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4 �-functions on positively curved hypersurfaces: Proof of Theorem A 204.1 The Markov operator on L2(G): Proofs of Theorem A(i)-(iii) . . . . . . . . . . . . . . . . . . 214.2 Spectral asymptotics along rays: Proof of Theorem A(iv) . . . . . . . . . . . . . . . . . . . . 234.2.1 The ray Markov operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.2.2 The principal symbol �(T�;L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.2.3 The limit spectral measure: Completion of the proof of Theorem A(iv) . . . . . . . . . 254.3 Example: the spherical means operator and its translates . . . . . . . . . . . . . . . . . . . . 264.3.1 The spherical means operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.3.2 Translates of the spherical means operator . . . . . . . . . . . . . . . . . . . . . . . . . 285 �-functions on �nite unions of regular conjugacy classes: Proof of Theorem B 295.1 The ray Markov operator: Proof of Theorem B(i) . . . . . . . . . . . . . . . . . . . . . . . . . 305.2 Sobolev smoothing properties of ray Markov operators: Proof of Theorem B(ii) . . . . . . . . 335.3 The Hilbert-Schmidt property of ray Markov operators: Proof of Theorem B(iii) . . . . . . . 345.4 The limit spectral measure: Proof of Theorem B(iv) . . . . . . . . . . . . . . . . . . . . . . . 365.5 Example: uniform measure on conjugacy classes . . . . . . . . . . . . . . . . . . . . . . . . . 360 IntroductionThis paper, a continuation of [P.Z], is concerned with the spectral theory of random walks (G;�) on acompact Lie group G. Our purpose is to apply microlocal methods to study the spectrum of the Markovtransition operator T� of a random walk in the case where � is a Lagrangean measure on G. That is, where� 2 I�(G;�) is a Lagrangean distribution on G, with respect to some Lagrangean � � T �G� 0, in additionto being a probability measure on G. In particular, we are interested in the cases where � is a probabilitymeasure of the form(i) � = 1C (�X + �X�1 ) with X � G a positively curved hypersurface; or(ii) � = 1C PNj=1 �Cxj with Cxj the conjugacy class of xj.Here, �Y is a generalized �-function along Y , i.e. RY fd�Y with d�Y a smooth density on Y . Our aim is todetermine:� The asymptotics of the Fourier transform of � along rays of representations L = IN� of G;� The Sobolev smoothing order of T�;� The minimal power so that ��k 2 L2(G):When � is a Lagrangean measure, T� is a Fourier integral operator and in principle the global theory of suchoperators [H�o, Vols.III-IV] can be used for this purpose. However, there is too large a variety of possiblebehaviour to make such a general study feasible. Indeed, as � ranges over all Lagrangean measures, T� rangesover many possible types of FIOs (Fourier integral operators), each with its own Sobolev mapping propertiesand asymptotic behaviour. In many (even `typical') cases, repeated convolutions ��k and compositions T k�are `unclean' and lead to singular FIOs of various kinds [Ph][T.U]. Hence the classical theory of FIOs israrely su�cient to analyse the spectral theory of continuous Lagrangean random walks. However, for thespecial classes of random walks (i){(ii) above we will show that all convolutions and compositions are clean,at least along rays, and hence obtain simple and relatively complete solutions of the problems above.To introduce and motivate the problems we are considering, let us recall some classical results on the(Euclidean) Fourier analysis of �-functions on positively curved hypersurfaces. Thus, we suppose that X �IRn is a compact embedded oriented hypersurface and let G+ (resp. G�) be the Gauss map correspondingto the outward (resp. inward) unit normal. Recall that X is positively curved if G+ : X ! Sn�1 is adi�eomorphism and that the Gaussian curvature K(x) at x 2 X is the density of G�(d�Sn�1 ) with respect2



to dS (where dS is the Euclidean surface measure of the hypersurface). The following is a well-known resultdue to Hlawka:Theorem 0.0.1 (cf.[H�o, Vol.I Theorem 7.7.14 - 15]) Suppose that X is a hypersurface. Fix � withj�j = 1. Then: �̂(��) = ��n�12 Xx:G�(x)=� a(x)jK(x)j�12 e�i�hx;�i�i��=4 +O(��n+12 )with � equal to the excess in the number of positive over negative curvatures. If X is positively curved thenfx : G�(x) = �g = fx�(�)g where x+(�) (resp. x�(�)) is the unique point of X where the outward (resp.inward) unit normal is in the direction �.Since IRn� is the unitary dual of IRn, this theorem gives the asymptotics of � along rays of representationsof IRn. >From these asymptotics, it follows that T� is a Fourier integral operator of order �n�12 . Hence itis Sobolev smoothing of order n�12 . For more details see Section 1.2.Our �rst goal is to generalize this model result to a compact semi-simple Lie group G. To do so, we mustreformulate the notion of the asymptotics of �̂ along rays of representations. Recall that, for each irreduciblerepresentation (�; V�) of G, the Fourier coe�cient�̂(�) = ZG �(g)d�(g) : V� ! V�is an operator on the �nite dimensional representation space V�: When � is symmetric, �(g) = �(g�1), then�̂(�) is self-adjoint. >From its eigenvalues f��;j : j = 1; : : : ; dimV�g we form the spectral measuredm�� = 1dimV� dim V�Xj=1 �(� � ��;j) (1)on IR. These measures will play the role of the scalar Fourier coe�cients of a measure � in the abelian case.To explain the notion of asymptotics along rays, we recall that by the Cartan-Weyl theory, the unitarydual Ĝ of G may be parametrized by integral lattice points � in a Weyl chamber t�+ of the (dual) Cartansubalgebra. By a ray of representations L = IN� we mean the direct sum of the irreducible representationsparametrized by the ray of lattice points. Thus, we are interested in the asymptotics of dm�n� as n!1:By a basic construction in homogeneous quantization theory [G.S.1], this ray of representations maybe concretely realized as the Hardy space H2(B�) where B� ! O� is the canonical circle bundle overthe coadjoint orbit associated to �. Just as the representations Vn� parametrized by lattice points n�along the ray may be concretely realized as the holomorphic sections �(O�; L
n) of the `pre-quantum'holomorphic line bundle L ! O�, so the direct sum of these holomorphic sections may be realized as thespace H2(B�) of CR-functions on the principal circle bundle B� associated to L. The (Cauchy-Szego)projector �� : L2(B�)! H2(B�) is a special type of Fourier integral operator (with complex phase) knownas a Toeplitz operator. It has the (symplectic) geometric interpretation of restricting things to the cone thruO� or, more precisely, to the symplectic coneY = f(b; r�b) : r 2 IR+g � T �(B�)thru the `contact structure' � on B�; Y is a circle bundle over IR+O�: In particular, given a random walk �on G, we can form the Markov transition operator along the ray,T�;IN� := ��T��� : H2(B�)! H2(B�); T� = ZG Tgd�(g)3



where Tg is the translation operator by g on L2(B�):The asymptotics of the spectral measures dm�n� can be read o� from trace formulae involving powers ofT�;IN� as long as these powers are clean compositions. A key point of this paper is that the compositionpowers of our two basic random walks (i){(ii) above are always clean when restricted to rays. This allowsus to avoid the serious technical complications involving singular compositions [Gr.U, 2] [Ph], which wouldgrow more and more di�cult as one took higher convolution powers.In the case of a �-function on a positively curved hypersurface, the Markov operator T�;G on L2(G)is a standard FIO associated to a union of canonical graphs and so the theory of convolutions with such�-functions is very analogous to the IRn case. The main di�erence is that there are many more possible typesof asymptotics of �̂(n�) as X varies over positively curved hypersurfaces of G and � varies over irreducibles.To describe the di�erent asymptotics we will need to introduce some notation. For simplicity, assume thatX = X�1. Given an orbit O = O� we then let X�O = G�1� (O) so that G� : X�O !O is a di�eomorphism. TheGauss maps induce contact transformations on B� (or equivalently homogeneous canonical transformationson Y ) given by �� : B� ! B�; ��(b) = G�(o) � bwhere g �b denotes the action of G on B�:We also denote by �� the S1-action of B� !O�; S1 acts by contacttransformations. Let Fix(�) denote the �xed point set of a contact transformation � on B�. Assuming (aswe always will) that it is clean, Fix(�) carries a canonical density which we will denote by d��. Finally, �denotes a certain Maslov index (for the sake of simplicity we will not describe it in detail). We then have:Theorem A Suppose that X � G is a positively curved hypersurface, and let � = a�X , i.e. RG f(g)d�(g) :=RX f(x)a(x)dS(x) where dS is the surface measure on X induced by Haar measure and where a 2 C1(X).Then:(i) T�;G is a Fourier integral operator of order �dimG�12 associated to the union of canonical graphs��;G = f((x; �); g�(x; �) � (x; �)) 2 T �(G� G)� 0; g�(x; �) = G�1� Ad(x)��g:(ii) T�;G is Sobolev smoothing of order dimG�12 , i.e. is bounded from W s(G)!W s+ dimG�12 (G).(iii) ��k 2 L2(G) for k � 3:(iv) Along the ray of representations IN�, the moments of dm�n� have the asymptotic expansionM�n�(k) � n k2 (1�dimG)+ 1+e2 �dimB 1vol(B) X������ X�j2������� e�in�j�i��=4 ZFix(����������j ) f������ d��������where f������ := G�1�� ( apK ) � (G�1�� � ��)�( apK ) � � � (G�1�� � �� � � � � � ��)�( apK )and where ������� := f�j : e := dimFix(�� � � � � � �� � ��j ) is maximal g:The reason why the moment formula is simpler in the Euclidean case is simply that co-adjoint orbits aresingle points �: Hence the analogue of X�O is just X�� = fx�(�)g. The corresponding circle bundle is simplya circle B� �= S1 on which G = IRn acts by the character eihx;�i. The canonical transformations �� act onB� by ��(b) = G�1� (b) � b = eihx�(�);�iband hence the integrals over �xed point sets reduce to evaluations of eihx;�i apK at the points fx�(�)g: Thuswe reproduce the Eucliean expression modulo Maslov factors.4



The moment asympotics above allow for all possible dimensions of �xed point sets from e = 0 up toe = dimO and indeed as X varies over all hypersufaces, any of the even dimensions can occur. To illustratethis we will look in detail at the case of geodesic spheres Ss(g) centered at di�erent g 2 G: The nature of thecanonical transformations �� and particularly the dimensions of the �xed point sets of �� � � ��� then turnsout to depend on the degree of singularity of g. When g = e the �� reduce to the identity on the orbit andall of O is �xed, while if g is a regular element the set of �xed points on O is discrete.The case of a sum of �-functions along a union of conjugacy classes is more di�cult because the Lagrangean��;G underlying the transition operator T�;G for� = 1C nXj=1 �Cxj + �Cx�1j ; ZG f(g)�Cxj = ZCxj f(y)d�j (y) (2)is not a local canonical graph in T �(G � G): However, when restricted to a ray of representations it doesbecome a Fourier Toeplitz operator associated to local canonical graph on the symplectic cone Y . Thissimpli�cation occurs because the ray involves just one orbit O�. For simplicity, let us assume that there is justone x. With no loss of generality we may assume x lies in the maximal torus T . Then to each o = k�k�1 2 Othere corresponds 2jW j group elements g�w (o) := kwx�w�1k�1 such that (g�w (o); o) 2 N�Cx� : These `inverseGauss maps' g�w : O ! Cx induce contact transformations ��w on B de�ned by��w(o; ei�) = (g�w (o) � o; ��(g�w (o))ei�):It is easily seen that g�w (o) � o = o so that �� is well-de�ned on g�w (o). Since Y ! B !O are all bundles, wecan (and will) lift g�w to B or to Y and regard ��w as a homogenous canonical transformation on Y .To state the results, we will need some further notation from compact Lie groups, which we adopt from[B.tD]. We let � : t! C denote the Weyl denominator�(H) = ��2R+(e(12�(H))� e(�12�(H))); H 2 twhere t is the Cartan subalgebra and R+ denotes the set of positive roots. We put �+ = 12P� 2 R+�. Wealso use the notation � for an irreducible (no connection to �+), and denote its highest weight character by��. Finally, we denote by d _x the invariant normalized density on a conjugacy class. :Theorem B Let � = 12�Cx + 12�Cx�1 where �Cx = a d _x. Suppose x = eX is a regular element (X 2 t).Then:(i) T�;L is a Fourier-Toeplitz integral operator on H2(B) associated to the union of graphs��;L = tw2W;� graph(��w):(ii) T�;L is Sobolev smoothing of order dimB�12 on H2(B).(iii) Assume that G is a classical compact Lie group. Then T�;L is a Hilbert-Schmidt operator.(iv) The asymptotics of the moments of the spectral measures m�n� of T�;L along L are given byM�n�(k) � n k2 (dimT�dimG) 1vol(B) X(jk; :::; j1)(� � � ��) e(�+(�wjk (X))) � � � e(�+(�wj1 (X))))(�1)wjk � � � (�1)wj1�(�X) : : : �(�X) (��(wjkx�1w�1jk � � �wj1x�1w�1j1 ))n "ZB  kYi=1 a(g�wji (b))! dvol#5



where the wj's are the elements of the Weyl group W:These complete asymptotic expansions of the spectral measures along rays of representations generalizethe results of [P.Z] from the case of discrete random walks along rays to the continuous Lagrangean walksof the types (i)-(ii) above.We end this introduction by relating our methods and results to the usual concerns regarding randomwalks (G;�). The main problem is to determine the rate of convergence of the convolution powers ��kto stationarity (i.e. Haar measure dg). There are several reasonable ways to measure this distance, e.g.the operator norm jjT k� � Ejj, the total variation norm jj��k � dgjjTV , or, when well-de�ned, the L2-normjj��k � dgjjL2. Here, E(f) = RG fdg. Although the total variation norm is viewed as primary, in practice itis often estimated from above by use of the Schwartz inequality4jj��k � dgjj2TV � jj��k � 1jj2L2 = X�6=12Ĝ jj�̂kjj2when ��k 2 L2. Hence it is important to know the minimal power k such that ��k 2 L2 and if possible tomeasure the rate of decay of jj��k � 1jj2L2.In favorable cases, our methods at least determine the minimal such k and the asymptotics of jj�̂kjj2along rays. They do not (as they stand) determine the decay of jj��k � 1jj2L2, since this also depends onlow-lying eigenvalues (in particular, the spectral gap) and on sparse sets of eigenvalues along rays. Indeed,the results of this paper involve only the principal symbol data of the Markov operator T�, and would notchange if a �nite rank or smoothing operator were added to T�, or if instead of �-functions we consideredmore general polyhomogeneous distributions conormal to a hypersurface or conjugacy class. This is the pricewe pay for general asymptotic results.On the other hand, as far as we know, there are few known estimates of rates of convergence to stationarityof random walks on compact semi-simple Lie groups. The estimates of which we are aware involve randomwalks where all of the eigenvalues of T� can be calculated in closed form [Ro] [Po] [L.P.S], or at leastwhere there is a comparison to such a walk. Moreover even when explicit formulae for the eigenvalues areavailable, it is not clear what properties of the variety V supporting � or of the choice of measure � on Vdetermine the decay rate of jj��k�1jj2L2. Indeed, this paper began as an attempt to understand the L2 ratesof convergence to stationarity of various random walks (especially random re
ections) in [Ro][Po1,2]. Byexplicitly calculating the spectrum of T� in these cases, the �rst author found that the decay rate dependedsensitively on the singularities of V and �. Since microlocal methods are designed to relate singularities of� to decay in �̂, it seemed natural to apply them to these and related random walks.1 BackgroundIn this section we review a number of prior results on convolution operatorsT�f = � � f; f 2 L2(G); � 2 M(G)for various kinds of measures � on Lie groups. We will not be using these results, but include them asrepresenting the currently known general results on random walks and convolution operators.1.1 Convolution of measures on a Lie group.In the case of non-abelian Lie groups convolution operators T�f = � � f are Fourier multipliersdT�f(�) = �̂(�)f̂ (�)6



where (�; V�) runs over the unitary dual Ĝ of G, where f̂ (�) is the component of f 2 L2(G) in V� and where�̂(�) = ZG �(g)d�(g) : V� ! V�is the group Fourier transform of �. For background see [H.R, Vols.I-II].The simplest case is that of central measures. Recall that a measure � on G is central if it is invariantunder conjugation, i.e. �(S) = �(xSx�1) for all x 2 G and all Borel sets S. The Fourier transform�̂(�) = RG �(g)d�(g) of a central measure is a scalar matrix �̂(�) = c�;�Id� for every irreducible representation� 2 Ĝ. The asymptotic behaviour of �̂ and the Sobolev smoothing properties of T� are in many waysanalogous to the abelian case. Some general results are the following:Theorem 1.1.1 ([Ra, Theorem 2.2]) Let G be a compact simple Lie group of dimension n and let �i,i = 1; :::; n be continuous central measures on G. Then the convolution product � = �1 � � � ���n is absolutelycontinuous with respect to Haar measure on G.Theorem 1.1.2 ([Ra, Corollary 3.5]) Let G be a compact simple Lie group and � a central measure onG. Then � is a continuous measure if and only ifc�;� ! 0 as �!1 in Ĝ :A number of basic results on more general measures have been proved by Ricci-Stein and Ricci-Travaglini.The following are most relevant to this paper.Theorem 1.1.3 ([R.S.II]) Let V1; : : : ; Vn be connected analytic submanifolds of a unimodular Lie groupG and assume that the product V1 : : :Vk contains an open set of G. If for each j = 1; : : : ; k we are givenmeasures d�j = �jd�j where d�j is surface measure on Vj and where �j is a smooth function with compactsupport on Vj , then d�1 � d�2 � : : : � d�k is absolutely continuous with respect to Haar measure dg and itsdensity � satis�es a right L1-Holder condition.By a right L1� Holder condition of exponent � > 0 one means thatZG j�(xexpY )� �(x)jdx � CjjY jj�where Y 2 g. Equivalently, ~� := � � exp 2 L1(g) satis�esZg j~�(X + Y )� ~�(X)jdX � CjjY jj�:In particular, suppose that V is an analytic submanifold of a compact Lie group G which generates G inthe sense that V is not contained in any proper closed subgroup of G. By [R.S.II, Proposition (1.1)], thereis a positive integer m such that V m contains an open subset of G. Hence:Corollary 1.1.4 Let � be a smooth delta function along an analytic submanifold V � G which generates Gand let m be the least integer such that V m contains an open subset of G. Then ��m << dg and its density�m satis�es Zg j ~�m(X + Y )� ~�(X)jdX � CjjY jj�:. 7



The last condition implies that ~�m 2 Lr(g) or equivalently ��m 2 Lr(G) for some r > 1 [R.S.III]. ByYoung's inequality for convolutions on a compact Lie group [H.R],jj��km jjq � jj�mjjr : : : jj�mjjr; kr = k � 1 + 1q ;it follows that ��mk 2 L2(G) if k � r2(r � 1) :Thus, a su�ciently high convolution power of � lies in L2(G): By this method, the power depends on m; �; r.1.2 Sobolev smoothing properties of convolutions.De�nition 1.2.1 A �nite measure � on G is said to be smoothing of order s on Sobolev spaces, or Hs-improving if T� : f ! f � � is bounded from Hm(G) to Hm+s(G) for all m 2 IR:Theorem 1.2.2 ([Ph]) Assume V is an analytic surface with non-vanishing �-curvature in IRn. Then forany � > 0, the Radon transform with measure d�V supported on V is smoothing of order 2� 12 +1�� on Sobolevspaces.We note that surface is in the literal sense that dimV = 2: When dimV = d it is natural to conjecturethat the order of smoothing is given by d� 1d+1 � �. The notion of �-curvature employed here is de�ned asfollows:De�nition 1.2.3 The analytic submanifold V � IRn is said to have nonvanishing �-curvature if, for any� 2 IRn � f0g, the function t ! h�; S(t)i on IRd has multiplicity at most � at any critical point. Here,t! S(t) 2 V � IRn is a local analytic parametrization of V .Roughly speaking, V has multiplicity at most � if � is the maximum number of points admitting agiven direction � 2 IRn among its normals. To be more precise, the multiplicity � of an analytic functionf : IRd ! IR at an isolated critical point a is de�ned by � = dimA(a)=I[@1f; : : : ; @df ] where A(a) is thespace of germs of analytic functions at a and I[@1f; : : : ; @df ] is the ideal generated by the germs of @jf ata. Nonvanishing Gauss curvature of a hypersurface V is equivalent to V having � = 1.Convolution with a smooth �-function along a positively curved hypersurface of a compact Lie group Gof dimension n should therefore be Sobolev-smoothing of order n�12 � � with n = dimG. Indeed, our resultsshow it is smoothing of order n�12 :2 Markov operators of random walksWe now take up the study of Lagrangean randomwalks and their Markov operators. The relevant backgroundon homogeneous quantization, rays of representations, Toeplitz operators and so on is contained in [P.Z,Section 2]. We continue here with a study of the Markov operators which arise from convolution withcontinuous Lagrangean distributions.Note: Throughout the paper we will use the isomorphisms TG �= G � g and T �G �= G � g� via lefttranslation. 8



2.1 Markov operators and moment LagrangeansA random walk is de�ned by the pair (�; �) where � is a representation of G. By de�nition, the associatedMarkov operator is given by T�;� = RG �(g)d�(g): Most often, � is taken to be an action G by translationson some homogeneous space G=K. However, all that is needed to get a geometric theory is that � is arepresentation of G by Fourier integral operators. As recalled in Section 0 (see also [G.S.1]), a Fourierintegral representation on L2(X) is the quantization of a Hamiltonian group action on T �(X) � 0. Thefollowing describes the (Schwartz) kernels of the Markov operators for random walks of this kind.Proposition 2.1.1 Suppose � is a Fourier integral representation of G on L2(X) with moment Lagrangean� and suppose � 2 Is(G;��) is a Lagrangean measure on G. Then, under clean composition hypothesis for�� � �, the Markov operator T�;� := ZG �(g)d�(g) 2 Ik(X �X;��;�)is a Fourier integral operator of order k � s � dimG4 associated to the Lagrangean��;� := f((x; �); g � (x; �)) 2 T �(X �X) � 0 : (g;�(x; �)) 2 ��g :Here � denotes the moment map of the lift of the G-action to the cotangent bundle T �X.Proof: This follows from the composition theorem for Fourier integral operators [H�o, Vol.IV Theorem25.2.3]. As proved in [G.S.1] and reviewed in [P.Z], � is a Fourier integral operator of order �dimG4 fromG�X to X associated to the moment Lagrangean� = f((g; 
); (x; �); g � (x; �)) : g 2 G; x 2 X; �; 
 2 g� : �(x; �) = 
gand � is associated to ��. If the composition T� is clean, then it is a Fourier integral operator associated to� � ��. To see whether it is clean and to determine the composite Lagrangean and symbol, one forms the�ber diagram F ! �# # �1�� ! T �Gi :Here the �ber product is F = f((g; 
); (x; �); g � (x; �)) : �(x; �) = 
; (g; 
) 2 ��g:The cleanliness conditions are (i) that F be a manifold and (ii) that the derived diagramTF ! T�# # d�1T�� ! T (T �G)diis also a �ber diagram. For condition (i), put��� := f(g; 
) 2 �� : 
 2 �(T �X � 0)g; �g�� := f
 2 g� : 9g 2 G; (g; 
) 2 ���g:Then the projection to the �rst factor de�nes a map �1 : F ! ��� whose �bers are the sets ��1(
) with
 2 �g�� : A sometimes useful su�cient condition that F be a manifold is that ��� be a manifold and that�1 be a map of constant rank. For instance, in some applications one has �(T �G � 0) = g� and even that�(T �xG� 0) = g� for each x 2 G (see the next proposition). In this case, F �= �� � G:For condition (ii), we need to show additionally that TF = f(u; v) 2 T���T� : di(u) = d�1(v)g. For each(a; b) 2 F , the inclusion TF(a;b) � f(u; v) 2 Ta���Tb� : di(u) = d�1(v)g is trivially true. Hence, a necessaryand su�cient condition for cleanliness is that dimT(a;b)F = dimf(u; v) 2 T�� � T� : di(u) = d�1(v)g.9



2.2 The principal symbol of T�;�To determine moment asymptotics we will need to know special cases of the principal symbol �(T�;�). Wewill treat it as a 1/2-density on ��;�; although it is actually a 1/2-density tensor a section of the Maslovline bundle L ! ��;�: Ignoring the Maslov factors has the consequence that the coe�cients of our momentasymptotics contain undetermined powers of i. Often they can be determined by comparison with knowntraces such as given by the Weyl character formula (see x5.5). They could also be avoided by using the1/2-form formalism of [G.S.2]. In any case, it would require a technical digression of unwonted length to pindown these powers of i and we have refrained from doing so.Let us now outline the calculation of the 1/2-density factor in the general case.Under the cleanliness hypothesis, the derived diagramTfF ! T
�# # d�1T��� ! T�(T �G)diis a �ber product diagram. Hence the following sequence of vector spaces is exact:0 �! TfF ��! T��� � T
� ��! T�(T �G) �! coker� �! 0 (3)where � is the inclusion and � (f1; f2) = f1 � f2: The excess e of the diagram is the dimension dim coker� ofT�(T �G)=� (T��� � T
): When e = 0 the composition (or diagram) is called transversal; it will arise oftenin our applications.Let jV js denote the space of s-densities on a vector space V . The alternating tensor product of 1/2densities on an exact sequence of vector spaces has a canonical trivialization, and thereforejTfF j 12 
 jcoker� j� 12 �= jT��� � T
�j 12 
 jT�(T �G)j�12 : (4)Since T �G carries a canonical symplectic volume density jdg ^ d
j, we can remove the factor jT�(T �G)j� 12 :When e = 0 the canonical isomorphism further simpli�es tojTfF j 12 �= jT��� � T
�j 12 : (5)Hence in the transversal case we have a natural composition of 1/2-densities(a; b) 2 jT�j 12 
 jT�j 12 ! a � b 2 jT (� � �)j 12 : (6)Here � �� is the composition of the Lagrangeans. In the transversal case, F ! � �� is a �nite cover, so thecomposite symbol is a sum over the �ber of the pointwise composition.In the case e 6= 0, the projection F ! � � � is a �bration and the composite symbol is given bya � b
 = ZF
 a� b (7)where a� b is the density on the �ber F
 over 
 with values in jT (� ��)j 12 de�ned in [H�o, Vol.III Theorem21.6.7] (see also [H�o, Vol.IV Theorem 25.2.3]).2.3 The Markov operator on L2(G)We now specialize to the case where G acts on itself by left multiplication L. The resulting representation� on L2(G) is isomorphic to the left regular representation of G. In this case the Markov operatorT� : L2(G)! L2(G); T�f(x) = ZG f(gx)d�(g)associated to a symmetric Lagrangean measure � is always an FIO.10



Proposition 2.3.1 Let � 2 Is(G;��) be a Lagrangean measure on G. Then the corresponding Markovoperator T� 2 Ik(G�G;��) is a Fourier integral operator of order k = s� dimG4 associated to the Lagrangean�� = f((x; �); (gx; �))) 2 T �(G� G)� 0 : (g;Ad�(x)�) 2 ��g �= �� �G :Its principal symbol is given by �T� = �(�) 
 jdxj 12as 1/2-densities on �� � G.Proof: As above, we need to show that the composition �� � � is clean. In fact, it is always transversalin this case. To prove this, we begin by describing the moment map �.Let us denote the canonical 1-form on T �G by �. For every A 2 g, the lift of the group action to T �Ginduces a vector �eld A] on T �G. Since the Lie derivative DA]� is zero for all A 2 g, we have0 = iA]d�+ diA]� = �iA]! + diA]� ;where i means insertion and hence h�(x; �); Ai = iA]�(x;�) :Since A](x;�) = ddt jt=0((exp tA)x; �), we haveh�(x; �); Ai = �(Ad(x�1)A)and we get �(x; �) = Ad�(x)� :The moment Lagrangean therefore has the form� = f((g;Ad�(x)�); (x; �); (gx; �)) : g; x 2 G; � 2 g�g= f((g; 
); (x;Ad�(x�1)
); (gx;Ad�(x�1)
)) : x; g 2 G; 
 2 g�g �= T �G� G :We now claim that the �ber diagram F ! �# # �1�� ! T �Giis transversal. The �ber product equalsF = f((g; 
); (g; 
); (x;Ad�(x�1)
); (gx;Ad�(x�1)
)) : (g; 
) 2 ��g:We see that �(T �xG� 0) = g� � 0 for any x and hence thatF �= �� �Gfor any ��: In particular, F is always a manifold of dimension 2 dimG.>From this it follows easily that TF = f(u; v) 2 T�� � T� : di(u) = d�1(v)g and hence that the derived�ber diagram is clean. Indeed, the dimensions of the two vector spaces are equal and hence the spaces mustcoincide. It follows that the above �ber diagram is clean with excess e = dimF+dimT �G�dim���dim� =0. 11



Finally, any ((g; 
); x) 2 ���G determines a unique point ((x;Ad�(x)�1
); (g �x;Ad�(x)�1
)) 2 �� andconversely any point of �� determines ((g; 
); x) 2 �� � G. The �rst statement of the proposition followsthen from Proposition 2.1.1.Now consider the principal symbol �(T�), a 1/2-density on �� �= �� � G: By the above, it is given by�(�) � �(TG) on the composite Lagrangean �� �= F: We also have that �(TG) is the canonical volume 1/2-density given by jdxj 12 
 jdg ^ d
j 12 in the parametrization of � by G� T �G. According to the isomorphismabove, we divide by the canonical 1/2-density on T �G, leaving the stated result.2.4 Random walks on rays of representationsIn this section, we specialize to the case of a ray of representations L = IN�, that is, we restrict the Markovoperator T�;G from L2(G) to the direct sum of irreducibles along a ray thru a given irreducible �: The rayMarkov operator is thus: T�;L := 1Mn=1ZG(n�)(g)d�(g) (8)Borrowing from [G.S.1], we realize the ray L as the Hardy space H2(B�) of CR-functions on the pre-quantum circle bundle B� ! O� where O� is the coadjoint orbit of �: We often drop the subscript � whenthe ray is understood to be �xed. Thus, T�;L = RG�TB;gd�(g) where TB;g is the left action of G on the ho-mogeneous space B and where � is the Cauchy-Szego projector (the orthogonal projection L2(B)! H2(B):For the relevant background we refer to [G.S.1] and [P.Z, Section 2].The ray Markov operator is analogous to but somewhat more complicated than T�;G because it is aFourier-Toeplitz operator rather than a standard FIO. Roughly speaking, a Fourier-Toeplitz operator A is aFourier integral operator with complex phase which is partly oscillatory and partly Gaussian. The oscillatorypart of the phase parametrizes a canonical relation C � Y � Y where Y � T �B� is the symplectic conegenerated by the contact form � (cf. x0). In most respects A behaves like an FIO associated to the canonicalrelation C, except that its symbol is a symplectic spinor rather than a 1/2-density [BdM.G]G: that is,�(A) 2 
 12 (C)
 Spin(C) 
 �(L)where 
 12 (C) are the 1/2-densities, where Spin(C) are the symplectic spinors, and �(L) are the sections ofthe Maslov bundle, over C.As mentioned above, we will ignore the Maslov factors. The spinor factors are by comparison tooimportant to omit: As will be seen in x5.5 they are responsible for the presence of the factors e(�+(w(X)))in the terms of the Weyl character formula. However, the only symplectic spinors we need to confront arethose which arise as parts of symbols of the Toeplitz operators �F� where F is a Fourier integral operatorassociated to a local canonical graph.Recall from [BdM.G] that the symbol � := �(�) of the Toeplitz (Cauchy- Szego) projector is the idem-potent symplectic spinor � = e�
 e�� equal to the projection operator onto the `vacuum state' associated to�. It is a symplectic spinor on the twisted diagonal Y # = f(y;�y) 2 Y � Y g. We refer to [BdM.G, x4, 11]for the de�nitions and background.Suppose now that F is a Fourier integral operator associated to a local canonical graph. Since the dis-cussion is local, we may assume it is actually associated to the (twisted) graph of a canonical transformation�. Then the symbol of �F� is a an element of 
 12C 
Spin(C). Just as e�
 e�� is the symbol of � at a point(y;�y), so the symplectic spinor part of �(�F�) has the form e�
��e� where �� is the map on symplecticspinors at y to symplectic spinors at �(y) induced by � (see [G, x8][BdM.G, x11]). Roughly speaking, d�ytakes the symplectic normal bundle TyY ? at y to that at �(y). Choosing a metaplectic frame for each, d�yis identifed with a linear symplectic map. Hence we can apply the metaplectic representation M to the12



normal part d�?y : TyY ? ! T�(y)Y ? to get a map from symplectic spinors at y to those at �(y); this is theinduced linear map ��: For simplicity of notation we will also write e� 
 ��e� more simply as ���: In caseswhere � is the lift of a group element g we will denote the induced maps by g�e� resp.g��: Then we have�(�F�) = ajdyj 12 
 ��� (9)for some function a on C.The following proposition gives a general description of ray Markov operators. The notation pr: : B !Ostands for the natural projection and �Y for the restriction of the moment Lagrangean � � T �G�T �B�T �Bto T �G� Y � Y .Proposition 2.4.1 Suppose � 2 Is(G;��) and let L = IN� be a ray of representations. Under the cleancomposition hypothesis for the composition �� � �Y ,T�;L :2 Ik(B �B;��;L)is a Fourier-Toeplitz integral operator of order k � s+12�2 dimB+dim G4 on H2(B) associated to the Lagrangean��;L = �� � �Y = f((b; r); (g � b; r)) : (g; pr:(b)) 2 ��g:Its symbol is given by (�(Tg;L) � �(�))j(y;y0) = Zg2Fy;y0 (jdyj 12 
 g��)� �(�)where Fy;y0 = fg 2 G : g � y = y0; (g; pr(y) 2 ��): is the �ber of the composition and where times is thecomposition law de�ned in [BdM.G].Proof: We begin with a microlocal description of the Toeplitz group representation Tg;L :=L1n=0 RG(n�)(g)and then consider its integration against �:Thus, let Tg;B be the representation of G by translations on L2(B). The moment Lagrangean of Tg;B isgiven by �B = f((g; 
); (b; �); g � (b; �)) : �B(b; �) = 
gwhere h�B(b; �); Xi = �(X#b )is the moment map.Then recall from [P.Z] that � is a Toeplitz operator of order �12(dimB�1) corresponding to the identityrelation on the symplectic cone Y � T �B associated to B , i.e., � 2 I� 12 (dimB�1)(B�B;�(Y )). By [BdM.G,Theorem 7.5] composition with � is always clean. Hence the �ber diagramF ! �B �= G� T �B# #�(Y ) �= Y ! T �Bis clean. Since F = f((g;�(b; r)); (b; r); (g � b; r) : g 2 G; (b; r) 2 Y g �= G� Y , the excess is e = 0. HenceTg;B �� = Tg;L 2 I 12� 2 dimB+dimG4 (G�B �B;�Y )where �Y = f((g;�(y)); y; g � y) : g 2 G; y 2 Y g � T �G� Y � Y : (10)13



Since T�;L = RG Tg;Ld�(g), we need to compose �� � �Y . The relevant �ber product diagram isF ! �Y# # �1�� ! T �GiProvided the diagram is clean with excess e, we getT�;L 2 Is+ 12� 2 dimB+dimG4 + e2 (B �B;��;L)where ��;L = �� � �Y = f((b; r); (g � b; r)) : (b; r) 2 Y; (g; ro) 2 ��g :Here we have used the fact that the moment map �L for the action of G on Y is given by �L(b; r) =r � pr:(b) = ro (see [G.S.1, Theorem 4.6]).The �ber product equals F �= f((g; pr:(b)); (b; r); g � (b; r) j(g; pr:(b)) 2 ��g: (11)As above, put��L� := f(g; 
) 2 �� : 
 2 �L(Y � 0) = IR+Og; �O� := f
 2 IR+O : 9g 2 G; (g; 
) 2 ��g:Then the projection to the �rst factor de�nes a map �1 : F ! ��L� whose �bers are the sets ��1L (
) with
 2 �O� :Consider now the symbol �(T�;L) = �(Tg;L) � �(�): We note �rst that�(Tg;L)j(g;�(y);y;g�y) = jdgj 12 
 jdyj 12 
 g�� 2 
 12 (�Y ) 
 Spin(�Y ): (12)This follows from the fact that � � Tg;B is a transversal composition and from the fact that �(Tg;B) is thecanonical symplectic volume 1/2-density. Also, as described above, the canonical transformation de�ned byg transforms � to g�� = e� 
 g�e� (cf. [G, p.233], [BdM.G, x4,11].)The further composition with �(�) is given by the composition formula for the Fourier Toeplitz operatorTg;L and the Lagrangean distribution � in [BdM.G, x7]. The �ber of the compositionmay be identi�ed with asubmanifold of G and �(Tg;L)��(�)j(g;y;g�y) is a density along the �ber with values in 
 12 (��;L)
Spin(��;L):3 Generalities on moment asymptoticsAs a �nal preliminary to the proofs of Theorems A and B, we state some generalities on convolution powersof Lagrangean submanifolds, composition powers of Markov Lagrangeans and asymptotics of moments ofspectral measures along rays for any Lagrangean measures satisfying appropriate cleanliness conditions. Wewill show in later sections that our basic examples satisfy these conditions.3.1 Convolution of Lagrangean submanifolds � ? �:Underlying the asymptotics we are interested in is the geometry of convolutions of Lagrangean submanifolds.As usual, we use the identi�cation T �G �= G� g by left translation.14



De�nition 3.1.1 The convolution � ? � of two Lagrangeans �;� � T �G is de�ned as� � � :=M�(�� �)where M : G� G! G denotes the the multplication map (x; y)! xy:Recall that the pushforward f�� of a Lagrangean � � T �X under a smooth map f : X ! Y is given byf�� = f(y; �)j9x 2 X with f(x) = y and (x; df�(�)) 2 �g :Hence we have:Proposition 3.1.2 The convolution � ? � is given by� ? � = f(xy; 
) 2 T �Gj(x;Ad�(y)
) 2 �; (y; 
) 2 �g :Proof: For any x; y 2 G, A;B 2 g, we have(x exp tA)(y exp tB) = xy expft(Ad(y�1)A+ B) + t2[Ad(y�1)A;B] + :::g :Hence dM (A;B)xy = Ad(y�1)A+ B and dM�(
) = (Ad�(
); 
).The convolution of Lagrangeans is associative. The n-fold convolution power ��n = � ?� ? ::: ? � (n times)of a Lagrangean manifold is thus given by:Corollary 3.1.3��n = f(x1x2 � � �xn; 
)j(x1; Ad�(x2 � � �xn)
); (x2; Ad�(x3 � � �xn)
); : : : ; (xn�1; Ad�(xn)
); (xn; 
) 2 �g :3.2 Clean compositions of Markov LagrangeansAs above, we suppose that � 2 Is(G;��) is a Lagrangean measure. We �x a ray of representations L = IN�and consider the ray Markov operator T�;L. Our purpose here is to prove:Proposition 3.2.1 Suppose that T k�;L = T�;L � T�;L � � � � � T�;L is a clean composition of Fourier-Toeplitzintegral operators. Then T k�;L 2 Irk (B � B;�k�;L), that is, T k�;L is a Fourier-Toeplitz operator on L2(B) oforder rk = k(s + 12 � 2dimB+dim G4 + e2 ) + e�k2 associated to the isotropic manifold�k�;L = f(y; g1g2 : : : gk � y) : y 2 Y; (g1; g2 � � �gk � o); (g2; g3 � � �gk � o); : : : ; (gk; o) 2 ��g � T �B � T �Bwith o = pr:(y).Proof: Note that T k�;L = T��k ;L and ���k = ��k� . Assuming clean composition and using Corollary 3.1.3,we get T k�;L 2 Ik(s+ 12� 2 dimB+dimG4 + e2 )+ e�k2 (B �B;�k�;L)where e�k = e2 + :::+ emwith ej denoting the excess of the composition �j�1�;L � ��;L and where�k�;L = ��;L � ��;L � : : : � ��;L = ��k� � �Y = f((b; r); (g � b; r)) : (b; r) 2 Y; (g; o) 2 ��k� g =f((b; r); (g1g2 � � �gk � b; r)) : (b; r) 2 Y; (g1; g2 � � �gk � o); (g2; g3 � � �gk � o); : : : (gk�1; gk � o); (gk; o) 2 ��g :15



3.3 General formula for the limit spectral measure of a random walk along arayOur next object is to give a schematic formula for the asymptotics of the spectral measures m�n� as de�nedin (1) along rays of representations. As in [P.Z], we do this by using the moment method. We begin bystating a general result under a clean composition hypothesis. This hypothesis is hard to check in practiceand frequently fails to be true, so we do not put much emphasis on the general result. Its main purpose isto formulate the general shape of things and to pave the way for the special random walks where we havemuch more precise results.We �x an interior weight � 2 int(t�+). The following theorem gives a formula for the asymptotics of thekth moments M�n�(k) := ZIR xkdm�n�(x) = 1dimVn�TrT k� jVn�of the spectral measures m�n� along the ray IN� which in turn determine the asymptotics of the m�n�. Thenotation D refers to the operator satisfying DjVn� = n:Proposition 3.3.1 Assume that for all k 2 IN, the kth powers T k�;L and the trace operation for the operatorei�D � T k�;L are clean compositions. Then the asymptotics of the kth moments of the spectral measures alongthe ray L = IN� are given by M�n�(k) � nrk+ e�dimB2 Xj2K ckjCvol(B) e�in�jwhere:(i) rk denotes the order of T k�;L (as in Proposition 3.2.1),(ii) e = maxdim((�k�;L ���)\�(T �B))+2 dimB�1�dim�k�;L with �� being the Lagrangean correspondingto the operator ei�D,(iii) C is a universal constant,(iv) ei�j , j 2 K, are those circle elements at which the projection p : (�k�;L � ��) \ �(T �B) ! T �S1 hasmaximal �ber dimension, and(v) ckj = Z((�k�;L���)\�(T�B))�j tr�(T k�;L � ��)where (�k�;L � �� \�(T �B))�j denotes the �ber of p above ei�j and where tr�(T k�;L � ��) denotes the trace ofthe symbol, i.e. the composition �(T k�;L � ��) � �(Tr):Proof: We form the generating function�k(�) := 1Xn=1 ein�TrT k� jVk� = 1Xn=1 ein� dimVn�M�n�(k) (13)which can be rewritten as �k(�) = Tr(ei�D � T k�;L) = Tr(Tei� � T k�;L) (14)where Tei� is translation by ei� in L2(B). Under clean composition hypothesis, the operator ei�D � T k�;L is aFourier-Toeplitz operator and its trace �k(�) is a Hardy-Lagrangean distribution on the unit circle S1. Themain point is to determine the isotropic relation, the order, and the principal symbol of �k(�). This willallow us to read o� the asymptotics of the moments.16



Recall from Proposition 3.2.1 that T k�;L 2 Irk (B � B;�k�;L) with�k�;L = f(y; g � y) : y 2 Y; (g; pr:(y)) 2 ��k� g :The operator Tei� is a Fourier integral representation of S1 on L2(B). Its kernel is the �-function �b0�ei��b 2I� 14 (S1 � B �B;��) with�� = f((ei�;�(b; �)); (b; �); ei�(b; �)) : ei� 2 S1; (b; �) 2 T �Bg :The composition �� � �k�;L is always clean with excess e = 0. Hence Tei� � T k�;L 2 Irk� 14 (S1 �B �B;�k�;�;L)with �k�;�;L = f((ei�;�(y)); y; ei�g � y) : y 2 Y; ei� 2 S1; (g; pr:(y)) 2 ��k� g :Recall from [P.Z] that the trace operation Tr is an FIO of order 0 with corresponding Lagrangean �(T �B)(the diagonal in T �B). We assume that the �ber diagramF ! �k�;�;L# # �2;3�(T �B) ! T �B � T �Biis clean with excess e. The composition�k�;�;L ��(T �B) = f(ei�;�(y)) : 9g 2 G with ei�g � y = y; (g; pr:(y)) 2 ��k� gis then a Hardy-Lagrangean subspace of T �S1 and thus a �nite union SKj=1 T+��j of positive half spaces.Furthermore, �k(�) 2 Ip(S1;SKj=1 T+��j S1) with p = rk � 14 + e2 is a Hardy-Lagrangean distribution on thecircle S1.As in [P.Z], we now use the fact that Hardy-Lagrangean distributions on the circle S1 are polyhomoge-neous and can be written as a sum of the basic homogeneous distributions �q(� � �0) 2 Iq+ 14 (S1; T+��0 S1).Such a basic homogeneous distribution �q(� � �0) has principal symbol�(�q(� � �0)) = �q jd�j 12 on T+��0 S1and Fourier series expansion �q(� � �0) = 1Xn=1nqein�e�in�0 : (15)We can thus write �k(�) = KXj=1 1Xr=0 aj;r�p� 14�r(� � �j) (16)and by comparison with the principal symbol �(�k) of �k we getaj;0 = ckj = Z((�k�;L���)\�(T�B))�j �(T k�;L � ��) � �(Tr)for all j 2 K and aj;0 = 0 for all j 2 Kc. By plugging in the Fourier series expansions (15) for the�(�p� 14�r(� � �j)) on the right hand side in (16) and comparing coe�cients with (13) we then getdimVn�M�n�(k) = np� 14 Xj2K ckj e�in�j + lower order terms in n :17



But dimVn� � n dimG�dimT2 Cvol(B) :Thus dividing yields M�n�(k) � nrk+ e�dimB2 Xj2K ckjCvol(B) e�ni�j :3.4 The canonical graph caseThe main simpli�cation to Proposition 3.3.1 for our two set of examples discussed below is that the rayMarkov Lagrangean ��;L is a local canonical graph. Indeed, it is a union of graphs of global canonicaltransformations �i : Y ! Y: In this case we can be more speci�c about the `traces' ckj appearing in Proposition(3.3.1). Basically, they are what might be called `symplectic - spinor traces' � (�i) of the symplectic maps�i ��� where �� : Y ! Y , y 7! ei� �y. This is the Toeplitz analogue of the `symplectic trace' of a symplecticmap discussed in [G.U]. Let us �rst brie
y recall the symplectic trace and then, also brie
y, indicate itsextension to symplectic spinors.Let (V; !) be a symplectic vector space and let T 2 Sp(V ) be a symplectic linear map. The �xed pointset of T is the subspace ker(I � T ): According to [D.G, Lemma 5.1] it possesses an intrinsic density 
Twhich depends on the symplectic nature of ker(I � T ). Two special cases discussed in [G.U] are:� ker(I � T ) is a symplectic subspace. Let W = ker(I � T )? be its symplectic orthogonal complementand let T? equal T jW : Then: 
T = �jdet(I�T?)j 12 where � is the symplectic volume density on W .� ker(I � T ) is a Lagrangean subspace L: Then there exists a dual Lagrangean subspace L� such thatV �= L�L� and such that (I�T ) : L� ! L is an isomorphism. The symplectic volume form 
 on V may befactored as d`^d`� where d`; d`� are volume forms on L;L�: De�ne det(I�T ) by (I�T )�d` = det(I�T )d`�.This determinant depends on the choice of d` but the quotient
T := d`jdet(I � T )j 12does not.Now suppose that � is a symplectic map on a compact symplectic manifold with clean �xed point setFix(�), i.e. such that Fix(�) is a submanifold satisfying Fix(d�y) = TyFix(�) for all y 2 Fix(�): By theabove, Fix(�) carries a natural density 
�. The symplectic trace of � is then de�ned byST (�) = ZFix(�) 
�: (17)This formula does not quite apply to our situation since we are dealing with homogenous canonicaltransformations. However the only necessary modi�cation is to break the IR+-action, as follows: Let � :T �B�0! T �B�0 be a homogeneous canonical transformation which preserves the cone Y � T �B�0 andlet �Y : (Y; !) ! (Y; !) be its restriction to Y . It is of course a homogeneous canonical transformation onY � 0. Since TyFix(�) possesses a canonical density, so does Fix(�); we denote it by 
�. Further, let Rdenote the radial vector �eld on Y , i.e. the generator of the IR+-action and de�ne the Liouville density�� = iR
�(where i means insertion) on the base SFix(�) of the cone Fix(�). Then the homogeneous analogue of thesymplectic trace is given by ST (�) = ZSFix(�) d��: (18)18



In our applications, we will be concerned with traces of the form��(�) = Tr(ei�D � T� ��)where T� is a Fourier integral operator associated to the graph of a homogeneous symplectic map � restrictedto the symplectic cone Y generated by the contact form on the base B. The 1/2-density factor of the trace iscalculated as for a standard FIO and is similar to the symplectic trace of �jY ; it is only necessary to includethe symbol as a coe�cient of d��. Since � commutes with the S1-action on Y , it is the lift of a symplecticmap �O on O and the 1/2-density part of the trace basically comes down to the symplectic trace on thecompact symplectic manifold O.However, we still need one further ingredient to describe the coe�cients ckj , namely the symplectic spinorfactor. As discussed in x2.4, this factor is due to the action of � : T �B ! T �B on directions symplecticallynormal to Y , i.e. to d�?y on TyY ? � T (T �B): The spinor part of the symbol has the form e� 
 ��e� whereafter a choice of metaplectic frames �� =M(d�?y ), the metaplectic representation applied to the symplecticnormal part of d�y. Hence the spinor contribution to the trace isTrM(d�?y ) � � = h��e�; e�i:Therefore, given a homogeneous canonical transformation preserving a symplectic cone Y , the appropriatede�nition of the symplectic spinor trace is:SSTr(�) = ZSFix(�jY )h��e�; e�id��Y : (19)Let us evaluate the expression ��e�; e� in the case which will concern us, namely when � is the lift to T �Bof the action of a group element g on B. Suppose then that g��y = y. We would like to determine the actionof g� on symplectic spinors at y. This operates on the symplectic orthogonal to TY �= TO� T (S1 � IR+) inT �B: Note that these two factors are symplectically orthogonal to each other and that g� operates by scalarmultication on the T (S1 � IR+) factor. Hence the non-trivial part is the symplectic orthogonal to ToO inT �O: Since g �xes pr(y) = o, we get an induced map g� on symplectic spinors at o. Since o is a regularelement (by assumption), its stabilizer is a maximal torus and without loss of generality we may assume it isthe maximal torus T . Now, g� is obtained by applyingM, the metaplectic representation, to the normal partdT?g of the derivative. Under the identi�cation O �= G=T , T �O gets identi�ed with G=T � t�?, ToO? getsidenti�ed with t�? and dT?g gets identi�ed with Ad�(g) on t�?. Its eigenvalues are given by the global rootse(�) evaluated at g. Since Ad�(g) is a sum of 2-plane rotations, its image in the metaplectic representationis given by a sum of one-dimensional harmonic oscillators. Precisely, we have (with g = eX )M(Ad�(g)) = ��2R+exp(h�;XiÎ� (20)where Î� is the harmonic oscillator D2 + u2 (D = 1didu ). Since the ground state e� is an eigenfunction of Î�with eigenvalue 1=2 it follows that the diagonal matrix elementhM(Ad�(g)e�; e�i = e(12�+(X)): (21)We summarize in the following proposition, whose proof consists of adding the above observations toProposition (3.3.1).Lemma 3.4.1 With the above assumptions,��(�) 2 Ir�� 14+ e2 (S1; K[j=1T �+�j S1)19



where:(i) r� is the order of T�.(ii) The angles �j are the ones for which Fix(� � ��) 6= ; and the ones which show up in the principalterm of the asymptotics are those for which dimFix(� � ��j ) is maximal.(iii) The principal coe�cients of the singularity expansion are given by:�(��(�))j�=�j = ZSFix(����j ) fh��e�; e�id�����jwhere �(T�) = fpdvol with pdvol is the canonical graph 1/2-density on the graph of �:(iv) In the case where � = Tg; g = eX 2 T , h��e�; e�i = e(12�+(X)):4 �-functions on positively curved hypersurfaces: Proof of Theo-rem AIn this section we focus on the class of conormal Markov operators whose underlying probability distributionsare �-functions �X on positively curved hypersurfaces X of G. We begin with the precise de�nition.De�nition 4.0.2 Let X � G be a smooth compact oriented embedded hypersurface. Denote by N (X) =N+(X) [ N�(X) the inward/outward components of its normal bundle and those of its spherical normalbundle by SN (X) = S+N (X) [ SN�(X). The spherical Gauss maps of X are de�ned byG�;X : SN�(X)! Sg; G�;X(x; v) = dLx�1vwhere L denotes left translation on G and where Sg denotes the unit sphere of g. The Gaussian curvatureof X is de�ned by G��;Xd! = KdSwhere d! denotes the Euclidean surface measure on Sg induced by the Killing metric. X is called positivelycurved if K > 0, i.e. if G�+;X is a di�eomorphism. The homogeneous extension of G�;X to the entire normalbundle is also referred to as the Gauss map.Remark We obviously have G�;X(x;��) = �G+;X (x; �) for all (x; �) 2 N+(X): Since the antipodal map isan isometry, the de�nition of K is unambiguous.To prepare for the statement of Theorem A, we introduce a number of notions and notations.Symmetric �-functions.In order to deal with self-adjoint Markov operators we require that the underlying measure be symmetric,i.e. invariant under the inversion map inv : G! G, g 7! g�1. Since X need not be invariant under inversion,we have to consider the union X [X�1.As above, we denote by dS the surface measure on X induced by the Haar volume form dg. By a�-function �X on X is meant a measure of the form�X (f) = ZX fadSwhere f 2 C(G) and a 2 C1(G): To make it symmetric we average it with respect to the inversion map,i.e. put � = 12(�X + �X�1 ) := 12(�X + inv��X )20



where inv� denotes pushforward under inv. To make sure that convolution powers of �X are clean we requirethat X [X�1 is a transversal intersection. Since inv is an isometry, X�1 is positively curved as long as Xis.Inverse Gauss maps The canonical relation underlying convolution with 12(�X + �X�1 ) will involve theinverses of the Gauss maps on the inward/outward normal bundles N�(X): They are the maps from g to Gde�ned by F1 := �(G+;X )�1; F2 := �(G�;X)�1; F3 := �(G+;X�1 )�1; F4 := �(G�;X�1 )�1where � : N (X)! X is the natural projection.4.1 The Markov operator on L2(G): Proofs of Theorem A(i)-(iii)The following is a more general and precise statement of Theorem A(i):Theorem A(i) Let X be a positively curved orientable hypersurface of G and assume that either (i)X = X�1 or (ii) the intersection X \X�1 is transversal. Let � = 12(�X + �X�1 ) with �X = adS for somea 2 C1(X): Then T�;Gf = � � f is a Fourier integral operator of order �dimG�12 on L2(G) associated tothe disjoint union of canonical graphs��;G = 4Gi=1Graph(�i) with �i : T �G! T �G ; (x; �) 7! ((Fi(Ad�(x)�))x; �) ; i = 1; :::; 4 : (22)Proof: We have � 2 I 12� dimG4 (G;��) where in case (i), �� = N�X and in case (ii), �� = N�X [N�X�1.By Proposition 2.3.1, T�;G is an FIO of order �dimG�12 corresponding to��;G = f((x; �); (gx; �))) 2 T �(G�G)� 0 : (g;Ad�(x)�) 2 ��g :But (g;Ad�(x)�) 2 �� , g = Fi(Ad�(x)�) for some i 2 f1; :::; 4g :SinceX andX�1 are positively curved and because of the transversal intersection hypothesis, for each (x; �) 2T �G, there exist exactly two, resp. four (in case (i), resp. case (ii)) distinct elements gi = Fi(Ad�(x)�) 2 G,such that (gi; Ad�(x)�) 2 ��, i = 1; :::; 4. This shows that ��;G consists of the disjoint union of the two(four) canonical graphs in ( 22).Proof of Theorem A(ii): This is a corollary of Thereom A(i). Since T�;G is a Fourier integral operator oforder �dimG�12 associated to a local canonical graph, it follows by [H�o, Vol.IV Corollary 25.3.2] that T�;Gde�nes a bounded operator from W s(G)!W s+ dimG�12 (G).Proof of Theorem A(iii): A more precise statement of the result is��k 2 L2(G) for � k � 2 and dimG � 3k � 3 and dimG = 2 :First, the case dimG � 3. We will show that T k�;G is Hilbert-Schmidt for k � 2. Set A := (T �k�;GT k�;G) andwrite A as p��k(dimG�1)p�k(dimG�1)A. Since A is an FIO of order �k(dimG� 1) associated to a unionof canonical graphs, p�k(dimG�1)A is bounded on L2(G) and it su�ces to show that p��k(dimG�1) is oftrace class, i.e., that Trp��k(dimG�1) = Z �� k2 (dimG�1)dN (�) <1 (23)21



where N (�) := #fj : �j � �g for the eigenvalues �j of the Laplacian �. But by Weyl's law N (�) � � dimG2 .Hence, by integrating by parts, the right hand side in (23) is�k2 (dimG� 1) Z N (�)�� k2 (dimG�1)�1d� � Z � dimG2 �� k2 (dimG�1)�1d�which is �nite for dimG � 3 and k � 2. It follows that (T �k�;GT k�;G) is of trace class for k � 2. Similarly, forthe case of dimG = 2, we can show that (T �k�;GT k�;G) is of trace class for k � 3.For the asymptotic expansions of Theorem A(iv), we will need to to know the principal symbol �(T�;G)or more generally the principal symbol �(�X�) of convolution with a �-function �X along a hypersurface. Toquote easily from the literature we will view �X as a 1/2-density rather than as a density, i.e. as acting onsmooth 1/2-densities u on G by h�X ; ui = ZX apdS � i�u:Here, i�u is the 1/2-density on X by inserting the outward unit normal � into u, so that pdS � i�u is adensity, on X.We recall ([H�o, Vol.III]) that in general the principal symbol of a conormal distribution (1/2-density)locally represented by Z eihx0;�00ia(x00; �0)d�0is given by a(x00; �0)jdx00j 12 jd�0j 12in coordinates (x0; x00) such that locally X = fx0 = 0g: For concreteness, we choose to use Fermi normalcoordinates along X, so that x0 is the signed distance to X. Then the principal symbol �(�X ) equalsa(x00)jS0(x00)j 12 jdx00j 12 jd�0j 12 = a(x00)jdSj 12 jd�0j 12 :Now consider the principal symbol of �X�. By Proposition 2.3.1, we can identify the Lagrangean �� �=�� � G and then �(�X�) = �(�X )
 jdxj 12 : Thus we have�(�X�) = a(x00)jdSj 12 jd�0j 12 
 jdxj 12 :In the case where X is a positively curved hypersurface, ��;G was just shown to be a local canonicalgraph. Since each component Graph(�i), i = 1; :::; 4, possesses a canonical graph 1/2-density jdg ^ d
j 12 (incoordinates coming from its projection to T �G � G�g�), each restriction �(T�;G)i of �(T�;G) to Graph(�i),i = 1; :::; 4, can also be written as a scalar multiple of jdg^d
j 12 . With this identi�cation the symbol is givenby:Proposition 4.1.1 �(T�;G)i = j
j� 12 (dimG�1)G�1�i ( apK )jdg ^ d
j 12 for i = 1; :::; 4 :where the Gauss maps Gi correspond to the inward/outward components N�� of N�(X) and N�(X�1) in thesame way as the Fi de�ned earlier.Proof: We just consider N�+(X) since the calculations for the remaining components are essentially thesame. For simplicity we will write G instead of G1.Under the identi�cation T �G � G � g� by left translation, the Gauss map G : N�+(X) ! g� is simplythe inclusion map followed by projection to g�: By assumption, it is a di�eomorphism to IR+ � Sg�. Write22



the Euclidean density jd
j on g� in polar coordinates (r; !) coming from the identi�cation g� � IR+ � Sg�:jd
j = rdimG�1dr ^ jd!j. Also use polar coordinates N�+(X) � IR+ � X. Then G�rdimG�1dr ^ jd!j =KrdimG�1dr ^ dS: Under the inverse of the Gauss map, the principal symbol �(�) goes over toG�1�(ajdSj 12 jd�0j 12 ) = G�1�( apK )jdr ^ d!j 12on N�+(X): It follows by Proposition 2.3.1 that �(T�;G), viewed as a 1/2-density on G � g�, is the tensorproduct of this 1/2-density with jdgj 12 . This yields the above formula.Remark As a check on the order of the coe�cient, we note that since T�;G has order �12(dimG � 1) itssymbol must have order �12(dimG � 1) + 12dimG = 12 as a 1/2-density (cf. [Ho IV, Theorem 25.1.9).This indeed is the order of G�1�( apK )jdr ^ d!j 12 
 jdgj 12 : Expressed in terms of the coordinates (g; 
),jdr ^ d!j 12 
 jdgj 12 = j
j� 12 (dimG�1)jdg ^ d
j 12 :4.2 Spectral asymptotics along rays: Proof of Theorem A(iv)The proof of Theorem A(iv) will require a precise description of the ray Markov operator T�;L of a �-functionalong a positively curved hypersurface.4.2.1 The ray Markov operatorProposition 4.2.1 Let X be a positively curved orientable hypersurface of G and � as in Theorem A(i).Consider the ray of representations L = IN�. ThenT�;L 2 I1� dimB+dimG2 (B �B;��;L)is a Fourier-Toeplitz operator of order 1 � dimB+dim G2 and the associated isotropic submanifold ��;L is theunion of graphs of two (four) canonical transformations �i of Y , i.e.,��;L = 4[i=1Graph(�i) with �i : Y ! Y ; y 7! Fi(o) � o ; o = pr:(b)g ; i = 1; :::; 4 :Proof: Recall Proposition 2.4.1. The main step is to show that the �ber diagramF ! �Y# # �1�� ! T �Giwith �ber product F = f((g; ro); (g; ro); (b; r); (g � b; r)) : (g; ro) 2 ��g is clean with excess e = 0. Note that(g; ro) 2 �� , gi = Fi(o) for some i 2 f1; :::; 4g :Thus F is the union of two (four) graphs of two (four) distinct smooth maps from Y to T �G�T �G�Y andhence is a manifold of dimension dimY .We now show that the derived diagramTF ! T�Y# # d�1T�� ! T (T �G)di 23



is also a �ber diagram. For this we need to show that for all (c; d) 2 F � �� � �Y , dimf(u; v) 2 Tc�� �Td�Y : di(u) = d�1(v)g = dimY . Fix (c; d) 2 F . Since di is an injection, each v 2 Td�Y can onlyhave at most one matching vector u 2 Tc�� such that di(u) = d�1(v). On the other hand, every vectortangential to the circle which runs through d, and only such vectors, apart from the zero vector itself, aremapped onto the zero vector under d�1. In Tc�� we can distinguish horizontal and vertical vectors. Verticalvectors are vectors along the �ber above �(c) (� is the natural projection � : T �G ! G) and verticalvectors are deritaves of curves thru c in �� for which the length of the conormal vector stays constant.Clearly, every vertical vector can be matched with a vector v 2 Td�Y of the form v = ddt jt=0q(t) withq(t) = ((g; (r + t)pr:(b)); (b; r+ t); (g � b; r+ t)). By construction of �Y , horizontal vectors u = (u1; u2) havea match v if and only if there is a curve in O� whose derivative produces u2. Altogether, this proves thatdimf(u; v) 2 Tc�� � Td�Y : di(u) = d�1(v)g is precisely dimO� + 2 = dimY . Thus the composition is cleanand the excess is e = dimY + 2dimG � dimG � (dimG + dimY ) = 0. The statement now follows fromProposition 2.4.1.Proposition 4.2.1 and Proposition 3.2.1 yield the followingCorollary 4.2.2 All the composition powers of T�;L are clean. For all k � 1,T k�;L 2 I k2 (1�dimG)+ 12 (1�dimB)(B � B;�k�;L)where�k�;L = S(ik;:::;i1)2f1;:::;4gkGraph(�ik � � � � � �i1)= f((b; r); (gk � � �g1b; r)) : 9(ik; :::; i1) 2 f1; :::; 4gk s:t: g1 = Fi1(o); : : : ; gk = Fik(gk�1 � � �g1o)g :4.2.2 The principal symbol �(T�;L)In Proposition 4.1.1 we showed that the components of the symbol �(T�;G) are �(T�;G)i = G�1�i ( apK ) timesthe canonical graph 1/2-density. The situation is very similar for the Markov ray operator. We begin byredoing the argument with G replaced by the homogeneous space B and then restrict to Y .The Markov Lagrangean for the random walk T�;B on all of B is given by��;B := f(b; �); g � (b; �) : (g;�B(b; �)) 2 N�(X) [N�(X�1)gwhere �B is the moment map. Since for each (b; �) 2 T �B there are exactly two (four) distinct pointsgi = Fi(�B(b; �)) 2 X with normal �B(b; �), the Lagrangean ��;B � T �(B �B)� 0 is here again the unionof two (four) canonical graphs, each di�eomorphic to T �B. The components of the symbol of the Markovoperator T�;B may therefore be identi�ed with 1/2-densities on T �B. To determine them, we use the fact thatthere are two (four) maps Fi : T �B ! �� = N�(X) [N�(X�1), namely Fi(b; �) = (Fi(�B(b; �));�B(b; �)):We claim:Proposition 4.2.3 The components �(T�;B )i of the principal symbol �(T�;B) of the Markov operator on Bare given by: �(T�;B)i = F �i (��) = F �i ( apK )j�j� 12 (dimB�1)jdb ^ d�j 12 ; i = 1; :::; 4 :Proof: The argument is similar to Proposition 4.1.1. The moment Lagrangean �B for the action on Bmay be parametrized by G�T �B and the principal symbol of the action is the canonical volume 1/2-densityjdgj 12 
 jdb^ d�j 12 : The relevant composition (�ber product) diagram is:F ! �B# # �1�� ! T �Gi 24



where �1(g; (b; �)) = (g;�B(b; �)). As above, the �ber diagram is transversal.Proposition 4.2.4 The components �(T�;L)i of the principal symbol �(T�;L) of the Markov operator T�;Lon H2(B) are given by:�(T�;L)i = F �i ( apK )jyj� 12 ( dimY2 �1)jdyj 12 
 gi�� i = 1; :::; 4 :Proof: Except for the symplectic spinor aspect, the proof is essentially to restrict the formula above to Y .The moment Lagrangean �Y may be parametrized by G� Y and the relevant composition diagram is:F ! �Y# # �1�� ! T �Giwhere �1(g; y) = (g;�Y (y)). Here the moment map �Y is the projection Y ! O, (b; r) 7! pr:(b) = o,followed by the inclusion O � g�: As in the previous case, the diagram is transversal and the canonicaldensities compose to give the canonical volume 1/2-density on Y . We compute the scalar coe�cients for thecomponents of the principal symbol by pulling back �(�) to Y by the two (four) mapsFi : Y ! ��; (b; r) 7! (Fi(o); r)where we have used the isomorphisms N��(X) �= X � IR+ and N��(X�1) �= X�1 � IR+. The �ber Fy;y0consists of one point so the symplectic spinor part is just the integrand of Proposition 2.4.1.Corollary 4.2.5 The components �(T k�;L)(ik;:::;i1), on Graph(�ik � � � � � �i1), (ik; :::; i1) 2 f1; :::; 4gk, of theprincipal symbol �(T k�;L) are given by�(T k�;L)(ik;:::;i1) = f(ik ;:::;i1) jyj� k2 ( dimY2 �1)jdyj 12 
 (g1k � � �gi1)�� :with f(ik;:::;i1) = F �i1( apK ) � (Fi2 � �i1)�( apK ) � � � (Fik � �ik�1 � � � � � �i1)�( apK ) :4.2.3 The limit spectral measure: Completion of the proof of Theorem A(iv)We now determine the asymptotics of the moments M�n�(k) of the spectral measures m�n� along the rayL = IN�: The outline of the calculation was given in Proposition 3.3.1, so the proof of Theorem A(iv) isbasically a matter of �lling in the blanks.Theorem A(iv) Let X be a positively curved orientable hypersurface of G, L = IN� an interior rayof representations of G, and � as de�ned above. We assume that the trace operation for the operatorei�D � T k�;L is a clean composition for all k � 1. Then the kth moments of the spectral measures m�n� aregiven asymptotically byM�n�(k) � n k2 (1�dimG)+ 1+e2 �dimB 1Cvol(B) X(ik; :::; i1) 2f1; :::; 4gk X�j 2�ik;:::;i1 e�in�j+i��=4ZSFix(�ik������i1���j )he�; (gik � � �gi1)�e�if(ik;:::;i1) d��ik������i1���j25



where the f(ik;:::;i1)'s are as in Corollary 4.2.5 and�ik;:::;i1 := f�j : dimFix(�ik � � � � � �i1 � ��j ) is maximal g :The factor he�; (gik � � �gi1)�e�i is described in Proposition (3.4.1 (iv)).Proof: Recall from Proposition 3.3.1 the general formula for M�n�(k). We need to �ll in(i) the order rk of T k�;L,(ii) the highest order coe�cients ckj of the symbol of �k(�) = Tr(ei�D � T k�;L), and(iii) the highest order singular angles �j of �k(�).By Corollary 4.2.2, rk = k2 (1 � dimG) + 12 (1 � dimB) and the corresponding canonical relation is theunion of canonical graphs �k�;L = [(ik;:::;i1)2f1;:::;4g4Graph(�ik � � � � � �i1) :The cleanliness assumption for the trace operation Tr(ei�D � T k�;L) implies that for each � 2 S1 and(ik; :::; i1) 2 f1; :::; 4g4, the map �ik � � � � � �i1 � �� has clean �xed point set Fix(�ik � � � � � �i1 � ��).But by Lemma 3.4.1,�(�k(�))j�=�j = X(ik;:::;i1)2f1;:::;4g4 ZSFix(�ik������i1���j )he�; (gik � � �gi1)�e�if(ik;:::;i1) d��ik������i1���jwhere d��ik������i1���j is the canonical density on the projection of Fix(�ik�� � ���i1���j) to B as described inSection 3.4 and furthermore, the f(ik;:::;i1)'s are the scalar factors appearing in the principal symbol �(T k�;L)as described in Corollary 4.2.5. Altogether, this implies the stated formula for the moments M�n�(k).Remark: The �xed point set of the trace operation and hence the excess e appearing in the asymptoticformula for the moments depends on the underlying hypersurface X. This is illustrated in the examples ofthe spherical means operator and its translates below.4.3 Example: the spherical means operator and its translates4.3.1 The spherical means operatorLet Ss(0) be the sphere of radius s in g. Here we consider symmetric probability measures � whose underlyinghypersurface is X = Ss(e) := exp Ss(0), the geodesic sphere of radius s centered at e. Note that X = X�1.The hypersurface X = Ss(e) is positively curved for any s < i where i is the injectivity radius of G. Thecorresponding Markov operator T� = Ms is called the spherical means operator. In this case, the underlyingisotropic relation and the principal symbol take on an especially simple form:Lemma 4.3.1 Let � be a �-function on Ss(e) and L = IN� a ray of representations. Consider the kth powerT k�;L of the ray Markov operator T�;L. Then for all k � 1:(a) The underlying isotropic relation �k�;L has the form�k�;L = k[j=0Graph(��0(�k+2j)) with �0 = 2�sj�j :(b) The components �(T k�;L)j on Graph(��0(�k+2j)) of the principal symbol �(T k�;L) are given by�(T k�;L)j = �kj�fk jyj� k2 ( dimY2 �1)jdyj 12 
 (exp((k � 2j)s ojoj )�� with f = F �1 ( apK ) = F �2 ( apK ) :26



Proof: (a) Recall Proposition 4.2.1. For a given b 2 B, o = pr:(b) = x�x�1 for some x 2 G. We usethe fact that for any X 2 g, the geodesic exp tX is perpendicular to Ss(e) at the points of interesectionexp�s XjXj . It follows that, in the notation of Proposition 4.2.1, F1(o) = exp s ojoj and F2(o) = exp�s ojoj .But exp�s ojoj = x(exp�s �j�j )x�1 and x(exp�s �j�j )x�1 � b = ��(exp�s �j�j ) � b = e�2�is h�;�ij�j � b. Setting�0 = 2�sj�j, we thus get ��;L = f((b; r); (e�i�0 � b; r))gand from this �k�;L for all k � 1 as claimed.(b) Recall Corollary 4.2.5. Here (ik; :::; i1) 2 f1; 2gk and �1 = ��0 and �2 = ���0. Because of the symmetryof � we have F �1 ( apK ) = F �2 ( apK ) which we call f . And �nally, by construction of the Fi, i = 1; 2, we have��1(f) = ��2(f) = f . There are �kj� k-tuples (ik; :::; i1) 2 f1; 2gk for which �ik � � � � � �i1 = ��0(�k+2j). Thegroup element gik � � �gi1 is a product of j factors of exp � s ojoj and k � j factors of exps ojoj which equalsexp(k � 2j)s ojoj :The asymptotics of the moments of the spectral measures are given by the following:Proposition 4.3.2 Let � be a symmetric �-function on Ss(e) and L = IN� an interior ray of representa-tions. The kth moments of the spectral measures m�n� of the spherical means operator T�;L = Ms are givenasymptotically byM�n�(k) � n k2 (1�dimG) 1Cvol(B) ZB fk dvol�8><>: P k�12j=0 2�kj� cos(n(k � 2j)2�s(j�j + �+( �j�j ) for k oddP k�22j=0 2�kj� cos(n(k � 2j)2�s(j�j + �+( �j�j ) + �kk2 � for k even :Proof: Recall Proposition 3.3.1 and Theorem A(iv). Here the �ber diagram for the trace operationTr(ei�D � T k�;L) is F ! �k�;�;L# #�(T �B) ! T �B � T �Bwith �k�;�;L = k[j=0f((ei�;�r); (b; r); ei(�+�0(�k+2j)) � b; r))g �= k[j=0(S1 � Y )j(k + 1 copies of S1 � Y ) and F �= k[j=0f((e�i�;�r); (b; r))g �= k[j=0Yj(k + 1 copies of Y ). Clearly this �ber diagram is clean. Its excess is e = dimY + 4dimB � 2 dimB � (1 +dimY ) = 2 dimB � 1 and the composition is�k�;�;L ��(T �B) = k[j=0T �+�0(�k+2j)(S1) :The �xed point set corresponding to each singular angle �0(�k + 2j), j = 0; :::; k is all of Y . The momentasymptotics formula then follows by plugging the formula for the principal symbol �(T k�;L) in Lemma4.3.1(b)into the general formula fromTheorem A(iv) and using the formula in proposition 3.4.1 (iv) for the symplecticspinor factor, which comes to e((k � 2j)s�+( �j�j )). 27



4.3.2 Translates of the spherical means operatorWe now translate the previous measure by a group element g to get � = 12�gSs(e) + 12�g�1Ss(e). Withoutloss of generality we will assume that g 2 T . The moment asymptotics depend on the degree of singularityds(g) = ]froots � : �(g) = 1g of g and illustrate a variety of cases of Theorem B.We have the following analogue to Lemma 4.3.1:Lemma 4.3.3 Let � be as described above and let L = IN� be a ray of representations. Consider the kthpower T k�;L of the ray Markov operator T�;L. Then for all k � 1:(a) The underlying isotropic relation �k�;L has the form�k�;L = k[l=0 k[j=0Graph(�g�k+2l � ��0(�k+2j))where �h : Y ! Y , y 7! h � y, 8h 2 G and �0 is as in Lemma 4.3.1.(b) The components �(T k�;L)l;j on Graph(�g�k+2l � ��0(�k+2j)) of the principal symbol �(T k�;L) are given by�(T k�;L)l;j = fSl;j jyj�k2 ( dimY2 �1)jdyj 12 
 �g�k+2l� � = X(ik;:::;i1)2Sl;j f(ik;:::;i1) jyj� k2 ( dimY2 �1)jdyj 12 
 �g�k+2l� �where Sl;j := ((ik; :::; i1) 2 f(1; 1); (1;�1); (�1; 1); (�1;�1)gk : kXn=1 in = (�k + 2l;�k + 2j))and the f(ik;:::;i1)'s are as in Corollary 4.2.5 with�(�1;�1) = �g�1 � ���0 and F(�1;�1)(y) = (g�1 exp�s ojoj ; o) 8 y 2 Y :Proof: (a) Recall Proposition 4.2.1. For a given b 2 B, pr:(b) = o = x�x�1 for some x 2 G. We haveF1(o) = g exp s ojoj , F2(o) = g exp�s ojoj , F3(o) = g�1 exp s ojoj , F4(o) = g�1 exp�s ojoj . But g exp�s ojoj =gx(exp�s �j�j )x�1 and gx(exp�s �j�j )x�1 � b = g��(exp�s �j�j ) � b = ge�2�is h�;�ij�j � b. Setting �0 = 2�sj�j, wethus get ��;L = [�;�Graph(�g�1 � ���0)and from this, since the actions of G and S1 commute, �k�;L for all k � 1 as claimed.(b) Recall Corollary 4.2.5. SinceGraph(�ik � � � � � �i1) = Graph(�g�k+2l � ��0(�k+2j)) 8 (ik; :::; i1) 2 Sl;j ;the statement follows.The asymptotics of the moments of the spectral measures are given by the following:Proposition 4.3.4 Let T�;L be a translate of the spherical means operator as de�ned above with L = IN�an interior ray of representations. The kth moments of the spectral measures m�n� of T�;L are given asymp-totically byM�n�(k) � 8<: n k2 (1�dimG) 1Cvol(B)Pkj=0Cj e2�i(�k+2j)s(nj�j+�+( �j�j ) for k evenn k2 (1�dimG)+ ds(g)2 � dimG�dimT2 1Cvol(B)Pkl=0Pkj=0Cl;j ��(gn(�k+2l))�e(�+(gn(�k+2l)))(e�i2�(�k+2j)s(nj�j+�+( �j�j ) for k odd28



where Cj := ZB fS k2 ;j dvol ; Cl;j := Z ~Fix(Lg�k+2l ) fSl;j d�l :Here we have used the following notation:(i) ~Fix(Lg�k+2l ) denotes the lift to B of the �xed point set of Lg�k+2l : O ! O, o 7! g�k+2l � o ;(ii) d�l is the induced density on ~Fix(Lg�k+2l ) ;(iii) �� denotes the highest weight character of � .Proof: Recall Proposition 3.3.1 and Theorem A(iv). Here the �ber diagram for the trace operationTr(ei�D � T k�;L) is F ! �k�;�;L# #�(T �B) ! T �B � T �Bwith �k�;�;L = k[l=0 k[j=0f((ei�;�r); (b; r); g�k+2lei(�+�0(�k+2j)) � b; r))g �= k[l=0 k[j=0(S1 � Y )l;j((l + 1)(k + 1) copies of S1 � Y ) andF �= k[l=0 k[j=0f((��(gk�2l)e�i�0(�k+2j);�r); (b; r)) : b 2 ~Fix(Lg�k+2l )g :The cleanliness condition for this diagram is equivalent to the condition that all of the maps Lg�k+2l ,l = 0; :::; k, have clean �xed point set in O. But it was shown in [P.Z, Section 3] that for any g 2 T ,Lg : O ! O has clean �xed point set which is a submanifold of dimension d = ds(g). Since ds(gm) = ds(g)8m 6= 0 and ds(e) = dimO we havemaxdimF = � ds(g) + 2 for k odddimY for k even and hence e = � ds(g) + dimB for k odd2 dimB � 1 for k even :Using the formula for the principal symbol �(T k�;L) from Lemma 4.3.3(b) and plugging into the generalformula from Theorem A(iv) yields the stated formula for the moment asymptotics.5 �-functions on �nite unions of regular conjugacy classes: Proofof Theorem BHere the symmetric probability measure � is a �-function on the submanifold X = Sni=1Cxi [ Cx�1i wherethe xi's are regular elements of the maximal torus T and Cx denotes the conjugacy class of x. To be moreprecise, it is a � 1/2-density � = apd _xwhere d _x is the normalized invariant density and where a 2 C1(X) is a positive smooth coe�cient satisfyingRX ad _x = 1:For simplicity, we restrict our discussion to the case where X is just the union of two conjugacy classesCx and Cx�1 for some regular element x 2 T . (Our results can easily be generalized to any �nite union ofregular conjugacy classes.) This implies that� 2 I dimT2 � dimG4 (G;��) with �� = N�Cx [N�Cx�129



where N�xCx = t� and N�yxy�1Cx = Ad�(y)t� for all y 2 G.Contrary to the case of �-functions on positively curved hypersurfaces, the Lagrangean �� associatedwith the Markov operator T� on L2(G) is not a canonical graph. This of course complicates the studyof convolution powers. What saves the day is that the isotropic relation ��;L underlying the ray Markovoperator T�;L is a local canonical graph on Y .5.1 The ray Markov operator: Proof of Theorem B(i)We begin by giving a more precise statement of the result:Theorem B(i) Let � be a �-function on Cx[Cx�1 and let L = IN0� be the ray of representations determinedby the interior highest weight �. Then:(a) the ray Markov operator T�;L 2 Idim T�dimG(B �B;��;L)is a Fourier-Toeplitz operator of order dimT�dimG whose associated isotropic submanifold ��;L is a disjointunion Graph(��wj)of graphs of canonical transformations ��wj of Y . The components are (possibly redundantly) indexed by theelements wjxw�1j ; the jth and kth coincide if ��(wjxw�1j ) = ��(wkxw�1k ), where as usual �� denotes thehighest weight character.(b) Each canonical transformation ��wj is simply multiplication by one of the circle elements in � :=f��(wx�1w�1) : w 2Wg .(c) The principal symbol of T�;L on the wjx�1w�1j component is given by�(T�;L)�wj )j(y;g�wj (y)�y) = 1�(g�wj (y))a(g�wj (y))jyj� 12 ( dimY2 �1)jdyj 12 
 (g�wj )��where g�w (y) 2 Cx� is given by g�w (y) = k(y)wx�1w�1k(y)�1 where pr:(y) = o = k(y)�k(y)�1 : Here, weassume that no two g�wj (y) are equivalent in the sense of � above. In general, one sums over the elementsof the equivalence class.Proof of (a) : We �rst show that the �ber product diagramF ! �Y �= G� Y# # �1�� ! T �Giis clean. Here i denotes inclusion and �1 is projection onto the �rst factor. We claim that:� F �= f((g; ro); (b; r)) : pr:(b) = o; (g; ro) 2 ��g is a submanifold of �� � �Y .� The natural projection F ! Y given by ((g; ro); y)! y is a trivial 2jW j-sheeted cover, where jW j denotesthe order of the Weyl group..� The natural projection p : F ! ��;L; ((g; ro); y)! (y; g � y) is a �nite covering map of the trivial coversY � fwjxw�1j ; wkx�1x�1k gj;l ! Y � �fwjxw�1j ; wkx�1w�1k gj;k= �=� ;where a �= b i� ��(a) = ��(b):� The derived diagram is a �ber diagram. 30



To verify these properties, suppose �rst that o = �. We need to �nd all g 2 G for which (g; �) 2 ��.Recall that �� = N�Cx [ N�Cx�1 = f(yx�1y�1; Ad�(y)�) : y 2 G; � 2 t�g. Thus, equivalently, we need to�nd all g 2 G for which Ad�(g)� 2 t�. Clearly, this is true for all g 2 T and all y 2W . Hence we have(wx�1w�1; �) 2 �� for all w 2 W :Since � is an interior weight there cannot be any other g with this property: Indeed, g�g�1 2 t� implies thatg exp �g�1 2 T and hence, since exp � is regular, gTg�1 � T and g 2 W .In general we have o = k�k�1. Then(kwx�1w�1k�1; k�k�1) 2 �� for all w 2W :On the other hand, assume (l; k�k�1) 2 ��. This implies that (l; k�k�1) = (nxn�1; n�n�1) or (l; k�k�1) =(nx�1n�1; n�n�1) for some n 2 G and for some � 2 t�. It follows that � = k�1n�n�1k and n 2 kW . Hencel = kyxy�1k�1 or l = kyx�1y�1k�1 for some y 2W .It follows that F consists of 2jW j copies of Y , indexed by the elements wxw�1; wx�1w�1: To be precise,given y 2 Y the corresponding points of F are given by the elements f((g�wj (y); ro); y)g with g�wj (y) de�nedabove.Now we show that the derived diagram TF ! T�Y# # d�1T�� ! T (T �G)diis also a �ber diagram, i.e., that TF = f(u; v) 2 T�� � T�Y : d�1(v) = di(u)g. The inclusion TF(a;b) �f(u; v) 2 Ta�� � Tb�Y : d�1(v) = di(u)g is trivially true. The reverse inclusion will follow from equality ofdimensions of the two vector spaces.First we take a closer look at the tangent bundle T��. The Lagrangean �� itself is a �ber bundle. Wedistinguish horizontal and vertical tangent vectors to �� as follows: a curve c(t) with c(0) = (z; �) in �� ishorizontal if c(t) = (g(t)zg(t)�1; g(t)�g(t)�1) for some curve g(t) in G and vertical if c(t) = (z; �(t)) for somecurve �(t) in the �ber over z.Clearly, for every horizontal vector u 2 T�� there is a matching v 2 T�Y for which d�1(v) = di(u). Anyvertical u 2 T(z;�)�� has the form (0; u2) with u2 2 T (Ad�(y)t�) if z = yxy�1. In case u = ddt jt=0(z; t�),there is a matching v 2 T�Y such that di(u) = d�1(v), namely v = ddt jt=0((z; (t+ s)o); (b; t+ s); (z � b; t+ s))with pr:(b) = o = �=s. In case u = (0; 0), there is an exactly one dimensional space of matching nontrivialv's, namely the vectors tangential to the circle in the circle bundle B. Furthermore, by construction of�Y , for every other v 2 T�Y , d�1(v) = (v1; v2) where v2 has a component in TO�, hence in the horizontaldirection for T�� and cannot be matched with a vertical u 2 T��.This shows that for all (a; b) 2 F , dimf(u; v) 2 Ta�� � Tb�Y : d�1(v) = di(u)g = dimY = dimTF(a;b)and the above �ber diagram is clean with excess e = 0.Thus, we have veri�ed all of the claimed properties. By Proposition 2.4.1, the operator T�;L is a Fourier-Toeplitz operator of order dimT � dimG associated to the isotropic submanifold��;L = f((b; r); (g � b; r)) : g = kwx�1w�1k�1; w 2WG; pr:(b) = k�k�1gwhich completes the proof of (a).Proof of (b): For pr:(b) = k�k�1, we have(kwx�1w�1k�1) � b = ��(wx�1w�1) � b:31



Here we have used the assumption (with no loss of generality) that x 2 T ; thus wxw�1 2 T and conjugationwith kwx�1w�1k�1 �xes o = pr:(b): Therefore,��;L = J[�;j=1Graph(��j )where ��j (y) = e�i�j � y ; e�i�j := ��(wx�1w�1) for some w 2WG :Proof of (c): By the lemma above, the symbol splits up into a collection of symbols on the components of��;L. We pull them back to F and consider the �ber diagram:F ! �Y# # �1�� ! T �Giwhich simpli�es to F ! Cx � Y# # �1N�(Cx) ! Cx � g�i :Since the diagram is clean and of excess zero we have the exact sequences on the tangent level:0 �! TF �! T (Cx � Y �N�(Cx)) �! T (Cx � g�) �! 0and hencejTF j 12 �= jT (Cx � Y )j 12 
 jTN�(Cx)j 12 
 jT (Cx � g�)j�12 �= jY j 12 
 jT (N�(Cx))j 12 
 jg�j� 12 :To determine �(�), let us choose local coordinates (x0; x00) so that locally Cx = fx0 = 0g: Then locallywe have �Cx = a(x00) Z eihx0;�00id�0d _xso that �(�Cx ) = a(x00)pd _xpd�0:The 1/2-densitypd _xpd�0 is invariantly de�ned on N�Cx as the principal symbol of the invariant convolutionoperator. The principal symbol of the convolution with apd _x is just a times this canonical one.By part (a), ��;L is di�eomorphic to a disjoint union of copies of Y . So we may express �(T�;L) asa collection of 1/2-densities on Y , each one given as a smooth coe�cient times the canonical volume 1/2-density jdyj 12 : To determine the coe�cients, we �rst note by regularity of x, Cx �= G=T where the actionof G is by conjugation. The derivative of the action, Ad�(g), trivializes the normal bundle, i.e. gives theisomorphism N�(Cx) �= G=T � t�. That is,TgN�(Cx) �= (g�1tg)? � g�1t�g �= g�so that jTg(N�(Cx))j 12 
 jg�j�12 �= 1:32



Now g carries the natural bi-invariant volume density dg of the Killing metric. However, the isomorphismabove to TgN�(Cx) is the same as occurs in the Weyl integration formula to express the Haar densitydg as a density on G=T � T ([B.tD IV]). Namely if q : G=T � T ! G is the map (g; t) ! gtg�1 thenq�(dg) = det(AdG=T (t�1)�EG=T )d _xdt where EG=T is the identity on Te(G=T ): It follows that the canonical1/2-density on N�(Cx) is given bypd _xpd�0 = pd _xpdt =s q�(dg)det(AdG=T (t�1)� EG=T ) : (24)Since q is used to identify the 1/2-densities on N�(Cx) with those on g�, the ratio with the bi-invariant 1/2-density on g� is 1pdet(AdG=T (t�1)�EG=T ) : Hence the 1/2-density factor of the symbol on the g�j (y) -componentof �(T�;L) equals a(g�j (y))pdet(AdG=T (t�1)�EG=T ) : Since the �ber of F ! ��;L is discrete (and usually a single point),we get the same (kind of) 1/2-density on ��;L: As in the proof of the Weyl character formula (see thediscussion in x5.5), the denominator pdet(AdG=T (t�1) �EG=T ) gives (at least, up to sign) the the Weyldenominator in the symbol described in (c).This concludes the proof of (c) and hence of the theorem.Theorem B(i) and Proposition 3.2.1 yield the followingCorollary 5.1.1 (a) For all k � 1, the composition power T k�;L is clean andT k�;L 2 I k+12 (dim T�dimG)(B � B;�k�;L)with �k�;L = Graph(������k;J ) where J = (jk; : : : ; j1) and where������k;J (y) = ��(wjkx�1w�1jk � � �wj1x�1w�1j1 ) � y:(b) The component �(T k�;L)�����J of the principal symbol �(T k�;L) on Graph(������k;J ) is given by�(T k�;L;j)�����J j(y;g�wj (y)�y) = �ki=1 1�(g�wji (y))a(g�wji (y)) jyj� k2 ( dimY2 �1)jdyj 12 
 (g�wji )�� :5.2 Sobolev smoothing properties of ray Markov operators: Proof of TheoremB(ii)We begin by de�ning a scale of Sobolev spaces W sH2(B) which are the Hardy space analogues of the usualSobolev spaces W s(B) on a compact manifold B.Recall that the W s-norm of a distribution f 2 D(B) is de�ned bykfkWs := kP sfk2where P is a positive elliptic pseudodi�erential operator of order 1 and k � k2 denotes the L2-norm. In theHardy setting, the role of P can be played by D = 1i @@� . This operator is an elliptic Toeplitz operator onH2(B) in the sense that D has nowhere vanishing symbol on Y . Hence we make the following:De�nition 5.2.1 The Hardy-Sobolev space W sH2(B) is the space of f 2 H2(B) such that kDsfk2 <1.We can describe the Hardy-Sobolev norms more concretely in terms of Fourier coe�cients relative to theS1-action on B. Recall that H2(B) =L1n=0H2n(B) where H2n(B) is the space of CR-functions of eigenvalue33



n for D. Let f 2 H2(B) and let fn be its `Fourier coe�cient' of degree n, i.e., its component in H2n(B).Then put kfk2WsH2 := 1Xn=0n2skfnk22:Obviously, W sHs(B) for s > 0 is the space of f 2 H2(B) for which Dsf 2 H2(B).We recall that in the case of Fourier integral operators associated to local canonical graphs, there is ageneral Sobolev smoothing result:Theorem 5.2.2 ([H�o, Vol.IV Theorem 25.3.1 and Corollary 25.3.2]) Let C be a homogeneous canon-ical relation that is locally the graph of a canonical transformation and let A 2 Im(M �M;C). Then A is abounded operator from W s(M ) to W s�m(M ) for every real s.The Toeplitz analogue of this result is:Theorem 5.2.3 Let C � Y �Y be a homogeneous canonical relation that is locally the graph of a canonicaltransformation on Y and let A 2 Im(B � B;C). Then for every real s, A is a bounded operator fromW sH2(B) to W s�m0H2(B) with m0 = m + dimB�12 . We call m0 the e�ective order of A.Proof: Suppose �rst that A 2 I� dimB�12 (B � B;C), that is, A has e�ective order 0. We can writeA =Pni=1Ai as a �nite sum of operators such that each Ai, i = 1; :::; n, is associated to a canonical graph.Hence A�iAi 2 I� dimB�12 (B � B;�(Y )). We claim that Toeplitz operators of e�ective order 0 associated tothe identity graph on Y are bounded on H2(B). Granted this statement, it follows that(Aiu;Aiu) = (A�iAiu; u) � const:(u; u); u 2 H2(B) :Thus, for all i = 1; :::; n, Ai is bounded on H2(B) and hence so is A.To prove that A�iAi 2 I� dimB�12 (B �B;�(Y )) is bounded on H2(B) we use that there exists a pseudod-i�erential operator Q of order 0 such that [�; Q] = 0 and such that A�iAi = �Q� (see [BdM.G, Proposition2.13]). Then for u 2 H2(B),kAuk2 = k�Q�uk2 = kQ�uk2 � const:k�uk2 = const:kuk2by the L2-boundedness of 0th order pseudodi�erential operators.Finally, let A have order m. To show that A :W sH2(B)!W s�m0H2(B) is bounded it su�ces to showthat Ds�m0A : W sH2(B)! H2(B) is bounded. However, we can writeDs�m0A = (Ds�m0AD�s)Ds :Since Ds�m0AD�s is bounded on H2(B), it follows that Ds�m0A is bounded from W sH2(B) ! H2(B).In particular, an isotropic operator of degree m < 0 is smoothing of degree �m0 = �(m + dimB�12 ) onthese spaces. By Theorem B(i), the ray Markov operator T�;L for �-functions on �nite unions of regularconjugacy classes is of order dimT � dimG. Hence in this case T�;L is smoothing of degree dimB�12 . Thiscompletes the proof of Theorem B(ii).5.3 The Hilbert-Schmidt property of ray Markov operators: Proof of TheoremB(iii)Here we assume that G is a classical compact Lie group. We prove that the ray Markov operator T�;L for a�-function on a �nite union of regular conjugacy classes is a Hilbert-Schmidt operator.34



Recall Theorem B(i) and Proposition 3.2.1. Since ��;L is a union of canonical graphs, the excess of thecomposition T k�1�;L �T�;L is dimB�1 and hence the order of T k�;L is k(dimT �dimG)� dimB�12 for all k > 1.This implies that the e�ective order is m0(k) = k(dimT � dimG). Thus, by Theorem 5.2.3,T k�;L : H2(B) !W k(dimG�dimT )H2(B) :Furthermore, we have Dk(dimG�dimT ) :W k(dimG�dimT )H2(B)! H2(B) :It follows that B := Dk(dimG�dimT )T k�;L : H2(B)! H2(B)is a bounded operator leaving the subspaces H2n(B), n = 1; 2; ::: invariant. For f = P1n=1 fn 2 H2(B)(according to L1n=1H2n(B)) we then haveBf = 1Xn=1Bnfn with kBnk2 � C 8nfor some constant C. Here k � k2 denotes the L2 � L2 mapping norm. Recall that the action of T k�;L onH2(B) is given by T k�;L(f) = 1Xn=1 �̂k(n�)fn :Denoting the Hilbert Schmidt norm by k � kHS , we thus havekT k�;Lk2HS = 1Xn=1k�̂k(n�)k2HS = 1Xn=1n2k(dimT�dimG)kBnk2HS :It follows, since kBnk2HS � dnkBnk22 with dn = dimH2n(B), thatkT k�;Lk2HS � C 1Xn=1n2k(dimT�dimG)dn ;and hence that T k�;L is Hilbert-Schmidt if1Xn=1n2k(dimT�dimG)dn <1 : (25)Since � is assumed to be an interior weight, dimH21 (B) is a polynomial of degree jR+j = (dimG� dimT )=2(the cardinality of the set of positive roots) in the components of �, and dn � C 0n(dimG�dim T )=2 for someconstant C 0 and all n. It follows that the series (25) converges for 2k(dimT�dimG)+(dimG�dimT )=2 < �1and hence that T k�;L is Hilbert-Schmidt fork > 1 + (dimG� dimT )=22(dimG� dimT ) : (26)But for the right hand side in (26) we have:1 + (dimG� dimT )=22(dimG� dimT ) � 12for all classical compact Lie groups. 35



5.4 The limit spectral measure: Proof of Theorem B(iv)Let us recall the statement of Theorem B(iv).Theorem B(iv) Let � be a �-function on the union of conjugacy classes Cx [ Cx�1 as de�ned above andlet L = IN� be an interior ray of representations of G. The asymptotics of the kth moments of the spectralmeasures m�n� of T�;L along L are given byM�n�(k) � n k2 (dimT�dimG) 1vol(B) X(jk; :::; j1)(� � � ��) e(�+(�wjk (X))) � � � e(�+(�wj1 (X))))(�1)wjk � � � (�1)wj1�(�X) : : : �(�X) (��(wjkx�1w�1jk � � �wj1x�1w�1j1 ))n "ZB  kYi=1 a(g�wji (b))! dvol#Proof: The proof is very similar to that of Proposition 4.3.2. As in the case of the spherical meansoperator, the �k�;L here are also �nite unions of graphs of translates by certain circle elements, namely the��(wjkx�1w�1jk � � �wj1x�1w�1j1 )'s. This implies that the trace operation Tr(ei�D �T k�;L) is clean and that thesingular angles of the resulting distribution �k(�) are precisely the ��(wjkx�1w�1jk � � �wj1x�1w�1j1 )'s, each ofwhich corresponds to the �xed point set Y . Thus the excess of the trace operation is e = 2dimB � 1. UsingCorollary 5.1.1(b) for the principal symbol and plugging into the general formula of Proposition 3.3.1 givesall the stated factors except for the �+ , i.e. symplectic spinor factor.The latter is calculated as in Proposition 3.4.1 (iv): From (b) we know that g�w (y) �xes pr(y) = o.Hence we get the induced map g�w (y)� on the space of symplectic spinors at o, that is, by applying M, themetaplectic representation, to the normal part dT?g�w (y) of the derivative. This operators on the symplecticorthogonal to TY �= TO � T (S1 � IR+) in T �B; of which the non-trivial part is the symplectic orthogonalto ToO in T �O: Identifying O �= G=T , T �O �= G=T � t�?, ToO? �= t�? and dT?g�w (y) �= Ad�(g�w (y)) onk(y)t�?k�1. >From the fact that g�w (y) = k(y)wx�1w�1k(y)�1 it follows that the eigenvalues of Ad�(g�w (y))are the same as the eigenvalues of Ad�(wx�1w�1) on t?: These are given by the global roots e(�) evaluatedat wxw�1. As usual, we have (with x = eX )M(Ad�(wx�1w�1)) = ��2R+exp(h�;XiÎ� (27)where Î� is the harmonic oscillator. It follows that the diagonal matrix elementhM(Ad�(wx�1w�1))e�; e�i = e(12�+)jwx�1w�1 : (28)This factor is constant as we integrand over the �ber of the trace, and thus it persists to the momentasymptotics as stated above.5.5 Example: uniform measure on conjugacy classesAs a check on our caluculations, let us consider the case of the symmetric uniform (conjugacy-invariant)probability measure d� = 12d _xCg + 12d _xCg�1 ;on Cx [Cx�1 with x = eX a regular element of T . Random walks of this kind, but with highly singular x,were considered in [Ro][Po]. 36



Since � is conjugacy invariant, it follows from Schur's Lemma that for each � 2 Ĝ, the Fourier transform�̂(�) is a scalar. Namely�̂(�) = 12 ZG(�(gxg�1) + �(gx�1g�1))dg = 1d� ZGReCh�(gxg�1)dgId� = ReCh�(x)d� Id�where the integral is with repect to Haar measure on G, Ch� denotes the character with ReCh� its realpart, and d� denotes the dimension of the representation �. Hence the spectral measures m�� are the deltafunctions m�� = �(x� �x(�))where �x(�) = ReCh�(x)d� is the eigenvalue of �̂(�): It is obvious that M�n�(k) = �x(n�)k so the asymptoticsof any moment is determined by the asymptotics of the �rst moment M�n�(1) = �x(n�): However, the �rstmoment is simply the traceM�n�(1) = 1dn�Tr�̂(n�) == 1dn�Re ZGChn�(gxg�1)dg = 1dn�ReChn�(x):So the calculation comes down to the asympotics of Chn�(x) as n!1:The result must of course duplicate the Weyl character formula, for which we are about to give a Toeplitzoperator proof. The calculation follows the pattern of [P.Z, x3], except that here we are assuming x is aregular element and there we assumed it was central. Hence the dimensions of �xed point sets are entirelydi�erent and so therefore is the order of the asymptotics.As usual, we form the generating function�(�) = Tr�ei�DTxand determine the principal singularities. They occur at the �xed points of x acting on O�: We may assumex 2 T and then the �xed points form the Weyl orbit W � � of �. By a well-known argument [A.B]B.G.V, Tx(conjugation by x) de�nes a Lefschetz map of O� with �xed points at the Weyl orbit W�: The eigenvaluesof dTxjTw�� are the values of the global roots e(�) at w�1xw: Hence the 1/2-density part of the symplecticspinor trace of Tx at w � � is given by 1pdet(I�dTxjw�1�w) . Recall from the Weyl character and integrationformulae that det(I � dTxjw�1�w) = det(I � AdG=T (wxw�1) = ���:The formula makes it clear that det(I � dTxjw�1�w) > 0 so we may take its square root. We also see that�� = (�1)jR+ j� so that up to sign the square root equalsdet(I � dTxjw�1�w) = �ijR+j�(X):To determine the sign one would have to analyse the Maslov factors, or else work with 1/2-forms rather thanwith 1/2-densities. For the sake of brevity, we have ignored the analysis of Maslov factors in this article. Acareful discussion of the correct signs, in a closely related context, is given in [B.G.V, Theorem 8.7] and itshows that the correct square root gives (�1)w�:The remaining ingredient in the trace is the symplectic spinor part. Thus, we must consider dTx actingon the symplectic normal space TyY ? at a �xed point y. We may identify TyY ? with g�=t� and since theaction of Tx on T �B is the lift of the base action, dTx acts on g�=t� by the usual linear (conjugation) action.In particular, it has the same eigenvalues as dTg does on ToO where o is the projection of y. Thus, dTxjTyY?is a sum of rotations with eigenvalues e(�); e(��)jwxw�1 . Let us write e(�)jwxw�1 by e2�ihw(X);�i: Under themetaplectic representation M it therefore becomesM(dTxjTyY ?) = ��2R+eihw(X);�iÎ�37



where Î� denotes the Harmonic oscillator HamiltonianD2+u2 with D = didu and with u the �th coordinateof g�=t�. Since the symplectic spinor part of the symbol is the projection � = e�
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