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INVARIANT CR STRUCTURES ON COMPACT
HOMOGENEOUS MANIFOLDS

DMITRY V. ALEKSEEVSKY, ANDREA F. SPIRO

ABSTRACT. An explicit classification of the simply connected homogeneous spaces
G /L of a compact Lie group G, admitting a G-invariant CR structure of codimension
one and Levi non degenerate, 1s given. For each such a homogeneous space, all
admissible G-invariant CR structures are listed and classified up to CR equivalences.

It is also proved that if a compact homogeneous CR manifold G'/L is not the
covering space of a G-orbit in T'S™, THP™ or TOP?, then there exists a holomorphic
fibration 7: G/L — G /K, where G/K is a flag manifold endowed with an invariant
complex structure and the typical fiber K/L is S' or it is equivalent to (the universal
covering of) a K-orbit in T'S? or in TS??~! with 2 <n <T.

1. Introduction.

An almost CR structure on a manifold M is a pair (D, .J), where D C TM is a
distribution and J is a complex structure on D. The complexification D% can be
decomposed as D¢ = D% 4 D! into sum of complex eigendistributions of J, with
eigenvalues 1 and —1.

An almost CR structure is called integrable or CR structure if the distribution
D! (and hence also the D'?) is involutive, that is the space of sections is closed
under Lie brackets. This is equivalent to the following conditions:

J(JX, Y]+ [X,JY]) €D (1.1)

[JX,JY] - [X,Y] - J([JX, Y]+ [X,JY]) =0, (1.2)

for any two fields X, Y in D.

A map ¢: (M,D,I) — (M',D',J") between two CR manifolds is called holo-
morphic map or CR map if o, (D) C D" and p.(JX) = Jp.(X).

Two CR structures (D,.JJ) and (D', J') are called equivalent if there exists a
diffeomorphism such that ¢.(D) = D" and ¢..J = J'.

The codimension of D is called the codimension of the CR structure. Note that
a CR structure of codimension zero is the same as a complex structure.

A codimension one CR structure (D,.J) on a 2n + 1-dimensional manifold M
is called Levi non degenerate if D is a contact distribution. This means that any
local (contact) 1-form 6, which defines the distribution (i.e. such that kerf = D)
is maximally non degenerate, that is (d6)™ A 6 # 0.
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Note that any real hypersurface M of a complex manifold N has a natural
codimension one CR structure (D, Jp) induced by the complex structure J of N,
where

D={XeTM,JXeTM}, Jp=Jp.

In the following, if the opposite is not stated, by CR structure we will mean
integrable codimension one Levi nondegenerate CR structure. Sometimes, if the
contact distribution D is given, we will identify a CR structure with the associated
complex structure J.

A CR manifold, that is a manifold M with a CR structure (D,.J), is called
homogeneous if it admits a transitive Lie group of CR transformations.

The aim of this paper is to give a complete classification of simply connected
homogeneous CR manifolds M = G/L of a compact Lie group G. This gives a clas-
sification of all simply connected homogeneous CR manifolds, since any compact
homogeneous CR manifold admits a compact transitive Lie group of CR transfor-
mations (see [Sp]).

The simplest example of compact homogeneous CR manifold is the standard
sphere §?"~! C C" with the induced CR structure.

More elaborated examples are provided by the following construction of A. Mo-
rimoto and T. Nagano ([MN]). Let N = G/H be a compact rank one symmetric
space (shortly ’"CROSS’). The tangent space TN can be identified with the homo-
geneous space G©/HC. Hence, it admits a natural G*-invariant complex structure
J. Any regular orbit G - p ~ G/L in TN = G“/HC is a real hypersurface with
(Levi non degenerate) G-invariant CR structure.

Moreover, these examples together with the standard sphere $?"~1 C C" exhaust
the class of CR structures induced on a codimension one orbit M = G -z C C of
a compact Lie group G of holomorphic transformations of a Stein manifold C'. We
call the homogeneous CR manifolds which are equivalent to such orbits in tangent
spaces of a CROSS Morimoto-Nagano spaces.

In the fundamental paper [AHR], H. Azad, A. Huckleberry and W. Richthofer
showed that these manifolds play a basic role in the description of the compact
homogeneous CR manifolds.

More precisely, for any compact homogeneous CR manifold M = G/L they
define a holomorphic map (called anticanonical map) ¢: M = G/L — CPN. This
map is G-equivariant with respect to some explicitly defined projective action of
G on CPY. For any compact homogeneous CR manifold M only two possibilities
may occur: the orbit ¢(M) = G - p, p € ¢(M), is either a flag manifold with the
complex structure induced by the complex structure Jp of CPY and in this case
¢ M — ¢(M) is an S'-fibering, or it is a CR manifold with CR structure induced
by Jp and in this case ¢: M — ¢(M) is a finite covering.

This reduces the description of the CR homogeneous manifolds of the second type
to the description of compact orbits G-p C CPY of a real subgroup G C Aut(CPY)
of projective transformations, on which Jp induces a CR structure.

A simple argument shows that an orbit G-p C CP" of a connected Lie subgroup
G C Aut(CPY) carries a (possibly Levi degenerate) CR structure induced by CPY
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if and only if G- p is a real hypersurface of G©-p. Moreover, if the orbit is compact,
one may assume that G is a compact semisimple Lie group.
The following important result in [AHR] describes the structure of such orbits.

Theorem. Let G° C Aut(CPN) be a connected complex semisimple group of pro-
jective transformations and G its compact form. Assume that the orbit M = G-p =
G/L carries a Levi non degenerate CR structure induced by Jp and hence it is a
real hypersurface in B = G%-p = GY/H. Denote by P a minimal parabolic subgroup
of G© which properly contains H. Then the fiber C = P/H of the G*-equivariant
fibration over the flag manifold F = G©/P

mB=G‘)H - F=G"/P

18 a homogeneous Stein manifold biholomorphic to C*, C* or to the tangent space

of a CROSS.

This fibration is called Stein-rational fibration. Note that P not necessarily acts
effectively on C.
The Stein-rational fibration induces a G-equivariant holomorphic fibration of the

homogeneous CR manifold M = G/L over the flag manifold F
m:M=G/L—F=G"/P

(it is a CRF fibration according to our definitions, see below). Moreover, in corre-
spondence to a fiber of 7, a fiber of 7’ is either S, $?"~! or a Morimoto-Nagano
spaces.

This Theorem gives necessary conditions for an orbit M = G-p C CPY in order
to carry an induced CR structure. Our classification gives necessary and sufficient
conditions. In particular, we show that not all Morimoto-Nagano spaces may occur
as fibers of the fibration =’.

Now we describe the main results of this paper. Section §2 collects the basics
facts on homogeneous CR manifolds.

Section §3 is devoted to the infinitesimal description of homogeneous contact
manifolds M = G/L of a compact Lie group.

We prove that the center of GG is at most one dimensional and we establish a nat-
ural one to one correspondence between simply connected homogeneous manifolds
M = G/L with an invariant contact distribution D and an element Z € g = Lie(G)
(defined up to scaling) such that:

a) the centralizer of Z has the following orthogonal decomposition w.r.t. the
Cartan-Killing form B

Co(Z)=1BRZ,  [=Lie(L);

b) the l-parametric subgroup generated by Z is closed.
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This element Z (called contact element) defines an orthogonal decomposition
g=[+RZ+m.

The subspace m is Ady-invariant and defines the contact distribution D on M =
G/ L, while the Ady-invariant 1-form 6 = Bo Z € g* is extended to a G-invariant
contact form 6 on G/L.

We associate with Z a flag manifold Fz, which is the adjoint orbit
Fy=Ad¢(Z)=G/K ,
where K = C'(Z) is the centralizer of Z. There is a natural principal S!-fibration
. M=G/L—F;=G/K .

In general, a homogeneous manifold G/ L admits no more then one invariant contact
structure. If it admits more then one then it is called special contact mansifold.

The main examples of such manifolds can be described as follows.

Let G be a simple compact Lie group without center and let Q) = G/Sp; - H' be
the associated Wolf space, that is the homogeneous quaternionic Kahler manifold,
where Spy - H' is the normalizer in G of the 3-dimensional subalgebra sp, () of g
assoclated with the maximal root p. Then the associated 3-Sasakian homogeneous
manifold M = G/H' is a special contact manifold.

Any 0 # Z € spy(p) is a contact element. Furthermore, any two invariant
contact structures on M are equivalent under a transformation, which commutes
with G, defined by the right action of an element from Sp;.

We prove the following theorem.

Theorem 1.1. Any special contact manifold M = G/L 1is either the 8-Sasakian
homogeneous manifold G/H' of a simple group G, as described above, or M =
G2 /Sp1, where Spy 1s the 8-dimensional subgroup of the exceptional Lie group G,
with Lie algebra spy(p), where p is the mazimal root of Gs.

In section §4 we establish some general properties of compact homogeneous CR
manifolds. Let (M = G/L,D) be a homogeneous contact manifold and

g=[(4+RZ4+m

the associated decomposition of the Lie algebra g. Then any invariant (integrable)
CR structure J is defined by the Ady-invariant decomposition

m® = m!0 4 m% (1.1)

of the complexified tangent space m®© = TéCLM into holomorphic and antiholomor-
phic subspaces, such that

(C+m°  is a subalgebra of g° . (1.2)

The subspace m is naturally identified with the tangent space of the associated flag
manifold Fy = G/K, ¢t =[+RZ = Lie(K). It is known that any invariant complex
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structure on Fy is defined by an Adj-invariant decomposition (1.1), where m®! is
a subalgebra (in fact it is the nilradical of a parabolic subalgebra £ +m®!). Hence
any invariant complex structure Jp on F; defines an invariant CR structure Jys
on M = G/L. It is called standard CR structure induced by Jp.

The natural S'-fibration 7: M = G/L — Fz = G/K is holomorphic with
respect to the CR structure Jy; and the complex structure Jp.

Since the description of all invariant complex structures on a flag manifold is
known (see e.g. [Ni], [AP], [BFR], [All]), it is sufficient to classify the non standard

CR structures.

The following notion is important for such classification.
A compact homogeneous CR manifold (M = G/L, D, J) is called not primitive
if it admits a holomorphic G-equivariant fibration = (called CRF-fibration)

7. M=G/L—-F=G/Q

where F' = G/Q is a flag manifold of positive dimension, equipped with an invariant
complex structure Jp. Note that a fiber of # will be a homogeneous compact CR
manifold /L and that any standard CR manifold is not primitive.

The classification of primitive CR structures given in §5 and §6 is an important
step for the description of all non standard CR structures.

A basic tool for studying the homogeneous CR manifolds is the anticanonical
map ¢ defined in [AHR].
Let (M = G/L,Dy,J) be a homogeneous CR manifold of a compact Lie group
G and
gC: [C_I_(CZ _I_mlo_l_mOl

the corresponding decomposition of g=. Then the anticanonical ¢ is the holomorphic
map from M into the Grassmanian of k-planes, k = dimg((© +m®'), given by

¢: M =G/L - Gri(g®) c CPY

¢: gL — Ad, (1" 4+ m°) .

Note that ¢ is a G-equivariant map onto the orbit G - p of p = [* + m°! € Gri(g")
under the natural adjoint action of G on Gry,(g%)

We obtain the following characterization of standard and non standard CR struc-
tures (see Theorems 4.10 and 4.12):

Theorem 1.2. Let (M = G/L,Dyz,J) be a homogeneous CR manifold.

(1) If it us standard, then the image ¢(M) = G - p of the anticanonical map
is the flag manifold Fy = G/K, associated with the contact structure Dy.
Hence ¢: M — ¢(M) = Fy is the natural S*-fibration.

(2) If it is non standard, then ¢: M — ¢(M) = G - p is a finite holomorphic
covering, with respect to the CR structure of G-p C Gri(g%) induced by the
complex structure of Gry,(g®).

In section §5, we classify all invariant CR structures on special contact manifolds

G/L. The result is the following:
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Theorem 1.3. Let M = G/L be a special contact manifold with an wnvariant
contact structure Dy.

(1) of G # SU,, then there exists (up to sign of J) only one invariant CR
structure (Dz,J), which is standard;

(2) of G = SUy and hence M = SU,, then there exist (up to sign of J) one
standard CR structure and one family of non standard CR structures; any
non standard CR structure is primitive and all of them are equivalent to
each other;

(3) of G =SU,, n>2, and hence M = SU,, /U, _2, then there exist (up to sign
of J) three standard CR structures, induced by the three invariant complex
structures of the corresponding flag manifold Fy = SU, /T* - SU,_2 (which
is the twistor space of the Wolf space Q = SU,/S(Us - Up—2)), and two
famailies consisting of mutually equivalent non standard CR structures. Any
non standard CR structure is not primitive and admits a CRF fibration

T: M = SUn/Un_Q — SUn/S(UQ . Un_z)
with a fiber SUy over the Wolf space SU,/S(Us - Up—2) equipped with its

(unique up to sign) complex structure.

The explicit description of all non standard CR structures on SUs and SU,, /U, —2
is given in §5.

In section §6, we obtain the classification of non standard invariant CR structures
on non special homogeneous contact manifolds.

. From the list of non standard CR structures and from the previous results on
special contact manifolds, we obtain the following classification of primitive CR
structures.

Theorem 1.4. Let (M = G/L,Dy,J) be a simply connected primitive, homoge-
neous CR manifold and 8 = 1BoZ the dual form of the contact element Z restricted
to a Cartan subalgebra t of ¢ = Cy(Z) = [+ RZ. Then G/L is the universal cov-
ering of a reqular (codimension one) orbit of G in a homogeneous complex space
B = G%/H with the induced CR structure. G, K = Cg(Z), 6 and the complex
homogeneous space B belong to the following table. In all cases, B 1s the tangent

space of a CROSS.

ne G K =Ca(Z) 6 B=G"/H

1 SU, T €0 TS* = 3553

o2 |SU, x SUL| T x TV |eg—ef TS* = 3553

3 F, T - SO(7) €1 TOP? = SPFT%

4] SOusr | T'-S0sm | o TS = Sl

50 SOu | T SOw_y | & | TSol= S0

6 Spn | T' - Spi-Spa—s | o1 422 | THP" ! = o 2beld
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In each of these cases, the set of all CR structures (considered up to sign) on
M = G/L is parameterized by the points of the unit disc D in R% The center of
D corresponds to the (unique) standard CR structure of M and all other points
correspond to mutually equivalent primitive CR structures.

For what concerns the non primitive and non standard CR structures, we have
the following theorem.

Theorem 1.5. Let M = G/L be a simply connected homogeneous CR manifold
with a non standard not primitive CR structure. Then G is either simple or a
product of two simple Lie groups and there exists a uniqgue CRF fibration

7 M=G/L—-F=G/Q

over a flag manifold F with an invariant complex structure Jp, such that the fiber
Q/L is a primitive CR manifold. Moreover, if G is not simple then Q/L = SU, x
SUL/TY; if G is simple then Q/L is one of the following primitive homogeneous
CR manifolds

SUQ 5 SOQn/SOQn_Q 5 3§n§7

If the fiber 1s Q/L = SU,, then G/L is a special contact manifold SU, /SU,—_2; if
the fiber is Q/L = SO, /S02p—2 with n > 4, then G = Eg, E7 or Eg.

Corollary 1.6. Let 7: M = G/L — F = G/Q be the CRF fibration of not primi-
tive non standard CR manifold (G/L, D, Jy) onto the flag manifold F = G/Q with
a fized invariant complex structure Jp. Then the set of all invariant CR structures
(D, J) on G/L (up to sign of J), such that the fibering m: M = G/L — F = G/Q is
holomorphic, 1is parameterized by the points of the unit disc D in R?. The center of
D corresponds to the unique standard CR structure Js of this family and all other
points correspond to mutually equivalent primitive CR structures.

The unique standard CR structure J, on M = G/L such that the fibration
7: M =G/L - F = G/Q is holomorphic w.r.t. J; and Jp is called the standard

CR structure associated with the non-standard CR structure Jy.

We conclude this introduction, by showing how the explicit description of all
non primitive CR manifolds G/L of a given compact Lie group G can be done in
terms of painted Dynkin graphs of g = Lie(G), that is of Dynkin graphs of the Lie
algebra g with nodes painted in three colors: white, black and gray.

Recall that any flag manifold F = G/@Q with an invariant complex structure
Jr is defined (up to equivalences) by a black-white Dynkin graph, where the sub-
algebra q = Lie(Q) is generated by the Cartan subalgebra and the root vectors
associated with the white nodes. The complex structure Jp is determined by the
decomposition

o = ¢ + m!0 4 mO!

where m!? is the nilpotent subalgebra generated by the root vectors associated to

black nodes.
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With a painted Dynkin graph I', we associate two flag manifolds Fy(I") = G/K
and F»(I") = G/Q and two invariant complex structure J;(I') and J2(I") on Fy(T)
and F»(T'y), respectively, as follows. The pairs (F;(I") = G/@Q, J;(T")), i = 1,2, are
the flag manifolds with invariant complex structures defined by the black-white
graphs obtained from I' by considering the gray nodes as white and, respectively,
black.

Note that @) contains K and that the natural fibration

is holomorphic and a fiber /K is a flag manifold with an induced invariant complex
structure J'. Moreover, J;(I') is canonically defined by J2(I') and J'.

Conversely, if F| = G/K and F; = G/Q are two flag manifolds with invariant
complex structures J; and Jy such that ¢ D K and the equivariant fibration
w: Fy — F; is holomorphic, then we may associate with F; and F, a painted
Dynkin graph in an obvious way.

A painted Dynkin graph I' of a semisimple Lie algebra g is called admissible if
a) g=A¢and I is

0 (1.3)

or

b) g # Ay, Eg, E7, Eg is simple, the black nodes are isolated and, after deleting
the black nodes, I' is of the following form, modulo connected components
which consist of only white nodes,

o—@— o0 + white (1.4)

or
¢) g = Es, E7 or Es and T is one of the following diagrams

& : . (1.5)
& 0 . (1.6)
oo 0 o (1.7)

& 0 . (1.8)
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d) g = g1 + g2 is sum of two simple Lie algebras, the black nodes are isolated
and each connected component of I' has exactly one grey node, which is not
connected with a white node; in particular, after deleting the black nodes,
the remaining graph is of the following form

® +  white (1.10)

® +  white

Using the concept of admissible painted graph, the results of our classification may
be stated as follows.

Theorem 1.7. Let M = G/L be a homogeneous CR manifold with a not primitive
non standard CR structure (D, J). Denote by n: G/L — Fz = G/K the natural
(not holomorphic) fibration defined by the contact structure and ©': G/L — F =
G/Q the uniqgue CRE fibration with primitive fiber Q/L onto a flag manifold F =
G/Q with mvariant complex structure Jp.

Then ) D K and the sequence of fibering

M=G/L—-F;=G/K—F=G/Q

is holomorphic with respect to the standard CR structure (D,Js) on M, associated
to (D,J), the corresponding complex structure Js on Fz and the complex structure
Jrp on F.

Moreover, the painted Dynkin graph T' associated to the flag manifolds Fy =
Fy, Fy, = F with the complex structures J; = Js and Jy = Jp, respectively, s
admassible.

Conversely, if I 1s an admaissible painted Dynkin graph, then there exists a ho-
mogeneous contact manifold (M = G/L,Dyz) such that Fyz = F1(I') = G/K and
the complex structure J1(I') defines the unique standard CR structure (D, J1(I")) on
M such that the sequence of fibrations

M=G/L— Fy;=F()=G/K - (') =G/Q

is holomorphic w.r.t. (D, J1(I')), Ji(I') and J5(T'). The space of the invariant CR
structures (Dyz,J) on M, such that the projection ©': M — F5(T") is holomorphic,
18 parameterized by the points of a unit disc, with the center corresponding to the CR

structure J1(I') and all other points corresponding to non standard CR structures
which iduce primitive CR structures on the fiber QQ/L.
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PArT I

2. Basic facts about CR structures.

Definition 2.1.

(1) A CR structure on a manifold M is a pair (D,J), where D C TM s a
distribution on M and J € End D, J* = —1, is a complez structure on D.
(2) A CR structure (D,J) is called to be integrable if J satisfies the following

integrability condition :
J([JX. Y]+ [X,JY]) € D

[JX,JY] - [ X, Y] - J([JX,) Y]+ [X,JY])=0 (2.1)
for any pair of vector fields X, Y wn D.

In the sequel by CR manifold we will understand a manifold M with integrable
CR structure.

If (D,J) is a CR structure then the complexification D© C T®M of the distri-
bution D is decomposed into a sum DE = D + D' of two mutually conjugated
(D0 = D) J-eigendistributions with eigenvalue 7 and —i. The integrability con-
dition (2.1) means that these eigendistributions are involutive (i.e. closed under
the Lie bracket).

The codimension of a CR structure (D, .J) is defined as the codimension of the
distribution D . Remark that codimension zero CR structure is the same as a
complex structure on a manifold. A codimension one CR structure (D, .J) is called
also a CR structure of hypersurface type, because such structure is induced on a
real hypersurface of a complex manifold. In this case the distribution D can be
described locally as the kernel of a 1-form €. The form 6 defines an Hermitian
symmetric bilinear form

LD, xDy =R

given by
L (v,w) = (db)(v, Jw)

for v,w € D. It is called the Levi form. Remark that the 1-form 6 is defined up to
the multiplication by a function f everywhere different from zero and £/? = f£%.
In particular, the conformal class of a Levi form depends only on the CR structure.

A CR structure (D, J) of hypersurface type is called non degenerate if it has non
degenerate Levi form or, in other words, if D is a contact distribution. In this case
a 1-form € with ker @ = D is called contact form.

A smooth map ¢: M — M’ of one CR manifold (M, D,.J) into another one
(M',D',J") is called CR map or holomorphic map if

a) p«(D) C D'

b) p.(Jv) = J'p.(v) for all v € D.

In particular, we may speak about CR transformation of a CR manifold (M, D, J)
as a transformation ¢ such that ¢ and ¢~! are CR maps. In general, the group of
all CR transformations is not a Lie group, but it is a Lie group when (D, J) is of
hypersurface type and it is Levi non degenerate.
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Definition 2.2. A CR manifold (M, D,J) is called homogeneous if it admits a
transitive Lie group G of CR transformations.

Our aim is to classify compact homogeneous codimension one non degenerate
CR manifolds. The following result shows that we may identify such manifold with
a quotient space G/L of a compact Lie group G.

Theorem 2.3. [Sp] Let (M,D,.J) be a compact non degenerate CR manifold of
hypersurface type. Assume that it 1s homogeneous, i.e. that there exists a transitive
Lie group A of CR transformations. Then a mazimal compact connected subgroup
G of A acts on M transitively and one may identify M with the quotient space G/L
where L 1s the stabilizer of a point p € M.

Now we fix some notations. If the opposite is not stated, we will assume that a
CR structure is of hypersurface type, integrable and Levi non degenerate.

The Lie algebra of a Lie group is denoted by the corresponding gothic letter.

For any subset A of a Lie group G or of its Lie algebra g, we denote by Cg(A)
and Cy(A) its centralizer in G and g, respectively. Z(G) and Z(g) denote the center
of a Lie group G and Lie algebra g. By homogeneous manifold M = G/L we mean a
homogeneous manifold of a compact connected Lie group G with connected stability
subgroup L and such that the action of G on M is effective.

3. Compact Homogeneous Contact Manifold.

3.1 Homogeneous contact manifolds of a compact Lie group G.

Let M = G/L be a homogeneous manifold of a compact Lie group G with
connected stabilizer L.

An 1-form 6 € g* on the Lie algebra g of G is called contact form if it is Ad-
invariant and vanishes on [ = Lie L. Such form defines a global invariant 1-form 6
on the manifold M which is a contact form of the contact distribution D = ker 6.
This establishes 1-1 correspondence between invariant contact structures D on M
and contact 1-form 6 € g up to a scaling (see e.g.[Al]).

Fix now an Adg-invariant Euclidean metric B on g and denote by [~ the orthog-
onal complement to [ in g.

The vector Z = B! 00 which corresponds to a contact form @ is called a contact
element of the manifold M = G/L.

It is characterized by the properties that

(1) Z €™ and
(2) the centralizer Cy(Z) =(d RZ.

Hence, we have the following

Proposition 3.1. There exists a natural bijection between invariant contact struc-
tures on a homogeneous manifold M = G/L and contact elements Z defined up to
a scaling.

We will denote by Dy the contact structure on M defined by a contact element
Z. A homogeneous manifold M = G/L with an invariant contact structure D is
called homogeneous contact manifold.
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Proposition 3.1 implies the following

Corollary 3.2. Let G/L be a homogeneous contact manifold of a compact Lie
group G which acts effectively. Then the the center Z(G) of G has dimension 0 or
1.

Moreover, if Z(G) is one dimensional, then any contact element Z has non
zero orthogonal projections Zygy, Zg on Z(g) and g = [g,9], and the stability
subalgebra [ can be written as

(= [Cy(Zy)le E{X =Y +0(Y), Y € Cg(Zy)}

where ¢: Cy(Zy ) — Z(g) = R is a non trivial Lie algebra homomorphism.

Proof. Clearly Cy(Z) D Z(g). If dimZ(g) > 2 then [N Z(g) # {0} and this
contradicts the fact that GG acts effectively. The other claims follow immediately. O

Remark that if Z is a contact element of a homogeneous manifold G/L and Zy
is its orthogonal projection of g’ = [g, g], then the adjoint orbit

Fy © AdaZ = Ade(Zy)
is a flag manifold and the projection n: M = G/L — Fz = G/K is a principal
Sl fibration over Fy. We will call Fy the flag manifold associated to a contact
element Z. Note that the contact form § = Bo Z is a connection (form) in the S!
bundle 7 : G/L — Fz and the corresponding contact structure D = ker@ is the
horizontal distribution of this connection.

Let F' = G/K be a flag manifold of a semisimple compact group G. We describe
now all homogeneous contact manifolds (G/L,Dyz) such that the associated flag
manifold Fy; = AdaZ is isomorphic to F.

Consider the orthogonal reductive decomposition

g=¢t+m
associated with the flag manifold F' = G/ K.

We say that an element Z of the center Z(£) is regular if it generates a closed
l-parametric subgroup of G and the centralizer C(Z) = K.
Note that if Z is regular, then the subalgebra

[ :EQ(Z)_

generates a closed subgroup, which we denote by L. Indeed, this can be proved as
follows. Consider the decomposition € = ¢ + Z (&), where # is the semisimple part of
t. Then we have that [z = ¢4(Z(¢)N(Z)™ ) and it generates a closed subgroup if and
only if the center Z([z) = (Z(€)N(Z)™ ) generates a closed subgroup in the maximal
torus corresponding to Z(€). Now, take an orthonormal basis B = {e1,...,¢e,} for
Z(€) and let us write Z = Y, 2%¢;. It is clear that Z generates a closed subgroup if
and only if each z* is rational. But this implies that (Z(€) N (Z)~) admits a basis
B'={f1,...,fp}, where each f; has rational components in B. And from this, the
claim follows. Therefore
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Proposition 3.3. Let F = G/K be a flag manifold. There is a natural 1-1 corre-
spondence between reqular elements Z € Z(€), ., C Z(€) up to a scaling and homo-
geneous manifolds G/L with an invariant contact structure D and the associated

flag manifold F = G/K. The correspondence is
Z(t)rey modR > [Z] <= (G/Lz,Dy).

Proof. Let Z € Z(£),.4 and let Ly C G be the closed subgroup generated by [.
Then, clearly, Z is a contact element for G/Ly; and determines a contact structure
Dy. Moreover, if Z,Z' € Z(#), 4 are such that Ly = Ly, then Z' = AZ for some
A. This shows that the map Z = (G/Ly,Dy) is injective on Z(#),., mod R. The

surjectivity is also clear. O

3.2 Invariant contact structures on a contact manifold M = G/L.

Now we describe all invariant contact structures on a given homogeneous man-
ifold M = G/L. We will show that generically there is no more then one such
structure.

Definition 3.4. A homogeneous manifold G/L is called homogeneous contact
manifold of generic type (respectively, of special type or, shortly, special) if it
admits a unique (respectively, more then one ) invariant contact structure.

3.2.1 Main examples of special homogeneous contact manifolds.

Let g be a compact semisimple Lie algebra, ) a Cartan subalgebra of g and R
the root system of the pair (g©, h*) .

Recall that a root a € R defines a 3-dimensional regular subalgebra g&(a) =
spanc < Fo,E_,,H, > and its intersection with g is a 3-dimensional compact
subalgebra g(«). We will call g(«) the subalgebra associated with the root o and
denote by G(«) the 3-dimensional subgroup of the adjoint group G = Int(g) =
Aut(g)® generated by g(a).

Note that any two such subalgebras are conjugated by an inner automorphism
of g if and only if the corresponding roots have the same length.

Fix a system RT of positive roots of R and put R~ = —R™. The highest root 4
of RT defines the following gradation of the complex Lie algebra g© :
g“=g2+g-1+0+01+0 (3.1)
where

92=CE_, 9=CE, go=CHy+g, 9, ="Cgla(n) (3.2)

g1 = Z CEs g1 = Z CEs
BeR-\({—n}URo) BeRT\({n}URo)
and Ry = {o € R, o — p} is the root system of the subalgebra go = Cq(H,) .
(3.1) is called the gradation associated with the highest root .
The explicit decomposition (3.1) for any simple complex Lie algebra is given in

Table 1 of the Appendix.

Denote by [ = Cg(g(r)) = g5 N g the centralizer of g(p) in g and by L the
corresponding connected subgroup of G. It is easy to check that L = Ca(g(p)).
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Lemma 3.5. Let G be a compact simple Lie group without center and let L =
Cala(p)) be as defined above. Then any non zero vector Z € g(p) is a contact
element of the manifold G/L. In particular, G/L is a homogeneous contact manifold
of special type.

Proof. Observe that Z € g(u) is a contact element if and only if C4(Z) = [+ RZ.
Moreover Z is a contact element if and only if ¢ - Z is contact, for any g € G(u).
Since G(u) acts transitively on the unit sphere of g(u), the Lemma follows from
the fact that

CoiHy) =goNg=1+R(H,)

and hence that ¢H, is a contact element. [

Remark that the manifolds M = G/L = G/Cg(g(p)) with G simple carry invari-
ant 3-Sasakian structure and they exhaust all homogeneous 3-Sasakian manifolds

(see [BGM]).

3.2.2 Classification of special homogeneous contact manifolds.

The previous examples almost exhaust the class of special homogeneous contact
manifold. In fact, we have the following classification theorem.

Theorem 3.6. Let M = G/L be a special homogeneous contact manifold of a
compact Lie group G. Then the group G s simple and either L 1s the centralizer
of the subalgebra g(p) associated with the highest root and M is a homogeneous
3-Sasakian manifold or G = Gz and L is the centralizer of the subalgebra g(v)
associated with a short root v.

Proof. We prove now that if G is not semisimple and, hence, dim Z(g) = 1, then a
contact element Z is unique up to a scaling and M is generic. Indeed, we have the
decomposition

t=CyZ)=16RZ=1+ Z(g)

since Z(g) N[ = 0, by effectivity. The line RZ is determined uniquely as the
orthogonal complement to [ in ¢ = [+ Z(g).
Now we may assume that g is semisimple. We need the following

Lemma 3.7. Let g be compact semisimple and let | C g be a closed subalgebra,
which contains no ideal of g. If there exists two non proportional vectors Z, Z' € [~
such that

Cy(Z)=14+RZ, [+RZ' CCy(Z"),

then g 1s simple and there exists a root o € R such that:

(1) = Cg(g(a));

(2) Z,Z"' € g(a) and Cy(Z') = Cy(g(a)) + RZ';

(3) Co() =2(1) + g(a )

(4) for any root B which is orthogonal to a, o + 3 is not a root.

Proof. We put ¢ = Cy(Z) and consider the orthogonal decomposition

g=t+m=(+RZ)+m
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Denote by R the root system of the complex Lie algebra g© with respect to a Cartan
subalgebra h* which is the complexification of a Cartan subalgebra b of £. Then
the element Z' can be written as

k
Z'=cZ+) ciKE,
=1

for some root vectors E,; and constants ¢,¢;. The condition [[,Z'] = 0 implies
ai(hNl) =0if ¢; # 0. Since h N [ is of codimension one in h, there exist exactly
two (proportional) roots with this properties, say a and —a. This shows that
[ C Cy(g(e)). Moreover, since Z € h N [7, we obtain also that Z is proportional
to Hy = [Eqa, E_o] and (1) follows. In particular, g must be simple and now (2) is
clear. (3) follows from (2).

To prove (4), assume that there is a root # which is orthogonal to o and such
that a 4+ 3 is a root. Then the vector Eg + E_3 € gC does not belong to © =
Ce(g(@)), but it is orthogonal to Z (since Z is proportional to H,) and belongs to

g
the centralizer of Z: contradiction. O

Now we conclude the proof of Theorem 3.6. Let G be a compact semisimple Lie
group and Z, Z' two non proportional contact elements for G/L. By Lemma 3.7,
G is simple and L = Cg(g(er)). By direct inspection of the root systems of simple
Lie groups, a root « verifies the condition (4) of Lemma 3.6 if and only if it is a
long root or it is a short root in the G4 type system. This concludes the proof. O

3.3 Isotropy representation of a homogeneous contact manifold.

Let M = G/L be a homogeneous contact manifold with invariant contact struc-
ture D associated to a contact element Z. Let g = [+ RZ 4+ m be the correspond-
ing orthogonal decomposition. Fix a Cartan subalgebra f of g which belongs to

t=(4+RZ=Z(¢)+¢. Then
h=Z®) +h =Z(H+RZ+¥H

where we denote by §’ a Cartan subalgebra of ¢ (=semisimple part of £). Remark
that h(I) = Z([) + b’ is a Cartan subalgebra of [.

Denote by R (resp. R,) the root system of g© (resp. €©) w.r.t. the Cartan
subalgebra h* and let Ry, = R\ R,. We will denote by h(R) the standard real form
of b, spanned by R, that is

HR)=HhNB (< R >)
We put t = 3(¢) N h(R). Then Z € it and we may identify 6 et iB(Z,-) with the
corresponding element in t* C h(R)* = spanpR.

C

Consider the decomposition of the €“-module m® into sum of irreducible €°-

modules
m =3 miy) (3.)
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Here, m(+) stands for the irreducible £*-module with highest weight v € Ry,.

The following Lemma states a well known property of flag manifolds (see e.g.

[AP]).

Lemma 3.8. The £“-modules m(v) are pairwise not equivalent and, in particular,
the decomposition (3.1) is unique. The moduli m(v) are irreducible also as [©-

modules.

Proof. We only need to check that a module m(v) is irreducible also as an [*-

module. But it is sufficient to observe that the semisimple parts of [© and of €©
coincide. In fact, whenever dimcm(y) > 1, the semisimple part of €& acts not
trivially and irreducibly on m(y). O

From Lemma 3.8 we derive the following technical proposition, which will be
useful in the following sections.

Proposition 3.9. Let M = G/L be a homogeneous contact manifold and let Z be
a contact element for M. Assume that G # Go or that G = Gy and 8§ =B o Z is
not proportional to a short root of R.
Then for any irreducible €*-module m(y) there exists at most one distinct €--
module m(') which is isomorphic to m(v) as [
This 1s the case if and only if the highest weights v and ~' are 6-congruent, i.e.
~' =~ 4+ A8 for some real number \.

Corollary 3.10. Let M and Z as in the Proposition 3.9. Then:
C

-module.

a) if the modules m(v), m(~y') are equivalent as [~-modules, then for any weight
a € Ry of m(y), there exists exactly one weight o' € Ry of m(y') which is
0-congruent to a;

b) for any root o € Ry, there exists at most one other root o' € Ry which s
B-congruent to o, 1.e. such that o' = o + A0 for some real number ).

Proof of Proposition 8.9. Observe that two irreducible [“-modules m(v) and m(~')
are isomorphic if and only if their highest weights v[q ;) and /|4y coincide. This
is if and only if v/ = ~ + A\ for some \ € R.

Assume now that there exist three distinct isomorphic [©

-modules m(~), m(~')
and m(+"). Then R = spang(+,~',7") N R is a 2-dimensional root system and ~, ~/
and 7" belong to the straight line v 4+ R6. Checking all 2-dimensional root systems,
241, Ay, By, Ga, we conclude that this is possible only if R is of type By or Go
and 6 is proportional to a short root.

To conclude the proof, it is sufficient to observe that in case R = Bs, one of the

roots 7, 7', 7" should be orthogonal to € and this is impossible because
6 N"R=R,=R\Rn

while v, 7', 4" € Ryn. O



INVARIANL Ok 51 RUCLTURES ON COMPACUL ODUNMOGENEBEOUS MANIFOLDS 174
4. General Properties of Compact Homogeneous CR manifolds.

4.1 Basic properties and definitions.

Let (M = G/L,Dyz) be a homogeneous contact manifold of a connected compact
Lie group GG with connected stabilizer L and let g = [+ RZ 4+ m be the associated
decomposition with the contact element Z orthogonal decomposition such that

m~D|,,o=eLand t=Cy(Z)=1+RZ.

Definition 4.1. An adi-invariant complex structure J on m is called integrable if
(“ + m°is o complex subalgebra of g©,

where

mt =m' 4 m® | om0 =m0 (4.1)

is the eigenspace decomposition of .J.

Note that any adc-invariant decomposition (4.1) defines an adc-invariant com-
plex structure J on m which has this decomposition as the eigenspace decomposi-
tion.

The following Proposition can be checked directly.

Proposition 4.2. Let (M = G/L,Dyz) be a homogeneous contact manifold and
let g =14+ RZ+ m be the corresponding decomposition of the Lie algebra g of G.
Then there exists a natural one to one correspondence between the invariant CR
structures (D, J) on M, with underlying contact distribution D, and the integrable
complex structures J on m.

Consider the decomposition m© = S~ m(+) into irreducible £&-submodules as in
(C-isotopic
components (i.e. the sum of all mutually equivalent irreducible [~-modules) and
since the multiplicity of any irreducible [-module m(~) is less or equal to 2 in the
hypothesis of Proposition 3.10, we have the following corollary.

§3.3. Since any ad-invariant complex structure J on m preserves the
[C

Corollary 4.3. Let J be an l-invariant complex structure on m and suppose that
G # Gy or that G = G2 and that 8 is not proportional to a short root.

Then a minimal J-invariant €©-submodule of m© is either € -irreducible or is the
sum m(~)+m(y') of two such €--modules, with v' 6-congruent to v (i.e. v = v+,
for some \).

4.2 Standard CR structures.

Many invariant CR structures (D, .J) on a contact manifold M = G/L may be
constructed as follows. Let (M = G/L,Dyz) be a homogeneous contact manifold
and let

7:M=G/L — F=G/K = Adg(2)

be the associated fibration over the flag manifold F = G/ K.
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Then the contact distribution Dy is the horizontal distribution of = with respect
to the invariant Riemannian metric on M defined by the invariant bilinear form
B on g. Any invariant complex structure Jr on the flag manifold F' defines an
invariant CR structure (D, .J) on M. The integrability of this CR structure follows
from the integrability of Jr which is equivalent to the statement that p = £~ + m®?
is a (in fact parabolic) subalgebra of g©. (Here m®! is the (—i)-eigenspace of the
complex structure Jp on m® = TfF, o=ek).

Definition 4.4. An invariant CR structure (D, J) on a homogeneous contact man-
ifold (M = G/L, D), which is induced by an invariant complex structure Jp of the
associated flag manifold F' = G/K, is called a standard CR structure.

Remark 4.5. Since any flag manifold admits at least one invariant complex struc-
ture, we may conclude that any homogeneous contact manifold (G/L, D), with G
compact, admits an invariant CR structure (D, J).

The following Lemma gives an algebraic characterization of the standard CR
structures.

Lemma 4.6. An invariant CR structure (D, J) on a homogeneous contact manifold
(M = G/L,D) is standard if and only if the corresponding complex structure J on
m s Ad(K)-invariant.

Proof. The necessity is immediate from the definitions. In case G is semisimple,
the sufficiency is also clear. Suppose now that dim Z(G) = 1 and let (4.1) be the
decomposition associated to an Ad(K )-invariant complex structure J on m. Then
let 7,: g — g’ be the standard orthogonal projection onto the semisimple part and
let m"1% = 7,(m!%), Mm% = 7, (m°). Since m'® and m®! are Ad(K)-invariant and
K = (KNG - Z(G), it is clear that m'% and m'%! correspond to an invariant
complex structure Jp on G/K =G /(KNG'). O

Since the description of all invariant complex structures on flag manifolds is well
known (see [Na], [AP], [BFR], [All]), the problem of classification of the invariant
CR structures on compact homogeneous spaces reduces to the description of non-
standard invariant CR structure.

The following proposition reduces the problem to the case of G semisimple.

Proposition 4.7. Let (M = G/L,D) be a contact manifold of a compact Lie

group G with dim Z(G) = 1. Then any invariant CR structure with underlying
distribution D s standard.

Proof. 1t follows immediately from the fact that any Ad(L)-invariant decomposition
(4.1) is clearly also Ad(I )-invariant, since K = L - Z(G). O

4.8 Holomorphic fibering of homogeneous CR mansfolds.

Let (M = G/L,D,J) be a homogeneous standard CR structure associated to a
complex structure Jp on the associated flag manifold F = G/K. Then the natural
projection

7. G/L - F=G/K
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is a G-equivariant S!-fibration and it is a holomorphic map between the CR man-
ifolds (M = G/L,D,J) and (F,TF, Jp).
More generally:

Definition 4.8. Let M = G/L be a homogeneous manifold with invariant CR
structure (D, J).

(1) Any G-equivariant holomorphic fibering
7. M=G/L—-F=G/Q

of (M,D,J) over a flag manifold FF = G/Q equipped with an invariant
complex structure Jp is called CRF fibration;

(2) We say that a homogeneous CR manifold (M = G/L, D, J) is primitive if
it doesn’t admit a non trivial CRF fibration;

(3) a non primitive homogeneous CR manifold (M = G/L, D, .J), which admits
a CRF fibration with typical fiber S is called circular.

Remark that any standard CR structure is circular.

The following Lemma give a characterization of primitive CR structures.

Lemma 4.9. A homogeneous CR manifold (G/L,D,J) admits a non trivial CRF
fibration if and only if there exists a proper parabolic subalgebra p = t+n C g©
(here v is the reductive part and n the nilpotent part) such that

a)v=(png)"; b) IC+m Cp; o) fCr.

In this case, G/L admits a CRF fibration with basis G/Q, where @ is the connected
subgroup generated by q =1tNg.

Proof. Suppose that (M = G/L,D,.J) is not primitive and let 7: G/L — G/Q be
a CRF fibration over a flag manifold F' = G/ with invariant complex structure
Jr. Consider the decompositions associated to J and Jp

g=I1+RZ+m m® =m!® 4+ m®
g=q+ ey m/C — /10 + m/01

Since 7 is holomorphic and not trivial, the subalgebra [© + m®! is contained in the
parabolic subalgebra p = ¢~ 4m’?!, with reductive part ¢ = (gNp)*. Furthermore,
since the fiber is at least 1 dimensional, [ C q.

Conversely, if p = t+n C g© is a parabolic subalgebra with reductive subalgebra
t = g%, where q = p N g, then we may consider the orthogonal decompositions

g=q+m g"=t4+mC=vrn+n

where ' = n~ Nm/C. It is well known that there exists a unique invariant complex
structure Jp on G/P = G/Q, such that n = m’"' and 0’ = m’'°. Therefore if
(C 4+ m% Cp, [ C qand Q is the reductive subgroup generated by g, it is clear that
7: G/L — G/Q is a non trivial CRF fibration. O
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4.4 The anticanonical map of a homogeneous CR manifold.

Let (M = G/L,Dg,J) be a homogeneous CR manifolds of a compact Lie group
G and

g=1+RZ+m ., mt=m04m"

the associated decompositions of g and of m®.

To characterize the circular invariant CR structures we recall the definition of
anticanonical map of a homogeneous CR manifold introduced for the first time in
[AHR]. It is a G-equivariant holomorphic map

¢: M =G/L — Gri(g")

into the Grassmanian of complex k-planes, k = dimc(I® + m°!), of g© given by
¢: gL — Ad,(I° + mi0) .

Due to the existence of standard holomorphic G-equivariant embedding

12 Grp(gt) — CPY | N = <din;€gc> —1

V =span(er,...,ex) o [V] =Cley A Ae)

we may consider ¢ as a G-equivariant map into CPY. To prove that the map ¢ is
holomorphic it is sufficient to check that the linear map

qb*: DO = ker 9|TOM =m — T[[q:+m01]Grk(gC)

commutes with the complex structure.

Let v = X + X € m, where X € m'°. Then
¢+(v) = ad x4 x)([IC +m®']) = adx ([I* + m°"]).
Therefore
Gu(Jv) = 0o (iX —iX) = adix ([I° + m®]) = iadx ([(° + m®]) = ig.(v)
This shows that the map ¢ is holomorphic.

Remark that the stabilizer Q of the point [[€ 4+ m%!] in ¢(M) = G/Q is the
normalizer () = Ng([C + mm).

Now, the following theorem gives some crucial properties of the anticanonical
map.
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Theorem 4.10. Let
¢:M=G/L — Gr(g")

be the anticanonical map of a homogeneous CR manifold (M = G/L, Dy, J).
(1) If the CR structure is circular, then the image ¢(M) = G/Q s a flag
manifold and ¢ is a CRF fibration with fiber St.

In this case the normalizer in g of (€ 4+ m® is
q=Ng(I" +m”") = [+ RZ’

where Z' # 0 1s an element from the centralizer of | in g. Moreover, q is
the Lie algebra of the stabilizer of the point [I© +m®] € ¢(M) in G.

(2) If the CR structure is not circular then the image ¢(M) = G/Q is a homo-
geneous CR manaifold with CR structure induced by the complex structure
of Gri.(g%) and ¢: M — $(M) is a finite covering.

Proof. We first need the following Lemma, which in fact was proved in [AHR].

Lemma 4.11. Let G/Q = ¢(G/L) be the image of the anticanonical map. Then
dim@Q/L < 1.

Proof. We need to prove that dim g/l < 1, where q = Ng(I® + m®!) is the stability
subalgebra of the flag manifold G/@Q. Since g = [+ RZ + m, it is sufficient to check
that gNm = 0. Let v € gN'm. Then

B(Z,[v,(c+m®)) c B(Z,1° + m®) = {0}

and in particular
(0} = B(Z, [0, 1+ w]) = —B([v, Z], (+m)
This means that v € Ng(Z) =t=[+RZ and hence that v €tnNm=0. O

Let us prove (1). In the case dimZ(G) = 1, the invariant CR structure is
standard and the normalizer Ng([C + mm) coincides with L - Z(G). Therefore
the image ¢(G/L) of the anticanonical map coincides with the flag manifold F =
G/K = G/Cq(Z) associated to the contact structure. This proves (1) in this case.

Assume now that G is semisimple and consider a CRF a fibration with S* fiber,
i.e. a G-equivariant holomorphic map =: M = G/L — F = G/Q onto a flag
manifold with invariant complex structure Jp. As usual, consider the associated
decompositions

g=I1+RZ+m m® =m!® 4+ m®
g:q+m’ mC:mllo_l_m/Ol

corresponding to the CR structure of M and to the complex structure Jp on F =
G/Q. Clearly, the subalgebra [ +m®! is a subalgebra of the parabolic subalgebra
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Since the fiber is one dimensional, we may express q as q = [ + RZ for some
element Z € 3(q) and, from the previous observations,

2.0+ ] C[Zm™] C g g7 ]+ m'™ C g 7] + m™

where we used the fact that m°! C C|C + m'%! and that m’%' ([C + 7).
On the other hand, the semisimple parts of [© and q° coincide and therefore

[Z, [C_I_mOI] C [C_I_mOI

In particular Z € Ng([c—l—mm). Lemma 4.11 implies that [+ RZ = Ng([c—l—mm) and
that the anticanonical map is a CRF fibration onto the image ¢(M) = G/Ng([I +
m®!]) with fiber S'. The other part of the claim is clear.

To prove (2) it is sufficient to observe that if the CR structure is not circular, the
fiber of the anticanonical map cannot be 1-dimensional, because otherwise it would
give a CRF fibration with S! fiber. Lemma 4.11 shows that in this case ¢ : G/L —
#(G/L) is a finite covering. The other part of the claim follows immediately by the
holomorphicity and the G-equivariance of ¢. [

4.5 Any circular CR structure is standard.

Now we will prove that any circular CR structure is standard. Let (D,.J) be a
circular CR structure on G/L and let Zp be a contact element associated to D. By
Z 1 = Z' we denote the element given in Theorem 4.10 (1) such that the normalizer

q= Ng([C + m%) is of the form
q=Ng((“ +m°) = (+RZ,

. From Theorem 4.10 and Lemma 4.6, the circular CR structure is standard if and
only if RZp = RZ;. Since Zp,Zj € Cy(l) N (I)~, if G/L is a contact manifold
of generic type, then dim Cy(l) N ([)~ = 1 and hence any circular CR structure is
standard. But we will prove now that the same holds also for the special contact
manifolds. In fact

Theorem 4.12. Let G/L be a homogeneous contact manifold of a compact Lie
group G. An invariant CR structure (D, J) on G/L is circular if and only if it is
standard.

Proof. By Proposition 4.7, we may clearly assume that G is semisimple. Fur-
thermore, by the previous remarks, we may assume that G/L is a special contact
manifold and we only need to prove that RZp = RZ ;.

Since Cy(Z5) D [+ RZ; and Cy(Zp) =+ RZp, by Lemma 3.7, we have that
Cy(Zy) =1+ RZ; and hence that Z; is a contact element too.

It follows immediately from Theorem 3.6 that g admits the following orthogonal
decomposition

g=l+a+n=[+RZp+m
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where a = g(a), for some root a of g©, and I = C4(a). Moreover, Zp,Z; € a.
Since by Lemma 3.7 (3) n* contains no trivial [“-module, we may decompose m®~

as follows

mC =m0 4 mo! | ml0 = 10 4 410 mO! = 0! 4 01
where a'® = a®Nm!°, n'® = n“Nm'® and a®' = a'0, n°' = 1'% On the other hand,
since Zj € Ng([C + mlo) N a, then

[Z7,a'°] C al® [Z7,a%] C a®!

and hence Z; is orthogonal to al® 4+ a% = m® N aC, because a® ~ sly. From this

follows that Z ; and Zp are proportional, because they are two elements of a, which
are both orthogonal to the 2-plane anm. O

5. Classification of CR structures on special contact manifolds.

We describe here all the invariant CR structures (D,.J) on a special contact
manifold G/L. Recall that, by Theorem 3.6, G is simple and L = Cg(g(a)), where
either o« = p 1s the highest root or G = G2 and a = v is a short root. In all cases,
g admits the orthogonal decomposition

g=Il+a+n (5.1)

where a = g(a) and [ = Cy(a).
Let (D, .J) be an invariant CR structure on G/L and let

g=I1+RZ+m m® =m!® 4+ m®

be the associated decompositions. As in the proof of Theorem 4.12, we may de-
compose m'? and m%! as

mlO — alO —|—n10 mOl — ClOl + n01 (52)

with a'® = a® Nm!'°® and a®' = a* N m°".
Since a ~ 5l,(C) and a'® + a®' is the orthogonal complement to CZ in a®, we
have that dimc(a'®) = 1 and we can write a'® = CZ’, for some Z’ € m“ N a®.

Consider now a regular element X of a. There always exists a Cartan subalgebra
h of g with root system R associated to the pair (g%, §%) so that a = g(a) and
CX = CH,.

In the case in which o = yu, p highest root of R*, we may consider the associated
gradation

" =g2+g-1+go+gtoe (5.3)
where g; are defined in (3.2). Recall that go = CH, +g(, where gj = Cyc(g(p)) = (.

The explicit decompositions of the moduli g4, into irreducible go-moduli can be
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found in Table 1, for any simple Lie group. From Table 1 it appears that for
g® £ Ay, then g4 is irreducible, dime g4+ = 1/2dime n® and

(921, 921] = gao (5.4)

In case g© = Ay, then each go-module g4; decomposes into two not equivalent

irreducible go-moduli: g4 = g(ill) + g(izl) Moreover the following properties hold:

00’1 =101 =" e 00 =a  [6"eYl=a (i#))
| | | | (5.5)
002 =g")  [8%). 0] = g i #] (5.6)
and g(_l)l (1 # j) are isomorphic as gj-moduli and for both values

of i, dimg giy; = 1/4 dimge n®.

The moduli ggi)

In the case g© = G5 and o = v, v short root, the vector H, determines on g© a
graded decomposition analogous to (5.3). In fact,

“=gs oo toi oo ta et (5.7)

with (here v =¢; — e3)
do = 96 +CH, =< Ei(2€3—81—82)7H283—81—82 > —I_(CH€1 —€2 96 = Cgc(g(l/))

g2 = (CE€1 —en 5 B-2= (CE—€1 +ea gC(V) =g +¢g-—2+ CH,
gl :< E—€2+837E81—83 > bl 93 :< E—2€2+€1+837E2€1—€2—83 >
g =0 for 1 =1,3 (5.8)

Note that all subspaces g; are irreducible g{ moduli and that the moduli gj,
J = £1,43, are all equivalent gj-moduli. Furthermore, [gi1,9+1] = g12 and

[g9+3,9+43] = {0}.

For any regular element X € a®, we will call (5.3) and (5.7) the graded decom-
positions determined X.

In this notation, any invariant CR structure on a special contact manifold is
described by the following Theorem.

Theorem 5.1. Let (M = G/L,Dyz) be a special contact manifold associated to a
simple Lie group G. Then:

a) iof G # SUpqq, then there exists (up to sign) a unique invariant CR structure
(Dz, Jw) and it is the unique standard CR structure of G/L. It corresponds to
the unique invariant complex structure Jp on the flag manifold Fy = G/L - T
(associated to the contact element Z ), which is the twistor space of the Wolf space
G/L-G(u).

b) if G = SUpq1 and hence M = SUpy1/Ur—1, then there exist (up to sign) three
distinct standard CR structures (Dz, Jw), (Dz,J:t), (Dz, JJ5") and two families of
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non standard invariant structures (Dz,J,) and (Dgz,J!), which correspond to the
following holomorphic subspaces a'® and m'® of m®:

(1) a'p = CZ', where Z' is a non regular element in a® and considering the
graded decomposition determined by the (regular) contact element Z,

0 _ 0 _ 01 _ )
arn, =92, my, =01 +9g2, my., =0-1+0g-2;

(2) al2 = CZ', where Z' is a non regular element in a*; in the graded decom-

position determained by the contact element Z,

1 2 1 2
alo=gp, m2% =g’ +g% g, mi =g 40P voos
(3) alR,, = CZ', where Z' is a non regular element in a®; in the graded decom-
position determained by the contact element Z,

afe =go, mMp = =g +a") + g my = =g gV 4 g

(4) aljg = CZ', where Z' is a reqular element in a®;

determined by Z',

in the graded decomposition

af) =CH, . ml =CH, +g" +a), mf =Cz"+g") +4,” .

where Z" 1s some element in g2 + g—o which is conjugate to H, w.r.t. the
compact form g of g°;

(5) aJ, CZ', where Z' is a reqular element in a
determined by Z'

C: in the graded decomposition

af) =CH, . mlf =CH, +g\” +9!}, m3 =Cz"+g%) +4)" .

where Z" 1s some element in g2 + g—o which is conjugate to H, w.r.t. the
compact form g of g°.
The CR structures J, and J. admit a CRF fibration with SUs fiber from M =
SU¢/Ui—y onto the Wolf space Go(CHL) = SUg_H/S(UQ Ue—1), endowed with the
complex structure J, or —J,, respectively; here J, is the unique complex structure
commuting with the quaternionic structure of Gq(C'T1).

The CR structures Jy, J5' and J5V are induced by three distinct invariant com-

plex structures Jp, J}, and J} on the flag manifold Fy = SUry1/SU—y - T? which
is assoctated to the contact element Z (note: Jy and J}. are biholomorphic; Jp and
Jp are not biholomorphic).

The complex structure Jp 1s the canonical complex structure of Fy, considered
as twistor space of the Wolf space G2(C™1). The complex structures Ji and Jp
admit a holomorphic fibration on (Go(C'*1), J,) and (Go(CHY), —.J,), respectively,
with typical fiber SU, /Uy = S*

Note. In case G = SU; and hence M = SU,, the cases (1), (2) and (3) of the

previous theorem coincide and they correspond to the unique (up to sign) standard
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CR structure on (M, Dy); cases (4) and (5) coincide up to sign and they correspond
to a family on non standard CR structure on (M, Dyz).

The proof of Theorem 5.1 is done considering two cases. If a'® = CZ’, there are
only two possibilities: Case 1: Z’ is a regular element of a®; Case 2: Z' is a not
regular (hence nilpotent) element of a® ~ sly(C).

In the following two subsections, we are going to determine all invariant CR
structures in Case 1 and in Case 2.

5.1 Proof of Theorem 5.1: case in which there exists a reqular holomorphic ele-
ment Z' € al?.

Assume first that the special manifold is associated to a long root j1 of g©, i.e.
that a = g(u). We may assume that Z' = H,, and that it defines a gradation of the
form (5.3) for g*. Recall that [* = C4(g(n)) = gb.

Hence, using the decomposition (5.2), we have that

C+m'® =g’ +n"" Cgo+o1+9-1

since n is orthogonal to a® = CH, +9g2+g—2. Recall that by integrability condition,

©+m%isa subalgebra.

In case g© # A/, gy and g_; are irreducible go-modules (see Table 1) and hence
either gy or g_; is included in n'®. Since [g1,91] = g2 and [g_1,9_1] = g2, there
is no subalgebra included in go + g1 + g—1 and this contradiction shows that f the
manifold is associated to a long root p and g~ # Ay, this case cannot occur.

Consider now the case g° = A, and take the decomposition (5.3) determined
by Z' = H,. Recall that each g4; decomposes into two inequivalent irreducible
go-moduli gi)l, i = 1,2, which verify (5.4) - (5.6). Since all go-moduli g() have
dimension equal to 1/4 dimg¢ nC, the subalgebra (€ + m!9 is of the form (€ +m!° =
g° + n!® where n'°? can be written as

(i

=gl ) + g(J)

for some choice of ¢ and j.

If i = 7 = 1, then n%! = ggz) + g(z) because n'® N n% = {0}. Then CH, €
[0 001 € C 4+ m% and this is a contradiction because H, € a'®. A similar
contradiction arises when ¢ = 7 = 2.

Hence only two cases are admissible:

( (2) ( (1)

911) +9 912) +9.4

It is immediate to check that they both define two invariant CR structures (Dz, J,)
and (Dgz,J!) on G/L = SU41/Us—_1 associated to the following decompositions

g=[+RZ+m (“ =g/ Zegn(g:+9-2) (5.9)

m® =CH, +a"” +a%  w =CH, +a* +g") (5.10)
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The subalgebras €+ mljg and (€ + mlj(,) are not circular (and hence not standard),
because in both cases

Ng(° +m!?) = g0 Nye(go + a8 + %) =g (go + o +a%) =1

( (1) (

Ng(I° +m’?) = g N Nye(go +o +a) =an (g + o +gl)) =1

and the claim follows from Theorem 4.10.
On the other hand, the subalgebras €+ mljg and (€ + mlj(,) are contained in the
parabolic subalgebras

C+m? Cps,=g0+o” +0%) + 2 +oo (5.11)
Crml® Cpr=go+ 07+ + g2 +oos (5.11)

respectively. For both such parabolic subalgebras the reductive parts are equal to
vy, =ty = g where q = [+ a. Therefore, by Lemma 4.9, the CR structures
(D, J,) and (D, J]) are not primitive and they admit a CRF fibration on the Wolf
space SUp41/S(Us - Up—1) with typical fiber S(Us - Up—1)/Us—1 = SUs.

It remains to consider the case in which G = G, and the special manifold is
associated to a short root v of g¢. We may assume that Z’ = H, and that it defines
a gradation of the form (5.7) for g% = G5.

Since * = g}, = Cyc(9(v)), we have that

CrmP =go+n’ Cago+g+o1+as+o

because n® is orthogonal to at = CH, + g2 + g—2. Since € +ml0 = g +nllisa
subalgebra and
1
2= dim@ g+1 = dim@ g+3 = Z dim@ nlo

n'Y contains at least two of the four irreducible go-moduli g+; and g43. The only
subalgebra go + n'° with n'® of this kind is go + g_3 + g3 and hence n'® = g_3 +gs.
The same argument would imply that n®! = g 3 4+ g3 = n' and this contradicts
the hypothesis that m!'® N m!1% = {0}.

5.2 Proof of Theorem 5.1: case in which there exists a non regular holomorphic
element Z' € a'0.

Since Z' is non regular, it is a nilpotent element of a = sl;(C). Then we may
always choose a Cartan subalgebra CH, of a so that Z' € CE,,.

Consider first the case in which the special manifold is associated to a long root
of g© and take the gradation (5.3) of g~ determined with H,. Then g = CZ’ = a'"
and hence we have that

Ctm® =g +g+n®Cgl+agta+o
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Assume that g© # A,. Then the g)-moduli g+, are irreducible and [g41, g+1] = guo.
This implies that the only subalgebra of g, + g2 + g1 + g—1 which properly contains
gy + 92 is g) + g1 + g2. Hence

0291 + g2

and it defines the unique CR structure on G/ L.
Since m© = m'® + m®" = g; + g, + g_1 + g_2, we have that [* + CZ = ¢° and
that CZ = CH,. Therefore

No((C+m™) = Nye(gh + g1 +g-2)) Ng=goNg=[+RZ

and the CR structure is standard because the contact element Z is in the normalizer

of (€ 4+ mOt,

Assume now that g© = A, and again consider the decomposition (5.3) deter-

(¢ ) (J)

mined by H,. Note that, when g© = Ay, the go moduh g, and gy are equivalent

( )~ ( ) and g( )~ _1. Since dlm@ g(i)l = 1/4dimc n'®
the g)-module n'® must have one of the following five structures:

as go-moduli. In fact o

)nl% =@+ @y 200 =g +¢% 3y a0 =gl 44"

4) nlO — 91 5) nlO — 9_1

where ¢ : g( ) ( ) and v : g(ll) — gg ) are two gj-equivariant homomorphisms

and by (g (1)) and (g ( ))¢ we denote the subspaces of the form

@) ={X +0(X) : X g} (@) = (X +o(X) : X ea')}

5) cannot occur because in that case [n'% n'®] = g_, and this contradicts the fact

that g + n'® + gy is a subalgebra.
We claim that also case 1) may not occur. In fact, ¢ is either trivial or an
isomorphism. In case ¢ is an isomorphism, the subspace [0 n1°] mod go +g; + g2

contains non trivial elements of the form

[X +o(X),Y +9(Y)] mod go+g +g2 = [p(X),Y]€gs

and this is a contradiction with the fact that [© —|— m!ois a subalgebra included in
g6 + g1 + g2. Therefore, if case 1) occurred, n'® = g(l) + (g(l))¢ Now, for any
X ¢ g( ) (1))

we may consider an element ¥ € (g )y so that

[X,Y]=AH, mod g0 + g2

for some A\ # 0. This gives a contradiction with the fact that g{ + n 4+ gy isa
subalgebra and the claim is proved.

It is immediate to check that, for the cases 2), 3) and 4), we obtain three subal-
gebras

g +ar + o + o (5.12)
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g +o” +a + o (5.12))

g +a+o (5.13)

They determine three distinct CR structures (D, J:t), (D, J:") and (D, Jw), re-
spectively. For any of the three subalgebras (5.12), (5.12’) and (5.13), the normal-
1zer Ng([C + m!9) contains go Ng = [+ RZ and hence it is strictly larger then I.
By Theorem 4.10, this implies that all those CR structures are circular and hence
standard.

Observe also that if [€ + m!© equals either (5.12) or (5.127), then p = © 4+ mlo 4
g%(11) is a parabolic subalgebra of g©. The parabolic subgroup P C G, which is
generated by p is the parabolic subgroup associated either to a complex structure
J, or to its opposite —.J, on G2 (C1), which commutes with the quaternionic
structure. Therefore, (D, J5), (D, J5") admit a CRF fibration on (Gy(C1),.J,)
and (G2 (CHY), —jo), respectively.

It remains to consider the case in which G = G, and the special manifold is
associated to a short root v of g=. Consider the decomposition (5.7) determined by
H, so that CZ' = CE, = gs.

In analogy with the previous discussions, we have that

Crm =g +a®+n'% Ccgl+g+o 1 +ags+as+a

because n® is orthogonal to at = CH, + g2 + g—2. (From the fact that €+ mlo s
a subalgebra, we claim that gz C ny. In fact, for any element X € n!'® consider the
decomposition:

X=X_3+X_1+X;+X; Xi € g

Then, one of the four vectors X, X' = [E,,X], X" = [E,,[E,,X]], X" =
[Ey, [Eu, [Eu, X]]] is a non trivial element of g3 and it belongs to n'®. Since gs
is gg-irreducible, the claim follows.

Similarly, we claim that g; C n'Y. In fact, take any element X € n'® which has
a decomposition of the form

X=X,3+X,4+X, X; €g

Then, either X or X’ = [E,,X] or X" = [E,,[E,, X]] is a non trivial element of
g1 + g3, with non vanishing projection on g;. This implies that g; N n!® #£ {0}
and hence that g; C n'®. Since dimg(g; + g3) = dimen!'®, we conclude that
n = g + g3 and hence that m'® = g; + g» + g3. This defines an integrable CR
structure and it is simple to check that Ny([(* +m°!]) = go Ng = [+ RiH,. Since
this normalizer contains properly [, by Theorem 4.10, this CR structure is circular
and hence standard.

6. Classification of non circular CR structures.

6.1 Case of non simple Lie group.

JFrom §4, the classification of the invariant CR structures can be now reduced
to the analysis of non circular CR structures.
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Lemma 6.1. Let (G/L,D,J) be a homogeneous CR manifold with non circular
CR structure. Then G 1is either simple or of the form G = Gy x G, with each G;
simple.

Moreover, if G = G; X Gy and g =4+ RZ + m 1s the decomposition associated
to the contact structure D, then mC decomposes into m* = my + my, with m; € g~
[C

and each m; contains at least a 1-dimensional 1rreducible [Y-modules.

Proof. Consider a Cartan subalgebra ) C € C g and let R be the corresponding root

system of G. If 6|, def B(Z, )|y is parallel to some root ¢, then this root belongs

to some summand g; of g. Hence, 8 = Cy(Z) contains all other simple summands

of g and the same holds for [. By effectivity, this implies that g = g;.

If 6|, def B(Z, )y is not parallel to any root «, it can be assumed to be difference

of two (but no more) roots 3 and ~. If they both belong to the same summand gy,
then g = g1 as before. Assume that they belong to two different summands g; and
g2. The same arguments of before show that this time g = g1 & g».

Moreover it is clear that +(ea, 3) are the only pairs of roots which are congruent
modulo 6|y. This also implies that the only pair of &-modules mj and m} which
are [-equivalent consists in those spanned by E,,E_, and Eg, E_3, respectively.
Therefore mj C m; and m), C my are 1-dimensional and [-irreducible. O

Proposition 6.2. Let G/L a contact manifold with G = Gy x Go, where each G;
is simple. Let also G/K = Gy /Ky x Gy /K3 be the flag manifold associated to the
contact structure. Then:

(1) G/L admaits a non-standard CR structure if and only if there exists a painted
Dynkin diagram of a complex structure on each G;/IK;, which contains one
black node not connected to any white node and such that, if deleted, all
other black nodes are isolated;

(2) of G # SUyx SUy and (G/L,Dyz) admits a non-standard CR structure, then
G/L admits a CRF fibration with fiber SUy x SUy /T ;

(3) let (Dyz,J) be an invariant CR structure on G/L = SUy x SUy/T" and let
us denote by p and p' the roots of the first and the second copy of sus in g;
then there exists a Cartan subalgebra ) = CH, + CH,+ so that

Z=iH,—iH, [(~=CH,+Hy)

m'® = C(aE, +bE,) +ClaE_, +bE_,/)

for some [a : b] € CP' so that |a|* — |b|* # 0. J is standard if and only if
a-b=0.

Proof. Consider the usual decomposition of the Lie algebra
g=g +o=[+RZ+m
Note that if we denote by [ = [, ], €& = [¢;,€;], ¢ = 1,2, then

g=U+30)+RZ+m="t +8 +30)+RZ+m +my
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i From the proof of Lemma 6.1, we have that if G/L admits a non standard CR
structure, then there exists exactly two [-equivalent irreducible moduli in m® and
they are of the form

M =< Eo,E_o, >Cm; Ny =< Eq,,E_q, >Cmj

for two suitable roots a and § of Gy and G, respectively. This means that for any
integrable complex structure .JJ on m the associated eigenspaces m!® and m°! are of
the form

m” = C(A\Ea, + pEq,) +m')" +m'y!

where a,b € C are such that aF,, + bE,, is linearly independent on aE,, + bE,,
and each m'Y! is in m;.

Consider now the parabolic subalgebras p; = £© 4+ n; + m’%' for i = 1,2 and let
%ic = £ 4+ n; the corresponding reductive parts. From Lemma 4.9, they determine
two flag manifolds G/K; = GC/P;, with invariant complex structures so that the
projection

7 G/L — G1/K; x Gy /K,

is a CRF fibration.
The typical fiber of this fibration is, up to covering,

Ky x Ky /L ~ SU(2) x SU(2)/T!

as it can be checked by looking at the Lie algebras. ;From this, (2) follows imme-
diately.

To conclude the proof of (1), observe that CE,, +m'°!, i = 1,2, is an eigenspace
for an integrable complex structure on G;/K;. The corresponding painted Dynkin
diagram of this complex structure must contain a black node (associated with the
root «;) which is not connected to any white root, because any complex line CE,,
must be a l-dimensional irreducible §-module in m;. Moreover all nodes which
are not connected to the node associated to the root «; correspond to roots which
belong to the centralizer Cy4((Z), where Z = 1H,, — iH,, = B 06 and hence they
must belong to the subdiagram of the white nodes.

Vice versa, if the flag manifolds G;/K; admit painted Dynkin diagrams which
verifies the conditions given in (1) exists, the associated complex structure can be
used to construct a non standard CR structure as described above.

It remains to prove (3). Since Z is a contact element for SUy x SU,/T!, it is
a regular element a Cartan subalgebra of sly + sl; and hence we may assume that
Z =iH, —iH, ; in this case, [ = Coc(Z)NZ™ = C(H, + Hyv) and any (C-module
in m® is of the form C(aE, +bE, ) or C(cE_, +dE_,). Since m!Y is 2-dimensional
and it is so that [m'%, m'%] € m'® + [©, we obtain that it must be of the form

m'® = C(aE, +bE,) +ClaE_, +bE_,/)

. From mio — mY!, we have that m%! = ClaE, + Z;EN/) + ClaE-, +¢cE_,/). Since
m!% N m® = {0} we conclude that

det (Z

Qo

) =laP = 0
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For each such pair (a,b) (defined up to multiple) the subalgebra [© 4+ m'® defines an
integrable CR structure on G/ L. Ng([C + mm) 2 lifand only if @- b = 0 and hence
these are the only cases corresponding to a standard CR structure. In all other
cases, it can be checked that there exists no proper parabolic subalgebra p > (©
which verifies conditions a), b) and ¢) of Lemma 4.9. This concludes the proof. O

Lemma 6.1 and Proposition 6.2 reduces the classification of non-standard CR
structures to the analysis of homogeneous spaces of simple compact Lie groups.

For this purpose, we are going to consider two mutually exclusive cases.

Case 1: G/L is of generic type and the contact form 6 = B o Z, is proportional
to a root, when restricted to the Cartan subalgebra ) C €

Case 2: G/L is of generic type and the contact form 6 = B o Z is proportional
to no root, when restricted to the Cartan subalgebra.

6.2 Case when the contact form is proportional to a root.

This first case is quite easily solved, by considering the list of all compact simple
Lie groups and checking for each of them the contact elements with the desired
property. Note that if § = B o Z is proportional to a long root of the compact
simple group G or if G = G5 and 6 is proportional to a short root, then G/L is
a special contact manifold. Therefore it is sufficient to consider only those groups
which have roots of different length and which are not GG3. Therefore we get that:

Proposition 6.3. Let (G/L,D), G simple, be a contact manifold with associated
contact element Z such that § = Bo Z|y is parallel to a root. If G/L is not a special
contact manifold, then:
(1) G/L is SO2n+1)/SO(2n—1), Sp(n)/Sp(1) x Sp(n—2) or Fy/SO(T) and
0 s proportional to a short root of G;
(2) for any invariant CR structure (Dgz,.J), the associated decomposition m
mi0 + mO is one of the following table:

C:

G/L 0 mO! Space of parameters
n : b] € CP?!
% &1 am(el + 52) + bm(—el + 52) |[aa|2 _] |b|2 0
Sp(n) e [a®m(2e1) + b m(—2e2)]D [a: 0] € CP!
S0 <5p=2 | ST | fam(ey o) o bim(— (s +2))] | lal — b £0
a‘m(sl + 52) + b‘m(—el + 52)@ [CL . b] c CPl
55?7) €1 [am(1/2(e1 + e2 + &3 +€4))+ |a|2‘ - |b|2 £ 0

bm(—1/2(g1 — g3 — 5 — €4)]

where m(a) denotes the € -irreducible module with h-weight o € Ry and
[am(a)+bm(a’)] denotes the [C-module generated by the highest weight vector
CLEQ + bEa/,'

(3) the standard CR structures in (2) are exactly those corresponding to pairs
of parameters with a -b=0;

(4) if a-b#0, any CR structure of point (2) is primitive.
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Proof. For any choice of the group G, there is only one possibility for the contact
form 6. Once 6 is given, the decomposition g = [+ RZ + m is deducible from Table
2 in the Appendix. It remains to find all the decompositions m© = m!'® + m®! into
two [C-modules such that: a) m°! = m1%; b) m'® N m°%; ¢) [m°", m%'] ¢ m®* + (€.
;. From Table 2 in the Appendix, one may find all irreducible [*-moduli in m®©
hence to determine that the only [C-moduli which have half the dimension of m®
and which verify conditions a) and c¢) are just those given in the third colomun of
the table in (2). Condition b) implies that the admissible cases are exactly those

such that det {% 2} # 0 and this justifies the fourth column of the table.

(3) follows from the fact that, in all cases listed in the table of (2), Ng(I“4+m°!) C
[only ifa-b=0.

(4) is proved by checking that in no case, when a - b # 0, there exists a proper
parabolic subalgebra p O [© which verifies the conditions of Lemma 4.9. O

and

6.3 Case when the contact form s not proportional to a root.

In all this section we will suppose G simple, that (G/L,D) has an associated

contact element Z such that § < Bo Z|p is not parallel to any root and that (D, J)

is a non standard CR structure on G/ L.

We also need to introduce the following notation. Let R be the root system of
(g%, €% = I© + CZ), with respect to a Cartan subalgebra b of g& contained in €°.
Then let us denote by R, the roots corresponding to the root vectors in €¢ and let
R'= R\ R,: it is known that the root vectors E, with o € R’ generate m® = £~
Then let us define

Ry={a€R: J(E,) =+iE,}

Note that J is standard if and only if Ry = R’. Then let

def

R. Y R\R,

Re RN spanp < R >

edzef Z (CEﬁ

BER.

Lemma 6.4.
(1) RJ = —RJ and Rg = —Re,'
(2) for any a € R, there exists exactly one root 3 € R, which is 8-congruent to
o

(3) for a € R, there exist exactly one A # 0 and p # 0 such that, for the € R,
which is 0-congruent to o (see Cor. 3.10),

def def

Cap = Ea +NEgem'®  fo5F B, +puEs € m® . (6.2)

(4) (R + R,)N R C RE and (R + R,) N R C Ry;
(5) (RT+R)NRC RFUR,UR,.



D, V., ALEROSERLVOKRY AND AL P, d5FP1ROU

Proof. (1) is clear. To see (2), (3) and (4), observe that o € R if and only if E,
belongs to an irreducible £ -module which is also J-invariant; hence (2), (3) and
(4) follow from Corollary 4.3 and Corollary 3.11.

The proof of (5) is the following. Let v € R and o, € R, a pair of two
§-congruent roots. If v+ a € R, consider the element f_, _3 € m°! as defined in
(6.2). Then

[E’Y-Fa? f—a,—ﬂ] = CE’Y + X € m01

for some C' # 0 and X ¢ CE,. This implies that v € R7: contradiction. O

For any o € R, we will call e-dual of o the unique root § € R, which is 6-
congruent to «.

Lemma 6.5. Let o and o' be an e-dual pair. Then:

(1) R= RN spanp(a,a’) 1s Ay U Ay
(2) a —a' and a+ o' ¢ R.

Proof. For (1) we have to show that if R # A; U A;. (2) is an immediate corollary
of (1).

Suppose that R = Ay, By or Ga. Since a — o' is proportional to no root, the only
possibilities for o and o' are as in the picture (i.e. a short, o’ long and forming an
obtuse angle; or vice versa).

It follows that in all these cases a + o' = 3 € R.

Let us first discuss the case R = A,. In this case 3 is orthogonal to § = o — o
and hence 3 € R,. Using the convention for representing the roots of a system of
type Ay as described in the Appendix, there is no lost of generality if we denote «
and o' as o = g9 — &3 and o’ = &9 — 1. Therefore we may assume that

0 =(c0—e3)— (62 —€1) = €0 + €1 — 2¢e2
Then [ = Cy(Z), Z = B~! 0 8 contains the subalgebra
=CH.,., +CE., ., +CE., .,
At the same time, by Lemma 6.4 (3), m°! contains the element

f80—527€2—€1 =FEeq—cy + p1Ecy—c,

C

for some ;1 # 0. Since m°! is [“-invariant, m®! has to contain the subspace

C(E<€o—<€2 + /“LE€2—€1) + C(E€1 —eg2 /“LE€2—€0)
This implies that

[E€0—€2 + ME€2—817E€1—€2 - /“LE€2—€0] = /“L(_Héo—éz + H€2—€1) S [m017m01]
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By integrability, [m°", m®'] C ¥ + m®" and hence we should have
_H€0—€2 ‘I’ H€2—€1 S ZC

But this cannot be because —H. _., + H.,—_., 1s not orthogonal to Z: this contra-
diction shows that the case R = A; may not occur.

Let us now suppose that B = By or R = C,. In this case, 3 = a + o' is not
orthogonal to 8§ = a — ' and, moreover,

(B+RONR=0.

;From this we conclude that 3 € Ry = R\ R.. Changing the sign of a,a’ if
necessary, we may assume that Eg € m'9, that is JEg = i Ej.

Let us consider the vector fo o = Eo + pE!, € m°! (see Lemma 6.4 (3)). Then
Eo+pE!, = E_o + iE_, € m'% and by integrability of J its commutator with
Ej is also in m'?. Therefore

[E—a + /jLE—a’a Ea—l—a’] - N—a,a—l—a’Ea’ + /jLN—oz’,a—l—a’Ea € mlO
By Lemma 6.4 (3), we get that the coeflicient A in eq o/ is

\ = N—a,a—l—a’

_ 6.3
MN—a’,a—l—a’ ( )

We recall that for any two roots a, 3, the integer N_, 3 equals

where p > 0 is the maximal integer such that 8 + pa € R. In our case, we obtain
from (6.3) that if R = G, A\t = +3, while if R = By, A\p = £2.
On the other hand, by integrability, we also have that

[ea,a’afa,a’] = [Ea + /\E;,E—a + /jLE—a’] = Ha + /\/jLHa’ S [C
This means that (Hy + A\uHy,0) =0, i.e. that
(6, 0)

(e, )

(6,a')

(o', )

2

+ 2\ =0

Using 8 = a — o/, we obtain
2— < ad'la >+ \ap[-2+ < ala’ >] =0

In case R = By, < o'la >= =2 and < ala’ >= —1 so that Az = 3/4; in case
R =G, < d'Ja >= =3 and < ala’ >= —1 so that A\g = —3/5. In both cases we
get a contradiction with the previously determined values for A\p. O

Consider now the root subsystem R. RN spang < Re >.
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Lemma 6.6. If R, is not of the form Ay U Ay, then R. is an indecomposable root
subsystem.

Proof. Note that if rankR, = 2, by Lemma 6.5, R = A; U A;. Therefore we may
suppose that rank R, > 2.

Suppose that Re = Ry U Ry with R; orthogonal to R;. Let o € Ry N R,
a' € Ry N R, and let 3, 3’ the corresponding ¢-dual roots; we may also suppose
that they are not contained in a rank two subsystem. Since 8 cannot be contained
in the span of Ry, it is clear that 3 € Ry and that 3’ € Ry; in this case we have
that

R(a—B)=R(a"-p')

only if o + pf’ = pa’ + 3 = 0 for some p # 0. From this follows that ' = —« and
B = —a': contradiction. O

Lemma 6.7,
a) iof rankR = 2 then Re is of type A1 + Aq;
b) if rankR. = 3, then R, is of type As(~ Ds) and 8 is a multiple of eg — &1 —
€2 + €3/ .
¢) if rankR. = ( > 4, R, is of type D¢ and 6 is a multiple of ;.

Proof of a). See Lemma 6.5.

Proof of b). Assume that rankR. = 3. By Lemma 6.6 all e-pairs are made of
orthogonal roots and no other root in R is linear combination of any two of them.

Let a,a’ be an e-pair of orthogonal roots and let us assume # = a — a'. Since
# is not proportional to any root, if we consider the list of all simple root systems
of rank 3, up to renaming and change of orientation of the unit vectors ¢;, we have
only the following possibilities for a, o' and 6:

Re:A;; : a=¢&g—¢&1, Oé/:€1—€3, 9250—51—52—|-€3 (647)
Re:B;; : o = &q —|—a€27 Oé/:—€3, 9251 +e9 + €3 (64”)
Re =C5 : a=c¢;+ey, o =-2e3, O=¢;+ecy+ 23 (6.477)

We claim that the case Re = (3 cannot occur. In fact, e; + ¢3 cannot be in R,
because in that case its e-dual root is —e; — ¢3 and it is not orthogonal to €3 + e3,
contradicting our hypothesis. Therefore we may assume that 5 + ¢35 € R}' and
hence, by Lemma 6.4(5),

52—53:52+53—253€R}'UR2UR0

Indeed g9 — e3 € R}' because it is not orthogonal to € nor admits an ¢-dual root.
Since the roots +(e; — e3) are orthogonal to § and hence are in R,, we also obtain
that ¢ — ¢35 € R}' and g1 + 23 € R}'. This implies that the only admissible e-pair
is the one given by o and o’ and this contradicts the fact that R, is of rank 3.
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We claim that also the case R, = Bs is not admissible. Suppose not. Then

R, contains ¢; — ¢, ¢,7 = 1,2,3 and R, contains the pairs of #-congruent roots

{e1 + e3,—e2}, {1 + 2, —e3} and {2 + 3, —e1}. Since rank]%e = 3, we may

assume that o = 1 + &3, § = —¢&9, o’ = &1 + g2 and 3’ = —&3 are all roots in R,.
Consider the corresponding two vectors e, 3 and e, g as defined in (6.2). Note

that eq g and ey g are in the same (C-module; therefore we may assume that they

are of the form
€a7ﬁ = E€1+€3 —|— /\E_g2 ea/76/ — E€1+€2 —|_ /\E_<€3
Then

[eaﬁ? ea'ﬁ'] = /\([E€1+€37 E—€3] + [E—€27 E€1+€2]) + /\20E—(€2+€3)

for some C # 0.
Note that
[E€1+€37E—€3] = N€1+€37—€3E€1 - [E€1+827E—82]

so that
[€a767 ea/76/] = /\20E_(€2+53) E m+

But this implies that e; +¢3 € Rj. Since ¢; —¢; € R, for 4,5 = 1,2,3, by Lemma
6.4(4) we get that also a and o' are in Rj: contradiction.

So we remain only with the case Re = A;. Note that A3 = D3 and that if we
write the roots of Az using the same notation used for the root systems of type Dy,
(6.47) can be rewritten as

a=¢&1 4 &9 Oé/ = —&1 + &9 0 = 251 (65)

Proof of ¢). Suppose that rank R. = 4. Tt is then easy to see that there is only one
possibility for 8, in order to be the difference of two orthogonal roots and such that
all admissible e-pairs are not contained in a 3-dimensional root subsystem, that is

9251 +é2+e3+ ¢4 (67)

This case may not occir if Re = A4 and, furthermore, R, N R, = A;. However, we
claim that this situation is not possible if R, is of type By or Fy, because all roots
of the form +¢; must be in Ry (in fact, they do not admit any e-dual root) and
hence also all root vectors E. y.; = Cl|E.,, Egj] are in my. This would imply that

R. N R, = (), which is impossible.

f cannot be as in (6.7) also if R. is of type Cs: in fact any root vector E.. 1.,
1 < 4,5 < 4 should be in the [“-module of Es., and this root vector should be in
miy.

So the only possible case is Re = D,. In this case, we may consider a different
representation of the root vectors so that any pair of e-dual roots is of the form
{e1 — &4, —&1 — ¢, } and 6 is proportional to ;.

Suppose now that rank R, > 4 and that some e-pair consist of not orthogonal
root. It is simple to verify that there is only possibility, i.e. that 8§ € Rey and that
Re =Dy, with ¢ >4. O
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Lemma 6.8.

a) If Re # Ay U Ay, then ReN Ry =0 and R, = R, U (R, N R);
b) ReUR;, UR, is a closed subsystem of roots.

Proof. a) In all cases of Lemma 6.7, the contact form 6 is explicitly given, so that
also R, N R, = 6~ N R, can be explicitly determined. In all cases, but when
Re = Ay UAq, it turns out that if @ € Ry N Re, then Re = R,U R (we use the fact
m§ is [C-invariant and invariant by conjugation): contradiction. This proves that
RN Re = 0.

b) First observe that R.+R. C R.+R,: it follows immediately from the fact that
(Re+R)NR C R, and from a). Then recall that, by Lemma 6.4, (R.+R,)NR C R.,

(R; + R,)NRC R and that (R; + R)NRC R, +R.+ R;. O

Lemma 6.9. If R, # R then:
a) The subspace p = e+ CZ +[C + > acr- CEqo is a parabolic subalgebra of g,
J

with reductive part v = q°, where q =pNg and [ C q;

b) if Q@ C G is the subgroup of mazimal rank generated by q, and G/Q s
not trivial, the fibering 7: G/L — F = G/Q 1s a CRF fibration, where on
G/Q is considered the complex structure Jp of the flag manifold F = G/Q
associated to the parabolic subalgebra p;

¢) Q/L is SO3y,/SOzp_2 for some n > 3;

d) if (Dz,J) is an invariant CR structure on SOg2y,/SOs,_o with § = Bo Z
not parallel to any root, then 6 1s a multiple to ¢1 and in the decomposition
m® = m'® + m° the subspace m®! is of the form

am(el — 52) + bm(—el — 52)

for some [a : b] € CP!', |a|?* — |b]* # 0 (we use the same notation as the
one of table of Prop. 6.3). The CR structures which are not standard are
exactly those such that a-b # 0 and they are all primitive;

e) if (G/L,Dyg,J), with G/L # SO2,/S03,_3, is an invariant non standard
CR structure with @ = Bo Z not parallel to any root, then the associated flag
manifold Fy = G/K admaits a complex structure, whose associated painted
diagram contains a subdiagram of type D,, with the first node black and
all other white, 1t 1s connected only to black nodes and such that, if it is
deleted, the black nodes of the remaining diagram are isolated; using the
same convention used in Appendix for the roots of D, , 8 is parallel to the
vector 2e1 = (g1 — e2) + (€1 + &2), where 1 — €2 and &1 + €3 are two roots
of the subgroup associated to the subdiagram D,,.

Proof of a). It follows immediately from Lemma 6.8 b) and the fact that q = gNp =

RZ+g(ReUR,)Ng DL
Proof of b) 1t follows immediately from Lemma 4.9 and claim a).

Proof of ¢) Consider the largest ideal i® C q* such that i® C [©. We claim that

i€ = 9(R, \ spang < R, >)
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so that q©/i® ~ g(R.).

For this it is enough to show that if v € R, \ spang < R, >, then E. and H., are
in i®. But this is clear because if ¥ € R, \ spang < R, > and a € spanp < R, >,
then a4+~ € R only if it belongs to R, \ spang < R, >. From this the claim follows.

Now, set ¢ = q modi, Z/ = Z modi and I" modi. ;From the previous

observations, we have that q’ is a compact form of g(R.) and hence, by Lemma 6.7,
q is A1 U Ay, A3(~ D3) or Dy, > 4. These cases correspond to CRF fibrations
defined at the point b) with fiber /L equal to SUs x SU3 /T or to SO2y,/S02,—2,
n > 3.

However we claim that the case Q/L = SU, x SUy /T cannot occur. To see
this, observe that, in case QQ/L = SU,; x SUy /T, any painted diagram associated
to the complex structure Jp on G/Q has to contain a subdiagram of white nodes
(corresponding to the roots of the isotropy gq) which contain two isolated white
nodes (corresponding to the roots a and o' of SU; x SU;). The contact form 6
would be proportional to o — o’. But in this case, it can be checked that if G is
simple and «a, o’ are two roots associated to two isolated white nodes in a black-
white diagram for G, then the centralizer Cy(Z), Z = B~ 06, with § = a—a' has a
semisimple part which is strictly larger then subalgebra associated to the white root
subdiagram obtained by deleting the nodes o and a’. This gives a contradiction
with our hypothesis, because the semisimple part of Cyq(Z) must coincide with the
semisimple part of [, which is associated to the white nodes (minus the nodes o
and o) of the black-white diagram of the complex structure Jr on G/Q.

Proof of d) It is proved with the same line of arguments used for Proposition 6.3
(2) and it is consequence of ¢).

Proof of e) 1t follows directly from b), ¢) and d). O

Theorem 6.10. Let (G/L,D) with G simple, L connected and with contact form
0 = B o Z not parallel to any root. Then:

(1) of (G/L,D) admits a primitive CR structure (D,J) then G/L is of the
form SO, /S02n—2 with n > 3; in this case 8 is proportional to €1 and
all invariant primitwve CR structures are the non standard CR structures
described in Lemma 6.9 d);

(2) of (G/L,D), with G # Es,E7, Eg, admits a non primitive, non standard
CR structure (D,.J), then it admits a CRF fibration n: G/L — F = G/Q,
where F = G/Q 1s a flag manifold with invariant complex structure Jp and
the fiber Q/L s equal to SOg/SOy;

(3) of (G/L,D), with G = Es, Er or Eg, admits a non primitive, non standard
CR structure (D,.J), then it admits a CRF fibration n: G/L — F = G/Q,
where F' = G/Q s a flag manifold with invariant complex structure Jp
and the fiber Q/L is a manifold SO,/ SO2p—2, with 5 < n < 7; the fibra-
tions which may occur are exactly those described by the admaissible painted

digrams (1.5) - (1.9) of the Introduction.

Proof. (1) follows from Lemma 6.9.
(2) is proved with the following argument. By Lemma 6.9 e), if G/L admits a
non standard, non primitive CR structure, then the Dynkin diagram of the root
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system of G contains a subdiagram of type D,. If we suppose that it admits a
subdiagram of type D,, with n > 3, since g* # E;, we conclude that and the g©
is of type D,,, with m > n. However, this case is not possible, because in this
case, using Lemma 6.9 e), we may compute 6 and find out that the centralizer of
Z = B~ 06 has a semisimple part which is strictly larger then the semisimple part
of [, as defined by the black-white diagram: contradiction.

(3) can be obtained by a direct application of Lemma 6.9 e) and checking that the
painted Dynkin graphs (1.5) - (1.9) do correspond to non primitive non standard
CR structures. 0O
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APPENDIX

The notation used in the following Tables for the roots of the simple Lie groups
A¢, By, Co, Dy, Fy and G2 are as in [Hu|. For the roots of Eg, E; and Eg the
following conventions of [OV] has been used: the weights of the groups E;, { = 7,8

are expressed using vectors €1, ...,¢4+1 such that
L =
Z@i =0 (&,g5) = { e+ (T.1)
—747 (FJ

It is useful to rember that, in this last case, if Y a; = 0, then (Y a;e;, > bje;) =
> a;b;. For Eg, the weights are expressed by vectors e1,...,&¢, which verify (1),
and by an auxiliary vector ¢ which is orthogonal to all £; and verifies (¢,¢) = 1/2.

In Table 1, for any simple complex Lie group g“, we give the corresponing root
system R, the longest root p (unique up to inner automorphisms), the subalgebra
g6 = Cyel(g(p)), the subsystem of roots Ry corresponding to gj, the decomposion
into irreducible submodules of the go-module gy which appear in the decomposition
(3.1) and and the set of roots Ry = Rt \ (1 U Rp).

For a set of simple roots of g, we denote by {m,...,n¢} the corresponding
system of fundamental weights and, for any weight A = > a;7;, we denote by V()
the irreducible g{-module with highest weight A.
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Table 1
/
g R 1% 9% Ry o} Ry
g, —€; €aq —€b €0—C€a, €q—E¢
V(7T1)+ !
Ay 0<i,j<t fo—ee Ar—atR 1<a,b<t—1 V(e o) 1<a<t—1
+(e1—e2), e tep €1, €
B :l:&i:l:&j, :l:&,’ A B :l:ga V(Trl)® <€1:|:<€a7 62:|:€a
¢ . €1tez 1+Be—2 /
1<4,j<t 3<a,b<( Vi(m) 3<a<t
e E£e; |, £2¢; Fe,Fep, £22, e1Teq
Ce 1<i,j<t 2e1 Cen 2<a,b<t Vi(m) 2<a<t
FeiEe; +(e1—e2), e tep e1te,, eateq
Dy ;o e1teo A1+Dg_» V(ﬂ-l/)®
1<i, <!t 3<a,b<t V() 3<a<t
€;—ej, L2
EG eitejterte 9e As cimc V) citejtente
1<i,j,k<6
gi—¢gj €a % —e7+eq, €8—¢€q
i+e; e7testeqatep )
E7 €z+€J +ertey —ertes D6 catepteeteq V(Tfl) cgteqateptec
1§Z7]7k7£§8 IS(Z,b,C,dSG 1§a,b,c§6
ei—ej :t(;j_ggig ) €1—&q, —€9teq
. . 1 9 a
E8 :l:(gz"i"‘gj +€k) e1—eg E7 i(€a+5b+€c) V(Tfl) 621:€ab‘|;<€8b
1<4,5,k<9 2<a,b,c<8 Sa,05
fejdepdesdey i(alfzi
:I:e':l:;' +e; e €1, €2
Fy L ¢ e1teo Cs teq, tegtes Vi) 751+52§53i54
F(es—¢j)
G2 :l:(&i_gj _€k) 2e,—eq—eg A, :l:(€2—€3) V(7r1) 2€2€gi1€:€3
1< j,k<3

In the next Table 2, we give all information needed to determine the admissible
decompositions gC =4+ CZ +m® and m® = m'% + m®! associated to an invariant
CR structure, when # = B o Z is parallel to a root and g° is simple. Recall that
when 6 = p, the associated contact manifold G/L is special and hence all needed
informations can be recovered from Table 1.

In Table 2 we consider only the case of 8§ = B o Z = v is equal to a short root.
For each simple Lie algebra with roots of different length, we give the root system
R, the short root v (unique up to inner automorphisms), the cetralizer Cyc(H, ),
the root subsystem Rg of Cyc(H, ), the list of the highest weights for the irreducible
t“-moduli in m*, €& = C c(H,) + CH,, and the sets of the €“-moduli which are

g
equivalent as Cyc(H, )-moduli.
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Table 2
sets of
equivalent
highest weight T :
g R v Cg:(HV) Ry 1g ?S W‘?Clg S Cg(Hl,)—modu.h
or m (denoted by their
highest weights)
:t&i:t?j, *e; i&ai€b7 Te,
By 1<4,5</ 1 Bea 2<a,b<t e1tez, —e1ten | {e1+en,—e1ten}
— " = —r =
te;de;, +2e; i(€1_€2)7 +2e,
C B €<J74 o e1te A1+Ce_2 teates SoL fites {2e1,—2¢2)
£ 1<s,5<4 1re2 - 3<a,b<f —2e2, —e2—es |{e1tes, —eo—es}
tejdeotegtey e1+ten, —e1+e {e1+e2,—e1+e2}
Lejxepkegteq de,dep, fe 1tea, 1+e2 1Te2,—€1T¢e2
2 a 9 a
Fy deite;, e €1 Bs 2<ab<d Siteotestesq {ifeateates
—_ —_ €1 —€9—eEg—¢ — — —
1<i,j<4 ST | o)
+(es—ej) €1—e2, €a—e1 {?1_52752_51}
H(e;—e; — _ o eo—eEg, €1—E€3 2e0—e1—€3
G2 (51‘ ‘:g,] gk) Eg1—E&9o A1 :l:(2€3 &1 62) 282—781—83 €1_€37€2_€377
1<14,7,k<3 2e1—ea—eg 2e1—eg—es}

In Table 3, we give the same list of Table 2, when 6 = B o Z is parallel to no
root and g© = A, or g* = Dy.

Table 3
sets of
. . equivalent
g R |9§=BoZ|C5(Z)| Ry highest welghts | C(7) —moduli
or m (denoted by their
highest weights)
€i—ey
A2 0<i,j<2 gpte1—2en Ay +(eo—e1) €0—€2, €1—€2 {eo—e1,61—¢2}
Teite; TeiEe;
De |14 j<e Za De—a a<ij<o | frtez —erter | {er—en,—er—en)

In Table 4, we give the same list of of Onishchik ([On]) of the only three cases,
where the Lie algebra g of a compact simple Lie group GG, which acts transitively on a
flag manifold F' = G/ with an invariant complex structure Jg, is not the compact
real form of the Lie algebra g= of the Lie group of all holomorphic transformations

of (F,Jp).

Table 4
Case g“ £C g“
1 C[ (6 > 1) Cé—l ‘I’ C A2€—1
2 G2 Al ‘|— C BS
3 Bg (6 > 2) Aé—l + C Dg_|_1
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