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Abstract

Let (G, ) be a symmetric random walk on a compact Lie group G. We will call (G, 1) a Lagrangean
random walk if the step distribution p, a probability measure on G, is also a Lagrangean distribution on
G with respect to some Lagrangean submanifold A C T*G. In particular, we are interested in the cases
where p is a smooth é-function d¢ along a ‘positively curved hypersurface’ C' of G or where 1 is a sum
of §-functions ) d¢; along a finite union of regular conjugacy classes C; in (. The Markov (transition)
operator T}, of the Lagrangean random walk is then a Fourier integral operator and our purpose is to
apply microlocal techniques to study the convolution powers p** of .

In cases where all convolution powers are ‘clean’ (such as for §-functions on positively curved hyper-
surfaces), classical FIO methods will be used to determine

o the Sobolev smoothing order of T, on W*(G),
¢ the minimal power k = k, for which ur e L?,
o the asympotics of the Fourier transform fi(p) of p along rays L = INp of representations.

In general, convolutions of Lagrangean measures are not ‘clean’ and there can occur a large variety
of possible singular behaviour in the convolution powers p**. Classical FIO methods are then no longer
sufficient to analyze the asymptotic properties of Lagrangean random walks. However, it is sometimes
possible to restore the simple ‘clean convolution’ behaviour by restricting the random walk to a fixed
‘ray of representations.” In such cases, classical Toeplitz methods can be used to determine restricted
versions of the above features along the ray. We will illustrate with the case of sums of §-functions along
unions of regular conjugacy classes.
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0 Introduction

This paper, a continuation of [P.Z], is concerned with the spectral theory of random walks (G, i) on a
compact Lie group G. Our purpose is to apply microlocal methods to study the spectrum of the Markov
transition operator 7, of a random walk in the case where u is a Lagrangean measure on GG. That is, where
€ I*(G,A) is a Lagrangean distribution on G, with respect to some Lagrangean A C 7*G — 0, in addition
to being a probability measure on (. In particular, we are interested in the cases where y 1s a probability

measure of the form
(i) p= %((5)( +dx-1) with X C G a positively curved hypersurface; or

(i) p=2 Zj\f:l 603:]' with C; the conjugacy class of z;.
Here, dy is a generalized §-function along Y, i.e. fY fdoy with doy a smooth density on Y. Our aim is to
determine:

e The asymptotics of the Fourier transform of u along rays of representations L = INp of G

e The Sobolev smoothing order of T};

e The minimal power so that pu** € L%(G).
When p is a Lagrangean measure, T}, is a Fourier integral operator and in principle the global theory of such
operators [H6, Vols.ITI-IV] can be used for this purpose. However, there is too large a variety of possible
behaviour to make such a general study feasible. Indeed, as y ranges over all Lagrangean measures, T}, ranges
over many possible types of FIOs (Fourier integral operators), each with its own Sobolev mapping properties
and asymptotic behaviour. In many (even ‘typical’) cases, repeated convolutions w** and compositions T[f
are ‘unclean’ and lead to singular FIOs of various kinds [Ph][T.U]. Hence the classical theory of FIOs is
rarely sufficient to analyse the spectral theory of continuous Lagrangean random walks. However, for the
special classes of random walks (i)—(ii) above we will show that all convolutions and compositions are clean,
at least along rays, and hence obtain simple and relatively complete solutions of the problems above.

To introduce and motivate the problems we are considering, let us recall some classical results on the
(Euclidean) Fourier analysis of d-functions on positively curved hypersurfaces. Thus, we suppose that X C
IR"™ is a compact embedded oriented hypersurface and let G4 (resp. G_) be the Gauss map corresponding
to the outward (resp. inward) unit normal. Recall that X is positively curved if G4 : X — S"!is a
diffeomorphism and that the Gaussian curvature K(z) at € X is the density of G*(dogn-1) with respect



to dS (where dS is the Euclidean surface measure of the hypersurface). The following is a well-known result
due to Hlawka:

Theorem 0.0.1 (cf.[HS, Vol.I Theorem 7.7.14 - 15]) Suppose that X is a hypersurface. Fiz & with
|€| = 1. Then:

n— +1

re) =TT Y a(@)K(a)|TEe I/ o=
z:G4 (z)=¢
with o equal to the excess in the number of positive over negative curvatures. If X is positively curved then
{r : Ge(w) =& = {ws (&)} where x4 (&) (resp. x©_(&)) is the unique point of X where the outward (resp.
inward) unit normal is in the direction €.

Since IR? is the unitary dual of IR, this theorem gives the asymptotics of p along rays of representations

of IR™. ;jFrom these asymptotics, it follows that 7}, is a Fourier integral operator of order —%. Hence it
1s Sobolev smoothing of order "2;1 For more details see Section 1.2.

Our first goal is to generalize this model result to a compact semi-simple Lie group &G. To do so, we must
reformulate the notion of the asymptotics of i along rays of representations. Recall that, for each irreducible

representation (p, V,) of G, the Fourier coefficient

o) = [ pta)duta) v, =+,
G
is an operator on the finite dimensional representation space V,. When p is symmetric, p(g) = p(g~1), then

f(p) is self-adjoint. jFrom its eigenvalues {A,; : j=1,...,dimV,} we form the spectral measure

dim V,
1 P
L J— _ .
dmj, = dimV, ;_1: A=Ay 5) (1)

on IR. These measures will play the role of the scalar Fourier coefficients of a measure p in the abelian case.

To explain the notion of asymptotics along rays, we recall that by the Cartan-Weyl theory, the unitary
dual G of G may be parametrized by integral lattice points p in a Weyl chamber t7 of the (dual) Cartan
subalgebra. By a ray of representations L. = INp we mean the direct sum of the irreducible representations
parametrized by the ray of lattice points. Thus, we are interested in the asymptotics of dm/, , as n — oo.

By a basic construction in homogeneous quantization theory [G.S.1], this ray of representations may
be concretely realized as the Hardy space H?(B,) where B, — O, is the canonical circle bundle over
the coadjoint orbit associated to p. Just as the representations V,, parametrized by lattice points np
along the ray may be concretely realized as the holomorphic sections T'(Q,, L®") of the ‘pre-quantum’
holomorphic line bundle L. = O,, so the direct sum of these holomorphic sections may be realized as the
space H?(B,) of CR-functions on the principal circle bundle B, associated to L. The (Cauchy-Szego)
projector 11, : L*(B,) — H?*(B,) is a special type of Fourier integral operator (with complex phase) known
as a Toeplitz operator. Tt has the (symplectic) geometric interpretation of restricting things to the cone thru
0, or, more precisely, to the symplectic cone

Y = {(brap) : 7 € RT} C T%(B,)

thru the ‘contact structure’ a on B,; Y is a circle bundle over IR+(’)p. In particular, given a random walk y
on G, we can form the Markov transition operator along the ray,

Ty = HT,I1, HZ(Bp) - HZ(Bp)a T, = /Gngﬁ‘(g)



where T, is the translation operator by g on L?(B,).

The asymptotics of the spectral measures dmf , can be read off from trace formulae involving powers of

T, N, as long as these powers are clean composwions. A key point of this paper is that the composition
powers of our two basic random walks (i)—(ii) above are always clean when restricted to rays. This allows
us to avoid the serious technical complications involving singular compositions [Gr.U, 2] [Ph], which would
grow more and more difficult as one took higher convolution powers.

In the case of a J-function on a positively curved hypersurface, the Markov operator T}, ¢ on L*(G)
is a standard FIO associated to a union of canonical graphs and so the theory of convolutions with such
d-functions is very analogous to the IR" case. The main difference is that there are many more possible types
of asymptotics of fi(np) as X varies over positively curved hypersurfaces of G and p varies over irreducibles.
To describe the different asymptotics we will need to introduce some notation. For simplicity, assume that
X = X~1. Given an orbit @ = 0, we then let Xg = g;l((’)) so that G4 : Xg — O is a diffeomorphism. The
Gauss maps induce contact transformations on B, (or equivalently homogeneous canonical transformations
on Y) given by

X+ : B, = By, X+ (0) =Gi(o)-b
where g -b denotes the action of G on B,. We also denote by ¢? the S'-action of B, — 0,; S* acts by contact
transformations. Let Fiz(y) denote the fixed point set of a contact transformation x on B,. Assuming (as
we always will) that it is clean, Fiz(x) carries a canonical density which we will denote by du,. Finally, o
denotes a certain Maslov index (for the sake of simplicity we will not describe it in detail). We then have:

Theorem A Suppose that X C G is a positively curved hypersurface, and let p = adx, i.e. fG 9)dp(g) =
fX )dS(x) where dS is the surface measure on X induced by Haar measure and where a E C™(X).
Then.

(i) T, e is a Fourier integral operator of order —% associated to the union of canonical graphs

Tue =1{((x,8),g£(x,8) - (x,€)) € T™(G x G) = 0,9 (2,) = G5 Ad(x)"¢}.

dlmG 1

i) Ty ¢ is Sobolev smoothing of order IG=L i ¢ s bounded from W*(G) — W*t77 — (G).
H, 2
(iii) p** € L*(G) for k > 3.

(iv) Along the ray of representations Np, the moments of dmy, , have the asymptotic expansion

E(1—dim Q)+ 1= —di —inf;—ito/4
Mﬁp(k) ~ 3l im G)+ =% [ Z Z e—inbi—ino/ / . fet .+ d“X:t:t~~~:t
UO :|::|: 0,044 4 Fiz(Xtt . .£0¢°7)

where
a a

T (Gz" OXi)*(m)“'(gf* ox o ox£)(

fat g =G

and where
Ott.x :={6; ;e :=dimFiz(xxo---oxso ¢€j) is mazximal }.

The reason why the moment formula i1s simpler in the Euclidean case is simply that co-adjoint orbits are
single points &. Hence the analogue of Xg Is just Xgi ={z1(&)}. The corresponding circle bundle is simply
a circle By = S* on which G = IR" acts by the character ¢"{#:€)  The canonical transformations y4+ act on
Bf by

Y (b) = GIH(b) - b = etexlO8)p

and hence the integrals over fixed point sets reduce to evaluations of ¢*{*:¢) T at the points {4 (£)}. Thus
we reproduce the Eucliean expression modulo Maslov factors.



The moment asympotics above allow for all possible dimensions of fixed point sets from e = 0 up to
e = dim O and indeed as X varies over all hypersufaces, any of the even dimensions can occur. To illustrate
this we will look in detail at the case of geodesic spheres S;(g) centered at different g € GG. The nature of the
canonical transformations x4+ and particularly the dimensions of the fixed point sets of y4+ - - - y+ then turns
out to depend on the degree of singularity of g. When g = e the x reduce to the identity on the orbit and
all of O 1s fixed, while if ¢ is a regular element the set of fixed points on O is discrete.

The case of a sum of §-functions along a union of conjugacy classes is more difficult because the Lagrangean
I'y,¢ underlying the transition operator 1), ¢ for

1 n
p= gt toe [ oo, = [ st ©)

is not a local canonical graph in 7*(G x (). However, when restricted to a ray of representations it does
become a Fourier Toeplitz operator associated to local canonical graph on the symplectic cone Y. This
simplification occurs because the ray involves just one orbit O,. For simplicity, let us assume that there is just
one x. With no loss of generality we may assume z lies in the maximal torus T'. Then to each 0 = kpk~! € O
there corresponds 2|W| group elements g (0) := kwaTw ™1k~ such that (¢ (0),0) € N*C,+. These ‘inverse
Gauss maps’ gi : O — C} induce contact transformations Xi on B defined by

Xis (0,¢%) = (435 (0) - 0, x, (95 (0)) ™).

It is easily seen that g£ (o) -0 = 0 so that y, is well-defined on g£ (o). Since Y — B — O are all bundles, we
can (and will) lift g to B or to Y and regard x* as a homogenous canonical transformation on Y.

To state the results, we will need some further notation from compact Lie groups, which we adopt from
[B.tD]. We let § : t — € denote the Weyl denominator

5(H) = Macr, (e(a(H) —e(~a(H)), Het

where ¢ is the Cartan subalgebra and 4 denotes the set of positive roots. We put p; = % Y o€ Rya. We
also use the notation p for an irreducible (no connection to py), and denote its highest weight character by
Xp- Finally, we denote by dz the invariant normalized density on a conjugacy class. :

Theorem B Let p = %5033 + %(5033_1 where dc, = adz. Suppose ¥ = eX

Then:

is a regular element (X € t).

(1) Ty.1. ts a Fourier-Toeplitz integral operator on H*(B) associated to the union of graphs

T,z =Ugews+ graph(xd).

(i) T, 1 is Sobolev smoothing of order dimzﬁ on H?(B).
(iii) Assume that G is a classical compact Lie group. Then T, 1 is a Hilbert-Schmudt operator.
(iv) The asymptotics of the moments of the spectral measures mp, of Ty 1 along L are given by

M () ~ AT ) ST g (X)) el G, (X))

(Jry s J1)
(- +)

stttz | [ (Tt o)) ]




where the w;’s are the elements of the Weyl group W.

These complete asymptotic expansions of the spectral measures along rays of representations generalize
the results of [P.Z] from the case of discrete random walks along rays to the continuous Lagrangean walks
of the types (i)-(ii) above.

We end this introduction by relating our methods and results to the usual concerns regarding random
walks (G, ). The main problem is to determine the rate of convergence of the convolution powers p**
to stationarity (i.e. Haar measure dg). There are several reasonable ways to measure this distance, e.g.
the operator norm ||7% — E||, the total variation norm ||u** — dg||7v, or, when well-defined, the L?-norm
[|** — dg||z2. Here, E(f) = J¢ fdg. Although the total variation norm is viewed as primary, in practice it
is often estimated from above by use of the Schwartz inequality

p* = dglly <l = 17== > (a1
p£leG

when p** € L?. Hence it is important to know the minimal power k such that pg** € L? and if possible to
measure the rate of decay of ||p** — 1||%,.

In favorable cases, our methods at least determine the minimal such & and the asymptotics of ||i*||?
along rays. They do not (as they stand) determine the decay of ||u** — 1|22, since this also depends on
low-lying eigenvalues (in particular, the spectral gap) and on sparse sets of eigenvalues along rays. Indeed,
the results of this paper involve only the principal symbol data of the Markov operator T),, and would not
change if a finite rank or smoothing operator were added to 7}, or if instead of d-functions we considered
more general polyhomogeneous distributions conormal to a hypersurface or conjugacy class. This is the price
we pay for general asymptotic results.

On the other hand, as far as we know, there are few known estimates of rates of convergence to stationarity
of random walks on compact semi-simple Lie groups. The estimates of which we are aware involve random
walks where all of the eigenvalues of T}, can be calculated in closed form [Ro] [Po] [L.P.S], or at least
where there is a comparison to such a walk. Moreover even when explicit formulae for the eigenvalues are
available, it is not clear what properties of the variety V' supporting p or of the choice of measure g on V
determine the decay rate of ||u** —1||3.. Indeed, this paper began as an attempt to understand the L? rates
of convergence to stationarity of various random walks (especially random reflections) in [Ro][Pol,2]. By
explicitly calculating the spectrum of 7}, in these cases, the first author found that the decay rate depended
sensitively on the singularities of V and p. Since microlocal methods are designed to relate singularities of
1 to decay in fi, it seemed natural to apply them to these and related random walks.

1 Background
In this section we review a number of prior results on convolution operators

Tuf =npx/f, J € L¥(G), pe M)

for various kinds of measures g on Lie groups. We will not be using these results, but include them as
representing the currently known general results on random walks and convolution operators.

1.1 Convolution of measures on a Lie group.

In the case of non-abelian Lie groups convolution operators 7}, f = u * f are Fourier multipliers

JE—

T,F(p) = f1(p) £ (p)



where (p, V) runs over the unitary dual G of G, where f(p) is the component of f € L*(G) in V, and where

mmaémmmeew

is the group Fourier transform of u. For background see [H.R, Vols.I-II].

The simplest case is that of central measures. Recall that a measure y on G is central if it is invariant
under conjugation, i.e. p(S) = p(zSz~!) for all x € G and all Borel sets S. The Fourier transform
i(p) = [ p(g)du(g) of a central measure is a scalar matrix i(p) = ¢, , 4, for every irreducible representation
p e G. The asymptotic behaviour of i and the Sobolev smoothing properties of 7, are in many ways
analogous to the abelian case. Some general results are the following:

Theorem 1.1.1 ([Ra, Theorem 2.2]) Let G be a compact simple Lie group of dimension n and let p;,
t = 1,...,n be continuous central measures on (G. Then the convolution product jp = pi1 * - - -* py, 1s absolutely
continuous with respect to Haar measure on G.

Theorem 1.1.2 ([Ra, Corollary 3.5]) Let G be a compact simple Lie group and p a central measure on
G. Then p 1s a continuous measure if and only if

Cup—+0 asp—oo nG.

A number of basic results on more general measures have been proved by Ricci-Stein and Ricci-Travaglini.
The following are most relevant to this paper.

Theorem 1.1.3 ([R.S.II]) Let Vi,...,V,, be connected analytic submanifolds of a unimodular Lie group
G and assume that the product Vi ...Vy contains an open set of G. If for each j = 1,...,k we are given
measures dp; = ¢;do; where doj is surface measure on V; and where ¢; is a smooth function with compact
support on V;, then duy * dps * ... % duy ts absolutely continuous with respect to Haar measure dg and its
density p satisfies a right L'-Holder condition.

By a right L'— Holder condition of exponent § > 0 one means that
[ teeapy) = pa)ldz < iy

where Y € g. Equivalently, p := poexp € L'(g) satisfies
wa+m—mxwxsmww

In particular, suppose that V is an analytic submanifold of a compact Lie group G which generates G in
the sense that V' is not contained in any proper closed subgroup of G. By [R.S.II, Proposition (1.1)], there
is a positive integer m such that V" contains an open subset of (G. Hence:

Corollary 1.1.4 Let pi be a smooth delta function along an analytic submanifold V C G which generates G
and let m be the least integer such that V™ contains an open subset of G. Then p™™ << dg and its density
Pm Ssatisfies

/mmx+m—mxwxsmwm



The last condition implies that py, € L7(g) or equivalently p*™ € L"(G) for some r > 1 [R.S.III]. By
Young’s inequality for convolutions on a compact Lie group [H.R],

15 lly < llomlle - Alpmll-, —=k=1+-,

1t follows that ,
*mk 2 :
L (G f k> ——.
a € L(G) ! —2(r—1)

Thus, a sufficiently high convolution power of g lies in L?((). By this method, the power depends on m,d, r.

1.2 Sobolev smoothing properties of convolutions.

Definition 1.2.1 A finite measure g on ( is said to be smoothing of order s on Sobolev spaces, or H*-
improving if Ty, : f — f * p is bounded from H™(G) to H™+*(G) for all m € IR.

Theorem 1.2.2 ([Ph]) Assume V is an analytic surface with non-vanishing p-curvature in R™. Then for

any ¢ > 0, the Radon transform with measure doy supported on 'V is smoothing of order —2— — ¢ on Sobolev
w2 +1
spaces.

We note that surface is in the literal sense that dimV = 2. When dimV = d it is natural to conjecture
d

T
pd+1

that the order of smoothing is given by — €. The notion of p-curvature employed here is defined as

follows:

Definition 1.2.3 The analytic submanifold V' C IR" is said to have nonvanishing p-curvature if, for any
A € IR™ — {0}, the function t — (X, S(t)) on IR? has multiplicity at most y at any critical point. Here,
t — S(t) € V.CIR" is a local analytic parametrization of V.

Roughly speaking, V' has multiplicity at most g if p is the maximum number of points admitting a
given direction A € IR™ among its normals. To be more precise, the multiplicity 1 of an analytic function
f IR = IR at an isolated critical point a is defined by p = dim A(a)/Z[01f,...,0af] where A(a) is the
space of germs of analytic functions at a and Z[d1f, ..., 04f] is the ideal generated by the germs of J;f at
a. Nonvanishing Gauss curvature of a hypersurface V is equivalent to V having yg = 1.

Convolution with a smooth d-function along a positively curved hypersurface of a compact Lie group G

of dimension n should therefore be Sobolev-smoothing of order ”2;1 — e with n = dim G. Indeed, our results

show it 18 smoothing of order ”2;1

2 Markov operators of random walks

We now take up the study of Lagrangean random walks and their Markov operators. The relevant background
on homogeneous quantization, rays of representations, Toeplitz operators and so on is contained in [P.Z,
Section 2]. We continue here with a study of the Markov operators which arise from convolution with
continuous Lagrangean distributions.

Note:  Throughout the paper we will use the isomorphisms TG =2 G x g and T*G = G x g* via left
translation.



2.1 Markov operators and moment Lagrangeans

A random walk is defined by the pair (4, p) where p is a representation of GG. By definition, the associated
Markov operator is given by T}, , = fG p(g)du(g). Most often, p is taken to be an action G by translations
on some homogeneous space G/K. However, all that is needed to get a geometric theory is that p is a
representation of G by Fourier integral operators. As recalled in Section 0 (see also [G.S.1]), a Fourier
integral representation on L%*(X) is the quantization of a Hamiltonian group action on 7*(X) — 0. The
following describes the (Schwartz) kernels of the Markov operators for random walks of this kind.

Proposition 2.1.1 Suppose p is a Fourier integral representation of G on L?(X) with moment Lagrangean
I' and suppose p € I°(G,A,) is a Lagrangean measure on G. Then, under clean composition hypothesis for
Ay o, the Markov operator

Tupi= [ la)dula) € (X % X.T))

dim G
4

Lpup={((2,8), 9 (2,€) € T7(X x X) = 0: (g, ®(2,§)) € Au}.
Here ® denotes the moment map of the lift of the G-action to the cotangent bundle T X.

15 a Fourier integral operator of order k > s — associated to the Lagrangean

Proof:  This follows from the composition theorem for Fourier integral operators [HS, Vol.IV Theorem
25.2.3]. As proved in [G.S.1] and reviewed in [P.Z], p is a Fourier integral operator of order —42< from

G x X to X associated to the moment Lagrangean

[={((9,7), (%,8),9- (&) : g€ Gec X,{,y€g" : P(x,§) =7}

and p is associated to A,. If the composition T}, is clean, then it is a Fourier integral operator associated to
I'o A,. To see whether it is clean and to determine the composite Lagrangean and symbol, one forms the
fiber diagram
F = T
\J I m
N .

A, = TFG
1

=

Here the fiber product is
F= {((gay)’ ($a€)ag : ($a€)) : q)($a€) =7, (ga’Y) € Au}

The cleanliness conditions are (i) that F' be a manifold and (ii) that the derived diagram

Tr — T

) ) dmy
TA, — T(I7G)
di

is also a fiber diagram. For condition (i), put
AT ={(g.7) EAy Y ERT"X —0)}, A8 ={yeg :IgeC (g,7) €A}

Then the projection to the first factor defines a map m : F — A;{; whose fibers are the sets ®~1(v) with
v E Ag*. A sometimes useful sufficient condition that F' be a manifold is that A;{; be a manifold and that
71 be a map of constant rank. For instance, in some applications one has ®(T*G — 0) = g* and even that
O(TxG — 0) = g* for each # € G (see the next proposition). In this case, F = A, x G.

For condition (ii), we need to show additionally that TF = {(u,v) € TA,XTT : di(u) = dm(v)}. For each
(a,b) € I, the inclusion T'Fy 5y C {(u,v) € TuAy x TpI' : di(u) = dmy(v)} is trivially true. Hence, a necessary
and sufficient condition for cleanliness is that dimT{, ) F = dim{(u,v) € TAy, x TT : di(u) = dmi(v)}. ]



2.2 The principal symbol of 7, ,

To determine moment asymptotics we will need to know special cases of the principal symbol o (T}, ,). We
will treat it as a 1/2-density on I', ,, although it is actually a 1/2-density tensor a section of the Maslov
line bundle . — I', ,. Ignoring the Maslov factors has the consequence that the coefficients of our moment
asymptotics contain undetermined powers of . Often they can be determined by comparison with known
traces such as given by the Weyl character formula (see §5.5). They could also be avoided by using the
1/2-form formalism of [G.S.2]. In any case, it would require a technical digression of unwonted length to pin
down these powers of ¢ and we have refrained from doing so.
Let us now outline the calculation of the 1/2-density factor in the general case.
Under the cleanliness hypothesis, the derived diagram
T F — T
\J ) dmy
TAAM — 1\ (T* G)
di

is a fiber product diagram. Hence the following sequence of vector spaces is exact:
0 — Ty F - To\A, @& T, = Ty (T*G) — cokert — 0 (3)

where ¢ is the inclusion and 7(f1, f2) = f1 — f2. The excess e of the diagram is the dimension dim cokerr of
Th(T*G)/T(TxA, & Toy). When e = 0 the composition (or diagram) is called transversal; it will arise often
in our applications.

Let |V]° denote the space of s-densities on a vector space V. The alternating tensor product of 1/2
densities on an exact sequence of vector spaces has a canonical trivialization, and therefore

|T;F|? @ |cokerr|™% = |TyA, & T, T|? @ |T\(T*G)|" 2. (4)

Since T*( carries a canonical symplectic volume density |dg A dv|, we can remove the factor |Th(7T*G)| ™ =.
When e = 0 the canonical isomorphism further simplifies to

T F|7 = |ThAy & T,T)2. (5)
Hence in the transversal case we have a natural composition of 1/2-densities
(a,b) € |TT|? @ |TA|Z = aob e |T(T o A)|=. (6)

Here T' o A is the composition of the Lagrangeans. In the transversal case, F' — "o A is a finite cover, so the
composite symbol is a sum over the fiber of the pointwise composition.
In the case e # 0, the projection /' — I' o A is a fibration and the composite symbol is given by

aobW:/Faxb (7)

~

where a x b is the density on the fiber F, over v with values in |T(T' o A)|? defined in [H5, Vol.IIT Theorem
21.6.7] (see also [H6, Vol.IV Theorem 25.2.3]).

2.3 The Markov operator on L*(G)

We now specialize to the case where GG acts on itself by left multiplication L. The resulting representation
p on L?(G) is isomorphic to the left regular representation of (. In this case the Markov operator

T, : L*(G) = L*(@G), Tuf(x):/Gf(gx)du(g)

associated to a symmetric Lagrangean measure p is always an FIO.
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Proposition 2.3.1 Let p € I*(G,A,) be a Lagrangean measure on G. Then the corresponding Markov
dim G
2

operator Ty, € I"(GxG, T',) is a Fourier integral operator of order k = s— associated to the Lagrangean

Dy = {((2,€), (92,€)) € T*(G x G) = 0: (g, AL (2)6) € A, } = A, % G.
Its principal symbol is given by
or, = o(p) @ |dz|?
as 1/2-densities on A, X G.

Proof:  As above, we need to show that the composition A, oI' is clean. In fact, it is always transversal
in this case. To prove this, we begin by describing the moment map ®.

Let us denote the canonical 1-form on TG by a. For every A € g, the lift of the group action to T*G
induces a vector field A* on 7% Since the Lie derivative D s« is zero for all A € g, we have

0 = iAndO[+diAnO[ = —iAnw +diAnO[,

where ¢ means insertion and hence

(®(x,€),A) = A O (g 6) -

Since Af . = %|t:0((exp tA)z, ), we have

(1/‘75)
(®(x,€), A) = £(Ad(x™1)A)
and we get
O(x,8) = Ad*(2)¢.
The moment Lagrangean therefore has the form
I = {{(g, Ad*(x)§), (x,£), (97,¢)) : g, € G,E €87}
= {(9,7), (z, Ad*(z= 1)), (92, Ad*(z71)y)) 2,9 €EG,y€g*} =2 TG x G.
We now claim that the fiber diagram
F = T
\J I om

A, —» T7G
1

=

1s transversal. The fiber product equals

F={((9:7),(9:7), (&, Ad" (2™ ")), (92, A" (271)7)) = (9,7) € Ay}
We see that &(T;G —0) = g* — 0 for any # and hence that
F2A,xG

for any A,. In particular, I is always a manifold of dimension 2dimG.

i From this it follows easily that TF = {(u,v) € TA, x TT : di(u) = dm1(v)} and hence that the derived
fiber diagram is clean. Indeed, the dimensions of the two vector spaces are equal and hence the spaces must
coincide. It follows that the above fiber diagram is clean with excess ¢ = dim F'+dim7*G'—dim A, —dimI' =
0.
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Finally, any ((g,7), %) € A, x G determines a unique point ((z, Ad*(z)~'), (¢ -z, Ad*(z)~'y)) € I';, and
conversely any point of I',, determines ((g,7v),2) € A, x G. The first statement of the proposition follows
then from Proposition 2.1.1.

Now consider the principal symbol ¢(T},), a 1/2-density on I', = A, x . By the above, it is given by
o(p) o 0(T) on the composite Lagrangean I'), 22 F. We also have that ¢(T¢) is the canonical volume 1/2-
density given by |dar:|51 ® |dg A d'y|% in the parametrization of I' by G x T*G. According to the isomorphism
above, we divide by the canonical 1/2-density on T*G, leaving the stated result. =

2.4 Random walks on rays of representations

In this section, we specialize to the case of a ray of representations L = INp, that is, we restrict the Markov
operator T}, ¢ from L?(G) to the direct sum of irreducibles along a ray thru a given irreducible p. The ray
Markov operator is thus:

T =€ /G (np)(0)du(g) (5)

Borrowing from [G.S.1], we realize the ray L as the Hardy space H?(B,) of CR-functions on the pre-
quantum circle bundle B, — O, where O, is the coadjoint orbit of p. We often drop the subscript p when
the ray is understood to be fixed. Thus, T, 1 = fG TR 4dp(g) where Tg 4 is the left action of G on the ho-
mogeneous space B and where 11 is the Cauchy-Szego projector (the orthogonal projection L?(B) — H?(B).
For the relevant background we refer to [G.S.1] and [P.Z, Section 2].

The ray Markov operator is analogous to but somewhat more complicated than 7, ¢ because it is a
Fourier-Toeplitz operator rather than a standard FIO. Roughly speaking, a Fourier-Toeplitz operator A is a
Fourier integral operator with complex phase which is partly oscillatory and partly Gaussian. The oscillatory
part of the phase parametrizes a canonical relation €' C Y x Y where Y C 7™ B, is the symplectic cone
generated by the contact form « (cf. §0). In most respects A behaves like an FIO associated to the canonical
relation C except that its symbol is a symplectic spinor rather than a 1/2-density [BAdM.G]G: that is,

o(A) € Q3(C) @ Spin(C) @ T(L)

where Q%(C’) are the 1/2-densities, where Spin(C') are the symplectic spinors, and T'(L) are the sections of
the Maslov bundle, over C'.

As mentioned above, we will ignore the Maslov factors. The spinor factors are by comparison too
important to omit: As will be seen in §5.5 they are responsible for the presence of the factors e(py (w(X)))
in the terms of the Weyl character formula. However, the only symplectic spinors we need to confront are
those which arise as parts of symbols of the Toeplitz operators IIFII where F' is a Fourier integral operator
associated to a local canonical graph.

Recall from [BAM.G] that the symbol 7 := o(II) of the Toeplitz (Cauchy- Szego) projector is the idem-
potent symplectic spinor m = e ® €} equal to the projection operator onto the ‘vacuum state’ associated to
II. Tt is a symplectic spinor on the twisted diagonal Y# = {(y, —y) € Y x Y}. We refer to [BAM.G, §4, 11]
for the definitions and background.

Suppose now that F' is a Fourier integral operator associated to a local canonical graph. Since the dis-
cussion is local, we may assume it is actually associated to the (twisted) graph of a canonical transformation
X. Then the symbol of IIF1I i1s a an element of Qé ® Spin(C'). Just as ey @ e} is the symbol of IT at a point
(y, —y), so the symplectic spinor part of ¢(IIFII) has the form ey ® x.ea where x, is the map on symplectic
spinors at y to symplectic spinors at x(y) induced by x (see [G, §8][BAM.G, §11]). Roughly speaking, dx,
takes the symplectic normal bundle 7, Y~ at y to that at x(y). Choosing a metaplectic frame for each, dx,
is identifed with a linear symplectic map. Hence we can apply the metaplectic representation M to the
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normal part dx, : T,Y~ — Ty(,)Y ™ to get a map from symplectic spinors at y to those at x(y); this is the
induced linear map y.. For simplicity of notation we will also write ey ® ysea more simply as y.7. In cases
where y is the lift of a group element g we will denote the induced maps by g.ea resp.g.m. Then we have

o(ITFII) = a|dy|% @ X«T (9)

for some function a on C.

The following proposition gives a general description of ray Markov operators. The notation pr.: B — O
stands for the natural projection and I'y for the restriction of the moment Lagrangean I' C T*G xT*BxT* B
to T*G xY xY.

Proposition 2.4.1 Suppose pn € I*(G,A,) and let L = INp be a ray of representations. Under the clean
composition hypothesis for the composition A, o'y,

Tyr:€I"(BxB,T,1)
15 a Fourier-Toeplitz integral operator of order k > 5+%—M on H*(B) associated to the Lagrangean

Lur=Auoly ={((b,r),(g-b,7)): (g,pr.(b)) € A }.
Its symbol is given by

(0T o ollywn= | (ldul* @ g.m) x ()
geFy o
where Fy v = {9 € G :g-y =1y, (9, pr(y) € Ay). is the fiber of the composition and where times is the
composition law defined in [BdM.G].

Proof: We begin with a microlocal description of the Toeplitz group representation Ty 1, := €D,._, S (np)(9)
and then consider its integration against .
Thus, let T}, g be the representation of G by translations on L*(B). The moment Lagrangean of Ty g is
given by
I'p= {((ga7)’ (baﬁ)ag : (baﬁ)) : q)B(b’ﬁ) = 7}
where

<<I)B(baﬁ)aX> = 6()(2#)

1s the moment map.
Then recall from [P.Z] that IT is a Toeplitz operator of order — %(dimB — 1) corresponding to the identity
relation on the symplectic cone Y C T* B associated to B | i.e., II € [~ z(dim B=1) (Bx B,A(Y)). By [BAM.G,

Theorem 7.5] composition with IT is always clean. Hence the fiber diagram

F 5 Tp=GxT*B
! !
AY)2Y = T*B

is clean. Since F'= {((g,®(b, 7)), (b,7),(9-b,7): g € G,(b,r) €Y} = G x Y, the excess is e = 0. Hence

1 2dim B4dimG
TgyBOH:TgyLEIE_ 4 (GXBXB,Fy)
where
Ly ={((¢,2(¥), 4,9 -y) ;g €EGyeY}CTGxY xY. (10)

13



Since T, 1 = fG Ty rdu(g), we need to compose A, o T'y. The relevant fiber product diagram is

F — FY
\J I om
Ay = TI7G

?

Provided the diagram is clean with excess e, we get
_2dimB4dimG

Tur crts 4 +%(BXBaFu,L)

where

Tur=A,oTy ={((b,7),(g-b,7)): (b,r) €Y, (g,r0) € A}

Here we have used the fact that the moment map & for the action of G on Y is given by ®r(b,r) =
7 pr.(b) = ro (see [G.S.1, Theorem 4.6]).
The fiber product equals

F={((g,pr(8)), (b,7),9-(b,7) [(g,pr.(b)) € Ay} (11)

As above, put
A;{;L ={(g,7) EAy 7y €PL(Y —0) = RTO}, Af ={yeRY0 39 €G,(g,7) € Au}.

Then the projection to the first factor defines a map =1 : ¥ — A;{;L whose fibers are the sets <I>El('y) with
v € A9,
Consider now the symbol ¢(T}, 1) = 0(T, 1) o o(1). We note first that

o (Ty 1) (g.8(0) 9.09) = 49| @ |dy|? @ gom € QF(Ty) @ Spin(Ty). (12)

This follows from the fact that ITo T}, g is a transversal composition and from the fact that ¢(7, g) is the
canonical symplectic volume 1/2-density. Also, as described above, the canonical transformation defined by
g transforms m to g.m = ep ® guen (cf. [G, p.233], [BAM.G, §4,11].)

The further composition with () is given by the composition formula for the Fourier Toeplitz operator
T, 1. and the Lagrangean distribution g in [BAM.G, §7]. The fiber of the composition may be identified with a
submanifold of G and o(T} 1.) X o(t)](g,y,4-y) 15 @ density along the fiber with values in Q3 (Thr)@Spin(Ty1).
n

3 Generalities on moment asymptotics

As a final preliminary to the proofs of Theorems A and B, we state some generalities on convolution powers
of Lagrangean submanifolds, composition powers of Markov Lagrangeans and asymptotics of moments of
spectral measures along rays for any Lagrangean measures satisfying appropriate cleanliness conditions. We
will show in later sections that our basic examples satisfy these conditions.

3.1 Convolution of Lagrangean submanifolds A xI'.

Underlying the asymptotics we are interested in is the geometry of convolutions of Lagrangean submanifolds.
As usual, we use the identification T*G =2 G x g by left translation.
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Definition 3.1.1 The convolution A x " of two Lagrangeans A, I' C T*( is defined as
AoT := M, (AxT)
where M : GG x G — G denotes the the multplication map (z,y) — xzy.
Recall that the pushforward f.A of a Lagrangean A C 77X under a smooth map f: X — Y is given by
FA = {1, )12 € X with f(z) = y and (¢, () € A}
Hence we have:
Proposition 3.1.2 The convolution A xT is given by
AxT = {(zy,7) € T"G|(2, Ad™(y)y) € A, (y,7) €T}
Proof: For any =,y € G, A, B € g, we have
(rexptA)(yexptB) = xyexp{t(Ad(y " )A + B) +t*[Ad(y" ')A, Bl + ...} .

Hence dM (A, B)yy = Ad(y™ ')A + B and dM*(vy) = (Ad*(7),7). m

The convolution of Lagrangeans is associative. The n-fold convolution power A* = Ax A x...% A (n times)
of a Lagrangean manifold is thus given by:

Corollary 3.1.3

A" ={(z122 @, Y) (21, Ad™ (22 - 70)Y), (m2, Ad™ (x5 0)Y), - - -, (=1, Ad™(20)7), (w0, y) € A}.

3.2 Clean compositions of Markov Lagrangeans
As above, we suppose that g € I’ (G, A,) is a Lagrangean measure. We fix a ray of representations L = INp

and consider the ray Markov operator T, 1. Our purpose here is to prove:

Proposition 3.2.1 Suppose that T[jL =Tyrpolypo---0T,1 1s a clean composition of Fourier-Toeplitz
integral operators. Then T[jL € I"*(B x B, F’Z 1), that is, T[jL is a Fourier-Toeplitz operator on L*(B) of

order ry = k(s + % - M +5)+ %k associated to the isotropic manifold

FﬁyL = {(yagng 9k y) Yy S Ya (glagZ gk O)a (gZagE}' Gk 'O)a .. 'a(gkaO) € Au} C T*B X T*B
with o = pr.(y).

Proof: Note that T[ij =Tyur p and Aux = A;‘f. Assuming clean composition and using Corollary 3.1.3,

we get

*
1_2dim B4dimG k
_¥+%)+T(

T, € It Bx BT} 1)

where
er=ex+...tenm

with e; denoting the excess of the composition F‘L_Ll o'y, 1 and where
Fﬁ,L =lyrpol po...ol, = Azk oTy ={((b,r),(g-b,7)): (b,r) €Y, (g,0) € A;‘f} =

{((b,7), (9192 -9 - 0,7)) - (b,7) €Y, (91,92 -9k - 0), (92,93 -9k - 0), .. - (gk—-1,9k - 0), (9k,0) EAy}. m
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3.3 General formula for the limit spectral measure of a random walk along a
ray

Our next object is to give a schematic formula for the asymptotics of the spectral measures mi, , as defined
in (1) along rays of representations. As in [P.Z], we do this by using the moment method. We begin by
stating a general result under a clean composition hypothesis. This hypothesis is hard to check in practice
and frequently fails to be true, so we do not put much emphasis on the general result. Its main purpose is
to formulate the general shape of things and to pave the way for the special random walks where we have
much more precise results.

We fix an interior weight p € int(t7] ). The following theorem gives a formula for the asymptotics of the
k" moments

1

- TyT*®
dimV,, i Vi

Mﬁp(k’) = / xkdmﬁp(l‘)
R
of the spectral measures m/,, along the ray INp which in turn determine the asymptotics of the m{, ,. The
notation D refers to the operator satisfying Dly,, = n.

Proposition 3.3.1 Assume that for all k € IN, the k'™ powers T[jL and the trace operation for the operator
€D o T[ij are clean compositions. Then the asymptotics of the k™ moments of the spectral measures along
the ray L = INp are given by

k
e—dim C: .
Mu k) ~ rk+#§ J —inf;
p(k) ~ e C'vol(B)e

where:

(i) ri; denotes the order of T[ij (as in Proposition 3.2.1),

(ii) e = maxdim((FﬁyL oTe)NA(T*B))+2dim B—1—dim Fﬁ,L with Ty being the Lagrangean corresponding
to the operator e

(iii) C' is a universal constant,

(iv) €%, j € K, are those circle elements at which the projection p : (Fﬁ,L olp) NA(T*B) — T*S! has
maximal fiber dimension, and

(v)

ck:

g t?“O'(TkyL oT)

1

/(\(FE)LOFQ)OA(T*B))gj
where (Fﬁ,L o'y NA(T™B))s, denotes the fiber of p above % and where tra(T[ij o T'g) denotes the trace of

the symbol, i.e. the composition U(T[ij oTg) x o(Tr).

Proof: We form the generating function

oQ oQ

Te(0) =Y e TrT Ny, = Y e dim Vi, M (k) (13)
n=1 n=1
which can be rewritten as
Yr(0) =Tr(e®P oT) ) =Tr(Tow o T} ) (14)

0Dk
I
Fourier-Toeplitz operator and its trace Ty (6) is a Hardy-Lagrangean distribution on the unit circle S*. The

where T, is translation by e in L?(B). Under clean composition hypothesis, the operator e L isa

main point is to determine the isotropic relation, the order, and the principal symbol of Tj(#). This will
allow us to read off the asymptotics of the moments.
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Recall from Proposition 3.2.1 that T[ij €I (B x B, Fi,L) with

I ={(,9-v) ¥y €Y. (g,pr.(v) €AY}

The operator T is a Fourier integral representation of S' on L?(B). Its kernel is the é-function &y/_i.;, €
I75(S' x B x B,Ty) with

= (¢, 2(0,€)), (0,6),¢(,€)) : " € S, (b,§) € T"B}.
The composition I'y o Fﬁ,L is always clean with excess e = 0. Hence T,is o T € I”“(Sl x B x B, Flg,u,L)
with
T = (e, @)y, e’y -y) sy € V. € 5%, (g, pr.(v) € AF}

Recall from [P.Z] that the trace operation T is an FIO of order 0 with corresponding Lagrangean A(T™* B)
(the diagonal in 7% B). We assume that the fiber diagram

k
F — FM,L

1 { T2.3
A(T"B) — T*BxT"B

i
1s clean with excess e. The composition
Flg,u,L o A(T*B) = {(ew, ®(y)) : g € G with g y=y, (g,pr.(y)) € Azk}

is then a Hardy-Lagrangean subspace of T*S' and thus a finite union Ule T;;* of positive half spaces.
Furthermore, Ty (f) € Ip(Sl,Uf:1 T;;*Sl) with p = rg — % + 5 is a Hardy-Lagrangean distribution on the
circle S'.

As in [P.Z], we now use the fact that Hardy-Lagrangean distributions on the circle S* are polyhomoge-
neous and can be written as a sum of the basic homogeneous distributions y,(6 — o) € Iet3(St +*Sl)
Such a basic homogeneous distribution x,(# — ) has principal symbol

7(xq(0 — 00)) = €1]dE|* on T,0* S
and Fourier series expansion
46— bp) = Z ndeinte=info (15)

We can thus write

K o
S S g 00 (5)
j=1r=0
and by comparison with the principal symbol ¢(Ty) of T we get

o(TF; oTy) x o(Tr)

_ Kk
ajo=C; = Hy

J

/(\(FE)LOFQ)OA(T*B))gj

for all j € K and a;0 = 0 for all j € K. By plugging in the Fourier series expansions (15) for the
O'(Xp_%_r(g —#;)) on the right hand side in (16) and comparing coefficients with (13) we then get

dim Van =nP" E —infi 4 lower order terms in n .
jeK
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But
dim G—dim T

dimV,, ~n g Cvol(B) .
Thus dividing yields

k
e—dim C; .
MHE (k) ~ "t =52 N T onify
np(k) ~n ZCUOZ(B)e "
ex

3.4 The canonical graph case

The main simplification to Proposition 3.3.1 for our two set of examples discussed below is that the ray
Markov Lagrangean I', ;. is a local canonical graph. Indeed, it is a union of graphs of global canonical
transformations y; : Y — Y. In this case we can be more specific about the ‘traces’ c? appearing in Proposition
(3.3.1). Basically, they are what might be called ‘symplectic - spinor traces” 7(x;) of the symplectic maps
xi0¢? where ¢ : Y =Y,y e'? .y, This is the Toeplitz analogue of the ‘symplectic trace’ of a symplectic
map discussed in [G.U]. Let us first briefly recall the symplectic trace and then, also briefly, indicate its
extension to symplectic spinors.

Let (V,w) be a symplectic vector space and let T € Sp(V) be a symplectic linear map. The fixed point
set of T' is the subspace ker(I — T). According to [D.G, Lemma 5.1] it possesses an intrinsic density Qp
which depends on the symplectic nature of ker(I —T). Two special cases discussed in [G.U] are:

o ker(I —T) is a symplectic subspace. Let W = ker(I — T)~ be its symplectic orthogonal complement

and let T~ equal T'|w. Then: Qp = m where v is the symplectic volume density on W.
et(fI-T—)|2

e ker(I —T) is a Lagrangean subspace L. Then there exists a dual Lagrangean subspace L* such that
V = L@ L* and such that (I—T') : L* — L is an isomorphism. The symplectic volume form € on V' may be
factored as d¢Ade* where dt, d¢* are volume forms on L, L*. Define det(I —T) by (I —=T)*d¢ = det(I —T)d¢*.

This determinant depends on the choice of df but the quotient

QT = Ll

|det(I —T)|=
does not.

Now suppose that y 1s a symplectic map on a compact symplectic manifold with clean fixed point set
Fiz(x), l.e. such that Fiz(x) is a submanifold satistying Fix(dy,) = T, Fiz(x) for all y € Fiz(x). By the
above, Fiz(y) carries a natural density 2,. The symplectic trace of x is then defined by

ST = [ S (17)

This formula does not quite apply to our situation since we are dealing with homogenous canonical
transformations. However the only necessary modification is to break the IRT-action, as follows: Let y :
T*B —0 — T*B —0 be a homogeneous canonical transformation which preserves the cone Y C 7* B —0 and
let xv : (Y,w) = (Y,w) be its restriction to Y. Tt is of course a homogeneous canonical transformation on
Y — 0. Since T, Fiiz(x) possesses a canonical density, so does Fiz(y); we denote it by €, . Further, let R
denote the radial vector field on Y, i.e. the generator of the IRT-action and define the Liouville density

pix = RS2y

(where ¢ means insertion) on the base SFixz(x) of the cone Fiz(x). Then the homogeneous analogue of the
symplectic trace is given by

st = [ dn (18)



In our applications, we will be concerned with traces of the form
T, (0) = Tr(e? o Ty o1I)

where T}, is a Fourier integral operator associated to the graph of a homogeneous symplectic map x restricted
to the symplectic cone Y generated by the contact form on the base B. The 1/2-density factor of the trace is
calculated as for a standard FIO and is similar to the symplectic trace of x|y ; it is only necessary to include
the symbol as a coefficient of dju,. Since y commutes with the S'-action on Y, it is the lift of a symplectic
map Yo on @ and the 1/2-density part of the trace basically comes down to the symplectic trace on the
compact symplectic manifold O.

However, we still need one further ingredient to describe the coefficients c?, namely the symplectic spinor
factor. As discussed in §2.4, this factor is due to the action of x : T*B — 7™ B on directions symplectically
normal to Y, i.e. to dx, on T, Y™ C T(T*B). The spinor part of the symbol has the form ey @ y.ea where
after a choice of metaplectic frames y. = M(dx;), the metaplectic representation applied to the symplectic
normal part of dy,. Hence the spinor contribution to the trace is

TrM(dxy ) om = (x«ea,ea).

Therefore, given a homogeneous canonical transformation preserving a symplectic cone Y, the appropriate
definition of the symplectic spinor trace is:

SSTr(x) = / (xven,eady, . (19)
SFiz(x|y)

Let us evaluate the expression yiea, ea 1n the case which will concern us, namely when y is the lift to 7" B
of the action of a group element g on B. Suppose then that g¢®y = y. We would like to determine the action
of g. on symplectic spinors at y. This operates on the symplectic orthogonal to TY = TO x T(S* x IR+) n
T* B. Note that these two factors are symplectically orthogonal to each other and that g. operates by scalar
multication on the T'(S* x IR+) factor. Hence the non-trivial part is the symplectic orthogonal to 7,0 in
T*O. Since g fixes pr(y) = o, we get an induced map g, on symplectic spinors at o. Since o is a regular
element (by assumption), its stabilizer is a maximal torus and without loss of generality we may assume it is
the maximal torus 7. Now, g. is obtained by applying M, the metaplectic representation, to the normal part
dTy of the derivative. Under the identification O = G /T, T*O gets identified with G /7" x t*7, T,0 gets
identified with £~ and d7 gets identified with Ad" (g) on t*7. Tts eigenvalues are given by the global roots
e(a) evaluated at g. Since Ad*(g) is a sum of 2-plane rotations, its image in the metaplectic representation

is given by a sum of one-dimensional harmonic oscillators. Precisely, we have (with g = ¢*)

M(Ad™(g)) = oer exp({a, X)1q (20)
where fa is the harmonic oscillator D? + u? (D= %). Since the ground state e, is an eigenfunction of fa
with eigenvalue 1/2 it follows that the diagonal matrix element

y 1
(MA (g)en ea) = e(5p4 (X)), (21)
We summarize in the following proposition, whose proof consists of adding the above observations to
Proposition (3.3.1).

Lemma 3.4.1 With the above assumptions,

K
Ty (0) € IxmatE(st | 1ptst

j=1
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where:

(i) ry is the order of T),.

(ii) The angles 8; are the ones for which Fix(x o ¢%) # 0 and the ones which show up in the principal
term of the asymptotics are those for which dim Fiz(x o ¢%) is marimal.

(iii) The principal coefficients of the singularity expansion are given by:

Flx«ea, 6A>d/,LXO¢0j

OOty = [

SFix(xo¢ 1)

where (1)) = fv/'dvol with /dvol is the canonical graph 1/2-density on the graph of x.
(iv) In the case where x = Ty, g = eX €T, (\xen,en) = e(%p+(X)).

4 J-functions on positively curved hypersurfaces: Proof of Theo-
rem A

In this section we focus on the class of conormal Markov operators whose underlying probability distributions
are §-functions dx on positively curved hypersurfaces X of G. We begin with the precise definition.

Definition 4.0.2 Let X C G be a smooth compact oriented embedded hypersurface. Denote by N(X) =
N4 (X)UN_(X) the inward/outward components of its normal bundle and those of its spherical normal
bundle by SN(X) = Sy N(X)USN_(X). The spherical Gauss maps of X are defined by

G+ x : SNt (X) — Sg, Gt x(x,v) =dLy-1v

where L denotes left translation on G and where Sg denotes the unit sphere of g. The Gaussian curvature
of X is defined by
Gy xdw = KdS

where dw denotes the Euclidean surface measure on Sg induced by the Killing metric. X is called positively
curved if K > 0, i.e. if gj; x 18 a diffeomorphism. The homogeneous extension of G4 x to the entire normal
bundle is also referred to as the Gauss map.

Remark We obviously have G_ x (2, —€) = -Gy x (z,§) for all (x,£) € N1 (X). Since the antipodal map is
an isometry, the definition of K is unambiguous.

To prepare for the statement of Theorem A, we introduce a number of notions and notations.

Symmetric J-functions.

In order to deal with self-adjoint Markov operators we require that the underlying measure be symmetric,
i.e. invariant under the inversion map inv : G = G, g — ¢~ '. Since X need not be invariant under inversion,
we have to consider the union X U X1,

As above, we denote by dS the surface measure on X induced by the Haar volume form dg. By a
d-Tunction dx on X 1s meant a measure of the form

6x (/) = /X fads

where f € C(G) and a € C*(G). To make it symmetric we average it with respect to the inversion map,
l.e. put
1 1 .
0= 5(5)( +6x-1) = 5((5)( +inv.dx)

20



where tnv, denotes pushforward under ¢nv. To make sure that convolution powers of i x are clean we require

that X U X! is a transversal intersection. Since inv is an isometry, X ! is positively curved as long as X

1S.

Inverse Gauss maps The canonical relation underlying convolution with %((5)( + dx-1) will involve the
inverses of the Gauss maps on the inward/outward normal bundles Ni(X). They are the maps from g to GG

defined by
.7:1 = 7T((J+7x)_1, .7:2 = F(g_yx)_l, .7:3 = F(g+7X—1)_1, .7:4 = F(g_VX—l)_l

where 7 : N(X) — X is the natural projection.

4.1 The Markov operator on L*(G): Proofs of Theorem A (i)-(iii)

The following is a more general and precise statement of Theorem A(i):

Theorem A(i) Let X be a positively curved orientable hypersurface of G and assume that either (i)
X = X~ or (ii) the intersection X N X' is transversal. Let p = %((5)( + dx-1) with dx = adS for some
a € C®(X). Then T, of = p* f is a Fourier integral operator of order —% on L*(G) associated to
the disjoint union of canonical graphs

4
o= I_I Graph(xi) with x; TG =>T*G, (2,8) = (F(Ad*(2)€))x, &), i=1,..,4. (22)
i=1

Proof: We have y € [z~ % (G, A,) where in case (i), Ay, = N*X and in case (ii), A, = N*XUN*X"1
By Proposition 2.3.1, T}, ¢ is an FIO of order —% corresponding to

Ppa=1{((2,€), (92,€)) € T*(G x G) = 0: (g, Ad"(2)€) € Ay}

But
(9, Ad*(2)¢) € Ay & g = F(Ad™ (2)€) for some 7 € {1,...,4}.

Since X and X! are positively curved and because of the transversal intersection hypothesis, for each (z,&) €
T*({, there exist exactly two, resp. four (in case (i), resp. case (ii)) distinct elements g; = F;(Ad*(z)¢) € G,
such that (g;, Ad*(x)¢) € A,, i = 1,...,4. This shows that I', ¢ consists of the disjoint union of the two
(four) canonical graphs in ( 22). m

Proof of Theorem A(ii): This is a corollary of Thereom A(i). Since T}, ¢ is a Fourier integral operator of
—% assoclated to a local canonical graph, it follows by [H6, Vol.IV Corollary 25.3.2] that T), «

dimG-—1

defines a bounded operator from W*(G) — W= =2 (G). =

order

Proof of Theorem A(iii): A more precise statement of the result is

k>2 and dimG >3

*k 2
wr e L(G) for {kZSand dimG = 2

First, the case dimG > 3. We will show that T[ij is Hilbert-Schmidt for & > 2. Set A := (T:fGijG) and

write A as \/Z_k(dim G_l)\/zk(dim Sy Since A is an FIO of order —k(dim ¢ — 1) associated to a union
of canonical graphs, \/Zk(dlm G_l)A is bounded on L?((¥) and it suffices to show that \/Z_k(dlm =1

is of
trace class, i.e., that

Tr\/g_k(dimG—l) _ //\_%(dimG—l)dN(/\) < 00 (23)
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dim G

where N(A) := #{j : A; < A} for the eigenvalues A; of the Laplacian A. But by Weyl’s law N(A) ~ A7z .
Hence, by integrating by parts, the right hand side in (23) is

HdimG - 1) [ Ny sam G-ty o [ 889y bEm -1y

2
which is finite for dim G' > 3 and & > 2. It follows that (T:,kGTﬁ,G) is of trace class for & > 2. Similarly, for
the case of dim G = 2, we can show that (T:,kGTﬁ,G) is of trace class for k& > 3. [

For the asymptotic expansions of Theorem A(iv), we will need to to know the principal symbol (7, &)
or more generally the principal symbol o(dx #) of convolution with a d-function dx along a hypersurface. To
quote easily from the literature we will view dx as a 1/2-density rather than as a density, i.e. as acting on
smooth 1/2-densities u on G by

<(5X,u>:/ avdS - i,u.
X

Here, i,u is the 1/2-density on X by inserting the outward unit normal v into u, so that VdS -iyuis a
density, on X.

We recall ([HO, Vol.IIT]) that in general the principal symbol of a conormal distribution (1/2-density)
locally represented by

/6i<xl’§”>a(l‘//,€/)d€/
is given by

aa” €)|da"|%|dg'| %
in coordinates (z',2”) such that locally X = {a’ = 0}. For concreteness, we choose to use Fermi normal
coordinates along X, so that z’ is the signed distance to X. Then the principal symbol (dx) equals

a(2”)|S' (2")|?]dz"|?|d¢'| 7 = a(x")|dS|?|d¢'|>.

Now consider the principal symbol of §x*. By Proposition 2.3.1, we can identify the Lagrangean I',
Ay x G and then o(dx*) = o(dx) ® |dx|%. Thus we have

o(6x+) = a(a”)|dS|?|d¢')? @ |dx|?.

In the case where X is a positively curved hypersurface, I', ¢ was just shown to be a local canonical
graph. Since each component Graph(x;), ¢ = 1,...,4, possesses a canonical graph 1/2-density |dg A d'y|% (in
coordinates coming from its projection to 7% G ~ G x g*), each restriction o (T}, ¢)i of 0(1,; ) to Graph(x;),
i=1,...,4, can also be written as a scalar multiple of |dg A d'y|%. With this identification the symbol is given
by:

Proposition 4.1.1
=)
K

where the Gauss maps G; correspond to the inward/outward components Ni of N*(X) and N*(X ') in the
same way as the F; defined earlier.

|— %(dimG—l)gi—l*(

dg/\d'y|% fori=1..4.

o(Tua)i=lv

Proof: We just consider N (X) since the calculations for the remaining components are essentially the
same. For simplicity we will write G instead of G;.

Under the identification 7°G ~ G x g* by left translation, the Gauss map G : N3 (X) — g* is simply
the inclusion map followed by projection to g*. By assumption, it is a diffcomorphism to IRt x Sg*. Write
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the Euclidean density |dy| on g* in polar coordinates (r,w) coming from the identification g* ~ IR x Sg*:
ldy| = r4mG=1dr A |dw|. Also use polar coordinates Ni(X) ~ IRT x X. Then G*r#™m%-1dr A |dw| =
Kr@im&=1dr A dS. Under the inverse of the Gauss map, the principal symbol o () goes over to

G (aldS|E1dg'3) = G (—z)ldr A deo] B

Vi

on Ni(X). It follows by Proposition 2.3.1 that (7} &), viewed as a 1/2-density on G x g~, is the tensor
product of this 1/2-density with |dg|%. This yields the above formula. =

Remark As a check on the order of the coefficient, we note that since 7}, ¢ has order —%(dimG — 1) its
symbol must have order —%(dimG -1+ %dimG = % as a 1/2-density (cf. [Ho IV, Theorem 25.1.9).
This indeed is the order of g_l*(ﬁﬂdr A dw|z @ |dg|2

[dr A deol¥ © [dgl# = 5] H@EmE=dg A dy|.

. Expressed in terms of the coordinates (g,7),

4.2 Spectral asymptotics along rays: Proof of Theorem A(iv)

The proof of Theorem A(iv) will require a precise description of the ray Markov operator 7}, 1 of a §-function
along a positively curved hypersurface.

4.2.1 The ray Markov operator

Proposition 4.2.1 Let X be a positively curved orientable hypersurface of G and p as in Theorem A(i).
Consider the ray of representations L = INp. Then

dim B4dim G
2

Tur € I'- (BxB,TurL)

1s a Fourier-Toeplitz operator of order 1 — w and the associated isotropic submanifold T, 1 1s the

union of graphs of two (four) canonical transformations x; of Y, i.e.,

4
Iy = U Graph(xi) with x;:Y =Y, y—=Fi(o) o, o=pr(b)}, i=1,..4.
i=1

Proof: Recall Proposition 2.4.1. The main step is to show that the fiber diagram

F — FY
\J I om
Ay = TI7G

i
with fiber product ¥ = {((g,r0), (9,70), (b,7),(g-b,7)) : (g,r0) € A,} is clean with excess e = 0. Note that
(9,70) € Ay & gi = Fi(o)  forsome i€ {1,...,4}.

Thus F' is the union of two (four) graphs of two (four) distinct smooth maps from Y to TG x T*G x Y and
hence is a manifold of dimension dimY'.
We now show that the derived diagram

TF — 1Ty
) ) dmy
TA, — T(I7G)
di
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is also a fiber diagram. For this we need to show that for all (¢,d) € F C A, x T'y, dim{(u,v) € T,A, x
Tal'y : di(u) = dmi(v)} = dimY. Fix (e,d) € F. Since di is an injection, each v € TyI'y can only
have at most one matching vector v € T, A, such that di(u) = dmi(v). On the other hand, every vector
tangential to the circle which runs through d, and only such vectors, apart from the zero vector itself, are
mapped onto the zero vector under dm;. In T. A, we can distinguish horizontal and vertical vectors. Vertical
vectors are vectors along the fiber above m(c) (7 is the natural projection m : T*G — () and vertical
vectors are deritaves of curves thru ¢ in A, for which the length of the conormal vector stays constant.
Clearly, every vertical vector can be matched with a vector v € T;I'y of the form v = %h:oq(t) with
qt) = ((g, (r + )pr.(b)), (b,r+ 1), (g - b7+ 1)). By construction of I'y, horizontal vectors u = (u1, uz) have
a match v if and only if there is a curve in O, whose derivative produces us. Altogether, this proves that
dim{(u,v) € T,A, x TyT'y @ di(u) = dmi(v)} is precisely dim O, + 2 = dimY". Thus the composition is clean
and the excess is e = dimY 4 2dimG — dimG — (dimG 4+ dimY) = 0. The statement now follows from
Proposition 2.4.1. =

Proposition 4.2.1 and Proposition 3.2.1 yield the following
Corollary 4.2.2 All the composition powers of T, 1 are clean. For all k > 1,

T[;:’L c I%(l—dimG)-I—%(l—dimB)(B > B;FﬁyL)

Fﬁ L = U(ik,...,il)e{1,...,4}k Graph(xi, oo Xi,)
= {((b,r), (g ---g1b,7)) : ik, ..., 01) € {1, LAY st g = Fi(0), . 95 = Fi(gl—1---q10)}.

4.2.2 The principal symbol ¢(7}, 1)

i—l*(\/(%) times
the canonical graph 1/2-density. The situation is very similar for the Markov ray operator. We begin by

In Proposition 4.1.1 we showed that the components of the symbol ¢(T}, ) are 0(T,.6)i =G

redoing the argument with G replaced by the homogeneous space B and then restrict to Y.
The Markov Lagrangean for the random walk 7, p on all of B is given by

FM,B = {(baﬁ)ag ) (baﬁ) : (gaq)B(baﬁ)) € N*(X) UN*(X_l)}

where ®p is the moment map. Since for each (b,5) € T* B there are exactly two (four) distinct points
gi = Fi(®g(b, ) € X with normal ®pg(b, F), the Lagrangean I';, g C T%(B x B) — 0 is here again the union
of two (four) canonical graphs, each diffeomorphic to 7*B. The components of the symbol of the Markov
operator 7, g may therefore be identified with 1/2-densities on 7% B. To determine them, we use the fact that
there are two (four) maps F; : T*B — A, = N*(X) U N*(X~1), namely F;(b, 8) = (Fi(®5(b, 3)), ®r(b, B)).

We claim:

Proposition 4.2.3 The components (T, g); of the principal symbol o(T,, g) of the Markov operator on B

are gien by:
a

i

Proof: The argument is similar to Proposition 4.1.1. The moment Lagrangean I'g for the action on B

o(Ty)i = Ff (o) = F( B~ 2 @mB=1) 14 A d|? i=1,..,4.

K3

may be parametrized by G x T B and the principal symbol of the action is the canonical volume 1/2-density
|dg|z @ |db A dB|Z. The relevant composition (fiber product) diagram is:

F — FB
\J I om
Ay = TI7G

?
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where 71(g, (b, 3)) = (9, ®5(b, 3)). As above, the fiber diagram is transversal. [

Proposition 4.2.4 The components o(T), 1.); of the principal symbol (T}, 1) of the Markov operator T, 1.
on H?(B) are given by:
a %(dzg«by _1

ﬁ) yl~

Proof: Except for the symplectic spinor aspect, the proof is essentially to restrict the formula above to Y.

o(TuL)i = Fi'( Ndy|? @ giwr i=1,...,4.

K3

The moment Lagrangean 'y may be parametrized by (G x Y and the relevant composition diagram is:

F — FY
\J I om
Ay = TI7G

?

where m1(9,y) = (9, Py (y)). Here the moment map ®y is the projection ¥ — O, (b,r) — pr.(b) = o,
followed by the inclusion O C g*. As in the previous case, the diagram is transversal and the canonical
densities compose to give the canonical volume 1/2-density on Y. We compute the scalar coefficients for the
components of the principal symbol by pulling back ¢(y) to Y by the two (four) maps

Fi: Y = A,y (b,r) = (Fi(o),r)

where we have used the isomorphisms N3 (X) = X x IRT and N} (X71) = X~! x IRT. The fiber F,
consists of one point so the symplectic spinor part is just the integrand of Proposition 2.4.1. =

Corollary 4.2.5 The components U(Tﬁ,L)(ik,...,il)f on Graph(xi, o0 Xi,), (i, ...,51) € {1,...,4}%, of the
principal symbol U(T[ij) are given by

k(dimY
-1

U(TﬁyL)(ik,...,il) = fGr,sin) |y|_5( )|dy|% @ (g1) - Giy)=T -

with a a a
. FZQO Zl * —_— e FZ O i_lo...o Zl * —_— .
ﬁ)( X)(K) (Fiy 0 X X)(K)

Stin i) = Fi(

4.2.3 The limit spectral measure: Completion of the proof of Theorem A(iv)

We now determine the asymptotics of the moments Mﬁp(k’) of the spectral measures mj,, along the ray
L = INp. The outline of the calculation was given in Proposition 3.3.1, so the proof of Theorem A(iv) is
basically a matter of filling in the blanks.

Theorem A(iv) Let X be a positively curved orientable hypersurface of G, L = INp an interior ray
of representations of (G, and p as defined above. We assume that the trace operation for the operator
el o T[ij is a clean composition for all k > 1. Then the k™ moments of the spectral measures mb, are
given asymptotically by

. 14e o 1 , ,

M® (k) ~ %(1—d1mG)+%—d1mB —inf;+ino/4

Kok ~n ColB) | 2 > e
(Zk,...,ll) S Hj S
{1,406, 4

(ens (Gix -+~ iy )wea) flin,.in) dity, ... o
/*SFix(sz0~~~0X11°¢ej) " " (Zk Zl) Xk 0X110¢ ’
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where the [, ’s are as in Corollary 4.2.5 and
i, iy =16, :dim Fiz(x;, o 0 xi, © ¢€j) is mazximal } .

The factor {en, (gi, - - gi,)«€a) i described in Proposition (3.4.1 (iv)}).
Proof: Recall from Proposition 3.3.1 the general formula for M/ (k). We need to fill in
(i) the order ry of T[ij,
(ii) the highest order coefficients c? of the symbol of Ty (8) = Tr(e"P o T[ij), and
(iii) the highest order singular angles 6; of T4 (6).

By Corollary 4.2.2, 7, = %(1 —dimG) + %(1 — dim B) and the corresponding canonical relation is the
union of canonical graphs

Fﬁ,L = U Graph(x;, o o xi,) -
(ik,.in)€]L,... 4}4

The cleanliness assumption for the trace operation 7r(e!? o T[jL) implies that for each 6 € S' and
(ik,...,11) € {1,...,4}* the map x;, o -0 xi, o #* has clean fixed point set Fiz(x;, o -+ o xi, o ¢%).
But by Lemma 3.4.1,

U(Tk (9))|€:€j = Z / . 8. <6A’ (glk o .gil)*eA>f(ikw~vil) dﬂszo"'0X11°¢oj
(ikyerin)€41,..., a2 Y STIE(G, 000X 0679)

where dux is the canonical density on the projection of Fiz(x;,0---oxi,0¢%) to B as described in

k°"'°Xq°¢0j
Section 3.4 and furthermore, the f(;, . ;)’s are the scalar factors appearing in the principal symbol o( 5L)

as described in Corollary 4.2.5. Altogether, this implies the stated formula for the moments M,‘jp(k'). [

Remark:  The fixed point set of the trace operation and hence the excess e appearing in the asymptotic
formula for the moments depends on the underlying hypersurface X. This is illustrated in the examples of
the spherical means operator and its translates below.

4.3 Example: the spherical means operator and its translates
4.3.1 The spherical means operator

Let S5 (0) be the sphere of radius s in g. Here we consider symmetric probability measures ¢ whose underlying
hypersurface is X = S;(e) := exp S5(0), the geodesic sphere of radius s centered at e. Note that X = X 1.
The hypersurface X = S,(e) is positively curved for any s < ¢ where ¢ is the injectivity radius of . The
corresponding Markov operator T),, = M is called the spherical means operator. In this case, the underlying
isotropic relation and the principal symbol take on an especially simple form:

Lemma 4.3.1 Let pu be a d-function on Ss(e) and L = INp a ray of representations. Consider the k™ power
T[jL of the ray Markov operator Ty, ;.. Then for all k > 1:
(a) The underlying isotropic relation Fﬁ,L has the form

u L= U Graph(¢® of= k+2j)) with 0y = 27s|p| .
7=0

(b) The components U(T[ij)j on Graph(¢?(=F+20)) of the principal symbol U(T[ij) are given by

ot s = () gt o ok = 23)s Z)enwith = P () = Fi ().
K K
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Proof: (a) Recall Proposition 4.2.1. For a given b € B, o = pr.(b) = zpz~! for some z € G. We use
the fact that for any X € g, the geodesic exp?X is perpendicular to Ss(e) at the points of interesection
0

exp :I:s%. It follows that, in the notation of Proposition 4.2.1, Fj(0) = exp sﬁ and Fy(0) = exp —si5

o] -
W V1Y)
e [o]

-1

But exp:l:sﬁ = z(exp :I:sﬁ)x and  z(exp :I:sﬁ)x_l b= Xp(exp:tsﬁ) b= -b. Setting

6y = 2ms|p|, we thus get
Lz = {((b,7), (5 - b,7))}
and from this Fﬁ,L for all k > 1 as claimed.

(b) Recall Corollary 4.2.5. Here (i, ...,31) € {1,2}" and x1 = ¢?° and x» = ¢~%. Because of the symmetry
of p we have F{‘(#) = F;(#) which we call f. And finally, by construction of the F;, i = 1,2, We have
X5 (f) = x5(f) = f. There are (?) k-tuples (iy, ...,i1) € {1,2}* for which x;, o -0 x;, = ¢?(=F+2) The

group element ¢;, ---¢;, is a product of j factors of exp — sﬁ and k — j factors of expsﬁ which equals
o

. [
[o]

explk — 24)s

The asymptotics of the moments of the spectral measures are given by the following:

Proposition 4.3.2 Let u be a symmetric §-function on Ss(e) and L = WNp an interior ray of representa-
tions. The k™ moments of the spectral measures my,, of the spherical means operator Ty, 1, = M, are given
asymptotically by
k=1 .
i . 1 2220 2(";) cos(n(k — 24)2ms(|p] —|—p+(%) for k odd
M#p(k) ~ nE(l_dlmG)m/ fk del' N
vo k2 .
B >0 2(";) cos(n(k —27)2ms(|p| + p+(%) + (g) for k even.

Proof:  Recall Proposition 3.3.1 and Theorem A(iv). Here the fiber diagram for the trace operation
Tr(eP o T[jL) is

F - I
!
A(T*B) — T*BxT*B
with
k: i3 . . k
Flg,u,L = U {((629’ —7“), (ba 7“), el(€+90(_k+2])) . b, 7“))} = (Sl X Y)]
Jj=0 j=0
(k + 1 copies of ST x Y) and
k k
Fe (e, =), 0,1 = Y
j=0 7=0

(k + 1 copies of Y). Clearly this fiber diagram is clean. Tts excess is ¢ = dimY +4dimB — 2dim B — (1 +
dimY) = 2dim B — 1 and the composition is

k
Iy, oA(T*B) = U T;D+(_k+2j)(51) .

7=0

The fixed point set corresponding to each singular angle fg(—k + 25), 7 = 0,..., k is all of Y. The moment
asymptotics formula then follows by plugging the formula for the principal symbol U(T[ij) in Lemma4.3.1(b)
into the general formula from Theorem A (iv) and using the formula in proposition 3.4.1 (iv) for the symplectic
spinor factor, which comes to e((k — 2j)sp+(ﬁ)).

n
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4.3.2 Translates of the spherical means operator

We now translate the previous measure by a group element g to get p = %5953(6) + %59—158(6). Without
loss of generality we will assume that ¢ € 7. The moment asymptotics depend on the degree of singularity
ds(g) = #{roots a : a(g) = 1} of g and illustrate a variety of cases of Theorem B.

We have the following analogue to Lemma 4.3.1:

Lemma 4.3.3 Let p be as described above and let L = INp be a ray of representations. Consider the k'
power T[ij of the ray Markov operator Ty, 1. Then for all k > 1:
(a) The underlying isotropic relation Fﬁ,L has the form

L= U U Graph(x?™ " o gal=k+2))

{=045=0

where X" 1Y =Y, y—= h-y, Yh € G and Oy is as in Lemma 4.3.1.

(b) The components U(T[ij)lyj on Graph(xg_k“l o ¢P(=F+20)) of the principal symbol U(T[ij) are given by

dsz -1)

gkl _k(dimy — k42l
|dyl? © x¢ ™= Z Fti,in lyl™2 Dldy|* @ x? m
(T, ,11)ESL 5

E(
(T;TL) szJ |y|

where .
Sjo= {(zk, it € (1, 1), (1, =1), (=1,1), (-1, —1)}11C : Z in=(—k+2l,—k+ 2j)}
n=1
and the f, ’s are as in Corollary 4.2.5 with
+1 %
Xxran=x7 00%  and  Fioi1n)(y) = (9% exp ism,a) Vyey.

Proof: (a) Recall Proposition 4.2.1. For a given b € B, pr.(b) = o = zpz~! for some z € G. We have
Fi(o) = gexpsﬁ, Fa(o) = gexp—sﬁ, Fs(o) = ¢ 1eXp5|0|’ Filo) = g_lexp—slo| But gexp:l:é;lo| =

-1 :|:27TZS

gx(exp :I:sﬁ)x
thus get

and gz (exp :I:sﬁ)x_l b= gx,(exp :I:sm) b= -b. Setting 8g = 27s|p|, we

[,r= U Gmph(xgil . ¢:|:90)
+,+
and from this, since the actions of G and S' commute, Fﬁ,L for all £ > 1 as claimed.

(b) Recall Corollary 4.2.5. Since
Graph(x;, o+ 0xi,) = Graph(xg_k“l o (be”(_k'l'zj)) Vo (ig, .., 51) € Sy,

the statement follows. n

The asymptotics of the moments of the spectral measures are given by the following:

Proposition 4.3.4 Let 1), 1 be a translate of the spherical means operator as defined above with L = INp
an interior ray of representations. The k™ moments of the spectral measures mb, of Ty 1 are gwen asymp-
totically by

(- dlmG)CUOl Z] LCye o 2mi(=k+2j)s(nlol+o+(157) for k even
M, (k) ~
0 i ) ey Y0 Yo g X (97742 ) ey (7420 (e 2R 20 el ()

28



where

¢= [ fs,

Here we have used the following notation:

(1) Fix(Lgy-s+z) denotes the lift to B of the fized point set of Ly-r4z : O = O, 0 g,
(it) dpy is the induced density on Fix(Lgy-stz),

(iii) x, denotes the highest weight character of p.

p del ; Clyj = /~ fSl,j d/,tl .
F

1(L  —kt2t)

[NE

Proof:  Recall Proposition 3.3.1 and Theorem A(iv). Here the fiber diagram for the trace operation
Tr(eP o T[jL) is

F — F’;%L
!
A(T*B) — T*BxT*B
with
e = U UL =), (bor) g 72O R20) g iy | (87 % V)
{=0j=0 {=0j=0
(I + 1)(k + 1) copies of S* x Y) and
k: k: . . o~
Fe [ JUxo(gF 7)o R 20 ) (b)) : b € Fia(Ly-rsa)} .
{=0j=0

The cleanliness condition for this diagram is equivalent to the condition that all of the maps L -sta,
[ =0,...,k, have clean fixed point set in @. But it was shown in [P.Z, Section 3] that for any ¢ € T,
L, : O — O has clean fixed point set which is a submanifold of dimension d = ds(g). Since ds(¢™) = ds(g)
Vm # 0 and ds(e) = dim O we have

ds(g) +2 fork odd

dimY for k even

ds(g) +dim B for k odd

maxdim F = { 2dimB —1 for k even

and hence e= {

Using the formula for the principal symbol U(T[jL) from Lemma 4.3.3(b) and plugging into the general
formula from Theorem A(iv) yields the stated formula for the moment asymptotics. [

5 o-functions on finite unions of regular conjugacy classes: Proof
of Theorem B

Here the symmetric probability measure p is a d-function on the submanifold X = U?:l Cr, UC -1 where
the z;’s are regular elements of the maximal torus 7" and C, denotes the conjugacy class of z. To' be more

p=aVdz

where dz is the normalized invariant density and where @ € C*°(X) is a positive smooth coefficient satisfying
f xadz = 1.

For simplicity, we restrict our discussion to the case where X is just the union of {wo conjugacy classes

precise, it is a § 1/2-density

Cy and C -1 for some regular element @ € T. (Our results can easily be generalized to any finite union of
regular conjugacy classes.) This implies that

dimT _ dimG

pe I8 (GA,)  with Ay = N"Co UN*Cpo
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where NYCp = t* and N;‘xy_le = Ad*(y)t* for all y € G.

Contrary to the case of J-functions on positively curved hypersurfaces, the Lagrangean I', associated
with the Markov operator 7, on L?(() is not a canonical graph. This of course complicates the study
of convolution powers. What saves the day is that the isotropic relation I', 1 underlying the ray Markov
operator T}, 1 is a local canonical graph on Y.

5.1 The ray Markov operator: Proof of Theorem B(i)

We begin by giving a more precise statement of the result:

Theorem B(i) Let p be a §-function on C,UC, -1 and let L = WNqp be the ray of representations determined
by the interior highest weight p. Then:
(a) the ray Markov operator
TM,L c IdimT—dim G(B « B, FM,L)

15 a Fourier-Toeplitz operator of order dimT'—dim G whose associated isotropic submanifold Iy, 1 ts a disjoint
union

Graph(xvivj)

of graphs of canonical transformations Xinj of Y. The components are (possibly redundantly) indered by the

elements w; TWw; L the jth and kth coincide if Xp(wjxw] ) = Xp(wkxwk_l), where as usual x, denotes the

highest weight character.

(b) Each canonical transformation Xinj 1s stmply multiplication by one of the circle elements in © =
Ixp(wetlw™ ) tw e W} .

(¢) The principal symbol of T, 1. on the wjxile_l component is giwen by

1 _1
U(T“vL)tinH(y,ﬁj(y)'y) - ma(gij(y)ﬂm l

wi

dimy
-1

Ndyl* @ (g%,).m

where gE(y) € Cpz is given by gt (y) = k(y)wrT w ' k(y)~" where pr.(y) = o = k(y)pk(y)~". Here, we
assume that no two gij(y) are equivalent wn the sense of ~ above. In general, one sums over the elements
of the equivalence class.

Proof of (a) :  We first show that the fiber product diagram

F - Ty=2GxY

\J I m
Ay — ™G
?

is clean. Here ¢ denotes inclusion and m; is projection onto the first factor. We claim that:

o = {((g,70),(b,7)) : pr(b) =0, (g,70) € A,} is a submanifold of A, x T'y.

e The natural projection F' — Y given by ((g,70),y) — y is a trivial 2|W|-sheeted cover, where |WW| denotes
the order of the Weyl group..

e The natural projection p: F — T, 1, ((9,70),y) — (y,9 - y) is a finite covering map of the trivial covers

-1
J

Y x {wjzw ,wkx_lxlzl}jyl - Y x ({wjij_l,wkx_lwk_l}jyk/ E) ,

where a = b iff x,(a) = x,(b).
e The derived diagram is a fiber diagram.
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To verify these properties, suppose first that o = p. We need to find all ¢ € G for which (g,p) € A,..
Recall that A, = N*C, U N*Cpor = {(yatly™, Ad*(y)€) 1 y € G,€ € t*}. Thus, equivalently, we need to
find all ¢ € G for which Ad*(g)p € t*. Clearly, this is true for all g € 7" and all y € W. Hence we have

(wrtlw™t p) € A, forall weW.

Since p is an interior weight there cannot be any other g with this property: Indeed, gpg~' € t* implies that
gexp pg~' € T and hence, since exp p is regular, ¢7T¢~' C T and g € W.
In general we have o = kpk~'. Then

(kwettw ™Y kpk™Y) € A,  forall weW.

On the other hand, assume (I, kpk=') € A,. This implies that (I, kpk~') = (nzn=', nén=1) or (I, krk=1) =
(ne=tn=! nén=1) for some n € G and for some ¢ € t*. It follows that p = k=*nén=1tk and n € kW. Hence
| =kyry k=l orl = kyx~ 'y 'k~! for somey € W.

It follows that F' consists of 2|W| copies of Y, indexed by the elements wzw™!, wr~tw™!. To be precise,
given y € Y the corresponding points of F' are given by the elements {((gij(y), ro),y)} with gij (y) defined
above.

Now we show that the derived diagram

Tr — 1Ty

) | dm
TA, — T(I7G)
di

is also a fiber diagram, i.e., that T'F = {(u,v) € TA, x TTy : dm(v) = di(u)}. The inclusion T'F(, ) C
{(u,v) € T,A, x TyI'y : dmi(v) = di(u)} is trivially true. The reverse inclusion will follow from equality of
dimensions of the two vector spaces.

First we take a closer look at the tangent bundle T'A,. The Lagrangean A, itself is a fiber bundle. We
distinguish horizontal and vertical tangent vectors to A, as follows: a curve ¢(t) with ¢(0) = (z,€) in A, is
horizontal if e(t) = (g(t)zg(t)~1, g(t)ég(t)~1) for some curve g(t) in GG and vertical if ¢(t) = (z,£(t)) for some
curve £(t) in the fiber over z.

Clearly, for every horizontal vector u € TA,, there is a matching v € TT'y for which dm(v) = di(u). Any
vertical u € T{; ¢)A, has the form (0, us) with uy € T'(Ad*(y)t*) if z = yry~!. In case u = %h:o(z,t&’),
there is a matching v € TT'y such that di(u) = dmi(v), namely v = %|t:0((2, (t+s)o), (b,t+s),(z-b,t+5))
with pr.(b) = o = &/s. In case u = (0,0), there is an exactly one dimensional space of matching nontrivial
v’s, namely the vectors tangential to the circle in the circle bundle B. Furthermore, by construction of
I'y, for every other v € TTy, dmi(v) = (v1,v2) where vy has a component in TO,, hence in the horizontal
direction for T'A, and cannot be matched with a vertical u € TA,,.

This shows that for all (a,b) € F, dim{(u,v) € TaAy, x Tpl'y : dmi(v) = di(u)} = dimY = dim T'F, p)
and the above fiber diagram is clean with excess e = 0.

Thus, we have verified all of the claimed properties. By Proposition 2.4.1, the operator T}, 1, is a Fourier-
Toeplitz operator of order dim7T" — dim (G associated to the isotropic submanifold

Cur=1{((b,7),(g-b,7) : g = kwetlw %™ w € W, pr.(b) = kpk~1}
which completes the proof of (a).
Proof of (b):  For pr.(b) = kpk~!, we have

(k'wxilw_lk_l) b= Xp(wxilw_l) -b.
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Here we have used the assumption (with no loss of generality) that @ € T'; thus wzw™! € T and conjugation
with kwaztlw=1k~! fixes o = pr.(b). Therefore,

J
Iy = U Graph(xji)
+,5=1

where
+i6; +i6

in(y) —e Y, R Xp(wxilw_l) for some w € Weg .

Proof of (c¢): By the lemma above, the symbol splits up into a collection of symbols on the components of
I'y,z. We pull them back to F' and consider the fiber diagram:

F — FY

\J I m

Ay = TI7G

i
which simplifies to
F — Oy xY
\J I m
N*(Cy) = Cpxg*’

i
Since the diagram is clean and of excess zero we have the exact sequences on the tangent level:
0—TF —T(Cy xY x N (Cp)) = T(Cy xg%) — 0
and hence
[TF|F = |T(Co x V)2 [TN"(Co) [ @ [T(Co x g7)| 7% = Y2 @ [T(N7(C2)]* @ 7| 7%,

To determine o(u), let us choose local coordinates (2, 2"') so that locally Cy = {&’ = 0}. Then locally
we have

6CI — a(l‘//)/ei(xlvf”)dfldl"

so that
o(6c,) = a(x")Vdir/de'.

The 1/2-density V/din/dE is invariantly defined on N*C,, as the principal symbol of the invariant convolution
operator. The principal symbol of the convolution with av/di is just a times this canonical one.

By part (a), T', 1 is diffeomorphic to a disjoint union of copies of Y. So we may express o(T, 1) as
a collection of 1/2-densities on YV, each one given as a smooth coefficient times the canonical volume 1/2-
density |dy|%. To determine the coefficients, we first note by regularity of «, C, = G/T where the action
of GG is by conjugation. The derivative of the action, Ad*(g), trivializes the normal bundle, i.e. gives the
isomorphism N*(Cy) =2 G/T x t*. That is,

TyN* (Co) = (g7 tg)” @ g 'ty =g
so that

I To(N*(Co))|2 @ g7 72 = 1.
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Now g carries the natural bi-invariant volume density dg of the Killing metric. However, the isomorphism
above to T,N*(Cy) is the same as occurs in the Weyl integration formula to express the Haar density
dg as a density on G/T x T ([B.tD 1V]). Namely if ¢ : G/T x T — G is the map (g,t) — gtg~! then
q*(dg) = d@t(Adg/T(t_l) — Egyr)dedt where Eg 7 is the identity on Tc(G/T'). It follows that the canonical
1/2-density on N*(C}) is given by

’ q*(dg)
\/%\/? \/%\/_ \/d@t Adg/T t 1) Eg/T) ’ (24)

Since ¢ is used to identify the 1/2-densities on N*(C}) with those on g*, the ratio with the bi invariant 1/2-
density on g* is

T AdG/T(t Sy . Hence the 1/2-density factor of the symbol on the 95 (y ( ) -component

a(g¥ (v))
Vdet(Adgr(t=")—Egr)
we get the same (kind of) 1/2-density on T', ;. As in the proof of the Weyl character formula (see the
discussion in §5.5), the denominator \/det(Adg;r(t=1) — Eqr) gives (at least, up to sign) the the Weyl
denominator in the symbol described in (c).

of o(T), 1) equals Since the fiber of F' — I',, 1 is discrete (and usually a single point),

This concludes the proof of (c) and hence of the theorem. [
Theorem B(i) and Proposition 3.2.1 yield the following

Corollary 5.1.1 (a) For all k > 1, the composition power T 1, s clean and

Tk:L EI (dlmT dlmG)(B < B FNL)

with Fﬁ,L = Graph(x,fJi) where J = (Jk, ..., j1) and where

+-+ - -
Xier = (1) = xp(wje™wp g2 wpt) g,

(b) The component U(T[ij)f”i of the principal symbol U(T[ij) on Gmph(x,f;']'i) is given by

1 kd Y
”2n -1

a(gis, () lyl~ =

= =50z W)

(L7

1
w,L.j )|dy|2 ®(g$jl)*ﬂ-

v, (v)y) —

5.2 Sobolev smoothing properties of ray Markov operators: Proof of Theorem
B(ii)

We begin by defining a scale of Sobolev spaces W* H?(B) which are the Hardy space analogues of the usual

Sobolev spaces W?*(B) on a compact manifold B.
Recall that the W*-norm of a distribution f € D(B) is defined by

1 llwe = 112° 1|2

where P is a positive elliptic pseudodifferential operator of order 1 and || - ||o denotes the L*-norm. In the
Hardy setting, the role of P> can be played by D = ; 69 This operator is an elliptic Toeplitz operator on
H?(B) in the sense that D has nowhere vanishing symbol on Y. Hence we make the following:

Definition 5.2.1 The Hardy-Sobolev space W*H?(B) is the space of f € H?(B) such that ||D* f|]> < oo.

We can describe the Hardy-Sobolev norms more concretely in terms of Fourier coefficients relative to the
Sl-action on B. Recall that H*(B) = @, , H2(B) where HZ(B) is the space of CR-functions of eigenvalue
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n for D. Let f € H*(B) and let f, be its ‘Fourier coefficient’ of degree n, i.e., its component in H2(B).
Then put

A1y = Y n* N Fall3.
n=0
Obviously, W* H*(B) for s > 0 is the space of f € H?(B) for which D*f € H?(B).
We recall that in the case of Fourier integral operators associated to local canonical graphs, there is a
general Sobolev smoothing result:

Theorem 5.2.2 ([H6, Vol.IV Theorem 25.3.1 and Corollary 25.3.2]) Let C' be a homogeneous canon-
ical relation that is locally the graph of a canonical transformation and let A € '™ (M x M,C). Then A is a
bounded operator from W*(M) to W*~" (M) for every real s.

The Toeplitz analogue of this result is:

Theorem 5.2.3 Let C' CY XY be a homogeneous canonical relation that is locally the graph of a canonical
transformation on' Y and let A € I"™(B x B,C). Then for every real s, A is a bounded operator from
WeH?(B) to Ws_mIHZ(B) with m' = m + %. We call m’ the effective order of A.

dim B—1

Proof:  Suppose first that A € I7— 2z (B x B,(), that is, A has effective order 0. We can write
A=3"", A; as a finite sum of operators such that each A;, i = 1,...,n, is associated to a canonical graph.
dim B—1

Hence A*A; € I7— 2z (B x B, A(Y)). We claim that Toeplitz operators of effective order 0 associated to
the identity graph on Y are bounded on H?(B). Granted this statement, it follows that

(Aju, Aju) = (A Aju, u) < const.(u, u), u € H*(B).

Thus, for all i = 1,...,n, A; is bounded on H*(B) and hence so is A.
To prove that ATA; € I~ g (B x B,A(Y)) is bounded on H?(B) we use that there exists a pseudod-
ifferential operator @ of order 0 such that [TI, Q] = 0 and such that A7 A; = TIQTI (see [BAM.G, Proposition

2.13]). Then for v € H*(B),

||Au||2 = ||[TTQMw||2 = ||QMu||2 < const.||Tul|2 = const.||ul|2

by the L?-boundedness of 0*" order pseudodifferential operators.
Finally, let A have order m. To show that A : W*H?(B) — Ws_mIHZ(B) is bounded it suffices to show
that D=™' A : W*H?(B) — H?*(B) is bounded. However, we can write

D= A= (D= AD™*)D* .

Since D*=™ AD~* is bounded on H?(B), it follows that D*=™" A is bounded from WeH?(B) — H?(B).
n

In particular, an isotropic operator of degree m < 0 is smoothing of degree —m’ = —(m + dim%) on
these spaces. By Theorem B(i), the ray Markov operator T}, 1 for d-functions on finite unions of regular
conjugacy classes is of order dim7" — dim . Hence in this case T}, 1 is smoothing of degree %. This
completes the proof of Theorem B(ii). [

5.3 The Hilbert-Schmidt property of ray Markov operators: Proof of Theorem
B(iii)
Here we assume that G is a classical compact Lie group. We prove that the ray Markov operator 7}, 1 for a

d-function on a finite union of regular conjugacy classes is a Hilbert-Schmidt operator.
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Recall Theorem B(i) and Proposition 3.2.1. Since ', 1 is a union of canonical graphs, the excess of the
composition szl o7} 1 1s dim B —1 and hence the order of T[ij is k(dimT —dim G) — % for all & > 1.
This implies that the effective order is m’(k) = k(dim 7T — dim ). Thus, by Theorem 5.2.3,

T[;:’L . HZ(B) — Wk‘(dim G—dimT)HZ(B) )
Furthermore, we have
Dk‘(dim G—dimT) . Wk‘(dim G—dimT)HZ(B) — HZ(B) )

It follows that
B = Dk‘(dlm G—dlmT)T[;:yL HZ(B) — HZ(B)

is a bounded operator leaving the subspaces H2(B), n = 1,2, ... invariant. For f = > f, € H*(B)
(according to €., HZ(B)) we then have

Bf =Y Bufn with ||Bu|l2 < C' Vn
n=1
for some constant C. Here || - || denotes the L? — L? mapping norm. Recall that the action of T[ij on
H?(B) is given by
Ty (F) =D i (o) fa -
n=1

Denoting the Hilbert Schmidt norm by || - ||zs, we thus have

[} [}
175 Lllzrs = Y 1a*(np)llis = Y a4 D) B, |5
n=1 n=1

It follows, since || By||%s < dnl|Bn||3 with d,, = dim H2(B), that
||T5,L||12‘IS < C Z nZk(dimT—dim G)dn ’
n=1
and hence that T[jL 1s Hilbert-Schmidt if

Z nZk‘(dimT—dim G)dn < 00. (25)
n=1

Since p is assumed to be an interior weight, dim H?(B) is a polynomial of degree |R*| = (dim G — dimT)/2
(the cardinality of the set of positive roots) in the components of p, and d,, < C'pdim G=dim T)/2 fop gome
constant C* and all n. Tt follows that the series (25) converges for 2k(dim 7—dim G)+(dim G—dimT)/2 < —1

and hence that T[ij 1s Hilbert-Schmidt for

14+ (dimG —dimT)/2
2(dimG — dimT)

k> (26)

But for the right hand side in (26) we have:

14+ (dimG —dimT)/2
2(dimG — dimT)

<1
-2

for all classical compact Lie groups. [
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5.4 The limit spectral measure: Proof of Theorem B(iv)

Let us recall the statement of Theorem B(iv).

Theorem B(iv) Let p be a §-function on the union of conjugacy classes Cyp, U Cp—1 as defined above and
let L = INp be an interior ray of representations of G. The asymptotics of the k™™ moments of the spectral
measures mf, , of T, 1 along L are given by

M () ~ AT ST g (X)) el G, (X))

(Jry s J1)
(- %)

(E(lj):;k) ((5(_11;0)]1 (Xp(wjkxile—kl . .wjlx:tle—ll))n [/B (: a(gijl(b))) dvol]

=1

Proof: The proof is very similar to that of Proposition 4.3.2. As in the case of the spherical means

operator, the F’Z 1, here are also finite unions of graphs of translates by certain circle elements, namely the

Xp(wjkxile_kl . ~wj1xi1w»_11)’s. This implies that the trace operation Tr(e'? o T[jL) is clean and that the
j_kl e ~wj1xi1wj_11

which corresponds to the fixed point set Y. Thus the excess of the trace operation is e = 2dim B — 1. Using

singular angles of the resulting distribution Y (6) are precisely the x,(w;, z'w )’s, each of
Corollary 5.1.1(b) for the principal symbol and plugging into the general formula of Proposition 3.3.1 gives
all the stated factors except for the py i.e. symplectic spinor factor.

The latter is calculated as in Proposition 3.4.1 (iv): From (b) we know that g (y) fixes pr(y) = o.
Hence we get the induced map gi(y)* on the space of symplectic spinors at o, that is, by applying M, the

(v)
orthogonal to TY = TQO x T(S! x IR+) in 7% B, of which the non-trivial part is the symplectic orthogonal

to T,0 in T*O. Identifying O = G/T, T*O = G/T x t*~, T,0~ = t*~ and dTg_i(y) =~ Ad*(gE(y)) on

k(y)t* " k~'. ;From the fact that ¢ (y) = k(y)weT w1 k(y)~! it follows that the eigenvalues of Ad* (g (y))
:I:lw—l)

metaplectic representation, to the normal part dTg‘i of the derivative. This operators on the symplectic

are the same as the eigenvalues of Ad*(wx on t~. These are given by the global roots e(a) evaluated

at wrw™!. As usual, we have (with z = ¢*)

M(Ad* (weEtw™)) = Maer, exp((a, X) o (27)

where I, is the harmonic oscillator. It follows that the diagonal matrix element

(ML (w* w™)en, ea) = e 1) s (28)

This factor is constant as we integrand over the fiber of the trace, and thus it persists to the moment
asymptotics as stated above. [
5.5 Example: uniform measure on conjugacy classes

As a check on our caluculations, let us consider the case of the symmetric uniform (conjugacy-invariant)
probability measure

1 1
d/,L = §di‘cg + §di‘cg_1 s

on Cp UCy—1 with = ¢ a regular element of 7. Random walks of this kind, but with highly singular x,
were considered in [Ro][Po].
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Since p 18 conjugacy invariant, it follows from Schur’s Lemma that for each p € G, the Fourier transform
ft(p) is a scalar. Namely

) 1 _ o 1 _ ReCh,(z
filp) = 5/ (plgeg™) + plgz~1g™1))dg = d—/ ReChy(geg™")dgls, = Tp()fdp
G pJSG 14

where the integral is with repect to Haar measure on G, C'h, denotes the character with ReCh, its real
part, and d, denotes the dimension of the representation p. Hence the spectral measures m/ are the delta
functions

mt = 5z — N (p))

where A7 (p) = %p”(x) is the eigenvalue of ji(p). It is obvious that M} (k) = A% (np)* so the asymptotics
of any moment is determined by the asymptotics of the first moment M, (1) = A®(np). However, the first

moment is simply the trace

My, (1) = dLTrﬂ(np) == dLRe/ Chyp(grg™t)dg = dLReC'hnp(x).
np np G np
So the calculation comes down to the asympotics of Chy,,(2) as n — oo.

The result must of course duplicate the Weyl character formula, for which we are about to give a Toeplitz
operator proof. The calculation follows the pattern of [P.Z, §3], except that here we are assuming « is a
regular element and there we assumed it was central. Hence the dimensions of fixed point sets are entirely
different and so therefore is the order of the asymptotics.

As usual, we form the generating function

Y(0) = Trile T,

and determine the principal singularities. They occur at the fixed points of z acting on O,. We may assume
z € T and then the fixed points form the Weyl orbit W - p of p. By a well-known argument [A.B]|B.G.V, T,
(conjugation by ) defines a Lefschetz map of O, with fixed points at the Weyl orbit Wp. The eigenvalues
of d1;|r,., are the values of the global roots e() at w™'zw. Hence the 1/2-density part of the symplectic

spinor trace of T, at w - p is given by Recall from the Weyl character and integration

1
VaetT—dTel=1,,,)
formulae that

det(I — dTy|y-1py) = det(I — Adg/T(wxw_l) = 9.

The formula makes it clear that det(I — d1%|y-1py) > 0 so we may take its square root. We also see that
§ = (—=1)I+1§ so that up to sign the square root equals

det(I — ATy |1 ) = £ilF+15(X).

To determine the sign one would have to analyse the Maslov factors, or else work with 1/2-forms rather than
with 1/2-densities. For the sake of brevity, we have ignored the analysis of Maslov factors in this article. A
careful discussion of the correct signs, in a closely related context, is given in [B.G.V, Theorem 8.7] and it
shows that the correct square root gives (—1)%é.

The remaining ingredient in the trace is the symplectic spinor part. Thus, we must consider d7;, acting
on the symplectic normal space 7,Y ~ at a fixed point y. We may identify 7,,Y~ with g*/t* and since the
action of T, on T™ B is the lift of the base action, dT; acts on g*/t* by the usual linear (conjugation) action.
In particular, it has the same eigenvalues as d7j; does on 7,0 where o is the projection of y. Thus, de|Tyy—
is a sum of rotations with eigenvalues e(a), e(—a)|ypw-1. Let us write e(a)|ypw-1 by 2@ (X)2) Under the
metaplectic representation M it therefore becomes

MTy|py-) = Mg el e
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where fa denotes the Harmonic oscillator Hamiltonian D? + u? with D = % and with v the ath coordinate
of g*/t*. Since the symplectic spinor part of the symbol is the projection m = e5 ® e} onto the ground state

e, the contribution to the trace of the spinor factor is
Tr/\/l(de|TyY_)7r = (Hacr, cHw(X),a)la en,en).

But the positive definite Lagrangean A is precisely defined by the complex structure on O, specified by
the choice of positive roots. Hence ey = ®aeR+ eq where e, is the ground state of [,. Since the lowest

eigenvalue of the harmonic oscillator is % we get

. ) . 1
w(X),oc)IaeA’ 6A> - HQER+<el<w(X)’°‘>I"6a, 6a> = HoceR+6(§Of)|wxw—1~

<HOcER+ 6i<
Putting together the 1/2-density, Maslov and spinor factors we get the Weyl character formula
1 w - n
Chnp(eX) = m Z (_1) Xﬂ(weXw 1) e(p+(wX))
weW

Dividing by the dimension we get
A (np) ~n~ 3dim0, Chy,(z)

corroborating the general formula. =
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