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HJBJY| Mai 7/98Modular Groups of Quantum Fieldsin Thermal StatesH.J. BorchersInstitut f�ur Theoretische PhysikUniversit�at G�ottingenBunsenstrasse 9, D 37073 G�ottingenandJ. YngvasonInstitut f�ur Theoretische PhysikUniversit�at WienBoltzmanngasse 5, A 1090 WienAbstract:For a quantum �eld in a thermal equilibrium state we discuss the group generated by timetranslations and the modular action associated with an algebra invariant under half-sided trans-lations. The modular ows associated with the algebras of the forward light cone and a space-like wedge admit a simple geometric description in two dimensional models that factorize inlight-cone coordinates. At large distances from the domain boundary compared to the inversetemperature the ow pattern is essentially the same as time translations, whereas the zero tem-perature results are approximately reproduced close to the edge of the wedge and the apex ofthe cone. Associated with each domain there is also a one parameter group with a positivegenerator, for which the thermal state is a ground state. Formally, this may be regarded as acertain converse of the Unruh-e�ect.1. IntroductionAlgebraic quantum �eld theory in the sense of Araki, Haag, Kastler [Ha96] is con-cerned with von Neumann algebrasM(O) of observables localized in space time domainsO, together with states ! on these algebras satisfying some physical selection criterion.Due to the Reeh-Schlieder property of quantum �eld theory [RS61] one may associatewith certain regions O and states ! the Tomita-Takesaki modular objects �O;! and JO;![Ta70], [KR86]. The positive operator �O;! generates a one parameter group ad�itO;! ofautomorphisms of M(O), and the conjugation adJO;! de�ned by the antiunitary JO;!mapsM(O) onto its commutant in the GNS Hilbert space corresponding to !.Important structural properties of the theory are encoded in the modular objects, see,e.g., [BDL90], [Bch95], but an explicit description of �itO;! and JO;! has so far only beenobtained in the following cases with ! a vacuum state:(a) O is a space like wedge and the local algebras are generated by Wightman �elds thattransform covariantly with a �nite dimensional representation of the Lorentz group[BW75,76].(b) O is a forward light cone andM(O) is generated by a massless, non-interacting �eld[Bu78].(c) O is a double cone andM(O) is generated by conformally covariant �elds [HL82].1



HJBJY| Mai 7/98(d) O is a space like wedge and the local algebras are generated by generalized free �eldsof a certain type which break Lorentz covariance [Y93].In case (a) the modular group is the group of Lorentz boosts that leave the wedgeinvariant, and the conjugation is the PCT operator (combined with a rotation). Cases (b)and (c) can be reduced to case (a) by a conformal mapping onto the wedge of the forwardlight cone and the double cone respectively. In (b) the modular group is the dilation group,and in (c) it consists of the conformal transformations that leave the double cone invariant.In the examples considered in (d) the action of the modular group is in general non-local,i.e., an algebraM(O1) with O1 a bounded subset of the wedge need not be mapped intoanM(O2) with O2 bounded.A key to a general understanding of possible geometric interpretations of modulargroups is the interplay between the modular action and certain subgroups of the space-time translations. In [Bch92] it was shown that the modular group of a space-like wedgein a vacuum state acts on the translation group like the Lorentz boosts that leave thewedge invariant. Subsequently Wiesbrock [Wie93] introduced the concept of a half-sidedmodular inclusion and proved a certain converse of the results of [Bch92], namely that thetwo-dimensional translation group can be recovered from the modular groups of the wedgeand some of its translates.In this paper we want to investigate the modular groups when ! is a thermodynamicequilibrium state (KMS state) rather than a vacuum state. In the next Section 2 wediscuss the generalizations of the results of [Bch92] to KMS states. We investigate thecommutation relations between the time translations and the modular group in a KMSstate for any domain that is mapped into itself under half-sided time translations. Usingthe results of [Bch95] we prove that the time translations and modular action together giverise to a representation of the abstract Lie group generated by one dimensional dilationsand translations. The important observation that half-sided modular actions always leadto a representation of this group was �rst made by Wiesbrock [Wie93], [Wie97]. We expressall its one parameter subgroups in terms of the translations and the modular group. Ofparticular interest is a subgroup with a positive generator. This group acts on the globalobservable algebra for positive values of the group parameter.The group relations alone do not determine the modular action and the group withpositive generator, but they put de�nite restrictions on the possible disclocalization ofobservables by the group actions. More precisely, if N denotes the observable algebra of adomain invariant under half sided translations and N (t) its time translate by t, then themodular group �iuN of N transforms N (t) into N ('(u; t)) with a certain function '(u; t).Likewise, the group with a positive generator transforms N (t) into N ( (�; t)), where  is another function of t and the group parameter � . The precise statements are given inTheorem 2.1. We also discuss the action of �iuN on individual observables inN (t) for t largeand show that, in a sense made precise in Theorems 2.2 and 2.3, this action approximatesa time translation by ��u as t=� !1.In Section 3 we consider two dimensional models that factorize in the light conecoordinates. Applying the results of the previous section to the algebras on each of thelight rays one obtains a geometric description of the actions of the groups associated withthe forward light cone and a space like wedge. In the case of the forward light cone, the2



HJBJY| Mai 7/98algebra of a translated light cone is mapped into another such algebra. An analogousstatement holds for the wedge. The ow patterns are illustrated in Figs. 1-2. Close tothe apex of the light cone and the edge of the wedge the actions of the modular ow isessentially the same as for the zero temperature case, i.e., dilations for the forward lightcone and Lorentz boosts for the wedge. On the other hand, at large distances from thedomain boundary compared to the inverse temperature the modular ow approaches thedynamical ow, i.e., the time translations.The one parameter unitary group with positive generator associated with the forwardlight cone, which in the limiting case of zero temperature reduces to time translations,approximates the dynamical ow close to the apex of the light cone. It corresponds ev-erywhere to a decelerated movement towards the origin in the space variable (Fig. 3).Formally at least, this may be regarded as a reverse Unruh-E�ect [U76], [Sew80], [Sew82]:In the latter the vacuum appears as a KMS state with respect to a dynamics that acceler-ates points towards light-like in�nity, here a KMS state appears as a vacuum with respectto a dynamics that moves points from light-like in�nity towards the origin of space.For the wedge there is also a unitary group with positive generator which has theKMS state as a ground state. This group operates on the observables for a restrictedparameter range. It approximates the time translations close to the space axis and lightlike translations far away from the space axis. The action of this group is illustrated inFig. 4. This action may also be interpreted as a kind of reverse Unruh e�ect, because theacceleration is here away from the wedge, whereas in the usual Unruh e�ect the accelerationpoints in the direction of the wedge.In Section 4 we compute explicitly the modular groups and the groups with positivegenerator for a quasi free KMS state on the Weyl algebra of a generalized free �eld in2D space time that factorizes in light cone coordinates. For a �eld of minimal scalingdimension one obtains a strengthening of the general results of the previous section on thegroup actions: A local algebraM(O) with O a double cone is transformed into an algebraof the same kind. For �elds of higher scaling dimension, however, double cone localizationmay be get lost under the group action and only a localization in a translated light coneor wedge remains.2. The group generated by translations and the modular actionLet (A; �t) be a C�-dynamical system and B a subalgebra, such that�tB � B for t � 0: (2:1)Suppose furthermore that the algebra [t2R�tB is norm dense in A. Let ! be a KMSstate [BR79] for the dynamical system (A; �t) at inverse temperature � and denote by �the corresponding GNS representation of A with cyclic vector 
, and by T (t) the unitaryimplementation of �t on the GNS Hilbert space H. Put M = �(A)00 and N = �(B)00.Because of the analyticity properties of the time translations in a KMS state the vector
 is separating for M and hence also for N . Moreover, 
 is cyclic for M (by de�nition)and since [t2R�tB is dense in A it follows by a Reeh-Schlieder type argument that 
 iscyclic for N also. 3



HJBJY| Mai 7/98Let �M and JM be the modular objects corresponding to 
 andM. We have�isM = T (��s) (2:2)where the sign is a consequence of di�erent conventions in physics and mathematics: ForA 2 M the expression T (t)A
 has an analytic continuation into the strip S(0; �=2), whereS(a; b) := fz 2 C : a < Im z < bg; (2:3)while �isMA
 has an analytic continuation into S(�1=2; 0), by the sign convention inmodular theory. Since JM�1=2M A
 = A�
, it follows from (2.2) thatT (t + i�)A
 = JMT (t)A�
: (2:4)By assumption (2.1) we haveT (t)NT (�t) � N for t � 0; (2:5)i.e., we are in the situation of a half-sided translation in the sense of [Bch92]. Because of(2.2) we are also in the situation of a half-sided modular inclusion in the sense of Wiesbrock[Wie93], i.e., �isMN��isM � N for s � 0: (2:6)If T (t) had a positive generator, then (2.5) would imply the well known relations [Bch92]between T (t) and the modular group �iuN . In a KMS state, however, the spectrum of theHamiltonian is the whole real axis and the analysis of [Bch92] has to be generalized. Themain results of this generalization are stated in Eqs. (2.20), (2.29) and (2.31) below.We start with a heuristic discussion of the consequences of (2.6), similar to that in[Wie93]. This discussion disregards questions of domains of unbounded operators, but itleads quickly to the commutation relations between �isM and �iuN stated in [Wie97]. Arigorous proof of these relations follows from the results of [Bch95] and will be given afterthe discussion.Since N � M it follows by standard arguments that �N � �M and this, domainquestions aside, implies that G := log �N � log �M (2:7)is a non-negative operator, because log is an operator monotone function. Eqs. (2.1), (2.2),(2.6) and the Trotter product formula now lead toei�GN e�i�G � N for � � 0: (2:8)Putting U(� ) := exp(i�G), Eq. (2.8) and G � 0 imply [Bch92]�iuNU(� )��iuN = U(e�2�u� ) (2:9)for all �; u 2 R. Hence we obtain a unitary representation of the two parameter Lie groupG with elements (�; u) 2 R2 and the composition law(�; u) � (� 0; u0) = (� + e�2�u� 0; u+ u0): (2:10)4



HJBJY| Mai 7/98The representation U(�; u) corresponding to (2.9) isU(�; u) := ei�G�iuN : (2:11)The group G de�ned by (2.10) is the semidirect product of R with itself and is theunique two dimensional non-abelian Lie group (\ax + b-group"). Some of its propertiesare discussed in [Bch98].For a discussion of the one parameter subgroups and the Lie algebra of G it is conve-nient to realize the group in terms of 2� 2 matrices:(�; u)$ � 1 �0 1� �� e�2�u 00 1� = � e�2�u �0 1� : (2:12)It is straightforward to determine the one parameter subgroups, r 7! g(r) of G. Thesehave the form ga;b(r) = � ear ba (ear � 1)0 1 � (2:13)with a; b 2 R. In the half-plane (�; e�2�u) 2 R �R+ these correspond to straight linesthrough (0; 1). The in�nitesimal generator of ga;b(r) isĝa;b = ddrga;b(r)����r=0 = � a b0 0� : (2:14)The group �iuN corresponds to a = �2�, b = 0; the group exp(i�G) to a = 0, b = 1. Sincethe generator of �isM is log�N � G, this one parameter group corresponds to a = �2�,b = �1. Denoting for short the one parameter subgroups of G in these three cases bygN (u), gpos(� ) and gM(s) respectively, we havegN (u) = � e�2�u 00 1� ; gpos(� ) = � 1 �0 1� ; gM(s) = � e�2�s 12� (e�2�s � 1)0 1 � :(2:15)One veri�es the relationgN (u) � gM(s) = gM(F (u; s)) � gN (�F (u; s) + s+ u) (2:16)with F (u; s) = � 12� log �1 + e�2�u(e�2�s � 1)	 ; (2:17)provided 1 + e�2�u(e�2�s � 1) > 0 (2:18)which is always ful�lled for s � 0. The relation corresponding to (2.16) for the modulargroups �iuN and �isM is �iuN ��isM = �iF (u;s)M ��i(�F (u;s)+s+u)N : (2:19)5



HJBJY| Mai 7/98This relation appears also in [Wie97]; our heuristic discussion has brought its group theo-retical origin into focus.In terms of the original translation group T (t) we can, because of (2.2), write (2.19)as�iuN � T (t) ���iuN = T � �2� logn1 + e�2�u(e2�t=� � 1)o� ��i 12� logf1+e�2�u(e2�t=��1)g�i t�N :(2:20)In the limit � !1 we recover the Bisognano-Wichmann result�iuN � T (t) ���iuN = T �e�2�ut� : (2:21)The one parameter groups ga;b(r) can be expressed in terms of gM(s) and gN (u) :ga;b(r) = gM(s(r)) � gN (u(r)) = gN (u(�r)) � gM(s(�r)) (2:22)with s(r) = � 12� log�1 + 2�ba (ear � 1)�u(r) = �s(r) � a2� r: (2:23)Specializing to a = 0, b = 1 we obtain for � > �1=(2�)gpos(� ) = gM ��(2�)�1 log(1 + 2�� )� � gN �(2�)�1 log(1 + 2�� )� ; (2:24)and henceU(� ) = �� i2� log(1+2��)M �� i2� log(1+2��)N = �� i2� log(1�2��)N �� i2� log(1�2��)M : (2:25)The �rst representation can be used for � > �1=(2�), the second one for � < 1=(2�).The group gN (u) operates on gpos(� ) according togN (u)gpos(� )gN (�u) = gpos(exp(�2�u)� ); (2:26)which is just the abstract form of the basic relation (2.9). This is a special case of thegeneral relation ga;b(r)gpos(� )ga;b(�r) = gpos(exp(ar)� ): (2:27)For a = �2�, b = �1, i.e. gM, the corresponding relation for the unitary groups on Hilbertspace is �isMU(� )��isM = U(exp(�2�s)� ); (2:28)which follows also directly from (2.25) and (2.19). We note in passing that (2.28) may beinterpreted as an \Anosov relation" that leads to exponential clustering of matrix elementsof the time translations T (t) = ��it=�M in states of the formA
 withA in a dense subalgebraof M [ENTS95]. 6



HJBJY| Mai 7/98De�ning �(� ) := U(�=�) we have by (2.25)�(� ) = T � �2� logf1 + (2��=�)g� �� i2� logf1+(2��=�)gN= �� i2� logf1�(2��=�)gN � T �� �2� logf1� (2��=�)g� ; (2:29)where the �rst equality is valid for � > ��=(2�) and the second for � < �=(2�). Evidently�(� )! T (� ) for � !1, and G=� = H + 1� log �N (2:30)tends in this limit to the Hamiltonian H, which in the vacuum representation is � 0.The relation (2.28) means thatT (t)�(� )T (�t) = �(exp(2�t=�)� ): (2:31)By (2.8) and our assumption that [t�tB is norm dense inA (and hence [tadT (t)N weaklydense inM), we may thus conclude thatad�(� )M�M for all � � 0: (2:32)A rigorous proof of the relations (2.19) and (2.25) (and hence of (2.20), (2.29) and(2.31)) can be obtained by applying Theorems A and B in [Bch95] to the operator valuedfunctions V (v) = ��ivM �ivN (2:33)and W (w) = V (v(w)), where v(w) = 12� log �1 + e2�w� : (2:34)The function V (v) has a bounded analytic continuation into the strip S(0; 1=2) with con-tinuous boundary values and satis�es the relationV �v + i2� = JMV (v)JN (2:35)for v 2 R. Moreover, ad V (v) maps N into N for v � 0 and the commutant N 0 into N 0for v � 0. By (2.35) it follows that ad V �v + i2� maps N 0 into N 0 for all v.In order to apply Theorem B in [Bch95] we have to map the strip S(0; 1=2) biholomor-phically onto itself in such a way that R is mapped ontoR+ andR+ i2 onto �R+ i2�[R�.The map (2.34) accomplishes this. It has a singularity at w = i=2, but as remarked in[Bch95] such a singularity is harmless. 7



HJBJY| Mai 7/98[The reason is as follows: Theorem B in [Bch95] is based on the edge-of-the-wedgetheorem, applied to matrix elements of the operator valued function(u;w) 7! �iuNW (w)��iuN : (2:36)These matrix elements have bounded analytic continuations, which are continuous at theboundary of their domain with the possible exception of points with w = i=2. By thedominated convergence theorem and the boundedness of (2.36) this piece-wise continuityis su�cient to ensure coincidence of boundary values in the sense of distributions. Theedge-of-the-wedge theorem then implies analyticity in the coincidence region, so continuityin the points with w = i=2 holds a fortiori.]Theorem B in [Bch95] leads to the general relations�iuNW (w)��iuN =W (w � u) (2:37)and JNW (w)JN =W �w + i2� : (2:38)Eq. (2.37) is precisely (2.19) in case (2.18) holds, but note that (2.37) is true for allu;w 2 R. As noted by Wiesbrock ([Wie93], [Wie97]) these relations imply that �iuN and�isM generate a unitary representation of the Lie group G. The in�nitesimal generatorslog�N and log�M, together with their real linear combinations, are thus essentially selfadjoint on a common core. The representation U(� ) of the one parameter subgroup gpos(� )ful�lls together with �iuN the relation (2.9) (because of the corresponding relation in G),and this implies by [Wie92] that U(� ) = exp(i�G) with G � 0. Hence the starting pointof the heuristic discussion is rigorously justi�ed.The following theorem summarizes the main conclusions of the preceding discussionand states in addition the most important consequence of the relations (2.20), (2.29) and(2.31) for the present investigation, namely the action of the group G on translates of N .2.1 THEOREM:Let (A; �t) be a C�-dynamical system and B a subalgebra such that �tB � B for t � 0 and[t�tB is norm dense in A. In the GNS representation de�ned by a KMS state on A atinverse temperature � letM and N denote the weak closures of �(A) and �(B) respectively,and T (t) = exp(itH) the unitary group implementing �t. Denote adT (t)N = N (t). Then(i) The translations T (t) and the modular group �iuN , de�ned by N and the KMS statevector, ful�ll the relation (2.20). We havead�iuNN (t) = N ('(u; t)) (2:39)with '(u; t) = �2� logn1 + e�2�u(e2�t=� � 1)o (2:40)for all u, t satisfying 1 + e�2�u(e2�t=� � 1) > 0: (2:41)8



HJBJY| Mai 7/98In particular, ad�iuNM�M (2:42)for all u � 0, and N = \u�0 ad�iuNM: (2:43)(ii) The operator G = �H + log�N is non-negative and essentially self adjoint on acommon core of H and log�N . The one parameter group �(� ) = exp(i�G=�) is given by(2.29) and the groups �(� ) and T (t) satisfy (2.31). We havead�(� )N (t) = N ( (u; t)) (2:44)with  (�; t) = t+ �2� log�1 + 2��� e�2�t=�� (2:45)for all � , t satisfying 1 + 2��� e�2�t=� > 0: (2:46)In particular, ad�(� )M�M and ad�(� )N � N (2:47)for � � 0, and N = ad�(�=2�)M: (2:48)Proof: As already noted, the key relations (2.20), (2.29) and (2.31), and the self adjointnessand positivity ofG are a rigorous consequence of the Theorems in [Bch95], [Wie92], [Wie93],and [Wie97]. Eqs. (2.39) and (2.44) follow directly from (2.20) and (2.29) and the factthat '(�u;'(u; t)) = t,  (��;  (�; t)) = t for (u; t) and (�; t) satisfying (2.41) and (2.46)respectively. Eqs. (2.42), (2.43), (2.47) and (2.48) are simple consequences of (2.39) and(2.44) since [tadT (t)N is dense inM.As a last topic in this section we discuss the relation between the translation groupT (t) and the modular group �iuN . Since T (��u) = �iuM, one may expect that the actionsof T (��u) and �iuN approximately coincide on elements that have been translated far intoN , so that \boundary e�ects" are negligible. That this intuition is indeed solidly foundedis the content of the next two theorems. The �rst concerns certain matrix elements of theunitary groups, and gives an estimate for the rate of the convergence. The second is aboutstrong convergence of Hilbert space vectors and operators, but the error estimates are lessexplicit.2.2 THEOREM:If A 2 N (t) and B 2 N 0 the following estimate holds for t > 0 and all u:j(B
;�iuNA
) � (B
; T (��u)A
)j � 2M min� j exp(2�u) � 1jexp(2�t=�)� 1 ; 1� (2:49)9



HJBJY| Mai 7/98with M = max fkA
kkB
k; kA�
kkB�
kg: (2:50)Proof: Consider the two functionsF+(u) = (B
;��iuN T (��u)A
); and F�(u) = (A�
; T (�u)�iuNB�
): (2:51)Theorem A in [Bch95] implies that ��iuN T (��u) has a bounded analytic continuation intothe strip S(� 12 ; 0). It follows that F+ has an analytic continuation into S(� 12 ; 0), and F�into S(0; 12 ). Moreover, by continuity of the unitary groups, F� is continuous on the realaxis.Denoting jM = adJM, jN = adJN we obtainF+�u� i2� = (B
; JN��iuN T (��u)JMA
) = (��iuN T (��u)jM(A)
; jN (B)
);F��u+ i2� = (A�
; JMT (�u)�iuNJNB�
) = (T (�u)�iuN jN (B�)
; jM(A�)
):In particular F� is continuous at u � i=2, u 2 R, and jN (B�) 2 N and jM(A�) 2 M0implies F+�u� i2� = F��u+ i2� : (2:52)Moreover, since T (�s)AT (s) 2 N for s < t, we haveF+(u) = F�(u) for u < t=�: (2:53)Hence F+ and F� have a common analytic continuation to a periodic function, F , withthe period i and cuts [t=�;1) + in, n 2 Z. This function is majorized byM = max fkA
kkB
k; kA�
kkB�
kg: (2:54)The function F (z)�F (0) vanishes at z = in, n 2 Z, and is bounded by 2M . Therefore,G(z) = F (z) � F (0)exp(2�z) � 1is analytic and bounded in the same domain as F . Along the cuts we have jG(z)j �2M(exp(2�t=�)�1)�1. By the maximummodulus principle this estimate holds everywhereand thus j(B
;��iuN T (��u)A
) � (B
; A
)j � 2M j exp(2�u)� 1jexp(2�t=�) � 1 : (2:55)This estimate blows up for t! 0, but the left-hand side is trivially bounded by 2M for allreal u and t. Replacing B 2 N 0 by ad��iuN B 2 N 0 does not change M , so (2.55) gives thedesired estimate (2.49). 10



HJBJY| Mai 7/982.3 THEOREM:(i) For every A 2 M and Hilbert space vector 	limt!1 k�iuNA(t)	 � T (��u)A(t)	k = 0 (2:56)with A(t) = adT (t)A. The convergence is uniform on half sided u-intervals I = (�1; u0],u0 <1.(ii) For every A in a dense subalgebra of Mlimt!1 kad�iuNA(t) � adT (��u)A(t)k = 0 (2:57)with uniform convergence on half sided u-intervals.Proof: From (2.48), (2.2) and (2.31) it follows that�iuN = �(�=2�)T (��u)�(��=2�) = T (��u)��(exp(2�u)� 1)�=2��: (2:68)Hence, using (2.31) again,ad�iuNA(t) � adT (��u)A(t) = adT (t� �u)had�� exp(�2�t=�)h(u)�A�Ai (2:69)with h(u) = (exp(2�u) � 1)�=2�. Now (i) follows from the strong convergence of �(� ) to1 as � ! 0, because supu2I jh(u)j <1 for I = (�1; u0].For general A 2 M, kad�(� )A�Ak need not converge to zero as � ! 0. However, onelements of the form Ag = R g(� )ad�(� )Ad� with g continuous of compact support, thisconvergence holds. Moreover, if g is continuously di�erentiable, then (2.69) implieskad�iuNAg(t) � adT (��u)Ag(t)k � kAk � kdg=d�k1 � supu2I jh(u)j � e�2�t=� : (2:70)By (2.44) such regularized elements are dense inM if the support of g is su�cientlysmall, and Ag ! A weakly if g tends to a delta function.3. Two dimensional modelsThe general results of the preceding setting were formulated for a C�-dynamical system(A; �t) and a subalgebra B, invariant under half-sided shifts by �t. We shall now be morespeci�c and consider a quasi-local algebra A generated by a local net O 7! A(O) of C�-algebras and B = A(O0) with O0 a domain invariant under half-sided translations in thet-direction. In the representation � generated by a KMS state ! we denote �(A(O))00 byM(O) and �(A)00 byM, as before.Eqs. (2.39) and (2.44) describe the action of the modular- and �-groups associatedwith N =M(O0) on the translated algebrasM(O0+ te), where e is the unit vector in thet-direction. We now want to investigate how the groups associated withM(O0) act on the11



HJBJY| Mai 7/98algebras of more general domains than O0 + te, in particular O0 + x with x an arbitraryvector in space-time. While a general answer to this question appears di�cult, the previousresults lead directly to a description of the action in the case of two dimensional theoriesthat factorize in the light cone variables.We start by considering local nets in two dimensional space time depending onlyon one light cone variable, i.e. nets on a light ray. With x0 the time and x1 the spacecoordinate of x 2 R2 the light cone variables are xR = x0 + x1 and xL = x0 � x1. Weconsider either one of them and denote it simply by x. Note that translations in timet = x0 are equivalent to translations in x. A local algebra corresponding to an x-intervalI � R is denoted byM(I). Local commutativity means thatM(I1) andM(I2) commuteif I1 \ I2 = ;.We denote the modular group for the algebraM(R+) by �iu+ and the correspondinggroup with the positive generator G+=� = H + (1=�) log�+ by �+(� ). We shall alsoconsider the algebra of the negative half axis, M(R�), with modular group �iu� andthe positive operator G�=� = H + (1=�) log��, which generates the group ��(� ) =exp(i�G�=�). Note that ad ��(� ) mapsM(R�) into itself for � � 0.By Eq. (2.39) we havead�iu+M([x;1[ ) =M(['+(u; x);1[ ) (3:1)with '+(u; x) = �2� logn1 + e�2�u(e2�x=� � 1)o ; (3:2)for all x; u 2 R such that 1 + exp(�2�u)[exp(2�x=�) � 1] > 0: (3:3)Note that (3.2) is just the function (2.40). We denote it here by '+ because there isan analogous result forM(R�):ad�iu�M( ]�1; x] ) =M( ] �1; '�(u; x)] ) (3:4)with '�(u; x) = �'+(�u;�x) (3:5)for 1 + exp(2�u)[exp(�2�x=�) � 1] > 0: (3:6)Likewise, from Eq. (2.44)ad�+(� )M([x;1[ ) =M([ +(�; x);1[ ) (3:7)with  +(�; x) = x + �2� log�1 + 2��� e�2�x=�� (3:8)for 1 + (2��=�) exp(�2�x=�) > 0; (3:9)12



HJBJY| Mai 7/98and ad��(� )M( ]�1; x] ) =M( ] �1;  �(u; x)] ) (3:10)with  �(�; x) = � +(��;�x) (3:11)for 1� (2��=�) exp(2�x=�) > 0:We now turn to models in two space-time dimensions which can be written as atensor product of one-dimensional models in the light cone variables, xR = x0 + x1 andxL = x0 � x1. For a domain IL� IR � R2 with IL and IR intervals on the xL and xR axisrespectively, the local algebra is thusM(IL � IR) =M(IL) 
M(IR): (3:13)Here 
 is the von Neumann tensor product, and I 7! M(I) is a local net of von Neumannalgebras over R. (For simplicity of notation we take identical nets on both axis.) Inparticular, we are interested in the algebras of the forward light coneM(V+) =M(R+) 
M(R+) (3:14)and the right wedge M(W ) =M(R�)
M(R+): (3:15)The modular groups for these algebras and a factorizing KMS state ! 
 !, where ! is aKMS state for the algebra on a light ray, are�iuV+ = �iu+ 
�iu+ (3:16)and �iuW = �iu� 
�iu+ : (3:17)If x 2 R2 we denote the translated light cone V+ + x by V+x and the translated wedgeW + x by Wx. From Eqs. (3.1) and (3.5) we obtain3.1 THEOREM: ad�iuV+M(V+x ) =M(V+'V+ (u;x)) (3:18)with 'V+(u;x) = ('+(u; xL); '+(u; xR)) (3:19)for u 2 R and x 2 R2 such that (3.3) holds for x = xL and x = xR. If u � 0, thenad�iuV+M(V+x ) � M for all x 2 R2, and if x 2 V+, then ad�iuV+M(V+x ) � M(V+) forall u.Likewise, ad�iuWM(Wx) =M(W'W (u;x)) (3:20)13



HJBJY| Mai 7/98with 'W (u;x) = ('�(u; xL); '+(u; xR)) (3:21)for u 2 R and x 2 R2 such that (3.3) holds for x = xR and (3.6) for x = xL. If x 2 W ,then ad�iuWM(Wx) �M(W ) for all u.The ow lines of 'V+ and 'W within the respective domains are shown in Figs. 1{2.It is evident from the �gures that the character of the modular ow depends of thedistance from the boundary of the domain considered (forward light cone or wedge). Thenatural unit of length is here the reciprocal temperature, �. Consider �rst the modulargroup of the forward ligh cone V+. In terms of the original space time coordinates x0 =(xR + xL)=2 and x1 = (xR � xL)=2 the map (3.19) takes (x0; x1) to (x00; x01) withx00 = x0 � �u+R0V+(x; u); x01 = x1 +R1V+(x; u); (3:22)whereR0V+(x; u) = (�=4�) log n(1 + e�2�(xR��u)=� � e�2�xR=�)(1 + e�2�(xL��u)=� � e�2�xL=�)o(3:23)and R1V+(x; u) = (�=4�) log(1 + e�2�(xR��u)=� � e�2�xR=�1 + e�2�(xL��u)=� � e�2�xL=� ) : (3:24)Far from the domain boundary, i.e., for xR, xL, xR � �u and xL � �u large compared to�, the terms R0V+ and R1V+ are exponentially small, and  V+(�; u) essentially the sameas translation in time by ��u in accord with Theorems 2.2 and 2.3. On the other hand,close to the apex of the light cone (compared to �), the action is essentially the same asfor � =1, i.e., dilation by the factor exp(�2�u). The deviation from a dilation is of theorder (jxj=�)2.For the wedge W the formulas corresponding to (3.22){(3.24) arex00 = x0 � �u+R0W (x; u); x01 = x1 +R1W (x; u) (3:25)with R0W (x; u) = (�=4�) log(1 + e�2�(xR��u) � e�2�xR=�1 + e2�(xL��u)=� � e2�xL=� ) (3:26)andR1W (x; u) = (�=4�) log n(1 + e�2�(xR��u) � e�2�xR=�)(1 + e2�(xL��u)=� � e2�xL=�)o :(3:27)Note that the wedge is characterized by xR � 0 and xL � 0. Again the modular actioncoincides essentially with time translations far from the domain boundary. Near the edgeof the wedge the coordinate xR is scaled by exp(�2�u) and xL is scaled by exp(2�u), upto terms of order (jxj=�)2. This corresponds to a Lorentz boost, i.e. the modular actionat temperature zero. 14



HJBJY| Mai 7/98From ��(� ) we can form the one parameter unitary groups� 7! ��(� )
 ��(� ) (3:28)on the tensor product Hilbert space. These groups have the positive generators H +(1=�) log��;�, where ��;� = ��
1+1
�� is the modular operator ofM(R��R�).They correspond respectively to the forward and backward light cone (++ and ��) andthe left and the right wedge (+� and �+). All four grops converge to the time translationsas � !1.The group associated with the forward light cone is�V+(� ) = �+(� )
 �+(� ): (3:29)By (2.44) we have3.2 THEOREM:If x 2 R2 and � > ��(2�)�1minfe2�xL=�; e2�xR=�g; (3:30)then ad�V+(� )M(V+x ) =M(V+ V+ (�;x)) (3:31)with  V+(�;x) = ( +(�; xL);  +(�; xR)): (3:32)If � > ��(2�)�1(minfe2�xL=�; e2�xR=�g � 1) (3:33)then ad�V+(� )M(V+x ) �M(V+): (3:34)The group associated with the right wedge,�W (� ) = ��(� )
 �+(� ); (3:35)does not induce half sided translations on the wedge algebra, but it nevertheless actsgeometrically for a restricted parameter range. In fact, by Eqs. (3.7) and (3.10) we have3.3 THEOREM:If x 2 R2 and ��(2�)�1e2�xR=� < � < �(2�)�1e�2�xL=� ; (3:36)then ad�W (� )M(Wx) =M(W W (�;x)) (3:37)with  W (�;x) = ( �(�; xL);  +(�; xR)): (3:38)15



HJBJY| Mai 7/98If ��(2�)�1(e2�xR=� � 1) < � < �(2�)�1(e�2�xL=� � 1); (3:39)then ad�W (� )M(Wx) �M(W ): (3:40)The ows of  V+ and  W are shown in Figs. 3 and 4. The groups �V+(� ) and �W (� ),approximate the time translations close to the tip of the light cone and the edge of thewedge, respectively. Indeed,  V+ maps (x0; x1) to (x00; x01) withx00 = x0 + � [exp(�2�xR) + exp(�2�xL)]=2 +O(� 2=�) (3:41)and x01 = x1 + � [exp(�2�xR) � exp(�2�xL)]=2 +O(� 2=�): (3:42)For xR and xL both close to zero, this is close to x00 = x0 + � , x01 = x1. More interesting,however, is the behavior of �V+(� ) far from the apex of the cone. From Fig. 3 one seesclearly that the ow corresponds to a decelerated motion towards the origin of space. Morequantitatively, the velocity v = dx01=dx00 isv = � tanh(2�x01=�) (3:43)and this di�erential equation has the general solutionx00(x01) = �(�=2�) log(sinh(2�x01=�)) + C (3:44)where C is an arbitary constant. The path through the origin, x01 = 0, correspondsformally to C = �1. The ow pattern is invariant under a shift in the time direction, inaccord with (2.31).As already mentioned in the Introduction, this ow brings points which start out withthe velocity of light at in�nity gradually to rest. Formally we have the reverse of an Unruhe�ect, for the generator of the ow of the observables is positive with the KMS state vectoras a ground state. Measured in terms of the parameter � it takes �=2� � -units for pointsto reach the forward light cone from in�nity. The � -parameter along the path through theorigin is related to the real time t byt = (�=2�) log(1 + 2��=�); i:e: � = (�=2�)(exp(2�t=�)� 1): (3:45)The � -unit is calibrated in such a way, that the t- and � -scales coincide precisely wherethe path hits the apex of the light cone. According to Eq. (2.31) a di�erent calibrationcorresponds simply to a shift of the cone in the time-direction. It is clear from (3.45) thatthe � -parameter is \slower" than t, in the sense that d�=dt < 1, for a point on the pathoutside the light cone (� < 0), and \faster" than t, i.e. d�=dt > 1, inside the light cone(� > 0).For  W the equations corresponding to (3.41) and (3.42) arex00 = x0 + � [exp(�2�xR) + exp(2�xL)]=2 +O(� 2=�) (3:46)16



HJBJY| Mai 7/98and x01 = x1 + � [exp(�2�xR)� exp(2�xL)]=2 +O(� 2=�); (3:47)and the velocity is v = � tanh(2�x00=�): (3:48)Thus the velocity is small close to the space axis, but approaches �1 far away from thespace axis. The explicit solution of (3.48) isx01(x00) = �(�=2�) log(cosh(2�x00=�)) + C: (3:49)This ow is invariant under a translation in the x1-direction. The situation is here di�erentfrom the light cone since not all paths pass through the wedge, and those who do, stayin the wedge only for a �nite � -interval, cf. Eq. (3.39). The group even moves localizedobservables out of the global observable algebra in �nite \� -time", cf. Eq. (3.36). Thedirection of acceleration is here in the opposite wedge, whereas in the usual Unruh e�ectit points in the direction of the wedge. In this sense we have here also a kind of reverse ofthe situation in the Unruh e�ect.For the path passing through the origin the � -parameter is related to t = x0 byt = �4� log 1 + (2��=�)1� (2��=�) ; i:e: � = �2� tanh 2�t� : (3:50)The relation to the proper time tp along the path is� = �2� sin 2�tp� ; (3:51)i.e., up to a slight deformation � is esentially the proper time. We haved�=dtp = cos 2�tp� = (1� (2��=�)2)1=2; (3:52)so \� -time" is everywhere slower than tp except at the origin (calibration point), whereboth scales coincide with t. A change of scale corresponds to a translation of the wedgealong the x1-axis because of (2.31).Above we have described the actions of the modular- and �-groups in terms of thespace time coordinates (xL; xR) and also in terms of (x0; x1). The simplest descriptionis obtained in yet another coordinate system, that is related to the others by a nonlineartransformation. For x 2 R de�ne�� = �(�=2�)(exp(�2�x=�) � 1): (3:53)The range of �+ is ] � �=2�;1[ and the range of �� is ] � 1; �=2�[ . With x = xLand x = xR respectively we thus obtain the four coordinates, �L+; �L�; �R+ and �R�. Inthe case of the forward light cone we pick (�L+; �R+) and in the case of the right wedge(�L�; �R+) as a curvelinear coordinate system on Minkowski space. In these coordinates the17



HJBJY| Mai 7/98transformations (3.19), (3.21) for the groups associated with the forward light cone V+become (�L+; �R+) 7! e�2�u(�L+; �R+); (�L+; �R+) 7! (�L+; �R+) + � (1; 1) (3:54)and the corrsponding transformations (3.32) and (3.38) for the right wedge W are(�L�; �R+) 7! (e2�u�L�; e�2�u�R+); (�L�; �R+) 7! (�L�; �R+) + � (1; 1): (3:55)Analogous formulas hold for the backward cone and the left wedge. Hence in the �-coordinates the transformations have exactly the same form for all �, including the vacuumcase, � =1.The four coordinate systems (�L�; �R�) can be put together by de�ning(~�L; ~�R) = (�=2�)(�(xL)(exp(�(xL)2�xL=�)� 1; �(xR)(exp(�(xR)2�xR=�)� 1); (3:56)with �(x) = 1 for x � 0 and �1 for x < 0. This transformation is once continuouslydi�erentiable, but second derivatives have a discontinuity on the light cone. The linescorresponding to the ow of the �-groups of the four domains (the forward and backwardcones and the two wedges) pass continuously through the boundaries between the domains,although the groups themselves do not merge to a single one parameter unitary group onthe Hilbert space.The transformation (3.56) is of the form (xL; xR) 7! (f(xL); f(xR)) with f an orderpreserving bijective map R! R. Hence it is a causal transformation on two-dimensionalspace-time, i.e., it takes light cones into light cones. Such nonlinear causal maps onMinkowski-space exist only in two space-time dimensions.Finally we remark that all results of this section hold for general 2D theories, providedthe state satis�es a KMS condition with respect to both light cone coordinates, xL andxR. For factorizing states, this holds automatically as a consequence of the KMS conditionwith respect to the time direction. A general proof of a KMS condition with respect tolight like translations seems out of reach, however, even if one involves the relativistic KMScondition [BB94].4. Explicit realizations of modular groupsIn this section we compute explicitly the modular and �-groups for generalized free�elds on a light ray and the corresponding tensor product models on R2. In these examplesit is possible to discuss the action of the groups on the algebras of double cones and notonly of translated forward cones and wedges.TheWeyl algebra of a generalized free Bose �eld on a light ray is generated by elementsW (f), with f a real valued Schwartz test function on R, satisfying the following relations:W (f)� =W (�f) (4:1)18



HJBJY| Mai 7/98and W (f)W (g) = e�K(f;g)=2W (f + g) (4:2)with K(f; g) = Z 1�1 pQ(p2) ~f (�p); ~g(p)dp; (4:3)where Q(p2) is a non-negative polynomial that characterizes the �eld (see [Y93] ). Here~f (p) = (1=2�) R exp(�ipx)f(x)dx is the Fourier transform of f . The kernel of K of K,de�ned by K(f; g) = R K(y � x)f(x)g(y)dxdy, isK(y � x) =M(�id=dy)�(y � x) (4:4)with M(p) = pQ(p2), so W (f) and W (g) commute if f and g have disjoint supports.Translations in time are equivalent to translations along the light ray and are repre-sented by automorphisms of the Weyl algebra,�t(W (f)) =W (f(� � t)): (4:5)A quasi free KMS state ! at inverse temperature � is de�ned on the Weyl algebra by!(W (f)) = exp(�!2(f; f)); (4:6)where !2 is given by a positive de�nite kernel W2(y � x) (two point function) that isanalytic in the strip S(0; �) and satis�esW2(�) �W2(��) = K(�) (4:7)for real �, together with the KMS conditionW2(� + i�) =W2(��): (4:8)It is straightforward to show that these conditions �xW2 (up to normalization); its Fouriertransform is ~W2(p) = pQ(p2)1� e��p : (4:9)The Fourier transform of the meromorphic function (1 � exp(��p))�1 is seen to belim"!0+(2�i�)�1(exp(��12�� + i")� 1)�1 by contour integration. The Fourier transformof (4.9) for general Q follows by di�erentiation. In particular we have for Q � 1, i.e. a�eld of scaling dimension 1,W2(�) = lim"!0+ 1�2 1�sinh �(�+i")� �2 ; (4:10)and for Q a polynomial of degree nW2(�) = lim"!0+ P (cosh ��� ; sinh ��� )�sinh �(�+i")� �2n+2 ; (4:11)19



HJBJY| Mai 7/98where P is a polynomial in two variables. We shall restrict ourselves to the case thatQ(p2) = p2n, i.e. a �eld of a de�nite scaling dimension (n+1), in order not to mix the e�ectscoming from the non-zero temperature with those due to inhomogeneous polynomials Q(see [Y93] for the latter).Denoting the Weyl operators corresponding to Q(p2) = p2n by W (n)(f) it is clearfrom (4.3) that we may identify W (n)(f) =W (0)(inf (n)); (4:12)where f (n) is the n-the derivative of f , and from (4.9) we see also that a KMS state forany n is the same as the KMS state for n = 0 restricted to the operators W (0)(inf (n)).This will allow us to reduce everything to the simplest case, n = 0.Let � be the GNS representation de�ned by the KMS state (4.6) on the Weyl algebraof the W (0)(f)'s. If I � R is an interval, bounded or unbounded, we de�ne M(n)(I)to be the von Neumann algebra generated by �(W (n)(f)) with supp f � I. Because ofthe identi�cation discussed above these algebras are for all n realized on the same Hilbertspace.By exactly the same arguments as in [Y93], Sec. 3, one proves4.1 LEMMA:If I is an unbounded interval, then M(n)(I) � M(I) is independent of n. If I is boundedwith a non-empty interior, then M(m)(I) is a proper subalgebra of M(n)(I) for m > n.This lemma implies in particular that the modular operator �+ corresponding to thehalf-line R+ is the same for all n.The main result about the modular action is the following:4.2 THEOREM:Let ! be the quasi free KMS state (4.6) and � the corresponding representation of the Weylalgebra for n = 0. The modular group of M(R+) de�ned by ! has the form�iu+�(W (0)(f))��iu+ = �(W (0)(�(0)u f)) (4:13)with �(0)u f(x) = f � �2� logn1 + e2�u(e2�x=� � 1)o� (4:14)for supp f � R+.Remark 1. It is understood that if supp f � R+, then also �(0)u f(x) = 0 for all x < 0.Remark 2. The cyclic vector 
 corresponding to ! has the Reeh-Schlieder property, inparticular it is cyclic forM(R+). Hence (4.13) with supp f � R+, together with �it+
 =
, already �xes �it+ as a unitary group on the GNS Hilbert space. But �iu+�(W (0)(f))��iu+is, of course, a well de�ned operator on the Hilbert space for all f of compact support, andin fact if u � 0, then (4.13) and (4.14) hold for functions with support outside of R+ withthe understanding that (4.14) is zero when the argument of the logarithm is � 0. This20



HJBJY| Mai 7/98is a simple consequence of (3.1){(3.3). If u < 0, however, the transformed operator onlybelongs to the observable algebra if condition (3.3) holds on the support of f .Proof of Theorem 4.2: The formula (4.14) is motivated by Eq. (2.20). In order toshow that it is the correct formula for the modular action we have to check the followingproperties of �(0)u :(i) �(0)u maps the space of test functions with support in R+ into itself.(ii) The group property, i.e. �(0)u � �0u0 = �(0)u+u0.(iii) The unitarity of �(0)u in the scalar product de�ned by the two point function (4.10).(iv) The KMS condition: For real test functions f and g with support in R+ the functionu 7! !2(f; �(0)u g) has an analytic continuation into the strip S(�1; 0) and!2(f; �(0)u�ig) = !2(�(0)u g; f):Property (i) is obvious from the de�nition, and (ii) and (iii) are straightforward calcula-tions. We now check the KMS condition. PutL(u; x) := �2� logn1 + e2�u(e2�x=� � 1)o : (4:15)Since L(u;L(�u; y)) = y (group property) we have!2(f; �(0)u g) = Z Z W2(L(�u; y) � x)@L(�u; y)@y f(x)g(y)dxdy: (4:16)Using the addition formula for hyperbolic functions, we compute for the two point function(4.10):W2(L(�u; y) � x) @L(�u; y)=@y= 14�2 hsinh(�L(�u; y)=�) cosh(�x=�) � cosh(�L(�u; y)=�) sinh(�x=�) + i"i�2 @L(�u; y)@y= 116�2 hn�1 + e�2�u(e2�y=� � 1)�1=2 + �1 + e�2�u(e2�y=� � 1)��1=2o cosh(�x=�)�n�1 + e�2�u(e2�y=� � 1)�1=2 + �1 + e�2�u(e2�y=� � 1)��1=2o sinh(�x=�) + i"i�2�� e�2�ue2�y=�e�2�u(e2�y=� � 1) + 1= 116�2 h�e�2�u(e2�y=� � 1)	 cosh(�x=�) � �2 + e�2�u(e2�y=� � 1)	 sinh(�x=�) + i"i�2�� e�2�ue2�y=�= e2�y=�16�2 he��u(e2�y=� � 1)[cosh(�x=�) � sinh(�x=�)] � e�u2 sinh(�x=�) + i"i�2:21



HJBJY| Mai 7/98For x; y > 0, e��u comes with a positive factor and e�u with a negative one. For " > 0,the total expression is therefore analytic in u in the strip S(�1; 0), and this analyticity ispreserved in the limit " ! 0+ after smearing in x and y with test functions with supportin R+. The boundary value at u� i, u 2 R, ise2�y=�16�2 he�u2 sinh(�x=�) � e��u(e2�y=� � 1)[cosh(�x=�) � sinh(�x=�)] + i"i�2:This is precisely W2(x � L(�u; y)) @L(�u; y)=@y (by the same computation). Hence theKMS condition is veri�ed.The representation of the group �+(� ) = exp(i�G+=�) with the positive generatorG+=� = H + (1=�) log�+ now follows immediately from Eqs (2.25) and (4.13){(4.14):4.3 THEOREM:For � � 0 and all f �+(� )�(W (0)(f))�+(�� ) = �(W (0)((0)� f)) (4:17)with (0)� f(x) = f �x+ �2� log�1� 2��� e�2�x=��� : (4:18)Remark: It is understood that (0)� f(x) = 0 if the argument of the logarithm is � 0, i.e.,if x � ��=(2�) log(2��=�). Note that if � � �=(2�), then supp (0)� f � R+ for any f ofcompact support.By (4.12) we obtain as a corollary of Theorems 4.2 and 4.34.4 THEOREM:For n > 0 the action of ad�iu+ and ad�+(� ) on W (n)(f) with supp f � R+ is�iu+�(W (n)(f))��iu+ = �(W (n)(�(n)u f)) (4:19)with �(n)u f(x) = Z x0 dx1 Z x10 � � �Z xn�10 dxn�(0)u f (n)(xn); (4:20)and for � � 0 �+(� )�(W (n)(f))�+(�� ) = �(W (n)((n)� f)) (4:21)with (n)� f(x) = Z x0 dx1 Z x10 � � �Z xn�10 dxn(0)� f (n)(xn): (4:22)Remark. It should be noted that �(n)u f is in general no longer a test function if n > 0,for it may behave like xn�1 for x !1. However, it belongs to the Hilbert space de�ned22



HJBJY| Mai 7/98by the two point function and hence the Weyl operators are well de�ned. The same appliesto (n)� f .Next we investigate the localization properties of the modular groups. We recall fromLemma 4.1 that for an unbounded interval [x;1[ the algebrasM(n)([x;1[ ) �M([x;1[ )are independent of n. Hence the general result (3.1) applies. For the algebras correspondingto bounded intervals we have4.5 THEOREM:For �1 < x < y <1 and u and � restricted according to (3.3), (3.5) (3.9), (3.12)ad�iu+M(0)([x; y]) =M(0)(['+(u; x); '+(u; y)]); (4:23)and ad�+(� )M(0)([x; y]) =M(0)([ +(�; x);  +(�; y)]): (4:24)For n > 0 a local algebra M(n)([x; y])) is not mapped into an M(n)(I) with bounded I.Proof: For �xed u and � the maps x 7! '+(u; x) and x 7!  +(�; x) are one to one for xsatisfying (3.3) and (3.9) respectively, and the inverse maps correspond to u ! �u and� ! �� . From (3.14) it is clear that f has its support in [x; y], i� �(0)u f has its support in['+(u; x); '+(u; y)] i� (0)� f has its support in [ +(�; x);  +(�; y)]. Hence (4.23) and (4.24)follows directly from Theorems 4.2 and 4.3.To show the dislocalization for n > 0 we note �rst that neither �(0)u f (n) nor (0)� f (n) isa derivative of a function with compact support (except for f � 0). This is easily seen byconsidering the Fourier transforms of these functions, divided by p; the 1=p singularity isnot compensated by the derivatives because of the non-linear variable transformations, andanalyticity is lost. Consider now a bounded interval I and a function g such that g(n+1)vanishes on I. Then W (0)(g) belongs to the commutant of M(n)(I). If W (n)(�(n)u f) =W (0)(�(0)u f (n)) would belong to M(n)(I), then it would commute with W (0)(g), whichmeans that Z �(0)u f (n)(x) g0(x)dx = 0:This must in particular hold for all g with g0 � 1 on I because such g ful�ll g(n+1) = 0 onI for n > 0. Hence ZI �(0)u f (n)(x)dx = 0: (4:25)By isotony this should also hold for all larger intervals, and hence �(0)u f (n) would be aderivative of a function of compact support. As remarked above, this is not the case, andwe have a contradiction to the assumption that W (n)(�(n)u f) belongs to M(n)(I) with Ibounded. By the same argumentW (n)((n)� f) does not belong to M(n)(I).Remark 1. In terms of the �eld operators �(n)(x), de�ned by�(W (n)(f)) = exp(iR�(n)(x)f(x)dx); (4:26)23



HJBJY| Mai 7/98Eqs. (3.13) and (3.17) say that�iu+�(0)(x)��iu+ = �(0) ('+(u; x)) @'+(u; x)@x (4:27)and �+(� )�(0)(x)�+(�� ) = �(0) ( +(�; x)) @ +(�; x)@x : (4:28)In particular we have �iu+�(0)(0)��iu+ = e�2�u�(0)(0) (4:29)and �+(� )�(0)(0)�+(�� ) = (1 + (2��=�))�1�(0) ((�=2�) log(1 + (2��=�))) : (4:30)(Although the �eld is only an operator valued distribution, these equations have a rigorousmeaning in terms of quadratic forms.) Conversely (3.33) and (3.34), together with Eqs.(2.20) and (2.26), imply (3.31) and (3.32). For n > 0, however, ad�iu+ is a non-localtransformation of the �eld operators by Thm. 4.4. For instance we have�iu+�(1)(0)��iu+ = e�2�u�(1)(0) � (2�=�)e�4�u Z 10 �(1)(x)dx: (4:31)This shows clearly that there is more to the transformation law for the �elds than Eqs.(2.20) and (2.29) alone.IfM(R+) is replaced byM(R�) the previous results apply with appropriate changesof signs, cf. (3.5).Forming tensor product algebras as in (3.13) we obtain generalized free �elds on twodimensional space-time and KMS states that factorize in the light cone variables. Inthe case of the �eld with lowest scaling dimension, i.e., n = 0, the double cone algebrasM(0)(IL � IR), with IL, IR bounded intervals, are again mapped into algebras of doublecones. The ow lines of Figs. 1-4 describe in this case not only the movement of the apexof a forward light cone or the edge of a wedge, but also the movement of the double cones.For �elds of higher scaling dimension, i.e. n > 0, however, double cone algebras areafter the transformation no longer localized in double cones within the net M(n). Theyare still localized in double cones within the net M(0)(�), because M(n)(�) is a subnet ofM(0)(�).5. ConclusionsIn a KMS state at inverse temperature � the time translations coincide (up to a signand scaling by �) with the modular group of the global observable algebra. From this fact,24
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Figure 2: The modular ow in a space-like wedge27
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