplete.Our invitation was accepted. Several people constructed [O1], [S], [HOO] thecomplete theory of the Hardy spaces in the case of groups of Hermitian type andinvestigated the connection with holomorphic discrete series. They added severalimportant points which we missed in our project. Ol'shanskii found that tubeswhich have groups of Hermitian type as edges are non unique. They have structureof semigroups. Using some Vinberg's results he gave their classi�cation. We knewthat G+ is the set of contractions but we did not paid an attention to the factthat it is a semigroup. Hilgert, Olafsson and �rsted generalized the construction ofthe tubes on the case of a�ne symmetric spaces of Hermitian type for which thereexist holomorphic discrete series. The important component of the theory was theobservation that on symmetric spaces of Hermitian type there is a causal structure(cf. below). The theory contained a construction of the Szeg�o projector but noexplicit formula for the Szeg�o kernel. It is interesting and important point fromwhich I want to start our discussion.Szeg�o operators. Let us recall the construction of the Szeg�o operator in [GG].We computed the character S(g) of the (reducible) representation of SL(2;R) inL2hol by the direct summation of characters of irreducible representations of theholomorphic discrete series with the corresponding Plancherel's coe�cients. Weremarked that the sum (which could be computed explicitly) can be (together withcharacters of irreducible representations) holomorphicaly extend in the tube G+.This character S(g) will give the kernel of the Szeg�o operator: the Szeg�o projectorwill be a convolution with it. The �nal expression for S(g) looks very nice butunfortunately does not contain any hint how the Szeg�o kernels could be looked atthe general case.Last couple years this direct way of computations of Szeg�o kernels was realizedby Molchanov for hyperboloids [Mo] and by Ol'shanskii for some classical groups[Ol3]. Nontrival computations give some nice explicit algebraic functions but theirstructure does not leave a lot of chances to guess a formula in the general case.Below we will discuss a more simple way to compute the kernel in special cases butfor now I want to open my old plan of working with the Szeg�o kernels.The Szego operator gives an integral formula which reconstructs holomorphicfunctions in G+ through its boundary values on the edge GR . In multidimensionalcomplex analysis there is a standard way to obtain integral formulas - the Cauchy{Fantappie formula. In the practice all known integral formulas can be realize asspecial cases of the Cauchy{Fantappie formula. I consider the following problemvery important:To give a construction of the Szeg�o kernels for semigroups and other tubes usingthe Cauchy{Fantappie formula.It might be necessary to modify of the Cauchy{Fantappie formula since we havea unbounded domain in a manifold (cf. its projective version in [GKh]), but I do notsee serious obstructions to realizing it this way. The result of such a constructionmust be an integral representation of the Szeg�o kernel through some geometricalcharacterics of the boundary. The explicit computation of this integral may notbe simpler than the computation of the sum of characters, but I believe that this



TUBE DOMAINS IN STEIN SYMMETRIC SPACES 3representation can be su�cient for computation of Plancherel's coe�cients. There-fore the focus of the project is to �nd a geometrical way (without group invariance)of presentation of Szeg�o kernels and then to apply it to the computation of the\holomorphic" part of the Plancherel formula - the way which is just the oppositeto one which uses for computations now.There is an important analogy of this plan with the application of the inte-gral geometry to the Plancherel formula for complex semisimple Lie groups (usinghorospherical transform) [GGr], [G3]. There we obtain the inversion of the horo-spherical transform as a special case of general inversion formula for problems ofintegral geometry without a direct usage of groups. For real groups the integralgeometry does not worked in the general situation but it is natural for the holo-morphic discrete series to consider the Cauchy{Fantappie formula as a surrogate ofthe integral geometry. Let us recall that there is a view that the Cauchy{Fantappieformula is a complex analog of the Radon inversion formula [G1]. It gives an extrasupport to this a project.Basic classes of manifolds. As we will operate with several classes of manifoldsand some of them have similar names, let us �xed basic objects:(CH) Compact Hermitian symmetric spaces.(NH) Noncompact Hermitian symmetric spaces. They are realized as domainsin dual CH.(FT) NH of tube type. They realized as tubes in C n . We will call them also attubes to di�er from tubes which are the subject of this paper.(AH) A�ne symmetric spaces of Hermitian type. This class includes groups ofHermitian type which act in NH.(R) Symmetric R-spaces- real forms of CH.(CR) Edges (Shilov's boundaries) of at tubes. It is a special case of symmetricR-spaces. They are compact Riemannian symmetric spaces (relative to maximalcompact subgroup of the group of automorphisms). Let us emphasize that we takecomplete boundaries inside dual CH but not only inside C n .(CT) Curved tubes -tubes in complexi�cations of AH which have these AH asthe edges. In the case of groups they are semigroups in complex groups. In generalcase they are orbits of semigroups.(SS) Stein symmetric spaces. These a�ne symmetric spaces of the form Y =G=K where G is a complex semisimple Lie group and K is a involutive complexsubgroup. As complex manifolds they are Stein manifolds. They are obtainedas results of complexi�cations of a�ne symmetric spaces (of groups and isotropysubgroups). Complex semisimple groups are partial case of SS. Curve tubes (CT)are domains in SS - complexi�cations of their edges, at that time as at tubes (FT)are domains in another class of complex symmetric spaces - CH.Generalized conformal structures. Let us talk now about the observation in[GG] that the tube G+ can be extended up to the Siegel half-plane. The keyhere lies in a generalized conformal structure [G2]. For a simplicity's sake wewill give the de�nition in complex case. Let V be a conic (invariant relatively(C n0)�) algebraic variety in C n . We call a generalized conformal V -structure onn-dimensional manifold M a �eld of varieties Vz � Tz(M) (tangent spaces) whichall are linear equivalent to V . In the case when V is the quadratic nongenerate



4 SIMON GINDIKINcone we have usual conformal structure. Of course it is possible to consider thereal version of this notion but it is important then to provide a possibility for acone V to be imagine and it is convenient to start from complex structures andthen to investigate their real forms (including imaginary ones). We can considerconformal morphisms of such structures and a generalized conformal V -structureon M is called at if M with this structure is local isomorphic in neighborhoodsof all points to domains in C n where the structure is de�ned by translations of thecone V .The classical result of Pl�ucker is that the Grassmanian Gr(2; 4) of lines in CP 3has a canonical at conformal structure and can be interpret as the conformalcompacti�cation of C 4 . Using the language of generalized conformal structures(GCS) it is possible to generalize this fact. Let us consider for an example thespace C n2 =M(n) of square matrixes of order n with the coneV = fz 2M(n); det z = 0g:and the corresponding at GCS. Then there is a conformal compacti�cation ofthis manifold which is isomorphic to Gr(n; 2n): conformal automorphisms of thecompacti�cation are exactly the automorphisms of the Grassmanian. Of course thecorresponding GCS on the Grassmanian admits a geometrical description on thelanguage of intersections of n-subspaces in C 2n . The atness of this structure canbeeen established by a generalization of the stereographic projection (cf. below).Around I985 I supposed that this a phenomena is a general one for compactHermitian symmetric spaces of rank more than 1. Namely, on each such manifoldthere exists such a at GCS that its automorphisms are exactly are automorphismsof the symmetric space. Moreover local conformal automorphisms can be extend upto global ones (generalized Liouville theorem). GCS connecting with Grassmani-ans (they are de�ned by Segre cones) were considered earlier by Akivis. Goncharov[Go] proved this conjecture for all compact Hermitian symmetric spaces of rankmore than 1. As the cone V we take in this construction the closure of an orbitof the isotropy group on the tangent space. Goncharov worked with orbits of min-imal dimension; another natural choice is orbits of codimension 1. Probably GCSfor closure of any orbit of positive codimension de�nes the geometry of Hermitianspaces. Later Baston [B] also considered such GCS (he called them almost Hermit-ian symmetric). Last years were published several results about GCS connectingwith Hermitian spaces. An interesting development was found by Neretin [N].Between real forms of GCS the special interest have causal structures when realconic variety V is a boundary of a convex sharp (without lines inside) cone. Suchstructures were introduced by I.Segal. Ol'shanskii [Ol3] considered a�ne symmetricspaces with invariant causal structures. Symmetric spaces of Hermitian type (AH)are a subclass of causal ones [O]. Kaneyuki [K] considered at causal structureson egdes (CR) of at tubes (FT) and proved that their automorphisms can beextended as holomorphic automorphisms of tubes.Let us illustrate the last fact. If in our example of M(n) we take the Hermitiansymmetric space - at tubes (FT) - of matrixes z with positive skew Hermitianpart:(1) 1=2i(z � z�)� 0



TUBE DOMAINS IN STEIN SYMMETRIC SPACES 5then the induced GCS on the edge (Hermitian matrixes z = z�) can be de�nedby the boundary of the cone of positive Hermitian matrixes. It will be causal andat. Last years there were considered some theorems of Liouville type for GCS onsymmetricR-spaces: Bertram [Be1] used the language of Jordan algebras, Kaneyukiand me - graded Lie algebras [GK].Now we will give an example of causal structures on symmetric spaces of Her-mitian type (AH) and its complexi�cations. On SL(2) we take in the unit point ethe cone of singular elementsv = fg; det(g � e) = 0g;its image V in Lie algebra and the �eld of translations Vg of the last cone in pointsof the group. It is invariant GCS on SL(2; C ) and its restriction on SL(2;R) iscausal.The next important fact is that between invariant GCS on a�ne symmetricspaces there can exist non trivial local isomorphisms. Let us include SL(2;R) =Sp(1;R) in the family of symplectic groups (Sp(n;R) acts on the Siegel half-planeand has the Hermitian type) and establish a local conformal isomorphism of thegroup Sp(n; C ) and the Lagrangian GrassmanianLn = LGr(n) on which the groupSp(2n; C ) acts by biholomorphic automorphisms. Let us describe this an examplein more details. We start with the Grassmanian Gr(n; 2n) which we realize as themanifold of equivalency classes of n� 2n -matrixes Z relative to the relationZ � uZ; u 2 Gl(n; C ):Then Ln is de�ned by the equation(2) ZJZT = 0;where J is a �xed nondegenerate real symmetric 2n� 2n-matrix; for example,J = � 0 �II 0 � ;where I = In is the unit matrix of the order n. The subgroup in the group SL(2n; C )of automorphisms of the Grassmanian which conserve (1) is Sp(n; C ). Di�erent Jgive equivalent realizations of Ln in the Grassmanian. In the intersection withthe coordinate chart Z = (I; z), where z is an n � n-matrix, Ln coincides withthe space of symmetric matrices Sym(n). The dual symmetric domain D+ in Ln(Siegel half-plane) can be de�ne by the condition(3) 1=2i ZJZ� � 0and in the coordinate chart of symmetric matrices by the condition=z � 0:Its group of automorphisms will be Sp(n;R).



6 SIMON GINDIKINLet us for Z 2 Ln de�ne vZ = fZ1 2 L;ZJZT1 = 0gbe a �eld of conic subvarieties in Ln and VZ be their tangent cones. The �eld VZde�nes on Ln a generalized conformal structure. In the chart of symmetric matrixesthe �eld has the form Vz = fw; det(z � w) = 0gTherefore we have on the space of symmetric matrixes the at GCS and Ln is itsconformal compacti�cation.On the group G = Sp(n; C ) we consider the �eld of conic submanifoldsvg = fg1 2 G; det(g1g�1 � I) = 0gand their tangent cones Vg . We obtain GCS and Sp(n; C ) admits conformal imbed-ding in Ln. We need only take the de�nition of Sp(n; C ) :(4) g ~JgT = ~J; g 2 Gl(n; C );where ~J is a real symmetric matrix of the order n. If we take Ln correspondingJ = � ~J 00 � ~J �then Sp(n; C ) will coincide with the intersection with the coordinate chart Z =(g; I). Correspondingly we have the embedding of the automorphism groups:Sp(n; C ) � Sp(n; C ) in Sp(2n; C ). This embedding commutes with taking of thereal forms Sp(n;R). As a consequence we obtain that GCS on Sp is at ( whichwas not evident apriori) and our embedding is a matrix analog of the stereographicprojection. It turns out that the preimage G+ of the tube D+ (3) for this imbeddingis exactly the semigroup with the edge Sp(n;R).This construction put our observation from [GG] about SL(2;R) in more broadcontext. Such an extension exists for several classical groups and symmetric mani-folds of Hermitian type. The GCS on GL(n; C ) is at and equivalent to the GCSon the Grassmanian Gr(n; 2n) (cf. above), any U(p; q) is locally isomorphic to themanifold of Hermitian matrixes of the order n = p+q and corresponding semigroupG+ is compacti�ed up to the symmetric space (1) [G4].Embeddings of one symmetric space in another one with corresponding em-beddings of groups in some classical examples were known for a long time. Letus mention results of Makarevich on embeddings of symmetric spaces in symmet-ric R-spaces [M]. Rallis and Piatetski{Shapiro [PR] applied the \doubling" of thesymplectic and other classical groups to constructions of L-functions. May be anew element was only the interpretation on the language of GCS and the remarkon the extentions of (inhomogeneous) curve tubes up to at ones. Bertram [Be2]considered the general problem about the equivalency of causal structures to atstructures on R-spaces and connected the classi�cation with the results of Makare-vich. Let us emphasize that not all symmetric spaces of Hermitian type (including



TUBE DOMAINS IN STEIN SYMMETRIC SPACES 7groups) admit conformal extension up to R-spaces and correspondingly not allcurved tubes can be extend up to at tubes. May be it is true, thatCausal structures on a�ne symmetric spaces of Hermitian type are at if andonly if they are isomorphic to causal structures on symmetric R-spaces (their com-plexi�cations are then isomorphic to structures on compact Hermitian symmetricspaces) and then curved tubes extend up to at ones and the corresponding Steinsymmetric spaces compactify up to compact Hermitian onesIt is possible to formulate such a conjecture for arbitrary causal symmetricspaces. Classi�cation from [Be2] can be the essential step for this fact.Let us illustrate these constructions on the simplest example of classical confor-mal structures (cf. details in [G6]). Let Q be the hyperboloid in Rn:(5) m(x; x) = x21 + � � � + x2p � x2p+1 � � � � � x2p+q = 1; n = p+ q:Let QC be its complexi�cation and(6) Q� = fz 2 QC ;m(z; �z) ? 0g:The group SO(p; q) acts transitively on Q and Q will be an a�ne symmetric spacerelative to this action. On QC the conformal structure is de�ned by the �eld ofintersections of QC with tangent hyperplanes and on Q by intersections with realtangent hyperplanes. The last cones for q = 0 will be imaginary. The conformalcompacti�cation of Q will be the hyperboloid ~Q in the projective space RPn:(7) x21 + � � �+ x2p � x2p+1 � � � � � x2n � x20 = 0:Corresponding domains ~Q� are pseudo-Hermitian symmetric manifolds and forp = 2 ~Q+ is a Hermitian symmetric. For p = q = 2 the hyperboloid Q coincideswith SL(2;R). Between a�ne forms of ~Q (their conformal compacti�cations are~Q) there is a paraboloid P :x1 = x22 + � � �+ x2p � x2p+1 � : : : x2n:In this a situation the symmetric domains P+ and ~Q+ are isomorphic and theyboth are conformal extensions of Q+. The group SO(p; q) is not transitive on Q+.For p = 2 the hyperboloid Q will be a symmetric manifold of Hermitian type andQ+ will be the corresponding tube.Some problems on GCS.We will start frommuch more strong version of the problem from the last section.1. On Hermitian symmetric compact spaces (CH) of rank more than 1 there areat GCS. I am sure that the condition of the existence of a conformal compacti�-cation is extremely strong and I do not see obstructions to think thatCH of rank more than 1 are only compact complex manifolds with at GCS .More realistic is to consider this conjecture under conditions that this manifold ishomogeneous relative to automorphisms of the structure or to put some conditionsof homogeneity on the conic variety, de�ning the structure. Nevertheless it would be



8 SIMON GINDIKINextremely interesting to �nd a geometrical characterization of Hermitian symmetricspaces without the group language.2. One more problem in a similar direction. As explained by old geometers,starting with Sofus Lie, the isotropic submanifolds (whose tangent spaces lie insideof isotropy cones V , de�ning the conformal structure) are most important objectsin the conformal geometry. It would be interesting to investigate systematicallymaximal isotropic submanifolds for GCS. The 4-dimensional (complex) at con-formal manifold C4 it is possible to realize either as a nondegenerate quadric inCP 5 or as the Grassmanian Gr(2; 4) of lines in CP 3 . There are 2 one-parametricfamilies of isotropic submanifolds of dimension 2 in it (corresponding to points andplanes) and they are in the focus of Penrose's theory of twistors. It is not di�cultto prove that if on a 4-manifold with GCS, codimV = 1, there are 2 one-parametricfamilies of isotropic 2-submanifolds such that submanifolds in one family do not in-tersecting and from di�erent families have one-dimensional intersections then thisstructure is the classical conformal at structure (with qudratic cone). Hint: ifon a surface in the projective 3-space there are 2 one-parametrical families of linessuch that lines of one family do not intersect, but of di�erent families do then thissurface is a hyperboloid. I believe that it is not di�cult to generalize this result forGrassmanians. It would interestingto characterize Hermitian symmetric compact manifolds on the language of max-imal isotropic submanifolds.3. Almost everything what we know about GCS is restricted by at ones andoften only causal. I believe now is the time to think more about nonat GCS andnoncausal GCS. One of �rst natural problems is to investigate invariant GCS on ar-bitrary pseudo-Riemannian symmetric spaces X = G0=K0. In non-Hermitian casethey are apparently must be non at. Again it is natural to start with the complex-i�cation - the Stein symmetric space Y = G=K where G;K are complexi�cationsof G0;K0. Real forms of GCS on Y can be on X imaginary. Natural candidatesfor the conic varieties V are orbits of K in the adjont representations. If there isa geometrical realization of points of Y then usually it is possible to describe theconic variety Vx with the vertex in a point x as the tangent cone to the variety ofpoints in a nongeneric position to x. The �rst problem isto �nd for arbitrary Stein symmetric spaces (SS) GCS satisfying the Liouvillecondition: the group of their automorphisms is the complete group G of automor-phisms of the symmetric manifold Y .Such a GCS can exist in symmetric spaces of rank 1. In [G9] we explain that inthe case of X = CPn the (conformal) Fubini{Study metric satis�es this conditionand we generalize this construction on the case of Grassmanians. Restrictions ofsuch structures on Riemannian symmetric spaces probably are always imaginary.It is important to be exible in the work with GCS. Invariant GCS on sym-metric spaces might not be equivalent: GCS corresponding to di�erent orbits ontangent spaces can be nonequivalent. On one hand it is interesting to consider\non-Liouville" GCS whose (local) automorphisms can not be automorphisms ofsymmetric spaces and as the result we can consider conformal extensions. On theother hand sometimes it is important to �nd such GCS for which automorphismsare only authomorphisms of a symmetric manifold and de�nes in such a way itsgeometry. For example, if X is Hermitian compact space (G0 is compact) then its



TUBE DOMAINS IN STEIN SYMMETRIC SPACES 9complexi�cation Y will be a Zariski open part in X � �X. On Y there is of coursethe at GCS (the direct product of structures on X and �X) relative to whichX� �Xwill be the conformal compacti�cation of Y (and this extension is useful for someconstructions of representations. On other hand, as examples demonstrate, on Ycan exist GCS with Liouville property (its automorphisms are automorphisms ofY ) . Above mentioned Fubini-Study structures [G9] have this property. They aremore informative for representations: Hua and Schmid's elliptic di�erential equa-tions on X are confomal invariant relative to the 2nd structure and as the resultthere is an important connection with discrete series of G0.4. Compact Hermitian symmetric manifolds are partial case of ag manifoldsF = G=P , G is a complex group, P is a parabolic subgroup. It is natural toinvestigate invariant GCS on ag manifolds which again must be nonat if F is notsymmetric. Let us consider the simplest example of F (CP 2): ags on the projectiveplane: pairs (f = (a; l); a 2 l), where a is a point, l is a line. The isotropic conein the tangent space in a ag f is induced by a conic variety of ags which are notin generic position with f (there is a incidence between corresponding points andlines). Apparently conformal automorphisms of this structure will correspond tomaps of CP 2 conserving the set of lines and the corresponding Liouville theoremwill be the Darbox theorem (which call sometimes the fundamental theorem ofthe projective geometry): all such maps are projective transformations. There isan essential connection between GCS on ag manifolds and the Borel-Bott-Weiltheorem [GW] .Analytic applications of GCS on compact Hermitian symmetric spaces. Theidea of [G4] was to use the embedding of some curved tubes in at ones for inves-tigation of Hardy spaces and Szeg�o kernels. Namely at tubes are symmetric andHardy spaces for them were studied in details including explicit formulas for theSzeg�o kernels. The crucial step is to extend functions on curve tubes and theiredges on their conformal extensions.There is a pretty standard way to do it. If we have function on a manifold withGCS, say on hyperboloid Q with usual conformal structure, we can extend them onthe conformal compacti�cation ( ~Q) as sections of an appropriate line bundle (in ourexample as homogeneous functions of some degree in homogeneous coordinates inthe projective space). These sections can be then restricted on another a�nizationwhere all considerations can be simpler (e.g. it can be homogeneous). In ourexample of the paraboloid P there is a big abelian subgroup of automorphismswhich gives us the ability to apply the Fourier integral. For p = 2 the domain P+is a (at) tube domain (with the light cone) and we have the embedding of thecurve tube Q+ in the at tube P+. The idea was to use homogeneous functions totransfer functions from P;P+ on Q;Q+, including Hardy spaces and Szeg�o kernels.This plan has a dangerous point which I missed in [G4] and which was observedby Koufany and �rsted [KO] . Namely it is necessary to be careful when we trans-form holomorphic functions in sections on conformal extensions. In the case ofthe paraboloid P we need to extend functions out of L2 for the invariant measureas homogeneous functions of the degree of �(n + 1)=2 (it is a consequence of the\homogeneous" extension of the invariant measure on Q). So if n is even for holo-morphic functions on P+ we obtain 2-valued holomorphic homogeneous functions



10 SIMON GINDIKINand this property will conserve when we restrict them on Q+. So only for odd nthis trick works and gives the correct Hardy space and the Szeg�o kernel on Q+. Foreven n we obtain formulas on Q+ for 2-valued (odd) holomorphic functions. Thisspace as well as spaces of holomorphic sections of other invariant line bundles areinteresting from a point of view of the theory of representations but we need to seekother ways to work with the Hardy space in Q+. We have the similar situation forsome other curve tubes admitting generalized conformal extentions. Therefore onlyunder extra restrictions can we transfer Szeg�o kernels from at tubes on embed-ded curve tubes but in any case it demonstrates several examples where the Szeg�okernel can be explicitely compute.Stein neighborhoods of Riemannian symmetric manifolds. I already men-tioned that from my point of view the most unusual element of these constructionsis the appearance of inhomogeneous complex manifolds in the theory of repre-sentations. There is one more example of such a phenomena. In the theory ofdiscrete series the crucial role play ag domains - open G0-orbits on ag manifoldsF = G=P . Noncompact Herimitian and pseudo-Hermitian symmetric spaces arespecial cases of ag domains when F is symmetric and it is important that we gooutside of the class of symmetric spaces. In �@-cohomology in ag domains thereare realized discrete series and some other important representations. An e�cientmethod of investigation of �@-cohomology is the integration of them on compactcomplex submanifolds (the Penrose transform). It is the reason why it is impor-tant to investigate the manifold Z of such cycles. Wells and Wolf [WW] startedto consider it. If G0 is the group of Hermitian type then Z sometimes coincideswith the corresponding Hermitian symmetric space; this situation is degenerate(but important nonetheless). If G0 is non Hermitian type then the correspondingRiemannian symmetric space X = G0=K0 (K0 is compact) is non Hermitian andZ is G0-invariant but inhomogeneous. What we can say then about Z? Wolf [W]proved that Z is the Stein manifold. If we exclude the cases when G0 is Hermitiantype and Z = X, then the parametrical space Z is an open submanifold in the Steinsymmetric space Y = G=K and Z contains X. Wolf and Zierau announced that ifthe group G0 is of Hermitian type then in the generic situation Z = X � �X.Relative to the non-Hermitian case the �rst question is to �nd a way to describehypotetic inhomogeneous manifold Z. The �rst conjecture is that Z is independentof a choice of a ag domain for G0. So if we were to believe in this conjecture thenit must be an universal Stein neighborhood Z of X - the Stein crown -with someremarkable properties. Akhiezer and me [AG] tried to start from another end andto �nd G0-invariant Stein neighborhoods of X in Y with some extra conditions.We described some extensions on the language of G0-orbits and between them oneis especially nice and, I believe, it coincides with Z . We could not prove in generalsituation that this remarkable extension is a Stein manifold (it can be very di�cultto work with a union of orbits of a noncompact real group and prove in particularthat it is a Stein manifold!).Now I want to explain another way to construct Stein neighborhoods of X (jointwork with H.-W.Wang). Let Pi be a maximal parabolic subgroup of G0. They cor-respond to simple restricted roots. A function Di(x) on X is called an determinant



TUBE DOMAINS IN STEIN SYMMETRIC SPACES 11function if Di(xp) = �(p)Di(X);where �(p) is a character of Pi. Then Di are algebraic functions and Di have nozeroes on X. We can extend them on Y and choose Di such a way that it willholomorphic on Y . Let ~X be the connected component of the setfz 2 Y ;Di(zg) 6= 0; g 2 G0g;containingX. For precaution let us take all determinant functions in this de�nition,but examples show however that in non-Hermitian case it is enough to take anyone of them (in the Hermitian case we can need two). It is evident that ~X is theStein manifold and G0-invariant. The conjecture is that the Stein crownZ = ~Xand it coincides with the domain constructed in [AG]. This conjecture is provedin several cases. I believe that ~X universally arises in all analytic extensions fromRiemannian symmetric space X (e.g. it is the joint domain of holomorphy of allsolutions of Schmid elliptic equations).Let us give a few examples. For G0 = SL(n;R) the manifold X will be themanifold of positive symmetric forms Q on Rn with the determinant 1, Y will bethe manifold of complex symmetric forms also with determinant 1 and ~X will be thecomponent of the set of such forms Q 2 Y that corresponding quadric Q(u; u) = 0has no real points di�erent from 0.For G0 = SO(p; q) if twe were to �x a real form Q of signature (p; q) then pointsof X are p-subspaces in Rn on which Q is positive; points of Y are p-subspacesof C n on which Q is nondegenarate, and ~X is the component of the set of suchsubspaces that intersections with Q-quadric have no real points di�erent from 0.If we were to compare this with the situation from which we started, we can seethat we have two pictures: in one we construct for a pseudo-Riemannian symmetricspace invariant but inhomogeneous Stein tube which has this manifold as the edge.In other case we include a Riemannian symmetric space inside an invariant Steinmanifold. Both Stein manifolds lie in the Stein symmetric space Y . I thought manyyears about these two very special constructions and could not understand why theylie in \di�erent baskets". Only not long time ago, when I started to understandmore about Stein neighborhoods, I realized suddenly they are from the same basket.Namely examples show that domains ~X are indeed (at least in many cases) aretubes whose edges are some pseudo-Riemannian symmetric spaces with the samegroup G0. Thus for SO(p; q) the edge is SO(p; q)=SO(p � 1; 1) � SO(1; q � 1), forSL(n;R) the edge is disconnected and its components are SL(n;R)=SO(p; q); p 6=0; q 6= 0. We can see that these edges are causal symmetric manifolds but ofnon Hermitian type. Thus such causal spaces also are associated with some curvedtubes but they are not orbits of semigroups and do not connected with holomorphicdiscrete series (which do not exist for these groups). They are connected withcontinuous series of representations. It is surprising that they did not appearedearlier. The reason was probably that in the di�erence with causal structures itwas not an intrinsic de�nition of tubes: the de�nition was constructive and as far as



12 SIMON GINDIKINall holomorphic discrete series were included it gave an impression that all curvedtubes were described. It would be interestingto give an intrinsic de�nition of tubes in Stein symmetric spaces and connectthem with causal symmetric spaces.I am sure that domains ~X = Z are very important for Harmonic Analysis anddeserve very serious attention. It is enough to mention that all representationsof discrete series of corresponding groups are realized in holomorphic subrepresen-tations in these tubes. One from �rst tasks here to investigate their geometry,especially their boundary components.Non-Stein tubes in symmetric Stein spaces. We will discuss in the end theproblem which I believe is in the focus of this area. We will consider an a�ne sym-metric manifold X = G0=K0 (important special case: X = G1 is a real semisimpleLie group and G0 = G1 � G1 and K0 = G0 in the diagonal embedding). We con-sider the complexi�cation - the Stein symmetric space Y = G=K (in the case ofgroups they will be the complex groups). In the case when the manifold X is ofHermitian type (in particular when it is the group of Hermitian type) in Y thereare the G0-invariant curve Stein tubes T with the edge X (orbits of semigroups)and the part of the regular representation on X, corresponding to the holomorphicdiscrete series, can be holomor�cally extend in the smallest of them . This situationwas the subject of detailed investigation for the last 20 years.There are also other G0-invariant tubes with the edge X in Y . We saw examplesof such tubes when consider the example of hyperboloids. They will not be al-ready Stein manifolds so following to the standard philosophy of multidimensionalcomplex analysis we need to consider in them instead of holomorphic functions �@-cohomology of appropriate dimension. I tried for 20 years to promote the problemon functional spaces of �@-cohomology in such invariant \nonconvex" tubes.My basic conjecture is thatthere is a number of invariant tubes T1; : : : ; Tl such that in appropriate Hardyspaces of �@-cohomology, such that in them can be realized all parts of the regularrepresentation on X corresponding to di�erent series of representations.Let us emphasize that we talk here about all series not only discrete. Theexamples of such tubes are domains Q� on the complex quadric QC with the realquadric Q as the edge. For p = 2 Q+ has 2 components which are Stein manifoldscorresponding to holomorphic and nonholomorphic series. The case p = q = 2corresponds to SL(2;R). Then we have 3 tubes: 2 components of Q+ and Q�;continuous principal series are realized in 1-dimensional �@{cohomology of Q�.It is not di�cult to describe these tubes Tj . Usually they are unions of regularorbits of G0 on Y and are parameterized by Weyl chambers in some Cartanian sub-groups. We can use the detailed results of Matsuki [Ma] about the parametrizationof orbits; Bremigan [Br] gave a convenient description in the case of groups. Thenext step is to �nd for these tubes the invariant q for which they are q-pseudoconcaveand to understand better their complex geometry.Analytic problems have needed much more attention. We need to de�ne a struc-ture of Hardy space on cohomology and to de�ne an operator of boundary valuesfrom the Hardy space of cohomology to L2(X). Already the tubes from the lastsection which correspond to continuous series show that the situation can be more



TUBE DOMAINS IN STEIN SYMMETRIC SPACES 13complicate. When many years ago I started to think about this problem I realizedthat standard constructions of �@-cohomology do not help too much in this situa-tion. It was very unusual from point of view of multidimensional complex analysisthat �@-cohomology in tubes with totally real edges can have functions as boundaryvalues on edges. Of course there was one remarkable example of such a phenomena- Sato's de�nition of hyperfunctions as �@-cohomology, but I did not found otherexamples.The strategy was to start from the \at case". It turns out that in this general(non-Stein) situation there are not only curved tubes in Stein symmetric spaces butalso at tubes in compact Hermitian symmetric spaces. We can omit the conditionhomogeneity in the beginning and consider tubes in C n : T = Rn + iV , where Vis a cone in Rn not necessarilly convex. Under very strong geometrical conditionson cones V (in a sense they must by a very regular way to unify convexity andconcavity) I developed the theory of Hardy spaces of �@{cohomology in T includ-ing boundary values in functions in L2(Rn). In these restrictions it is possible torepresent L2(Rn)[G5], [G6] as a direct sum of boundary values of �@{cohomology insome tubes. The crucial component of this construction was a new language for thedescription of �@-cohomology di�erent from �Cech and Dolbeault languages. It usesessentially that we have in�nite coverings by Stein manifolds (convex tubes) and wework with de Rham complex of di�erential forms on the manifold parameterizingthe covering which also holomorphically depend on parameters in correspondingmanifolds of covering (continuos �Cech cohomology). This part of results was gener-alized in the general situation and one of the �nal products is a purely holomorphiclanguage for �@-cohomology [G7], [EGW1], [EGW2] Another development of theseconstructions is a theory of boundary values of cohomology in local curved tubes [CGT].Very interesting examples of nonconvex cones are cones V which are a�ne sym-metric spaces. Examples of such cones: nondegenerate symmetric matrixes of �xedsignature, cones bounded by quadrics (corresponding tubes are equivalent to do-mains P� on complex quadrics), the cone of real matrixes with the positive deter-minants etc. D'Atri and me were considered some classical cones and correspondingtubes [DG]; Faraut and me [FG] - the general case. The remarkable property ofthese tubes is that they are Zariski open parts of some pseudo-Hermitian sym-metric spaces. Faraut and me work now on the theory of �@{cohomology in thesetubes. One of the central problems here is the possibility of extension of cohomol-ogy in (at) tubes up to cohomology in pseudo-Hermitian symmetric spaces withcoe�cients in appropriate line bundles. Troubles here are similar to those whichwe discussed in the connection of extension of holomorphic functions from curve(Stein) tubes to at ones. This problem is connected with interesting phenomenain the theory of representation which was discovered by Kashiwara and Vergne.These constructions for at tubes give many hints on how to work on the conjec-ture for tubes in Stein symmetric spaces, but it is necessary to do many things forits proof. There is a situation when the conjecture is proved: when curved tubesare extensions of some at ones and the corresponding extension of cohomology ispossible. The simplest of such examples are hyperboloids in odd-dimensional space.I am sure that the problems which we discussed are very important for more clearunderstanding of representations, �rst of all in the direction of their connection with
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