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Abstract

Let (G, ) be a discrete symmetric random walk on a compact Lie group G with step distribution p
and let T, be the associated transition operator on L?(G). The irreducibles V, of the left regular repre-
sentation of G on L?(G) are finite dimensional invariant subspaces for T, and the spectrum of T}, is the
union of the sub-spectra U(Tuqvp) on the irreducibles, which consist of real eigenvalues {A,1, ..., Apdimv, }-
Our main result is an asymptotic expansion for the spectral measures

dimV,
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along rays of representations in a positive Weyl chamber t}, i.e. for sequences of representations kp,
k € IN with kK — c0. As a corollary we obtain some estimates on the spectral radius of the random walk.
We also analyse the fine structure of the spectrum for certain random walks on U(n) (for which T}, is
essentially a direct sum of Harper operators).

0 Introduction

The spectral theory of a random walk (G, x) on a compact Lie group G is concerned with the spectrum of
the Markov (or transition) operator

Ty : L*(G,dpo) — L*(G, duo)

Tu(f)=p*f
where dug is Haar measure on G and where p i1s a positive measure of mass 1. If y is symmetric, 1.e.,
dp(g) = du(g™") for all g € G, the operator T, is self-adjoint on L*(G, dpg). Moreover, if

LA(G, dpo) = @ VooV (G = unitary dual)
pEG
is the decomposition into irreducibles of the left regular representation of G on L*(G, duy), then
T,:V, =V, forallpEG’,

that is, all irreducibles are invariant subspaces for 7). It follows that (7)), the spectrum of 7),, has the
form

(0.1) o(Ty) = |J o(Ty,)
pEG
where Tu/|vp is the restriction of T, to V,. Equivalently, we have

(0:2) o(1) = | olilp))

pEG
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where

(0.3) Alp) = /G pg)du(g)

is the Fourier transform of p at p. The decomposition (0.2) shows that o(7T,) C [—1, 1] consists entirely
of eigenvalues. The main purpose of this paper is to exploit it further to determine some fine structure
properties of the spectrum.

To state the problem more precisely, we first recall that a unitary irreducible representation p of G is
uniquely determined by its highest weight, which for convenience we will also denote by p. Hence the unitary
dual 1s parametrized

G=TInt,

by the intergral points I* in a positive Weyl chamber of the dual of a Cartan subalgebra t. For each
p € I" Nt} we associate to a(fi(p)) = {A, :i=1,2,...,dimV,} the probability measure

dim V,
1 p
I — Y.
(0.4) ) = g ;_1: S = Apy)

in IR. Our interest is in determining the asymptotic properties of the measures m/ as |p| — oo along rays in
G’, i.e., for sequences of representations kp, &k € IN with £ — oo. This generalizes the analysis of asymptotics
of Fourier coefficients of measures on the circle group S'. Since the limit along rays has many (well-known)
analogies to the semi-classical limit in quantum mechanics, we view the problem as that of determining the
semi-classical limit of the random walk.

Asymptotic expansions for mZp cannot be expected, and indeed do not exist, for an arbitrary measure

i on (. For instance, in the case of S’ there are just two rays in S~ Z, Z% and Z~, and mik(/\) =
J(A — 4(xk)). Under the symmetry condition, ji(k) = i(—k), so we have

o= 1—|—22ﬂ(k’)cosk9
E>1

and any asymptotic expansion
a(k) ~agk™ +a_ kM4 (k — )

of the Fourier coefficients (k) would immediately entail an asymptotic expansion (in the sense of singulari-
ties)
Mo~ 14 aO%Xm + a—lé)%Xm—l +...

of ¢t in terms of the homogeneous distributions
oQ
Yr (9) — Z J AL
k=0

on S' (Ry, denotes the real part of y,). Such p are clearly of a restricted class. However, this class is a very
natural one which generalizes to any group — it is the class of “Lagrangean” measures of modern Fourier
analysis (aka the theory of Fourier integral operators, see [H6 I-IV][D]). For such measures, asymptotic
expansions similar to the one above can be expected.

Many random walks (G, i) of interest in probability theory fit into this framework, for example, discrete
random walks (i.e., with supp u C G discrete) or random walks with p supported on a conjugacy class (as



studied in [R][P]). For such random walks it is possible to apply the methods of microlocal analysis to study
the spectrum and smoothing properties of T,,. In this paper we concentrate on discrete random walks, i.e.

where pt is a discrete measure
n

p= =S > cilda, +6,-1)
M i '
with m, = 23", ¢;. In the sequel [P.Z] we extend the methods and results to certain continuous Lagrangean
random walks, such as J-functions on positively curved hypersurfaces or on sums of conjugacy classes.
Discrete random walks are much simpler technically than continuous random walks and hopefully provide a
clean introduction to the microlocalization of random walks to rays of representations.

Let us explain this notion in more detail before describing our methods and results. The key idea is
to simplify the study of a random walk on a compact Lie group by localizing it to a ray in the cotangent
bundle 7*G or in the unitary dual . The motivation for such a localization is that the Fourier transform
ft(p) can behave differently in different directions as p — oo and one would like to isolate the behaviour in
each direction. Each ray correponds to a different co-adjoint orbit, and the localization to a ray restricts the
dynamics of the random walk to this orbit. This kind of behaviour 1s well-known in the Fourier analysis of
surface-carrying measures on IR" (see e.g. [Stein, VIII: §5]) and arises for essentially the same reasons on
any Lie group. It does not seem to have been studied before in the setting of non-abelian Lie groups (see
however the paper of Taylor-Uribe [T.U] for a microlocal analysis of certain central measures).

Thus, our goal is to microlocalize a discrete random walk 7, to a ray of reprsentations INp and to
determine the asymptotic behaviour of its Fourier transform as encoded by the spectral measures m},. Since
this only involves the L? theory of T}, we are free to conjugate to a realization of the ray INp best adapated to
the problem of determining the semi-classical limit of the spectral measures m/,. The relevant construction
is the homogeneous generalization of the Kirillov-Kostant orbit theory due to Guillemin-Sternberg [G.S].

Recall that in the classical Borel-Weil-Bott- Kirillov-Kostant theory, an irreducible representation (p, V,)
corresponds to the classical “phase space” O,, the coadjoint orbit of p in g*. In the homogeneous quantization
theory of Guillemin-Sternberg [G.S—1], the entire ray INp corresponds to the Hardy subspace H?*(B,) C
L*(B,) where B, is the so-called “prequantum” S'-bundle over @,. We defer the precise definitions of
these objects to §2. For the time being, the main point is that B, is a homogeneous space of G, and
that HZ(Bp) = @,2,Vrp. Thus, we can determine the semi-classical asymptotics of my, along the ray
by studying the concrete random walk (G, u, H*(B,)). The spectrum of 7, on any homogeneous space, in
particular on (G, can then be synthesized from these special, but fundamental, cases. Concrete examples of
such rays of representations will be presented in §4, along with rays such as L?(S™) for G = SO(n+1) which
do not arise from this construction.

Let us now state our results. In the following, we identify irreducibles with their highest weights p, which
are lattice points in a positive Weyl chamber t% . The notation interior(t7 ) stands for the interior of the
Weyl chamber. There is a slight distinction in the results between interior weights p and weights lying on the
walls of the Weyl chamber (which we will refer to as ‘wall weights.”) For the sake of brevity, we concentrate
on the interior case and do not describe the possible behaviours of wall weights. However, we should point
out that the results for wall weights are often identical to the results for interior weights. For instance, in
the case of GG = U(n) only scalar weights behave differently from interior weights (see the Remark in §3).

Main Theorem Let = mi Z?_l ¢i(8a, +0,-1) be a discrete probability measure on a compact Lie group
n - 7

G. Then, for all p € I" N tY, the asymptotics of m{', is given as follows:
(a) Interior case: If p € interior(t}) , then

(0.5) dmj!, ~ Z xp(2) dm*? +O0(r™1)
2€ZgNI’



where:
(i) Zg denotes the center of G
(ii) T = {(a;) C G denotes the subgroup generated by {a;};
(iii) x, denotes the highest weight character of p;
(iv)(e) dm™e is the positive measure on [—1,1] determined by the moments

(0.6.€) / 2Pdm"® = ' (e);
R

(iv)(z} dm** is a measure on [—1,1] with the moments

(0.6.2) /Rxpdm“’z =put({z});

(v) the remainder O(r=1) holds pointwise for each f € C*(IR); for each f € C'(IR) the remainder is o(1).

(b) Wall case: Suppose p is a wall weight, and let
(vi) Z, .= ﬂgeGg_leg, where G, s the stabilizer group of p. Then:

(0.7) dmf, ~ Z xp(2) dm** + O(r™t)
zE€Z,NI

with 11—v unchanged.
Above, the sums in (0.5), resp. (0.7) should be understood in the following sense: for each k, the kth moment
of the measure on the left side equals the kth moment of the formal sum of measure on the right side. Note
that for each k, only a finite number of measures m** have non-zero kth moment. The fact that m*~? is a
measure for z # e will be explained in Remark (3) below.

Let us now derive a number of consequences from the Main Theorem.

First, consider the asymptote ZzEZGr]F Xp(2)"dm*? in the interior case. It is natural to lump together
the terms with a fixed value of x,(z). We therefore set

(0.8.1) 0,:={0€[0,2n): Iz € ZanNT, x,(2) = e’}
which is evidently a countable subset of angles {8;}. For each § € ©, we also put
(0.8.2) Zpg ={2€ZcNT :x,(2) = ew}.

Then the asymptote can be re-written in the form:

(0.9.1) Z Xp(2) dmt* = Z e”ejdmgj
2€ZgNT 0;€0,

with

(0.9.2) dmf = Y dm"*.

ZEZP,GJ'

As is typical in the world of trace formulae, the terms in (0.9.2) can possibly cancel each other out. This
certainly does not happen in the case of § = 0 since we have

N
1
B— p
(0.10.0) dm? _J\}lm v g_odmnp



i.e the limit spectral measure with § = 0 is the Cesaro mean of the spectral measures along the ray. Since it
is an average of positive measures it must be positive. However, the other limit spectral measures are given

by

N
1 .
(0.10.5) dmgj = lim — E e_”“gjdmﬁp

N—oo
n=0

and are consequently signed averages. There is no obvious reason why they cannot cancel out. To take this
possibility into account, we henceforth write

(0.11) 0, :={0€0,:dny £0.}

It is evident from the Main Theorem and from (0.10.j) that the angles 6; € 07 and the measures dmgj
are spectral invariants of the random walk 7}, along the ladder INp. They are analogous to the so-called
principal band invariants of a self-adjoint Toeplitz operator on contact manifold with periodic characteristic
flow, or of the Laplacian on a Zoll manifold (cf. [BAM.G, §13] for background and references). However,
the Markov operator T}, is a kind of Fourier Integral Toeplitz operator associated to a Markov chain (the
random walk), whereas the previously studied Toeplitz or pseudodifferential operators have no dynamical
aspect (they are associated to the identity map). Hence the analogy only goes so far. In particular, we have
not one band invariant, but a whole family dmgj of band invariants. To give them a name, we will refer to
them as the limit spectral measures of the random walk on the ray. The name is justified by the following:

Corollary 1 In the notation of the Main Theorem, suppose that p is an interior weight. Then:

U supp(dmy) C o(Tu],)
9]'6@,)

(S denotes the closure of the set S).

The proof is just to observe that if A ¢ O'(Tu/th), then there is an open set (A — €, A 4 ¢) disjoint from
(T, Iiv,) and hence all the band spectral measures dm}!, annihilate the functions in Ce(A—¢, A+¢). Hence so
must each limit measure dmgj. The result in the wall case is analogous and 1s left to the reader to formulate.

We note that the converse C relation is a very difficult problem, since a priori the limit spectral measures
only capture points of density in the spectrum of the random walk. Whether or not all points of O'(Tu/th)
are points of density is a question that requires a detailed study in each special case.

Two extreme cases occur when x,(z) = 1 and when x,(z) # 1 for z # e. In the first case we obviously
have:

Corollary 2 If x,(z) = 1 for all z € Zg N\ supp p,, (for exzample, if Zq is trivial), then, for interior p #,
there exists a weak limit
my, —= m!

with moments

(0.12) /Rxpdm“ = > wr({z}).

2€Za

In the second case, we can deduce results about the spectral radius

B3, =sup{]Al: A € o(Tyl, )}



of the random walk (G, u) along the ray INp. The key point here is that the limit measures dm?** depend
only on the discrete group I' := <a§t1,i = 1,...n), on the generating set A = {a;} and on the set Zg. In
particular, the limit measure dm*® corresponding to the identity element e is the Kesten spectral measure
of the random walk (', ut) defined by p on [2(T'). As is well-known, this spectral measure encodes many
properties of the pair (T, A). See [K.V] and [H.R.V] for background. ;From the known results on the
spectrum of (T', i), we conclude:

Corollary 3 Suppose x,(z) # 1 for z € Zg N T \ {id}. Then, with the above notation and assumptions:
(1) Suppose I' is an amenable group. Then 3} = 1.

(ii) Suppose T is a free group and {a;,i = 1,...,n} is a free set of generators. Then [— 22_1, Y 22_1] C

o(Tul,)-
Remarks:

(1) The Main Theorem may be viewed as connecting the spectral theory of the random walk determined
by p along rays of representations of G with the spectral theory of the random walk (T, i) defined by p on
[2(T). Essentially, we are looking at different representations of the element T, = ml—u > c;a; € C[T]. For the
random walk (T, i), we are considering the left regular representation A of I' on {?(T'). Along the ray, we are
considering the representation H?(B,) of G, restricted to I'. For simplicity of notation, let us denote this
restricted representation of I' by m,. Then in favorable cases, our results allow us to compare the spectra

SpA(T,) and Spm,(Ty).

(2) To enlarge on the comparison, we consider it from the C*-algebraic point of view (cf. [H.R.V]). Given a
unitary representation m of T' on a Hilbert space H we can take the norm closure of C[I'] in the algebra £(#)
of bounded operators on #, to obtain a C* algebra C%(T'). In the case of the left regular representation, we
get the reduced C*-algebra C3(I'). In the case of m, we get a representation C} .

Consider for instance the spectral measure dm*® from the C* point of view. Its moments may be
expressed in the form

/ 2P dm?e = (\(T},)P6.,8.)
R

The linear functional 7(A) = (A(A)d.,d.) on C[I] is continuous with respect to the operator norm of A(A)
on [*(T) and hence extends to a continuous trace on C5(I'). It further extends to a continuous trace on the
weak closure W3 (T'). In terms of the spectral resolution dE, of A(T,) we may write

m*“(B) = 7(Ep)

for any Borel B C IR. It is known that the support of this measure m/*° equals the spectrum Spi(T,) of
A(T,) as an element of C3(I') (cf. [H.R.V, Proposition 5].) This fact allows one to relate Spx(T}) to the
properties of (T, A) (loc.cit.)

The fact that m*:¢ arises in the asymptotics of m/, also allows us to relate Spr, (T,) to the properties of
(T', A, m,). The Corollary above gives one example. The other spectral measures arising in the asymptotics
can be used in a similar way, at least when the oscillatory factors x,(z)” can be separated out from each
other.

(3) We note that the other spectral measures m*? with z # e also arise from traces on C5(I'). They are
defined by 7%(a) := {ade,d;). In other words 7*(A(y)) = 1 if vz = e and is otherwise zero.

The trace condition 7%(ab) = 77 (ba) follows easily from the condition z € Zg, and continuity on C5(T)
is obvious. However, 77(I) = 0 if z # e so the traces are not states on the algebra.



The traces 7% induce measures on Sp A(T},) as in the case of z = e: namely, we define m** on C'(Sp A(T},))

by
/ fdm* = 7 (F(A(T))-

Since || f(A(Tu)] = |1flec (the sup-norm on the set Spec(A(T}))), it is evident that m#* does actually define
a measure on SpA(7),).

(4) The traces 7% originally arise as residue (Dixmier) traces on the algebra of Toeplitz operators on H%(B,).
They are in general not continuous traces on the C* algebra (norm closure) of the Toeplitz algebra. When
restricted to C’;p they may be viewed as defining unbounded traces on this algebra.

Examples:

Examples of rays of representations of compact semi-simple Lie groups and of their discrete random walks
will be given in §4. In particular, we will analyze in detail the spectrum of a specific discrete random walk
on the unitary group (the pseudo-Harper operator) by means of the spectral measures obtained in the Main
Theorem.

For the time being, let us consider some well-known examples from the literature on the spectral theory
of discrete random walks on Lie groups.
(Ex.1) A special case of a discrete random walk on a ray of representations is given by the Hecke operators
on L%(5?%) studied by Lubotzky, Phillips, and Sarnak [L.P.S] (see also [CV]) In this example, the group is
G = S0(3) and L*(5?) consists of just one ray. The random walk has transition operator 7' = % > T, +Ta,_1

where the a; are rotations around three perpendicular axes and with angle « given by cosa = — % The group
I is a free group, and the rate of equidistribution of orbits of the random walk is optimal. Since G has trivial
center, only the measure corresponding to z = e shows up in limit spectral measure, i.e. the limit spectral
measure of this random walk 1s the Kesten spectral measure for the left regular representation.

Our methods could also be extended to non-compact Lie groups such as G = SL(2,IR), and would then
apply to the (true) Hecke operators T, acting in the discrete or continuous ray (series) of representations of
the quotient G/SL(2, Z7). The results are just as in the previous example.

(Ex.2) A well-known example of a discrete random walk on the three- dimensional reduced Heisenberg
group N is given by the measure %[(5[] + 6% + dv + 6% ], where U,V are elements satisfying UV = e VU.
The corresponding transition operator is the Harper operator Hy = %[U +U* +V 4 V*]. It is much- studied
as a model for a periodic Schrodinger operator in a magnetic field; see [B][B.V.Z] [C.E.Y][Su] for a variety
of results and points of view.

As is well-known, the spectrum has a very interesting dependence on é: for rational values § = £, the
spectrum is a union of ¢+ 1 intervals in [—1, 1] with ¢ gaps between them; when § is irrational, the spectrum
is often (and conjecturally always) a Cantor set. These facts can be proved by studying the C*-algebra Ay
generated by these unitaries (the so-called rotation algebra, or non-commutative torus). See the articles
cited above.

The Harper operator could be studied from the point of view of this paper as a discrete random walk
on a Lie group (namely, N ). However, our concern will be with a compact analogue on the unitary group

U(gq). Namely, for § = f]—’ with (p, ¢) = 1, the algebra Ag has an irreducible representation m taking U to the

diagonal matrix u := diag(1,e'? ..., e(q_l)e) and V into the cyclic permuation operator v on the standard
basis e3 = €1,...,en = €p_1,€1 — €,. These matrices are unitary, hence w(Hy) is the transition operator
of a random walk

1
Ho = Z((su +6u* +6v +6’U*)



on U(g). Given aray of representations INp of U (g) we then get an example of a random walk (U(q), e, H*(B,))
to which the Main Theorem applies.

The relation between the spectrum of the random walk ;g and the spectrum of the Harper operator is
not so immediate, however. The problem is that along the ray, u, resp. v, act by the translation operators
Ty, resp. T, on H*(B,). The commutation relation between T, and T, along the ray is then given by

.7, =1, 1,1,

where T, is translation by z = e'?.

Evidently T, is not multiplication by a scalar so the algebra (Ty,T,)
generated by Ty, 7T, is not the rotation algebra.

Nevertheless, as will be explained in §4, the spectrum of T, along a ray can be related to the spectra of a
finite number of Harper operators. Hence the analogy to the rational Harper operator is not too far fetched.
From this example, we see that the spectrum of discrete random walks along rays of representations can

have interesting multiple band-gap structures.

This article is intended for readers with an interest in random walks but with little or no background
in microlocal analysis. For this reason, we have included rather lengthy expository sections summarizing
the relevant material from homogeneous quantization theory and Fourier integral operators (Sections 1-2).
Much of the proof of the theorem above will be given, as examples and illustrations, in the course of the
exposition, so it should be regarded as an integral portion of the text. The microlocalization of a random
walk to a ray of representations actually requires the theory of Toeplitz operators of [BAM.G]. We will be
building on this material as well in the sequel.

Acknowledgements The discussion in §4 of “pseudo-Harper” operators has benefitted from discussions with
Professor G.A. Elliott. Any remaining errors or oversights are of course the responsibility of the authors.

1 Review of Microlocal analysis

The purpose of this section is to present the microlocal machinery that we will need for the proof of the
main theorem. ITMoreover, much of the proof will actually be carried out in the course of introducing the
basic notions. Let us begin with some heuristic background.

Microlocal analysis 1s, among other things, a rigorous version of quantization theory and provides a table
of correspondences between notions of classical and quantum mechanics. For the purposes of this paper,
classical mechanics means the study of the dynamics of canonical transformations f and Hamiltonian group
actions T, on symplectic manifolds (M,w). Quantum mechanics means the study of the spectral theory of
their quantizations as unitary Fourier Integral operators Uy, resp. Uy, on an associated Hilbert space.

Specifically, the classical mechanics will in part consist of the (Hamiltonian) action of GG by conjugation on
the co-adjoint orbits O, and on certain symplectic cones Y~ encompassing all the orbits in the ray through p.
But more interestingly it will consist in the dynamics of the random walk itself — i.e. the discrete dynamical
system generated by the Markov operator T, — on these symplectic manifolds. The quantum mechanics will
consist in part of the representation theory of GG on the Hilbert space corresponding to O,, namely V, and
on the Hilbert space H?(B) corresponding to Y, the ray of representations @:021 Vrp thru p. But the focus
is on the spectrum of the Markov operator T}, on the Hilbert spaces V, and H?*(B).

1.1 Symplectic manifolds.

Throughout the paper, we assume familiarity with basic notions from differential geometry. For background
see, for example, [N]. Let M be a compact connected manifold of dimension n. M is called symplectic if
M possesses a symplectic form w, i.e., a nondegenerate closed (dw = 0) differential 2-form. Note that the



non-degeneracy of w implies that n be even. For each x € M, the tangent space T, M at z is isomorphic to
the cotangent space T M via the map

vy = (Vg )Wy
where ¢ denotes the usual insertion map (here, ¢(vy)wy = wy(vg, ).

We now assume there exists a group action G x M — M, (g,2) — ¢ -« of the Lie group G on the
symplectic manifold (M,w). For each (g,x) € G x N, the differential of the group action induces a linear
map T,G x Tz N — Ty, M. Take in particular g = e, the identity element of G. Then for each X € g = TG,
the Lie algebra of G, we get a vector field X# on M (the image of (X,0) under this map). We call the group
action symplectic if it preserves the symplectic structure, 1.e., if

Dxzw=0 (& du(X*)w=0).

If for all X € g the form (¢(X#)w is eract, i.e., there exists a smooth function ¢x on M such that
((X#)w = dgx (the X#’s are symplectic gradient vector fields), we call the group action Hamiltonian. The
corresponding moment map ® : M — g* (where g* is the dual of the Lie algebra g) is defined by

(X, ®(z)) = ¢x(2) -

((X,€) with £ € g* and X € g denotes the natural pairing £(X).) The following two examples will be
crucial.

Ezxample 1. The cotangent bundle of a manifold. Let M be a smooth manifold, 7% M its cotangent bundle,
and 7 the natural projection w : T*M — M. T*M carries a natural 1-form, «, given by

gy =Eodmpe (& @ =1 (2,8).

Here (x,£) are the local coordinates of a point in T M (short for (z1,...,2,,&1,...,€,)). In these local
coordinates, o can be written as o = >+, &1dzy. The canonical 2-form on Th M is w = da (= i, d& A
Ezample 2. Coadjoint orbits. Let G be a Lie group, g its Lie algebra (which can be identified with the
tangent space ToGG at the identity e € G), and g* the dual of g. Recall that G acts on g via the adjoint

representation Ad:

g-X =Ad(g)X :=d(cy)eX forall Xeg,ged

where ¢, : G — G is the conjugation map c,(h) = ghg™' and d(cy) denotes its differential. Hence by duality
we get the coadjoint action Ad* of G on g*:

(X,Ad*(g)¢) = (Ad(9~ )X, ¢)

forallg € G, X € g, and £ € g*. For any £ € g*, the corresponding coadjoint orbit O = {Ad"(¢)¢ : g € G}
is a symplectic manifold and the (coadjoint) action of GG on O is Hamiltonian. The symplectic structure is
given by w with

wn(X#,Yn#) ={[X,Y],n) for all n € O¢

and the moment map ® : O — g* is the natural inclusion map 7. See [Ki] for details and proofs.

Let (M,w) and (M’ ,w’) be two symplectic manifolds and f : M — M’ a diffeomorphism. f is called a
symplectomorphism or a canonical transformation if f*w' = w.

Erample 3. The lift of a diffeomorphism. Let X, X’ be two manifolds and f : X — X’ a diffeomorphism.
We can lift f to a diffecomorphism F' : T*X — T*X' of the cotangent bundles by defining F(z,&) =
(f(z),(f~1)*€). This map F is a canonical transformation with respect to the canonical 2-forms w and «’
on T*X and T* X', respectively.



1.2 Lagrangean submanifolds

Let A C M be a smooth submanifold of the symplectic manifold (M, w). For each « € A, the tangent space
Ty A is a subspace of T, M. We denote the orthogonal complement of T, A in T, M with respect to w, by
T, A. Ais called isotropic if for all . € A, T, A C T, A, ie, |, =0 (W], = *w where i : A — M is the
natural inclusion map). If A is maximal isotropic, i.e., if T,A = T; A for all x € A, we call A Lagrangean.
An isotropic subspace A is Lagrangean if and only if dim A = %dimM.

Let (My,wq) and (M, w2) be two symplectic manifolds. Clearly, M3} = (M, —ws), M = (M1 x Ms, w1 +
wa), and M’ = (My x My,wy — ws) are also a symplectic manifolds. We call a Lagrangean submanifold
AN C M’ a canonical relation.

Example 4. Graphs of canonical transformations. Let (Mip,w;) and (Ms,ws) be two symplectic mani-
folds and f : My — M> a canonical transformation. Since f*ws = wjy, wy — wa vanishes on Graph (f) =
{(mq, f(m1))|m1 € M1} = M;. Furthermore, dim Graph (f) = dim M; = %dim(Ml x Ms). Thus Graph (f)

is a Lagrangean submanifold of M'.

Of particular relevance in this article are the homogeneous canonical transformations on cotangent bun-
dles: that is, canonical transformations y : T*X — T*Y satisfying x(z,r€) = rx(z,€) for » > 0. The
simplest examples are lifts /' to the cotangent bundle 7% X of diffeomorphisms f : X — X . The graph
Graph x of any homogeneous canonical transformation is naturally diffeomorphic to 77X under either of the
projections

ACT*(X x X)

(121) T / \l T
™ X ™ X

Ezxample 5. The conormal bundle of a submanifold. Let X be a manifold and Y C X a smooth submanifold.
The conormal bundle N*Y C T* X is defined as the set

NY ={(y,¢)lyeY,&(v)=0forallveT,Y}.

We can define local coordinates x1,xs, ..., 2, in X such that Y is given by 1 = 2 = ... = 5 = 0. Thus,
with respect to the coordinates x1,...,2p,81,...,6p iIn 77X, N*Y isdefined by 21 = -+ -2 = kg1, -+, &n =
0 and of dimension n. It is clear that the natural 1-form « (see Example 1) is 0 on T(N*Y'), therefore also
the canonical 2-form w = da, and N*Y is a Lagrangean submanifold of 7 X.

A manifold M is called conic, if there exists a free IRT action on M. If My, M5 and A’ are all conic,
we call A a homogeneous canonical relation. Here, conic and homogeneous are synonyms. In this context,
homogeneous has nothing to do with “homogeneous space”.

Two canonical relations Aj C My x My and AL, C M2 x M3 can be composed to

A=Ay o Ay = {(71,73)[(71,72) € A1 and (v2,73) € A for some 73 }.
Equivalently, A’ is the image of A} x Ay N My x A(Ms) x M3z under the projection
7TZM1XM2XM2XM3—)M1XM3.

(Here A(Maz) denotes the diagonal {(y2,v2)|v2 € M2}.) In general, A’ = A} o A}, is not a canonical relation.
However, a clean intersection hypothesis gives a sufficient condition. Before we state this result, let us record
the following definition.
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Definition 1.2.1 Let XY, Z be smooth manifolds and f : X — Z and ¢ : Y — Z two maps. The fiber
product

(1.2.2) F={(z,y) € X xY|[f(z) = g(y)}

can be represented by the diagram

N
Ny < <
Kh

—
(1.2.3) .
g
We say the two maps f and ¢ intersect cleanly if

1) F is a submanifold of X x Y and

2) for each p € F, p = (z,y), the tangent space T, F is the fiber product of the tangent spaces 7, X and
T,Y, i.e., the diagram

T,F — T.X

\ Ldfe
(1.2.4) Y s T2

dgy

is a fiber diagram. The number ¢ = dim F+dim Z — (dim X +dimY") is called the excess of the intersection.
If e = 0, the intersection is transversal.

For the following theorem see, for example, [D.G], Lemma 5.3.

Theorem 1.2.2 Let A} C My x Ms and Ay, C Ms x Ms be two canonical relations. If the fiber product
diagram

F — A

I I

A/2 — M2

is clean, then A’ := A{ o AL is an immersed canonical relation in My x Mz and the map
a:F— N

1 a fiber mapping with compact fiber.

1.3 Lagrangean distributions and FIO’s.

These are distributions which can be written as certain types of oscillatory integrals [ ae’®. We begin by
describing the assumptions on the amplitude ¢ and the phase ¢. Let M be an n-dimensional smooth manifold
and X C M an open set.
Definition 1.3.1 A function ¢ € C°(X x (IR \ {0})") is called a phase function if

1) Tmé > 0,

2) ¢(x,r0) = ré(x,0) for all r € IRT,

3) d¢ # 0.
The phase function ¢ is called non-degenerate if from dy¢(x,0) =0, (2,0) € X x (IR'\ {0})N, it follows that
d(xyg)ngz’j(x, @) are linearly independent for j =1,..., N.

It follows from the implicit function theorem that

(1.3.1) Cy = {(x,0)|ds(x,0) = 0},

11



called the eritical set of ¢, is a conic n-dimensional smooth submanifold of X x (IR \ {0})N. Its image under
the map

(1.3.2) Iy :Cy = THX), Iy(x,0) = (x,ded(z,0))

is an immersed, conic, Lagrangean submanifold, Ay, of 7%(X) (see [D], Section 2.3). It can be shown (see
[Sj-G], Prop. 11.4) that vice versa, every closed conic Lagrangean submanifold A C 7*(X) \ {0}, can locally
be parametrized in this way. More precisely, for every (xg,fp) € A there exists a non-degenerate phase
function ¢ such that A = Ay in a neighbourhood of (2, 8y).

Definition 1.3.2 Let m be a real number. The set S™ (X x IRN), called the space of symbols of order m, is

defined as the space of all @ € C*°(X x IRN) with the property that for all compact K C X and all o € IN",
8 € INY | there exists a constant Ck o p(a) such that

1070 a(z,0)] < C(1+ |6y 17!

for all (z,0) € X x IRY. A symbol a € S™ (X x IRN) has an asymptotic expansion

(1.3.3) a(z,0) ~ Y aj(x,0) (0 o0)

7=0

with a; € S™m=J. The space of polyhomogeneous or classical symbols of degree m, S™  is the set of all

rhg>
symbols a such that
(1.3.4) a(z,0) ~ > a;(z,0)

7=0
where a; is homogeneous of degree m — j, i.e., a(z,rf) = r™~Ja(z,0) for r > 0.

For a fixed phase function ¢ and a fixed symbol a € S™(X x IRN), the oscillatory integral I4(a) given by
(1.3.5) Iy(a) = /ei‘z’(x’e)a(x, 0)do

defines a distribution, i.e., an element in D'(X x IRN). Such a v = I4(a) has its singularities (its “Wave
front set”) in Ay.

Definition 1.3.3 Let A C 7*(X) \ {0} be a closed conic Lagrangean submanifold of 7*(X). The space of
Lagrangean distributions of order m associated with A, I (X, A), is defined as the space of all u € D'(X)
with the following properties:

1) The Wave front set WF(u) C A.

2) For all (zg, 0p) € A and any non-degenerate phase function ¢, defined on an open cone V-C X x (IR \ {0})N
and parametrizing A in a neighbourhood of (zg,fp), there exists a symbol a € Sm+%_%(X X IRN) with
support in a cone C V such that u = I4(a) in neighbourhood of (o, #o).

The local representation of a Lagrangean distribution in terms of an oscillatory integral is not unique.
On the other hand, for a given Lagrangean distribution u, the Lagrangean A, its principal symbol o, which
we will describe below, and its order are uniquely determined. Our calculations will only involve these
invariants.

Definition 1.3.4 If « is a Lagrangean distribution on X satisfying «(1) = 1 and u(f) > 0 for all nonnegative
f € C§e(X), then u is called a Lagrangean probability measure.
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Ezample 6. Discrete measures. The delta function d,,(z) on IR™ at a point x#o € IR"™ is given by the
oscillatory integral

(1.3.6) bpo () = (zﬂ)—”/ eilz=20.0) g |

We have Ay = T IR and &,, € 15 (IR, 75 IR). More generally, a discrete measure

k

1
(1.3.7) p=—"> ciby,

My i=1
with m, = Zle ¢; on a manifold M of dimension n is a mixture of delta functions, hence can be expressed
in local coordinates as a sum of oscillatory integrals of the form (1.3.6). We have u € I'%(M,A) with

A Uxesupp M T*M

Erample 7. Delta functions on submanifolds. Any C'* density u on a smooth submanifold S C IR" can
locally be written as an oscillatory integral. Since S is a smooth submanifold, for any given point zg € S
we can find k functions ¢1, ..., ¢r with déq, ..., d¢y linearly independent at zg, such that S is defined in a
neighbourhood around zy by

$1(x) = ... = ¢p(x) =0.

There exists a function a € C§°(IR™) with support near zy such that

(1.3.8) u(z) = (271')_’“/ a(z)el®@0)dp where ¢(x,0)
R~

IIMw

Thus Ay = {(z,do0(2,0))] ¢; =0, =1,...k, « € suppu}. Note that this is the conormal bundle N*(5)
of S restricted to suppu. We have u € I%_%(IR",A@.

Delta functions on submanifolds are examples of conormal distributions. They are defined as having a
local expression as an oscillatory integral with phase function linear in 6.

Example 8. Homogeneous distributions on the circle S*. The basic homogeneous distributions on S' are the
distributions y(#) defined by the Fourier series

%]
— E rkeWG
r=1

with Fourier coefficients homogeneous of degree k. As Lagrangean distribution, i € I’H'%(Sl ,ToM*Sh), that
is, xx has only positive Fourier coefficients, has order (k + %) and has sole singularity at # = 0. It also has
precisely the same singularity as the Fourier integral (6 + i0)~*~1 := fooo £re?ede ) ie. differs from it in a
neighborhood of 0 by a smooth function. (The integral needs to be regularized at & = 0; we refer to [G.S-3]or
to [HSI] for a more detailed discussion). The analogous homogeneous distribution with singularity at ¢ = 6
instead of § = 0 1s given by the Fourier expansion

(1.3.9) k(0 —0o) = Z ke g=irbo

Example 9. Lagrangean distributions on S'. Since S' is 1-dimensional, the homogeneous Lagrangean sub-
manifolds of 7*S! must be finite unions of rays Tef* (SY) :={(0, 7€) : r£0}. Hence a Lagrangean distribution
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Y on S! can only have a finite number of singular points {6y, ...,80,}. Since Tef*(Sl) is parametrized by the
phase function ¢(6,&) := (6 — 8;)¢, near #; Y must have the form

V() = /Ooo =008, (0, €)de

with polyhomogeneous amplitude of the form

oQ

a5(0,6) ~ 3ty €™,
i=0
Comparing with Example 8, we see that
(1.3.10) V(O) ~ D imy—ixm,—i(0 — ;).
j=14=0

Thus, Y is a finite sum of polyhomogeneous distributions.

Let X and Y be two C'°° manifolds. A distribution k¥ € D'(X x Y) defines a linear operator

(1.3.11) K:C°(Y)— D’(X)
(1.3.12) (K(f),9)=(k,fog), FeCF(Y)geCF(X).

Conversely, by the Schwartz kernel theorem, for every map K as in (1.3.11) there exists a unique distribution

k€ D'(X xY) such that (1.3.12) is valid.

Definition 1.3.5 A linear operator K : C§°(Y) — D/(X) is called Fourier Integral Operator (FIO) if
its Schwartz kernel & is a Lagrangean distribution on X x YV, ie. if k € I"(X x Y, A) for some m € IR
and A C T*(X x Y) a Lagrangean submanifold. We will sometimes also write in this case, a bit loosely,
K elI™(X xY,A).

Notation. If A C T*(X x Y) is a Lagrangean submanifold, we will denote {(x,y;&,n)|(=,y;€,—n) € A} by
A’. Recall that A’ is a Lagrangean submanifold of 7% (X x Y') with respect to the symplectic form wx —wy
where wx and wy are the canonical forms on T* X and T™Y, respectively.

The following clean composition theorem gives a sufficient condition for the composition of two FIO’s to
be FIO again. See, for example, [H6IV], Theorem 25.2.3.

Theorem 1.3.6 Let X,Y, 7 be smooth manifolds and A} C T*X x T*Y and A, C T*Y x T*Z two ho-
mogeneous canonical relations. Let Ky and Ko be two FIO’s whose Schwartz kernels ki and ko are in
Im™(X x Y, A1) and I (Y x Z,A2), respectively. Assume that the composition A = A} o Ag is clean with
excess e. Then K3 = K1 Ky is also an FIO and its Schwartz kernel

ks € Matmetel2(X w7 A) .

With few exceptions (the Szegd projector and the trace operation), all of the Fourier Integral operators
(FIO’s) we will be considering in this paper come from Fourier Integral representations of Lie Groups. In
fact, they will just be translations by group elements on homogeneous spaces. The following gives a summary
of the notation and terminology regarding FIO group actions.

14



1.4 Hamiltonian and Fourier Integral group actions

We begin by describing the simplest Hamiltonian actions on the cotangent bundle 7™ M of a compact manifold
M which arise from lifts of geometric (translation) actions on the base M.

Thus, let | : G x M — M be an action of the Lie group G on M. The action of G on M can
be lifted to an action L of G on the cotangent bundle T*M in a canonical way: For fixed ¢ € G,
Lig;m, &) = (lg(m), (dly-1)*€)) for all (m,&) € T*M (we have denoted I(g,m) by ly(m)). This action

is always Hamiltonian and we denote its moment map by ®. It is determined by the following formula:
(1.4.1) (X *)w = d((X,®(m, )  forall X €g,(m, &) € T*M.

More concretely, let {Xy,..., X} denote a basis of the Lie algebra g of G and let XZ# denote the corre-
sponding vector fields on M. They are all Hamiltonian vector fields on 7% M with Hamiltonians f;(x,€) :=
<(Xl#)x,€> The moment map can then be written as

q)(xag) = (f1a~~~afr)'

In particular if G = S, and if (,?—9 denotes the generator of the action on M, then the moment map 1s the
Hamiltonian f(z,&) := <§—9,€>.
The action [ of G on M induces a unitary representation p

(14.2) plg) -n=1gm

of G on L*(M, Q%), the space of half densities on M. Here, a 1/2-density 7 is the square root |dvol|*/? of a
volume density on M. These rather unusual objects give M an intrisnic L2- structure since the product of
two 1/2-densities is a density which can be integrated over M. They are ubiquitous in microlocal analysis
and although all of our manifolds have natural volume densities, we will state things in terms of 1/2-densities
to enable us easily to quote relevant microlocal facts from the references.

Since p(g) is translation (pull-back) by g, the Schwartz kernel ky(z,y) of p(g) is essentially the delta-
function 6 (y—{,(x)). To make this intuitively clear notion precise, we would have to discuss delta 1/2-densities
on a manifold. For the sake of brevity, we refer to [G] for the precise definitions, and only note that as a delta
function on Graph(l) = {(g, m,l(g,m))|g € G,m € M}, k(g, =, y) is Lagrangean distribution on G x M x M
with associated Lagrangean I' equal to the conormal bundle of Graph(!), which is easily seen to equal the
moment Lagrangian of the Hamiltonian action of G on T M | given by

(1.4.3) I'={(g, ®(m,&); m,&; L(gim,§))|g € G, (m,§) € T"M} .

In the case of composition of FIO’s coming from translations by (possibly different) group actions, the
composition of FIO’s is simply the composition of the translations and the composition of the Lagrangeans
is simply given by the graph of the composite translation. For future reference, we consider this case in
detail.

Cleanness of composition of 7, and T,e. Let M be a manifold and [ : G x M — M and and
k:S"x M — M two group actions with G not necessarily equal to S'. For fixed ¢ € G, we denote
the corresponding translation operator in L%(M, Q%) by Ty. Its Schwartz kernel, k,(z,y), is a Lagrangean
distribution (the delta function d(y — {,(x))) with corresponding Lagrangean

(1.4.4) Ag ={(, & Iy (@), —(dlg-2)")|(x,§) € T M} =T M .

For the group action k : S* x M — M we also consider translation in L?(M, Q%), denoted by T.:. Now we
do not hold a specific element in S fixed, but view the resulting representation of S' as a distribution on
S1 x M x M. This distribution is a delta function on

Graph(k) = {(e";x; k(e x))|e? € S*,x € M}
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whose conormal bundle is given by
(1.4.5) [ = {(e" ®(x,8); x,6 Ko (x,6)]e? € S* (x,6) e T*M} = S' x T*M .

Here Kg(x,&) = (k(e?, z), dk?_s€) and @ denotes the moment map of the group action K : Stx T*M —
T*M.

The Schwartz kernel of the operator T, := T¢is 0Ty, viewed as a distribution on S x B x B, is always
Lagrangean, since the composition I o Aj is automatically clean (see Theorem 1.3.6). We recall that this

means that the fiber diagram
F — I

\J I ms
A, — T"M
™
is clean, where m3 : A’ — T*M denotes projection onto the third factor in IV C T*S' x T*M x T*M,
T A; — T* M is projection onto the first factor, and where

F= {(eieaq)($a€); $a€a [{G(xag)a [{G(xag)a Lg[(9($a€))|ei€ S Sl, (l‘f) € T*M} = Sl x T M

with Lg(z,€) := (I4(), (dlg-1)"§). Since it is a graph, the fiber product F'is always a submanifold of I x A}
and it 18 easy to see that the derived diagram

TTr — T’

) ) dms
TA, — T(T*M)
d7T1

is a fiber diagram with excess e = 0. Denoting the Lagrangean I' o Ay by A we have

(1.4.6) A= {(e" ®(x,&); 2,8 LyKo(x,8))|e"® € S* (x,6) e T"M} = S' x T*M
and
(1.4.7) Ty € I7T(ST x M x M,A).

1.5 The trace operation

Taking the trace of an operator A can be viewed as composing a certain Fourier integral operator Tr with
the Schwartz kernel k4 of A.

Let k4 be a Lagrangean distribution on G x M x M. Then TrA = Trka = [ka(g, m, m)dm. It was
pointed out in [D.G] that Tr A can be viewed as the composition

(1.5.1) TrA=m.A"%k4

with A : G x M — G x M x M the diagonal embedding and 7 : G x M — G the projection onto the first
factor.

Since the operator m,A* maps distributions on G x M x M to distributions on G, its Schwartz kernel
kr,ax is a distribution on G x M x M x (. The following lemma can be found in [D.G] (p.66).

Lemma 1.5.1 We identify G x M x M x G with (G x M) x (G x M). The Schwartz kernel kp a+ is the
same as kiq, the Schwartz kernel of the identity map. Furthermore, ky,a+ € I°(G x M x M x G,T') with T
being the conormal bundle to the diagonal in G x M x M x (.
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1.6 The principal symbol of a Lagrangean distribution.

Roughly speaking, the principal symbol o, is a 1/2-density on A. (To be completely accurate, it involves
additional factors e*'™  called Maslov factors.) To define o, we use a parametrization of A.

Let w be an element in I™ (X, A), and let

I(a) = /ei‘z’adﬁ

be a local representation of u. We assume that the phase function ¢ w is defined in an open conic subset
V C X x(IR\ {0})N and that the projection of V into X is a domain of local coordinates #1,...,2,. We
can use 0¢/06;, i = 1,..., N as local coordinates transversal to Cy in X x (IR'\ {0})N. On Cy itself we
choose local coordinates ¢;, j = 1,...n, that are homogeneous of degree one with respect to ¢. Together,
the 0¢/06; and ¢; form a complete coordinate system in V. Cy carries a volume form dy defined by

D(x,0)

(1.6.1) dy = ‘W

‘dcl/\~~~/\dcn .
The coefficient on the right hand side denotes the Jacobian determinant of the x; and #; with respect to the
¢; and 0¢/00;, j=1,...,nandi=1,...,N. Let

a~ag+a_1+ ...

N
2

be the polyhomogeneous expansion of a with ag € S?t%~%2 and with terms decreasing by steps of degree

one. Then the local formula for the symbol is given by

(1.6.2) ou = apy/dy

on Cy. More precisely, the diffeomorphism I, transfers the 1/2-density ag\/dy on Cy to a half density

Ig«ag/dg on an open set U C A, which is by definition the symbol ¢y, on this set. Recall that the ¢; are
D(c,84/36)
0

D(z,

homogeneous of degree one in @, the §2¢/d6;00) are of degree —1 in @, therefore is of degree n— N

in 0 and the right hand side in (1.6.1) is of degree N in 0. It follows that o/, € S™*%(U; Q2) (here Q2
denotes the half density bundle over A).

There 1s a complex line bundle, IL, over A, called the Keller-Maslov line bundle, which 1s also involved
in piecing together the o from different coordinate patches in a smooth way. The precise definition of IL is
rather technical. Since it will play a minor role in our computations, we omit further details and refer the
reader to [T], Chapters VII and VIII. Here we merely state the following.

Definition 1.6.1 The section o, € S™1 % (A; Q@ IL) for which

oy, = Tpxao\/dy

is called the principal symbol of u. The principal symbol o4 of a Fourier Integral operator A is the principal
symbol of its Schwartz kernel k4.

Ezample 10. The principal symbol of T,;. Recall that the Schwartz kernel of 7, k,(x,y), is a Lagrangean
distribution (the delta function d(y — {,(x))) with corresponding Lagrangean

A={(z,& ly(x), —(dly-)")|(x, ) €eT" M} =T M .

Any symplectic manifold (N,w) of dimension (2n) carries a canonical volume form € := (—1)”%@0’\”. In

the case of T* M, Q =dzy A - Nday, AdEy N -+ A dE, for which we will write for brevity dz A d€. Since A

17



is a graph, it carries the volume form 7*Q where 7 : A = T*M denotes projection onto the first factor. We
claim that the principal symbol o7, is simply 7* |Q|% Indeed, for any coordinate patch X C M we can write

kg (2, 9) | xwx = (271')_”/ ei¢(x,y,§)d€ = (271')_”/ 6i<§’y_lg(x)>df
(recall Example 7). Since ¢(xz,y,&) = (€, y — {4(x)),
Cy={(z,lg(x), ¢l e R"} = X x R"=2T"X
and a complete coordinate system for V = X x X x IR" satisfying the above conditions is
=&, i=1,...,n; c¢;=x;lEl,j=n+1,....2n; 06/, =y — (lg(2))s, k=1 ...,n.

The inverse of the Jacobian in (1.6.1) is

0 O I
D&, z[¢], y — lg(x)) . ]
D(l‘ay,f) - |§‘|g ! (x2€]/|€(|))1§z,]§n = |€|

(all blocks in the second determinant are of size n x n). This yields for dg in (1.6.1),
d¢: |€|_ndcl/\"'/\d62n :dl‘/\dgzﬁ,

7+ x, We have I4|Q|7 = 7*|Q|% which proves that or, = ~Qz. O

Since ag = 1 and clearly I, = 7=

Ezample 11. The canonical 1/2-density on a graph. Generalizing Example 10, we note that the graph of any
homogeneous canonical transformation x carries a canonical 1/2-density. Since the graph of y : T*X — T*X
is naturally diffeomorphic to 7*X (by the conic diffeomorphism 1, see (1.2.1)), one can pull back the
symplectic volume 1/2-density Q|2 to the 1/2-density 77|Q|2 = n%|dz A d€|? on Graph(y). We will refer
to it as the canonical graph 1/2-density and denote it by |QX|%. The calculation in Example 10 shows that
O'Tg = |QLg |%

k
j=1
6 that p € I%(IR, U§:1 Tx*jIR). Each cotangent space 77 IR = IR carries a natural volume density dt. The
principal symbol of u is the half density o, on Ule 17, IR with o,

Erample 12(a). The principal symbol of a discrete measure p := 3y . _, ¢;0,, on IR. Recall from Example

e = Cldt]E.
@5

Ezxample 12(b). The principal symbol of a transition operator T := Z?:l c;Ty;. The Lagrangean correspond-
ing to the Schwartz kernel kp of T is the union ¥ = Ule Ay, where the Ay, ’s are as in (1.4.4). By Example
10, the principal symbol of 7" is the half density op on X with O'T/|Agv = cj7r*|Q|%.

Ezxample 13. The principal symbol of a Fourier Integral group action. We return to the example of the mo-
ment Lagrangean I' (1.4.5) of a Hamiltonian S'-action and to the associated Fourier Integral representation
Ky. The Lagrangean has a natural parametrization

JiSYxT*M - T*SY x T*M x T*M (e 2,&) = (", ®(x,&), 2, &, Ko(x,€))

with image I'. The parameter space carries the natural 1/2-density |df|z @ |Q|2 which gets transported to a
1/2-density |Qk|% on I', which we will refer to as the ‘canonical density’ on the graph of the action.

Propositon 1.6.2 The principal symbol o of a Fourier Integral S'-action is given by: ox = |Qk|%
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Proof. (Sketch) Let us denote by D the generator of the S!-action, so that K = ¢, Then K is the unique
solution of the inital value problem
( (Z - D)Ky =0 )

Kylo=o = Id

The symbol can be determined by considering the corresponding initial value problem for the symbols. At
6 = 0 we have the canonical graph 1/2-density of the identity graph, and by the equation the symbol is
invariant under the classical Hamiltonian S* action. The 1/2-density given in the statement of the proposition
is the unique solution of this initial value problem. For more details, see [D.G]. =

Ezxample 14. The principal symbol of the trace operation. Recall from Lemma 1.5.1 that the Lagrangean I'
corresponding to the Lagrangean distribution kr, a+ is the conormal bundle

I'={lg,v2.& 9 - 2, -g,7) €T7G, (2,§) € T" M}
of the diagonal A(G x M). Clearly, I' = T*( x T* M. The principal symbol of the trace operation is
(1.6.3) ory = 7 |dg Ady A dz A dE|?

where @ : I' = T*G x T* M denotes projection onto the first and second factors. See, for example, Lemma

6.3 in [D.G].

We will also need to review the principal symbol calculus of FIO’s. Given a pair of Lagrangeans Ay,
respectively As, and a pair of 1/2-densities o1, respectively o4, on them we wish to define a composite 1/2-
density o1 o 02 on the composite Lagrangean A; o As. To do so, we begin with the exterior tensor product
of the 1/2-densities, that is, the 1/2-density on the product space

o1 R o9 € Q%(Al X Az)
given by
o1 @ o3(by, ba) = o1(b1)o2(bs)

where b; is a basis for Ty, (A;). The composition product is a bilinear operation
01 Q0 — 01009

constructing o o o2 in a canonical way from 1 ® o3 in the form

(1.6.4) (01 @ 02)a :/ 01 X 032
Fy

with A € Ay o Ag, with Fy is the fiber {{A1,A2) € A1 X Az 1 Ap 0 A2 = A} of the composition over A, and
with 01 X 09 a certain density along the fiber with values in Q%(Al o As), the space of 1/2-densities on the
composite. See [HoIV] for the precise definition. Roughly speaking, if oy = Vdzdz and if o5 = \/dzdy, with
dz a volume density on Fy, then o1 x 09 = \/dedydz

We will only need the following special cases of the composition law, which follow from the general
composition theorem in [H6IV].

Theorem 1.3.6 (addendum)

(a) Let A; = Graph(x;) be the graph of a homogeneous canonical transformation x; on T*M (i=1,2),
and as above let |sz|% be the canonical 1/2-densities on the graphs. Then Ay o Ag = Graph(xy o x2) and
|QX1|% © |QX2|% = |QX1°X2|%’
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(b) Let T be the moment Lagrangean of a classical Hamiltonian S* action k, equipped with the canonical
density |Qk|% and let Graph(x) be the graph of a homogeneous canonical transformation, equipped with the
canonical graph 1/2-densitly |QX|%. Then the composite Lagrangean A (1.4.6) is parametrized by the map

Gy SEXTM = TSt x T*M x T M (¥ 2,&) = (', ®(x,8),2,¢, Lyx(,€))

and the composite 1/2-density is again given by |Qyox|? = |d6]z @ |Q]3.

2 Rays of representations

2.1 Geometric quantization

Let GG be a compact, semisimple Lie group, G its unitary dual, and I* N t7 the set of lattice points in the
chosen positive Weyl chamber t7 . Recall that there is a one-to-one correspondencce G <+ I* N t% under
which p, < v with v the highest weight of the irreducible character x,, . We call a representation p of G a
ray of representations through v if each irreducible p,,, n € IN occurs exactly with multiplicity 1 in p.

Let O, be the coadjoint orbit corresponding to the integral form v € I* Nt} (see Example 2 above). For
any & € O,, we denote the stabilizer group of £ with respect to the G-action by G¢. We have 0, = G/G,.
Since v is an integral point, the map y, : G, — S', g — €2™{»Xq)
(see [G,5-1], (2.11)).

By the classical Borel-Weil-Bott theorem, there exists a holomorphic structure on the orbit O, and

where g = exp X, is a homomorphism

a complex line bundle E over O, whose holomorphic sections T'(E) form the representation space of the
irreducible representation of highest weight v. Let us explain the situation in more detail. The holomorphic
line bundle E is the quotient space of G x € with respect to the equivalence relation

(2.1.1) (gh,z) ~ (9, xv(R)z) g€G heG,,zeC,

l.e., the associated complex line bundle G xg, €. A holomorphic section s of E is a holomorphic map
$:0, > Ewith mos(€) =£ for all £ € O, (here m : E — O, is the natural projection). Equivalently, s can
be viewed as a map s : G — C for which s(gh) = x,,(h)'5(g) for all g € G and h € G,.. For each v € t%,
the set of holomorphic sections T'(E) of the line bundle E over O, is finite. The action of GG on T'(E) is given
by

(2.1.2) g-3(p) =3(g"'p) forallge G, secl(E).

Any other irreducible p,, of GG can of course be constructed in the very same way. Note that the line bundle
E™M) over @, = @, can also be viewed as the quotient space of G x €°" with respect to the equivalence
relation

(2.1.3) (gh,z) ~ (g, X (h)z) g€ G, heG,, ze .
Here Xl(,n) denotes the character y, extended to the n'” tensor product €% of €.

2.2 The Hardy space H*(B)

For our computations we need to have for each ray of representations one unified function space which is
exactly the representation space and on which the representations act as Fourier Integral Operators. Here
we describe the construction of such a ray of representations due to [G.S-1].
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We denote the E* be the dual bundle of I, i.e., the quotient space of G x € with respect to the equivalence
relation

(2.2.1) (gh,2) ~ (g,x; ' (R)2) gE€G REG,, »€C.
Its disk bundle D is defined by

(2.2.2) D={(2)|£€0,,z€ Ef, || <1}
and its circle bundle B by

(2.2.3) B={({2)|£€ 0,z € Ef,|z| =1} .

D is a compact complex domain whose boundary is B. Furthermore, G and the circle S act on B and their
actions commute. The Hardy space of B, H*(B), is the space of Cauchy-Riemann (CR) functions on B,
i.e., the space of L?-functions on B that can be extended to holomorphic functions on the whole disk bundle
D. Holomorphic sections of E correspond to S'-equivariant CR functions on B in a one-to-one way: Let
s € D(E*) with s(¢) = [g, 2], € ~ gG,,. We then define the corresponding s € H?(B) by

(2.2.4) 5([g, €'?]) = ze'?,  forallg € G e? € St .

It is easy to check that s is in fact well defined on B ~ G x¢, S! and that s(e'? - b) = ¢'?5(b) for all €' € S*
and b € B. We denote the set of CR functions § on B that can be derived from holomorphic sections in this
way by H(B) = I'(E). Since G acts on B and this action commutes with the action of S*, G leaves H}(B)
invariant. In fact, H7(B) is a representation space of the irreducible representation p, of G. By redefining
the action of S' on B successively for each n € IN as

(2.2.5) ¢ [g, 6] = [g,eM?e?],

we arrive at the spaces HZ(B) = {f € H*(B)|f(e'? - b) = e f(b) for all b € B,e™™? € S'} which are each
representation spaces of the irreducibles p,, . Since

(2.2.6) H*(B) =P HA(B),
n=1
this Hardy space is exactly a representation space for the ray through p, .

2.3 The Szego projector and Toeplitz operators

The Szego projector, i.e. the orthogonal projection
(2.3.1) I1: L*(B) — H*(B)

is a special kind of FIO (of complex type) called a Toeplitz operator. A Toeplitz operator is like an FIO
associated to a canonical transformation on a symplectic sub-cone Y C 7™ M rather than on the full cotangent
bundle. The canonical transformation associated to Il is simply the identity transformation. Hence the
compressions I p(¢) I correspond to the classical notion of restricting the group action to the subcone.
The relevant subcone in the case of Il 1s the cone through the prequantum contact structure of B. Here,

n—1

a l-form o on a (2n — 1)-dimensional manifold B is called a contact form if o A (da) 1s a volume form.

The halfline subbundle generated by «,

(2.3.2) Y = {(z,ra;)|xr € B,r € RY} C T"B,
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1s then symplectic as a submanifold of 7" B. In the case of our circle bundle B, « is the connection 1-form
with curvature w, for the S'-bundle 7 : B — O, (see [G.S-2]). It is the unique 1-form invariant under the
St action for which ¢(9/90)a = 1 and ¢(8/90)da = 0 (here, §/96 denotes the infinitesimal generator of the
St action on B) The cone Y may also be described as the subspace of T* B given by {(z,&) : (v,&) = 0} for
all holomorphic tangent vectors v € Ty, B (see [GS-1, p.354].

We then have:

Proposition 2.3.1 ([G.S-1], Proposition 6.5) For all v € I*Nt%, the orthogonal projection 11 : L*(B) —
H?(B), called the Szegd projector, is a Toeplitz operator (Fourier integral operator of compler type) associated
to the identity canonical relation in Y X Y.

The symbol of 1I,
(2.3.3) on = |dy|* @ 7y,

is a 1/2-density along Y times a “symplectic spinor” my in the normal direction Y. In fact, my is a certain
rank one projection onto a ground state (Gaussian) associated to Y 7. In the case of discrete random walks,
the asymptotics of the spectral measures are determined by traces which kill the symplectic spinor part.
The basic reason is that in all the principal terms, the canonical relations will fix 7y and then the trace
will remove it (since Trry = 1). Hence in the case of discrete random walks it is not necessary to discuss
symbols of Toeplitz operators in detail, and we will concentrate only on the 1/2-density |dy|%. In the case
of continuous Lagrangean random walks, the spinor factor is not killed in the trace and plays an important
role (see [P.Z]).

In the proof of our Main Theorem we will need to consider the two compositions of FIO’s and Toeplitz
operators: namely, T oIl and T'roT i oll. According to [BAM.G, Theorem 9.4], under a clean composition
hypothesis both compositions produce Toeplitz operators associated to the composite isotropic relations. The
general theorem is as follows:

Theorem 2.3.2 Let K € I"(X x Z,A) be a Toeplitz operator or an FIO and T € I*(Z XY, X) be a Toeplitz
operator. We assume that

(i) the composition A’ o X is clean (cf. Definition 1.2.1);

(ii) the natural projection m : F' — A o X has constant rank on each connected component (F denotes the
fiber product of A’ and X).

Then the composition is a Toeplitz operator associated to the isotropic relation A’ o X, that is

KoT eI'tt39(X x Z,A o X)

Ezxample 15. The order of the Szeqo projector I1. Theorem 2.3.2 allows us to compute the order of II: The
composition Il o Il can easily seen to be clean. Its excess is ¢ = dimB — 1. From this and the fact that
T2 = I we get that IT € 7~ HdiMB-1(B « B A(V)). w

Erample 16. The composition T,is, o Il. Recall that T, , € I_%(Sl x B x B,A) with A =2 S x T*B (see
(1.4.6-7)) and TI is the Szegd projector I € I_%(dlmB_l)(B x B, A(Y)"). We thus have the fiber diagram

F — AN=S'xT*B
! !
AY)2Y — T*B
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with fiber product
F={(? —r;bra;eg-bra; ey b ra; ey b ra)lr e R, b€ B e € S'1 =S x V.

Since dKydLy(v) € TY < v € TY, the following diagram

TF — TN =TS' x T(T*B)
) !
TAY)=TY — T(T*B)

is a fiber diagram with excess e = 0. We have

Ay =N o AY) ={(e"?, —r; b,ra; g b ra)|r e RT, b€ B e € 51} =S <V,
and it 1s obvious that 7 : /' — Ay 1s of constant rank. By Theorem 2.3.2,
(2.3.4) Toogolle [+34MB(SI o By B Ay) . m

We will also need to discuss the composition principal symbols of FIO’s and Toeplitz operators. To avoid
unnecessary technicalities, we will only state the composition law for symbols in the special cases that arise
in the proof of our Main Theorem.

As in the case of symbol composition for FIO’s the symbols of our operators are best described using
parametrizations of our Lagrangeans and isotropic relations. As above, the canonical relation A underlying
the FIO T, € I_%(Sl x B x B,A) can be parametrized by S' x T* B. Also, the isotropic cone underlying
IT is the graph of the identity on Y, Graph(id’l, ). Hence the composition Toeplitz operator has underlying
isotropic relation parametrized by the map

Jy :S'XY 5 T*STx T*B < T*B  (e'y) = (", ®(y); y; Ly Kpy).
We recall that o7, = |d0]z © |Q|7 and that o = |dy|z @ my. We have:

Proposition 2.3.3 With the above notation and assumptions: If the maps LyKy preserve Y and if
(dLydKg)*(on) = o, then

(2.3.5) o7, 0 0o = |dO]F @ |dy]? © 7y

as a symplectic-spinor-valued 1/2-density on ST x Y.

Proposition 2.3.4 With the above notation and assumptions: If Tro(IloT ) is a clean composition of the
FIO Tr and the Toeplitz operator IL o Ty e, then the composite isotropic relation is a union U;n:l T;;*(Sl)

of cotangent rays, and the principal symbol of the composition is given on the component T;;*(Sl) by

(2.3.6) OTro(ttor, p) = vOl(B)E |dE|?

where r = %(6 — dimB).

3 Proof of Main Theorem

We will determine the asymptotics of the measures by calculating the moments.
The p* moment MEsP = fxpdmﬁp of the spectral measures my,, r € IN, defined in (0.4) can be written
as

Mﬂp’p — (lel Vrp)_l TrT5/|H’%(B) — (dimvrp)_l TrT“*p/|H§(B) .
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To determine their asympotics, we form the generating functions

(3.1) Vp(0) = e Tr Tyl 25y, PEN.
r=1
which equal
(3.1a) Yp(8) = Tr (Tie o Tysr o I0)
with T, the translation by ¢'? in L?(B). This follows since the differential operator zl'(’?_e is equal to 71 on

HZ(B). The main part of the proof of our theorem will be to show that the Y, () are Lagrangean distributions
on the circle S'. Recalling that Lagrangean distributions on S! have a very specific type of Fourier expansion
(see Example 9), this will allow us to determine the asymptotics of the moments.

Recall that p is a discrete measure on GG, hence p*? is discrete for all p € IN. For fixed p, we can write
WP =3 gesuppurs 7 (9)dg. Hence

Tyrr = Z 1 (g)Ty -
gESUpp u*»

In order to show that Y,(6) is a Lagrangean distribution, it therefore suffices to show this for the case
wr =4, for some g € G.

We will now verify that the clean composition hypotheses are satisfied in (3.1a) in each composition. The
first step is the composition T,ie o T;. The cleanness of this composition has already been proved in Section
1.4. Recall from (1.4.7) that

T, 0T, € I"1(S' x B x B,A).

1

Next, we have the compostion of T, o T, with the Szegd projector II € I 2(dimB_1)(B x B,A(Y)'). By

the discussion in Example 16, it is clean with excess 0 and we have

(3.2) TowoT,oll e [i~3MB(gL . By B Ay .

Third, we take the trace of the Toeplitz operator T,is o Ty o Il. As explained in Section 1.5, the operation
of taking the trace is itself a composition of Fourier Integrals and hence the trace will be a Lagrangean
distribution if the composition is clean. We now show that cleanliness of the trace is equivalent to cleanliness
of the fixed point sets of T, on O, in the sense of Bott (see below for the definition).

To prove this, we first recall (Lemma 1.5.1) that taking the trace corresponds to the compositon of A}
with the diagonal A(T*B). To apply Theorem 2.3.2; we must determine when the fiber diagram

F — Ay
I I
(3.3) A(T*B) — T*BxT*B

?

is clean and when 7 : F' — A} o A(T™* B) is a map of constant rank on the connected components of F'.
The fiber product F' in the above diagram is clearly

(3.4) F ={(e", —r; b,ra; bra; bra; b, ra)|e’?yg - b=b,r € R} = {(b,ra)|Fe? s.t. P9 -b=0br€cR}.
Recall that B is an S bundle over the coadjoint orbit @, and that G and S! act on B via

¢'%g - b=¢%g-[h,e’] = [gh,e'*F7), ¢?estgeGb=1[he’l€B.
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From this we see that
(3.5) (byra) e F' & Lg(ﬂ'(b)) = m(b)

where [ denotes the action of g on O, and 7 is the natural projection m: B — O,. Let us denote the fixed
point set of [, by Fix({;). Thus we have

(3.6) F={(bra)lbe n~"(Fix(L,)),r € R} .

hence F' is a manifold if Fix(Lg) is a manifold. We also need to determine when the diagram

TF — TAY,
(3 7) \l/ \l/ d772,3
' T(A(T*B x T*B)) —» T(T*B x T*B)
di

is a fiber diagram. Now, for any v € TA}, = T(S* x V),
dmy 3(v) € T(A(T*B x T"B)) & dliwpdly(w) = w

w being the orthogonal projection of v onto T'B. The contact form « is a connection one form on T'B, 1i.e.,
at each b € B, the kernel of a defines a horizontal subspace Hor, C T, B with Horp, =2 Tﬂ(b)(’)y. Furthermore,
T, B = Hor, @ V,, where V, is the one dimensional tangent space along the fiber S*,

dly(Horp) = Horgp, dly(Ve) = Vg and

dlem (HOI’b) = HOI'em,b, dlem (Vb) = Ve’¢~b .

iFrom all this it follows that (3.7) is a clean fiber diagram if

1) Fix(ig) is a manifold and

2) for all zG,, € Fix(ig), TxGV(FiX(Lg)) = Fix(dlg)xgy.
This is precisely that [, has clean fixed point manifolds.

The next step 1s to show that for all g € G, [ has clean fixed point manifoldson O,. Note that it suffices
to show this for all ¢ € T'; where T is the chosen maximal torus. Indeed, each element & € G 1s conjugate to
an element ¢ € T, i.e., h = kgk™! for some k € G. This implies that Fix(l,) = k - Fix({,) and Condition 2
holds for [, if and only if it holds for [,.

At times we will distinguish two types of elements in 7T, regular elements and singular elements. An
element g is called regular, if its powers generate 7. Almost all (with respect to Haar measure) elements in
T are regular. On the other hand, there is the set of singular elements defined as the union of the kernels
of the positive roots (see [B.tD], Section V.2). A singular element g generates a closed subgroup of T' of
dimension strictly smaller than dim 7.

The case v € interior/™ Nt7 .
In case v € interior/* Nt} , the interior of the positive Weyl chamber, we have G, = 7" and thus O, = G/T.
For all yT' € O, we have

(3.8) T =yT & ylgyeT <& y=zwwithwe Wgand z € Z(g)

where Wg denotes the Weyl group of GG and Z(g) denotes the centralizer of g. The centralizer Z(g) is always
a closed subgroup of GG. Note that
gregular &  Z(g)=T.
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This shows that the fixed point set is given by Fix(l,) = {swT|z € Z(g),w € Wg}, hence is a closed
submanifold of O,. (In case g is regular, Fix(l;) = {wT|z € Z(g),w € Wg} = Wg is a discrete set and
independent of g.) This proves Condition 1.

Let us now prove Condition 2. First, we show that Condition 2 holds at 7" € Fix(ig). The tangent space
Ter O, is isomorphic to the subspace L(G/T) := @ﬁeRJr My of the Lie algebra g. Here Rt denotes the set
of positive roots and Mg denotes the 2-dimensional rootspace corresponding to the root §. Furthermore,
the Lie algebra L(Z(g)) of the centralizer Z(g) is the direct sum

(3.9) L(Z(g)) =t & P Ms

BEN

where t denotes the Lie algebra of 7' and N denotes the set of positive roots 3 whose kernel contains g (N
is empty for g regular). See, for example, [B.tD], Proposition V.2.3. The tangent space of Fix(l,) at €T’
is therefore isomorphic to @ﬁeN Mp. Under the identification of T.7O, with L(G/T) = @ﬁeRJr Mg, the
differential dl, : Ter O, — Ter O, is the adjoint representation Ad(g) at g, restricted to @ﬁeRJr Mpg. But
by definition of N, the subspace consisiting of fixed points of Ad(g) is exactly the space @ﬁeN Mpg. This
proves that Fix(dlg)eT = TeTFiX(Lg).

We now show that Condition 2 holds at any other point in Fix({;). Observe that for any »wT" € Fix(l,),

(3.10) Towr O, =T, 70, via v € Ter0, « dldr, (v) € TowrO,
where r,, denotes the map r,, : O, = O, 1, (¢T) = zwT. Since r,, and [, commute with Ly
(3.11) vE Fix(dlg)eT & dldr,(v) € Fix(dlg)sz

and in particular

dim (Fix(dl,)er) = dim (Fix(dl,).w1)

which proves 2) for all g.

The case v & interior™ Nt7 .

In this case v lies in at least one wall of the fundamental Weyl chamber, i.e., there exist « € R, the set
of positive roots, such that a(y) = 0. (We have identified t* with t via an inner product on t.) The Lie
algebra L(G,) of the stabilizer group G, is

L(Gy) =t& P M
BEK

where K := {a € R%|a(y) = 0}. This follows from the fact that G, = Z(s) for all singular elements
s =exp X € T for which o(X) =0 for all « € K and o(X) # 0 for all « € K¢ := Rt \ K. We therefore
have
Tegy(’)y = @ M@ .
BEK®

For any ¢ € T and any y(), € O, we claim that the following holds:
(3.12) gyG, =yG, & ylgyeG, & y=zwu with 2 € Z(g), wE WG, and u € G, .

Indeed, y~lgy € GG, implies that there exists a u € G, such that uy=tgyu=! € T (since T is also a maximal

1

torus of (,). Furthermore, there exists a w € Wg such that wuy=lgyu=tw™ = g. But this implies that

wuy~t € Z(g), from which the claim follows.
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So far we have shown that the fixed point set is Fix({,) = {zwGy,|z € Z(g),w € WG} and hence is a
closed submanifold of O,. In order to prove that Condition 2 holds, we can apply the same ideas as in the
previous case. Again, we consider the decomposition of L(Z(g)) asin (3.9): L(Z(g)) =t & @ﬁeN Mpg. This
provides us with the isomorphism

(3.13) T.q,Fix(l,) = @ M.
BEN\K

Under this isomorphism, the differential dl, : T., O, — Tec, O, is the adjoint representation Ad(g) at g,
restricted to @ﬁeKC Mpg. But the fixed point set of Adg restricted to T.q, is exactly @ﬁeN\K Mpg. This
proves that Fix(dlg)egy = eGuFix(Lg). The rest is completely analogous to the case v € interior/* N t7.

The rank of the map 7 : ' — A} o A(T*B) is constant and equal to 1. This follows easily from the fact
that the action of S and the action of G on Y are both homogeneous in IR (recall (3.4)).

We have now proved that the trace operation is clean and thus that V,(6) is a Lagrangean distribution
on S1. We still need to compute the excess of this composition. From (3.3) and the definition of the excess
e we have

(3.14) e = dimF + dim(T* B x T* B) — (dim(A(T* B) — dimA}/) .

We know that a Lagrangean distribution on the circle S' has only a finite number of singular points 6;,
j=1,...K. Among those singular H}S, the ones for which e'¥i g fixes the whole circle bundle B produce the
connected components of highest possible dimension, namely dimY’, of F. For b = [h, ¢!?] € B we have

(3.15) g [h,e'? = [gh, ei(€+¢)] =[h,e?] & FHEG, suchthat gh=ht and ¢ =y, (1) .
Thus, if the fixed point set Fix(e?g) = B it follows that
gE€Z = hGh™".
heG

Hence we have,
Fix(eg)=B if wveZ, and e =x.,(9).

Moreover, 7, = Zg if v is an interior point, since (), is then a maximal torus and the intersection of all
maximal torii is the center. Provided that Fix(e?g) = B, for at least one (e, g), the excess of the trace
operation 1s

(3.16) e =dimY + 4dimB — 2dimB — (1 + dimY’) = 2dimB — 1 .
;From this, (3.2), and the fact that the trace operation Tre I°(S! x B x B x S*, A(T*St x T* B)) we get

K
(3.17) Vp(0) € FAmB—d(gt | Jtegty

j=1

Remark We should note that often 7, = Z; even when v is a wall weight. For instance, in the case of
(G = U(n) this happens as long as v is not a scalar weight (i.e. a weight of the form (r,r,...,r)). Indeed,
g € ﬂheGhGV h~! implies that for all h € G, g commutes with Avh~! and thus with any Arh~' where
m denotes any spectral projection of v. Here, we are regarding elements of G, of g, thus also of t*, as
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endomorphisms of €". If v is not a scalar, there exists an eigenvalue a of v whose eigenspace K (the range
the spectral projection m,) has dimension k with k < n. Since for all h € GG, g commutes with hmr,h™1, ¢
leaves each k dimensional subspace h(K), h € G, invariant. But this implies that ¢ leaves every k dimensional
subspace invariant (G acts transitively on the Grassman manifolds). We claim this is only possible if ¢ is a
scalar, i.e. if ¢ € Zg. Indeed suppose ¢ is not a scalar. Then there is at least one vector # € IR" (C", TH")
for which g(x) = ex + y with y — x, y # 0. We then can find a k dimensional subspace W containing « but
not containing y, which is a contradiction to ¢(W) C W.

The situation for the other classical groups SO(n), Sp(n) is more or less analogous (with almost complex
structures J playing the role of scalar weights).

Recall now Example 9. Since Y, (6) is polyhomogeneous and a Hardy distribution (the wave front set is
contained in a union of positive half spaces), it can be written as a sum

K

(3.18) V,(0) = Zzaj,,Xm_j(e_al).

0i{=1

of the basic homogeneous distributions x, discussed in Example 8. Provided that ag; # 0 for at least one
[, this means that Y, () € Im+%(Sl,U{i1 T;;*Sl). We easily find that m = %(dimB — 1) with the use of
(3.17). From (3.18) we get

K K
Tr Tu*p’|H2(B) =77 E aoyle_““‘g’ 4+t E alyle_““‘g’ +  lower order terms .
=1 =1

On the other hand by Proposition 2.3.4 of Section 2.3,

U(yp) = Z Ciqy - - .Cl'pO'TTHTgl )

e
(i1)...\ip) i

= Z vol(B)e;, ...ciPO'(Xm)(gg,l...g,p) .

(41,-.-,8p)

2]

Since a Lagrangean distribution of order m with vanishing principal symbol actually has order m-1, we
conclude that

Yy = Z vol(B)ei, ... ci,Xm (0 — 9911.“9”)) + smoother

and hence by (3.18) we have
aog = ¢, ... 5, vol(B).

By comparing Fourier series, we find that

T s | pragy ~ Cool(B)r™ 37 ey ooerye e £ O™

with e 090 — Xp(9s, - --gi,) and with C' a universal constant. After normalizing by taking the quotient
with dimH?(B) =dimV,, the coeflicient 7" Cvol(B) cancels and we get

Tr Tywr'| 2y —iré
—_— = iy .- Ci dirIip 1
dim 2 (B) DL cieetie +ol)



completing the proof of the Main Theorem. m

The proofs of Corollaries 1-2 were given in the introduction. The proof of Corollary 3 is essentially
the combination of Corollary 1 with known results on the spectrum of A(T},) (the spectrum of the induced
random walk on {?(T').) For the sake of completeness, we include the proof:

Proof of Corollary 3. (i) Kesten’s amenability criterion for countable groups T states that
I’ is an amenable group & supsuppy =1

where v is the spectral measure of the random walk (I', p1) (see [Ke][K.V., Section 5.1]). Suppose that 3; < 1,
p # scalar, and x,(z) # 1 for 2 € Zg NI\ {id}. Consider an arbitrary continuous function f with support
in the interval [}, 1]. It follows that

/fdm;fp:O ¥reN.

On the other hand, by (0.5),

(3.19) /fdmgp _ Xp(z)’“/fdm“mr()(r—l).

2€ZgNI’

But [ fdm**® > 0 (m**° is Kesten’s spectral measure for (I', u)), so, by our assumptions on the y,(z), the
right hand side in (3.19) is unequal to zero, which is a contradiction.

(ii) Let T be a free countable group and p a symmetric probability measure on T' supported on the set
of generators {a;tl,i =1,...,n} with {a;,i=1,... n} free. A theorem by Kesten ([Ke, Theorem 3]) states

that =T JIn=T
U(Faﬂ) = [_ n ) n ] :

Suppose now that [— —sz_l, %] ¢ O'(Tu/th). It follows that there exists an interval [¢, d] C [—¥22=t ¥Zn-1]

n ) n
with [e,d] N O'(Tu/th) = (. Consider an arbitrary continuous function f with support in [c,d]. The same
argument as in (i) shows that integrating both sides in (0.5) against f leads to a contradiction. m

4 Examples

4.1 Random walk on the torus 7% = (S1)*. Let G = T* and p = %(6(6“11,...,6“116) F0(emiar . emiax)) With
(a1,...,ax) ¢ (27Q)*. All irreducible representations of 7% are one dimensional. They correspond to the
lattice points (Z)* C IR¥. For a given p = (n1,...,ng), the eigenvalues of 7, along the ray INp can easily
be computed as A, = cos(r(nia1 + ...+ ngag)) (r € IN). By the Main Theorem, we have

dmﬁp = 6COS(7'(n1051+~~~+nk05k)) ~ Z Xp(z)rdm&i) + O(r_l)
z€Tk

with x,(z)" = erilrizait Anezk) for » = (e721 . e, The dm#y?, are determined by the moments

| s, = (e
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and are zero unless z = (e!*1 ... €'®*) for some | € ZZ. Note that for fixed z = (efl@r ... etlox),

() = (@)(%)p for  |l|<p and (p—|l|) even
0 otherwise

No weak limit exists for m{!, as r — co. Since T* is an abelian group, I is amenable, and by Corollary 2(i), the

spectral radius 8; = 1. (This can, of course, also be seen directly from the fact that {e’“(”1°‘1+"'+”’€°"€) |r € N}

is dense in St.)

4.2 Random walk on the sphere. The special orthogonal group SO(n + 1) acts transitively on the
n-dimensional unit sphere S"* 2 SO(n + 1)/S0(n) in IR"*!. Through this action, we get a representation
of SO(n + 1) on the Hilbert space L*(S™) which is exactly a ray, namely

L*(S") = Np

where py is the (n+1)-dimensional natural representation. This follows since L2(S™) = L?(SO(n+1)/S0(n))
is an induced representation, namely the trivial representation gy of SO(n) induced up to SO(n + 1). By
Frobenius reciprocity,

multiplicity of p € L?(S™) = multiplicity of gy € resgggz;_l)p .
By the familiar branching rules for the restiction of an irreducible of SO(n + 1) to SO(n) (see, for example,
[F.H, §25.3]), we have
multiplicity of gy € resggEZ;H)p <1
and

$0(n+1)

ﬁoEresSO(Z) p & p=rp,reIN.

(Although L?(S™) is a ray of representations, it is not presented as the Hardy space of a prequantum
circle bundle B over an orbit (0. Nevertheless, the methods of this paper apply to it, and in fact in a
more elementary form: there is no need to introduce a Toeplitz projector. Otherwise, all of the previous
calculations remain valid.)

4.3 A few rank 2 groups. (a) GG = U(2). The maximal torus of the unitary group U(2) is the subgroup
of diagonal matrices 7' = {diag (e’?1, €'%2)|¢1, ¢ € [0,27)} = U(1) x U(1) and its center is the subgroup of
scalar matrices Zy (o) = {diag(e'?,¢'?)|¢ € [0,27)} = U(1). There is only one positive root, (e; — e1) (e;
denotes the i-th standard basis vector of IR?. The positive Weyl chamber is th = {(x1,22) 122 > 21} C IR?%;
it has a unique wall x5 = ;. Below is a picture of t7 and a few rays.




The orbit corresponding to an interior lattice point v is O, = U(2)/T = U(2)/U(1) x U(1) = SU(2)/U(1)
which is the 2-sphere S? (equivalently, complex projective space CP!). The prequantum S* bundle B is
then SU(2) itself and the projection to S? is the usual Hopf projection from 5% — 52

For a lattice point 1 in the wall, we have Gy = U(2). Thus the orbit Oy is just one point. It fol-
lows that B = S, so the Hardy space is just the classical Hardy space of the unit circle, i.e., H*(B) =

{52 are™ | 3002 af < oo}

(b) G = SO(4). The maximal torus is the subgroup of block diagonal matrices

T = {diag (( cos g1 —sin gy ) x ( Cos gy —sin 6 ))} ~ S0(2) x SO(2)

sin ¢, cos ¢y Sin ¢ COS P9

and the center is Zgo) = {1} = Z2 (Zsom) = Z2 for any even n). A positive root system is Rt =
{(e2 — e1), (e2 + e1)}; this gives rise to the positive Weyl chamber t% = {(x1,22) : 2 > |21]|}. Picture
(b) below shows t; and a few rays. The lattice point corresponding to the natural representation p;
is (0,1) and lies in the interior. The coadjoint orbit @, for any interior v is the Grassmann manifold

G24(IR) = SO(4)/50(2) x SO(2).
(¢) G = SO(5). The maximal torus is the subgroup of block diagonal matrices

T = {diag (1 x ( cos g1 —sin ¢y ) x ( cos @z —sin ¢ ))} ~ S0(2) x SO(2)

sin ¢,  cos ¢y SiN ¢5  COS @3

and the center is trivial (Zgo(n) is always trivial for n odd). A positive root system is Rt = {(ez —e1), (e2 +
e1), ez, €1 }; this gives rise to the positive Weylchamber t3 = {(21, z2) : 2 > 21 > 0} (see Picture (c) below).
Here the lattice point (0,1) corresponding to the natural representation py lies in the wall 23 = 0. The
stabilizer group G,, is SO(3) x SO(2). It follows that the coadjoint orbit O,, is the Grassmann manifold
Gs5(IR) = SO(5)/S0(3) x SO(2).

A N 2p AT2 tj_
&
r = « +\. . S T =1T2 157:) Y S T =1T2
4p
p 3p
2p
b) c) p
Ty Ty
SO(4) SO(5)

4.4 Pseudo-Harper operators. As mentioned in the introduction, an interesting example of a random walk
on the unitary group U(q) is provided by the image of a rational Harper operator Hy (6 = ’q—’) under the distin-
guished irreducible unitary representation of the rotation algebra Ay taking U to u = diag(1, %, ..., ei(q_l)e)
and V to the cyclic permutation v € U(g) of the standard (eigenvector) basis eq, ..., eq. We recall that the
rotation algebra Ay is the algebra generated by unitaries U, V satisfying UV = ?™®VU. The elements u, v
of U(q) determine the probability measure

1
p= 7 (Ou+ dus +dy +due)
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on U(q) and hence the transition operator H*(B,) given by
1

with T} the translation operator by g on H?*(B,).
We recall from the introduction that

(441) TuTv = TzOTvTu

where z, = 27

is in the center of U(q). Since this is not the commutation relation of Ay we cannot
expect T}, to have a subspectrum of Hy. Nevertheless, the spectrum of 7, can be determined along any ray
of representations of U(q) from the spectral theory of Harper operators. In the following Sp denotes the

spectrum in the usual sense as a closed set.

Proposition 4.4.2 With the notations above: Along any ray of representations INp, Sp(TM/|H2(Bp)) =[-1,1]
as a set. In fact, it is the union of the spectra of q Harper operators, including the commutative Harper
operator.

Proof: We begin by relating the commutation relation (4.4.1) along subrays to those of certain rotation
algebras. Observe, then, that at the rth representation, say V,,, along the ray INp the center Zy () = {21 :
z € U(1)} acts by the scalar x,(2)". Indeed, if we let f(g,w) denote a function on GG x U (1) which is invariant
under the action of G, definig B, := (G x U(1))/G,, and equivariant of degree r under the action of U(1)
on B,, then

1. f(g,w) = f(zg,w) = f(g.xp(2)w) = x, () f(g,w) .

Since V,, consists of the degree r CR-functions on B, (under the U(1)-action), we see that on V;, the
commutation relations for T, T}, read:

(4.4.3) T, = xp(20)" T Ty 2, = 20

Here X ,(z,)" denotes multiplication by this scalar. We note that if p = (A1,...,Ay) then x,(e?™) = ¢2mi¢°
with 7 = Ay + - - -4+ Ay, Thus, T, T, generate the rotation algebra A,z on V;,.

We further observe that when 6 = ’q—’, the multiplier e?7"%% is periodic of period ¢ in r. Of course it might
be periodic of a smaller period if p is not relatively prime to ¢. However we always have that

g—1
(4.4.4a) H*(B,) = HE
m=0
with
(4.4.4b) HE = Vio

and with u, v satisfying the commutation relation

uv = 2Py
on HZ.

Let us henceforth assume for the sake of simplicity that (pp, ¢) = 1. We will call such a ray a “relatively
prime ray” for T,. Also, let T}, ,,, denote the restriction of the random walk to the ‘sub-ray’ H2. The main
step in the proof of the Proposition is contained in the following
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Lemma 4.4.5 SpT, ,, = SpH . where P_I - mTW’

Proof: We first recall that SpHi, the spectrum of H, as an element of A, | is the union of the spectra

q q q
of the ¢’ x ¢’ matrices 7., ,,(H ) which arise in the irreducible representations of A,/. We recall that for
ql

q’

0= , , (p q') = 1, the irreducible representations of Ay are all of dimension ¢’ and are parametrized, with
some redundancies, by the 2-torus T2 (see [C.E.Y., p. 227]). One irreducible representation 7 is defined

2718 and by putting 7(V) equal to the cyclic permutation

by #(U) = diag(1,m,7% ...,7771) where n = e
operator on the eigenvector basis eq,...,e,. The other representations ., ., are obtained by composing =
with the automorphism o, ,, defined by U — 2,U, V — 2V, Thus, the spectrum of Hp_: is simply a union
of spectra of finite matrices. ’

On the other hand, the spectrum of 7}, ,,, is also a union of spectra of finite matrices, namely the matrices
T ’|V occuring along the points of the subray. These matrices are the images of 7}, in the irreducible

representatlons of A, occuring in the subray. Hence Sp(7), ) is the union of the spectra of these matrices,
q
taken over all the irreducibles occurring along the ray. In particular, Sp(Tym) C Sp(H )

To prove equality, it would suffice to show that the set of irreducibles of A ./ occurmg along the sub-ray
q

is dense in the set T2 of all irreducibles. This is not implausible, since the dimensions d, = dimV,, of the
irreducibles of U(q) along the ray are growing at a polynomial rate, while all the irreducibles of A, are of

dimension ¢'. Hence, Vi;nyng), are highly reducible as representations of A,, , at least for n >> 1. The set

of irreducibles of A, occurring in H2, thus determines a countably mﬁmte subset A of the torus 7

0,

q
parametrizing all of the irreducibles, and the closure of the union of all the eigenvalues of H, (as we range
ql

over A ) gives the spectrum of the random walk along the mth subray.

17p7

However, we can argue more directly, using the Main Theorem. To this end, we reconsider the asymptotic
formulae for the spectral measures m/, as a sum of measures m** with the oscillatory coefficients X (2),

where z ranges over I' N Zy(4). We note that uvu™v™ = 29 := ™5 lies in T' N Zuy(q) and that all other
intersection points are powers of zy. Indeed, to lie in the center, a word in the letters u,v must consist
of a string of u,u*, v,v* with an equal number of u,u*’s and v, v*’s. Cancelling out we see that all the
central elements lie in the cyclic group generated by zy;. We can therefore rewrite the asymptotic formula

for mfm_l_nq)p in the form
(4.4.6a) m+nq Z Xp (28) T mt? (n — o0)
a€cIN

in the sense that
(4.4.6(m, k)) / dhdmf,, o, = > €T ({26)) 4 o(n).
R acIN

We observe that the principal term on the right hand side is independent of n and hence gives a well-defined
(non-oscillatory) asymptote along the each of the subrays.

Moreover, the asymptote is identifiable as the spectral measure for the Harper operator in its “magnetic
translation representation” [B][B.V.Z] [Su]. In this representation U,V get taken to the unitary operators
on (*(Z?) defined by

(U¢)(m,n) = e~ 2™*™Mg(m, n +1) (Vé)(m,n) = e 2™ " $(m + 1, n)
where # = as— . In the physical interpretation, the pair (o, as) define the vector potential ayyda +asxdy

of a magnetic field B = (a3 — o1 )de Ady whose flux thru a period cell of the lattice is 8. The Harper operator
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Hy = %(U—I— U* 4V +V*) has then a spectrum as an operator on {*(Z?), and it coincides with the spectrum
of this operator as an element of the rotation algebra Ag.
Recall now that there exists a unique trace 7 on Ay, namely

T Z am UMV = a5, = <Z Um UMV "84, 80)
where 0 denotes the orgin of ZZ* (cf. [B][Su]). We can thus define a spectral measure for Hy via the formula

(4.4.7) po(f) == 7(f(Hy)) f € C(Sp(Hs)).

It 1s closely related to the spectral measure for the discrete random walk defined by Hy on the Heisenberg
group (cf. [B.V.Z])

We then observe that dmy is essentially the same measure as the asymptote to dmfm_l_nq)p in (4.4.6a)

when 6 = f]’—: as above. To see this, we compare moments. In the case of dmy we can compute these by
associating to any monomial in (U +V 4 U* 4+ V*)* a path in the lattice 7% starting at the origin and then
determined by the following traffic directions: reading from right to left in the monomial, go right at U, left
at U*, up at V, and down at V*. We then observe that only monomials giving rise to loops (i.e., closed
paths starting at ending at the origin) contribute to the moments. Hence only even moments are non-zero.
Using UV = 2™V /| we see that the contribution of such “loop-monomials” to the 2kth moment has the
form
Z Z Xp(23)" #{2k-loops Zloop = zo}.

a€lNJoopsers,

Here, sy, 1s the set of elements of word-length 2k and for a word representing a “loop”, is the element

*loop

of the center to which the word reduces. We have also used the definition of f]’—:. Comparing to the leading
I

(m+ng

that they have the same supports.

asymptote of dm )p We see that both spectral measures have precisely the same moments. It follows
Since the spectrum of Hy equals the support of my, we conclude that the spectrum of 7}, ,,, contains the
spectrum of Hy, where as above § = f]’—:. Combined with the reverse inclusion noted above, the proof of the
lemma is complete. =
To complete the proof of the proposition, we note that

g—1

Sp(TN/|H§(B)) = U Sp(TN/|an)p(B))'

m=0

In the case of m =0, 7,/ ;2 (B) is Harper operator corresponding to the the commutative Harper algebra,
E R
7
of m, Sp(T,/| 4= (B)) equals the spectrum of the Harper operator H .,z and hence is the union of bands
m,p

and its spectrum is that of the multiplication operator ;(cosz + cosy), namely [—1, 1]. For the other values

separated by gaps as described in [B][C.E.Y]. It follows that Sp(Tu’|H2L(IB)) is a dense pure point spectrum

in [—1,1] whose closure has a well-defined multiplicity function obtained from the comparison with the q
Harper operators. m
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