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INVARIANT CR STRUCTURES ON COMPACTHOMOGENEOUS MANIFOLDSDmitry V. Alekseevsky, Andrea F. SpiroAbstract. An explicit classi�cation of the simply connected homogeneous spacesG=L of a compact Lie group G, admitting a G-invariant CR structure of codimensionone and Levi non degenerate, is given. For each such a homogeneous space, alladmissibleG-invariant CR structures are listed and classi�ed up to CR equivalences.It is also proved that if a compact homogeneous CR manifold G=L is not thecovering space of a G-orbit in TSn, THPn or TOP 2, then there exists a holomorphic�bration � : G=L ! G=K, where G=K is a ag manifold endowed with an invariantcomplex structure and the typical �ber K=L is S1 or it is equivalent to (the universalcovering of) a K-orbit in TS2 or in TS2n�1 with 2 � n � 7.1. Introduction.An almost CR structure on a manifold M is a pair (D; J), where D � TM is adistribution and J is a complex structure on D. The complexi�cation DC can bedecomposed as DC = D10 +D01 into sum of complex eigendistributions of J , witheigenvalues i and �i.An almost CR structure is called integrable or CR structure if the distributionD01 (and hence also the D10) is involutive, that is the space of sections is closedunder Lie brackets. This is equivalent to the following conditions:J([JX; Y ] + [X;JY ]) 2 D (1.1)[JX; JY ]� [X;Y ]� J([JX; Y ] + [X;JY ]) = 0 ; (1.2)for any two �elds X;Y in D.A map ' : (M;D; I) ! (M 0;D0; J 0) between two CR manifolds is called holo-morphic map or CR map if '�(D) � D0 and '�(JX) = J 0'�(X).Two CR structures (D; J) and (D0; J 0) are called equivalent if there exists adi�eomorphism such that ��(D) = D0 and ��J = J 0.The codimension of D is called the codimension of the CR structure. Note thata CR structure of codimension zero is the same as a complex structure.A codimension one CR structure (D; J) on a 2n + 1-dimensional manifold Mis called Levi non degenerate if D is a contact distribution. This means that anylocal (contact) 1-form �, which de�nes the distribution (i.e. such that ker� = D)is maximally non degenerate, that is (d�)n ^ � 6= 0. Typeset by AMS-TEX1



2 D. V. ALEKSEEVSKY AND A. F. SPIRONote that any real hypersurface M of a complex manifold N has a naturalcodimension one CR structure (D; JD) induced by the complex structure J of N ,where D = f X 2 TM ; JX 2 TM g ; JD = J jD :In the following, if the opposite is not stated, by CR structure we will meanintegrable codimension one Levi nondegenerate CR structure. Sometimes, if thecontact distribution D is given, we will identify a CR structure with the associatedcomplex structure J .A CR manifold, that is a manifold M with a CR structure (D; J), is calledhomogeneous if it admits a transitive Lie group of CR transformations.The aim of this paper is to give a complete classi�cation of simply connectedhomogeneous CR manifoldsM = G=L of a compact Lie group G. This gives a clas-si�cation of all simply connected homogeneous CR manifolds, since any compacthomogeneous CR manifold admits a compact transitive Lie group of CR transfor-mations (see [Sp]).The simplest example of compact homogeneous CR manifold is the standardsphere S2n�1 � C n with the induced CR structure.More elaborated examples are provided by the following construction of A. Mo-rimoto and T. Nagano ([MN]). Let N = G=H be a compact rank one symmetricspace (shortly 'CROSS'). The tangent space TN can be identi�ed with the homo-geneous space GC =HC . Hence, it admits a natural GC -invariant complex structureJ . Any regular orbit G � p ' G=L in TN = GC =HC is a real hypersurface with(Levi non degenerate) G-invariant CR structure.Moreover, these examples together with the standard sphere S2n�1 � C n exhaustthe class of CR structures induced on a codimension one orbit M = G � x � C ofa compact Lie group G of holomorphic transformations of a Stein manifold C. Wecall the homogeneous CR manifolds which are equivalent to such orbits in tangentspaces of a CROSS Morimoto-Nagano spaces.In the fundamental paper [AHR], H. Azad, A. Huckleberry and W. Richthofershowed that these manifolds play a basic role in the description of the compacthomogeneous CR manifolds.More precisely, for any compact homogeneous CR manifold M = G=L theyde�ne a holomorphic map (called anticanonical map) � : M = G=L! CPN . Thismap is G-equivariant with respect to some explicitly de�ned projective action ofG on CPN . For any compact homogeneous CR manifold M only two possibilitiesmay occur: the orbit �(M) = G � p, p 2 �(M), is either a ag manifold with thecomplex structure induced by the complex structure JP of CPN and in this case� : M ! �(M) is an S1-�bering, or it is a CR manifold with CR structure inducedby JP and in this case � : M ! �(M) is a �nite covering.This reduces the description of the CR homogeneous manifolds of the second typeto the description of compact orbits G�p � CPN of a real subgroupG � Aut(CPN )of projective transformations, on which JP induces a CR structure.A simple argument shows that an orbit G �p � CPN of a connected Lie subgroupG � Aut(CPN ) carries a (possibly Levi degenerate) CR structure induced by CPN



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 3if and only if G �p is a real hypersurface of GC �p. Moreover, if the orbit is compact,one may assume that G is a compact semisimple Lie group.The following important result in [AHR] describes the structure of such orbits.Theorem. Let GC � Aut(CPN ) be a connected complex semisimple group of pro-jective transformations and G its compact form. Assume that the orbit M = G �p =G=L carries a Levi non degenerate CR structure induced by JP and hence it is areal hypersurface in B = GC �p = GC =H. Denote by P a minimal parabolic subgroupof GC which properly contains H. Then the �ber C = P=H of the GC -equivariant�bration over the ag manifold F = GC =P� : B = GC =H ! F = GC =Pis a homogeneous Stein manifold biholomorphic to C � , C n or to the tangent spaceof a CROSS.This �bration is called Stein-rational �bration. Note that P not necessarily actse�ectively on C.The Stein-rational �bration induces a G-equivariant holomorphic �bration of thehomogeneous CR manifold M = G=L over the ag manifold F�0 : M = G=L! F = GC =P(it is a CRF �bration according to our de�nitions, see below). Moreover, in corre-spondence to a �ber of �, a �ber of �0 is either S1, S2n�1 or a Morimoto-Naganospaces.This Theorem gives necessary conditions for an orbitM = G �p � CPN in orderto carry an induced CR structure. Our classi�cation gives necessary and su�cientconditions. In particular, we show that not all Morimoto-Nagano spaces may occuras �bers of the �bration �0.Now we describe the main results of this paper. Section x2 collects the basicsfacts on homogeneous CR manifolds.Section x3 is devoted to the in�nitesimal description of homogeneous contactmanifolds M = G=L of a compact Lie group.We prove that the center of G is at most one dimensional and we establish a nat-ural one to one correspondence between simply connected homogeneous manifoldsM = G=L with an invariant contact distributionD and an element Z 2 g = Lie(G)(de�ned up to scaling) such that:a) the centralizer of Z has the following orthogonal decomposition w.r.t. theCartan-Killing form BCg(Z) = l�RZ ; l = Lie(L) ;b) the 1-parametric subgroup generated by Z is closed.



4 D. V. ALEKSEEVSKY AND A. F. SPIROThis element Z (called contact element) de�nes an orthogonal decompositiong = l+RZ +m :The subspace m is AdL-invariant and de�nes the contact distribution D on M =G=L, while the AdL-invariant 1-form � = B � Z 2 g� is extended to a G-invariantcontact form � on G=L.We associate with Z a ag manifold FZ , which is the adjoint orbitFZ = AdG(Z) = G=K ;where K = CG(Z) is the centralizer of Z. There is a natural principal S1-�bration� : M = G=L! FZ = G=K :In general, a homogeneous manifoldG=L admits no more then one invariant contactstructure. If it admits more then one then it is called special contact manifold .The main examples of such manifolds can be described as follows.Let G be a simple compact Lie group without center and let Q = G=Sp1 �H 0 bethe associated Wolf space, that is the homogeneous quaternionic K�ahler manifold,where Sp1 �H 0 is the normalizer in G of the 3-dimensional subalgebra sp1(�) of gassociated with the maximal root �. Then the associated 3-Sasakian homogeneousmanifold M = G=H 0 is a special contact manifold.Any 0 6= Z 2 sp1(�) is a contact element. Furthermore, any two invariantcontact structures on M are equivalent under a transformation, which commuteswith G, de�ned by the right action of an element from Sp1.We prove the following theorem.Theorem 1.1. Any special contact manifold M = G=L is either the 3-Sasakianhomogeneous manifold G=H 0 of a simple group G, as described above, or M =G2=Sp1, where Sp1 is the 3-dimensional subgroup of the exceptional Lie group G2,with Lie algebra sp1(�), where � is the maximal root of G2.In section x4 we establish some general properties of compact homogeneous CRmanifolds. Let (M = G=L;D) be a homogeneous contact manifold andg = l+RZ +mthe associated decomposition of the Lie algebra g. Then any invariant (integrable)CR structure J is de�ned by the AdL-invariant decompositionmC = m10 +m01 (1.1)of the complexi�ed tangent space mC = T CeLM into holomorphic and antiholomor-phic subspaces, such thatlC +m01 is a subalgebra of gC : (1.2)The subspace m is naturally identi�ed with the tangent space of the associated agmanifold FZ = G=K, k = l+RZ = Lie(K). It is known that any invariant complex



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 5structure on FZ is de�ned by an AdK -invariant decomposition (1.1), where m01 isa subalgebra (in fact it is the nilradical of a parabolic subalgebra kC +m01). Henceany invariant complex structure JF on FZ de�nes an invariant CR structure JMon M = G=L. It is called standard CR structure induced by JF .The natural S1-�bration � : M = G=L ! FZ = G=K is holomorphic withrespect to the CR structure JM and the complex structure JF .Since the description of all invariant complex structures on a ag manifold isknown (see e.g. [Ni], [AP], [BFR], [Al1]), it is su�cient to classify the non standardCR structures.The following notion is important for such classi�cation.A compact homogeneous CR manifold (M = G=L;D; J) is called not primitiveif it admits a holomorphic G-equivariant �bration � (called CRF-�bration)� : M = G=L! F = G=Qwhere F = G=Q is a ag manifold of positive dimension, equipped with an invariantcomplex structure JF . Note that a �ber of � will be a homogeneous compact CRmanifold Q=L and that any standard CR manifold is not primitive.The classi�cation of primitive CR structures given in x5 and x6 is an importantstep for the description of all non standard CR structures.A basic tool for studying the homogeneous CR manifolds is the anticanonicalmap � de�ned in [AHR].Let (M = G=L;DZ ; J) be a homogeneous CR manifold of a compact Lie groupG and gC = lC + CZ +m10 +m01the corresponding decomposition of gC . Then the anticanonical � is the holomorphicmap from M into the Grassmanian of k-planes, k = dimC (lC +m01), given by� : M = G=L! Grk(gC ) � CPN� : gL 7! Adg(lC +m01) :Note that � is a G-equivariant map onto the orbit G � p of p = lC +m01 2 Grk(gC )under the natural adjoint action of G on Grk(gC ).We obtain the following characterization of standard and non standard CR struc-tures (see Theorems 4.10 and 4.12):Theorem 1.2. Let (M = G=L;DZ ; J) be a homogeneous CR manifold.(1) If it is standard, then the image �(M) = G � p of the anticanonical mapis the ag manifold FZ = G=K, associated with the contact structure DZ .Hence � : M ! �(M) = FZ is the natural S1-�bration.(2) If it is non standard, then � : M ! �(M) = G � p is a �nite holomorphiccovering, with respect to the CR structure of G �p � Grk(gC ) induced by thecomplex structure of Grk(gC ).In section x5, we classify all invariant CR structures on special contact manifoldsG=L. The result is the following:



6 D. V. ALEKSEEVSKY AND A. F. SPIROTheorem 1.3. Let M = G=L be a special contact manifold with an invariantcontact structure DZ .(1) if G 6= SUn, then there exists (up to sign of J) only one invariant CRstructure (DZ ; J), which is standard;(2) if G = SU2 and hence M = SU2, then there exist (up to sign of J) onestandard CR structure and one family of non standard CR structures; anynon standard CR structure is primitive and all of them are equivalent toeach other;(3) if G = SUn, n > 2, and hence M = SUn=Un�2, then there exist (up to signof J) three standard CR structures, induced by the three invariant complexstructures of the corresponding ag manifold FZ = SUn=T 2 �SUn�2 (whichis the twistor space of the Wolf space Q = SUn=S(U2 � Un�2)), and twofamilies consisting of mutually equivalent non standard CR structures. Anynon standard CR structure is not primitive and admits a CRF �bration� : M = SUn=Un�2 ! SUn=S(U2 � Un�2)with a �ber SU2 over the Wolf space SUn=S(U2 � Un�2) equipped with its(unique up to sign) complex structure.The explicit description of all non standard CR structures on SU2 and SUn=Un�2is given in x5.In section x6, we obtain the classi�cation of non standard invariant CR structureson non special homogeneous contact manifolds.>From the list of non standard CR structures and from the previous results onspecial contact manifolds, we obtain the following classi�cation of primitive CRstructures.Theorem 1.4. Let (M = G=L;DZ ; J) be a simply connected primitive, homoge-neous CR manifold and � = iB�Z the dual form of the contact element Z restrictedto a Cartan subalgebra t of k = Cg(Z) = l +RZ. Then G=L is the universal cov-ering of a regular (codimension one) orbit of G in a homogeneous complex spaceB = GC =H with the induced CR structure. G, K = CG(Z), � and the complexhomogeneous space B belong to the following table. In all cases, B is the tangentspace of a CROSS.no G K = CG(Z) � B = GC =H1 SU2 T 1 "0 TS2 = SO(3;C)SO(2;C)2 SU2 � SU 02 T 1 � T 10 "0 � "00 TS3 = SO(4;C)SO(3;C)3 F4 T 1 � SO(7) "1 TOP 2 = F4(C)Spin9(C)4 SO2n+1 T 1 � SO2n�1 "1 TS2n = SO2n+1(C)SO2n(C)5 SO2n T 1 � SO2n�2 "1 TS2n�1 = SO2n(C)SO2n�1(C)6 Spn T 1 � Sp1 � Spn�2 "1 + "2 THPn�1 = Spn(C)Sp1(C)�Spn�1(C)



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 7In each of these cases, the set of all CR structures (considered up to sign) onM = G=L is parameterized by the points of the unit disc D in R2. The center ofD corresponds to the (unique) standard CR structure of M and all other pointscorrespond to mutually equivalent primitive CR structures.For what concerns the non primitive and non standard CR structures, we havethe following theorem.Theorem 1.5. Let M = G=L be a simply connected homogeneous CR manifoldwith a non standard not primitive CR structure. Then G is either simple or aproduct of two simple Lie groups and there exists a unique CRF �bration� : M = G=L! F = G=Qover a ag manifold F with an invariant complex structure JF , such that the �berQ=L is a primitive CR manifold. Moreover, if G is not simple then Q=L = SU2 �SU 02=T 1; if G is simple then Q=L is one of the following primitive homogeneousCR manifolds SU2 ; SO2n=SO2n�2 ; 3 � n � 7 :If the �ber is Q=L = SU2, then G=L is a special contact manifold SUn=SUn�2; ifthe �ber is Q=L = SO2n=SO2n�2 with n � 4, then G = E6; E7 or E8.Corollary 1.6. Let � : M = G=L! F = G=Q be the CRF �bration of not primi-tive non standard CR manifold (G=L;D; J0) onto the ag manifold F = G=Q witha �xed invariant complex structure JF . Then the set of all invariant CR structures(D; J) on G=L (up to sign of J), such that the �bering � : M = G=L! F = G=Q isholomorphic, is parameterized by the points of the unit disc D in R2. The center ofD corresponds to the unique standard CR structure Js of this family and all otherpoints correspond to mutually equivalent primitive CR structures.The unique standard CR structure Js on M = G=L such that the �bration� : M = G=L ! F = G=Q is holomorphic w.r.t. Js and JF is called the standardCR structure associated with the non-standard CR structure J0.We conclude this introduction, by showing how the explicit description of allnon primitive CR manifolds G=L of a given compact Lie group G can be done interms of painted Dynkin graphs of g = Lie(G), that is of Dynkin graphs of the Liealgebra g with nodes painted in three colors: white, black and gray.Recall that any ag manifold F = G=Q with an invariant complex structureJF is de�ned (up to equivalences) by a black-white Dynkin graph, where the sub-algebra q = Lie(Q) is generated by the Cartan subalgebra and the root vectorsassociated with the white nodes. The complex structure JF is determined by thedecomposition gC = qC +m10 +m01where m10 is the nilpotent subalgebra generated by the root vectors associated toblack nodes.



8 D. V. ALEKSEEVSKY AND A. F. SPIROWith a painted Dynkin graph �, we associate two ag manifolds F1(�) = G=Kand F2(�) = G=Q and two invariant complex structure J1(�) and J2(�) on F1(�)and F2(�2), respectively, as follows. The pairs (Fi(�) = G=Q; Ji(�)), i = 1; 2, arethe ag manifolds with invariant complex structures de�ned by the black-whitegraphs obtained from � by considering the gray nodes as white and, respectively,black.Note that Q contains K and that the natural �bration$ : F1(�) = G=K ! F2(�) = G=Qis holomorphic and a �berQ=K is a ag manifold with an induced invariant complexstructure J 0. Moreover, J1(�) is canonically de�ned by J2(�) and J 0.Conversely, if F1 = G=K and F2 = G=Q are two ag manifolds with invariantcomplex structures J1 and J2 such that Q � K and the equivariant �bration$ : F1 ! F2 is holomorphic, then we may associate with F1 and F2 a paintedDynkin graph in an obvious way.A painted Dynkin graph � of a semisimple Lie algebra g is called admissible ifa) g = A` and � is 
 � � � � � � � � (1.3)orb) g 6= A`; E6; E7; E8 is simple, the black nodes are isolated and, after deletingthe black nodes, � is of the following form, modulo connected componentswhich consist of only white nodes,� 
 � + white (1.4)orc) g = E6; E7 or E8 and � is one of the following diagrams
 � �� � � (1.5)
 � � �� � � (1.6)� � � �� � 
 (1.7)
 � � � �� � � (1.8)� � � � �� � 
 (1.9)



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 9d) g = g1 + g2 is sum of two simple Lie algebras, the black nodes are isolatedand each connected component of � has exactly one grey node, which is notconnected with a white node; in particular, after deleting the black nodes,the remaining graph is of the following form
 + white
 + white (1.10)Using the concept of admissible painted graph, the results of our classi�cation maybe stated as follows.Theorem 1.7. Let M = G=L be a homogeneous CR manifold with a not primitivenon standard CR structure (D; J). Denote by � : G=L ! FZ = G=K the natural(not holomorphic) �bration de�ned by the contact structure and �0 : G=L ! F =G=Q the unique CRF �bration with primitive �ber Q=L onto a ag manifold F =G=Q with invariant complex structure JF .Then Q � K and the sequence of �beringM = G=L! FZ = G=K ! F = G=Qis holomorphic with respect to the standard CR structure (D; Js) on M , associatedto (D; J), the corresponding complex structure Js on FZ and the complex structureJF on F .Moreover, the painted Dynkin graph � associated to the ag manifolds F1 =FZ , F2 = F with the complex structures J1 = Js and J2 = JF , respectively, isadmissible.Conversely, if � is an admissible painted Dynkin graph, then there exists a ho-mogeneous contact manifold (M = G=L;DZ) such that FZ = F1(�) = G=K andthe complex structure J1(�) de�nes the unique standard CR structure (D; J1(�)) onM such that the sequence of �brationsM = G=L! FZ = F1(�) = G=K ! F2(�) = G=Qis holomorphic w.r.t. (D; J1(�)), J1(�) and J2(�). The space of the invariant CRstructures (DZ ; J) on M , such that the projection �0 : M ! F2(�) is holomorphic,is parameterized by the points of a unit disc, with the center corresponding to the CRstructure J1(�) and all other points corresponding to non standard CR structureswhich induce primitive CR structures on the �ber Q=L.



10 D. V. ALEKSEEVSKY AND A. F. SPIROPart I2. Basic facts about CR structures.De�nition 2.1.(1) A CR structure on a manifold M is a pair (D; J), where D � TM is adistribution on M and J 2 EndD; J2 = �1, is a complex structure on D.(2) A CR structure (D; J) is called to be integrable if J satis�es the followingintegrability condition :J([JX; Y ] + [X;JY ]) 2 D[JX; JY ]� [X;Y ]� J([JX; Y ] + [X;JY ]) = 0 (2.1)for any pair of vector �elds X, Y in D.In the sequel by CR manifold we will understand a manifold M with integrableCR structure.If (D; J) is a CR structure then the complexi�cation DC � T CM of the distri-bution D is decomposed into a sum DC = D10 + D01 of two mutually conjugated(D10 = �D01) J-eigendistributions with eigenvalue i and �i. The integrability con-dition (2.1) means that these eigendistributions are involutive (i.e. closed underthe Lie bracket).The codimension of a CR structure (D; J) is de�ned as the codimension of thedistribution D . Remark that codimension zero CR structure is the same as acomplex structure on a manifold. A codimension one CR structure (D; J) is calledalso a CR structure of hypersurface type, because such structure is induced on areal hypersurface of a complex manifold. In this case the distribution D can bedescribed locally as the kernel of a 1-form �. The form � de�nes an Hermitiansymmetric bilinear form L�q : Dq �Dq ! Rgiven by L�(v;w) = (d�)(v; Jw)for v;w 2 D. It is called the Levi form. Remark that the 1-form � is de�ned up tothe multiplication by a function f everywhere di�erent from zero and Lf� = fL�.In particular, the conformal class of a Levi form depends only on the CR structure.A CR structure (D; J) of hypersurface type is called non degenerate if it has nondegenerate Levi form or, in other words, if D is a contact distribution. In this casea 1-form � with ker � = D is called contact form.A smooth map ' : M ! M 0 of one CR manifold (M;D; J) into another one(M 0;D0; J 0) is called CR map or holomorphic map ifa) '�(D) � D0;b) '�(Jv) = J 0'�(v) for all v 2 D.In particular, we may speak about CR transformation of a CRmanifold (M;D; J)as a transformation ' such that ' and '�1 are CR maps. In general, the group ofall CR transformations is not a Lie group, but it is a Lie group when (D; J) is ofhypersurface type and it is Levi non degenerate.



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 11De�nition 2.2. A CR manifold (M;D; J) is called homogeneous if it admits atransitive Lie group G of CR transformations.Our aim is to classify compact homogeneous codimension one non degenerateCR manifolds. The following result shows that we may identify such manifold witha quotient space G=L of a compact Lie group G.Theorem 2.3. [Sp] Let (M;D; J) be a compact non degenerate CR manifold ofhypersurface type. Assume that it is homogeneous, i.e. that there exists a transitiveLie group A of CR transformations. Then a maximal compact connected subgroupG of A acts on M transitively and one may identify M with the quotient space G=Lwhere L is the stabilizer of a point p 2M .Now we �x some notations. If the opposite is not stated, we will assume that aCR structure is of hypersurface type, integrable and Levi non degenerate.The Lie algebra of a Lie group is denoted by the corresponding gothic letter.For any subset A of a Lie group G or of its Lie algebra g, we denote by CG(A)and Cg(A) its centralizer in G and g, respectively. Z(G) and Z(g) denote the centerof a Lie groupG and Lie algebra g. By homogeneous manifoldM = G=L we mean ahomogeneous manifold of a compact connected Lie group G with connected stabilitysubgroup L and such that the action of G on M is e�ective.3. Compact Homogeneous Contact Manifold.3.1 Homogeneous contact manifolds of a compact Lie group G.Let M = G=L be a homogeneous manifold of a compact Lie group G withconnected stabilizer L.An 1-form � 2 g� on the Lie algebra g of G is called contact form if it is Adl-invariant and vanishes on l = LieL. Such form de�nes a global invariant 1-form �on the manifold M which is a contact form of the contact distribution D = ker �.This establishes 1-1 correspondence between invariant contact structures D on Mand contact 1-form � 2 g up to a scaling (see e.g.[Al]).Fix now an AdG-invariant Euclidean metric B on g and denote by l? the orthog-onal complement to l in g.The vector Z = B�1 �� which corresponds to a contact form � is called a contactelement of the manifold M = G=L.It is characterized by the properties that(1) Z 2 l? and(2) the centralizer Cg(Z) = l�RZ.Hence, we have the followingProposition 3.1. There exists a natural bijection between invariant contact struc-tures on a homogeneous manifold M = G=L and contact elements Z de�ned up toa scaling.We will denote by DZ the contact structure on M de�ned by a contact elementZ. A homogeneous manifold M = G=L with an invariant contact structure D iscalled homogeneous contact manifold .



12 D. V. ALEKSEEVSKY AND A. F. SPIROProposition 3.1 implies the followingCorollary 3.2. Let G=L be a homogeneous contact manifold of a compact Liegroup G which acts e�ectively. Then the the center Z(G) of G has dimension 0 or1. Moreover, if Z(G) is one dimensional, then any contact element Z has nonzero orthogonal projections ZZ(g); Zg0 on Z(g) and g0 = [g; g], and the stabilitysubalgebra l can be written asl = [Cg0(Zg0)]' def= fX = Y + '(Y ) ; Y 2 Cg0(Zg0)gwhere ' : Cg0(Zg0 )! Z(g) � R is a non trivial Lie algebra homomorphism.Proof. Clearly Cg(Z) � Z(g). If dimZ(g) � 2 then l \ Z(g) 6= f0g and thiscontradicts the fact that G acts e�ectively. The other claims follow immediately. �Remark that if Z is a contact element of a homogeneous manifold G=L and Zg0is its orthogonal projection of g0 = [g; g], then the adjoint orbitFZ def= AdGZ = AdG0(Zg0 )is a ag manifold and the projection � : M = G=L ! FZ = G=K is a principalS1-�bration over FZ . We will call FZ the ag manifold associated to a contactelement Z. Note that the contact form � = B � Z is a connection (form) in the S1bundle � : G=L ! FZ and the corresponding contact structure D = ker � is thehorizontal distribution of this connection.Let F = G=K be a ag manifold of a semisimple compact group G. We describenow all homogeneous contact manifolds (G=L;DZ ) such that the associated agmanifold FZ = AdGZ is isomorphic to F .Consider the orthogonal reductive decompositiong = k +massociated with the ag manifold F = G=K.We say that an element Z of the center Z(k) is regular if it generates a closed1-parametric subgroup of G and the centralizer CG(Z) = K.Note that if Z is regular, then the subalgebralZ = k \ (Z)?generates a closed subgroup, which we denote by LZ . Indeed, this can be proved asfollows. Consider the decomposition k = k0+Z(k), where k0 is the semisimple part ofk. Then we have that lZ = k0+(Z(k)\(Z)?) and it generates a closed subgroup if andonly if the center Z(lZ) = (Z(k)\(Z)?) generates a closed subgroup in the maximaltorus corresponding to Z(k). Now, take an orthonormal basis B = fe1; : : : ; epg forZ(k) and let us write Z =Pi xiei. It is clear that Z generates a closed subgroup ifand only if each xi is rational. But this implies that (Z(k) \ (Z)?) admits a basisB0 = ff1; : : : ; fpg, where each fi has rational components in B. And from this, theclaim follows. Therefore



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 13Proposition 3.3. Let F = G=K be a ag manifold. There is a natural 1-1 corre-spondence between regular elements Z 2 Z(k)r eg � Z(k) up to a scaling and homo-geneous manifolds G=L with an invariant contact structure D and the associatedag manifold F = G=K. The correspondence isZ(k)r eg mod R 3 [Z]() (G=LZ ;DZ ):Proof. Let Z 2 Z(k)r eg and let LZ � G be the closed subgroup generated by lZ .Then, clearly, Z is a contact element for G=LZ and determines a contact structureDZ . Moreover, if Z;Z 0 2 Z(k)r eg are such that LZ = LZ0 , then Z 0 = �Z for some�. This shows that the map Z ) (G=LZ ;DZ ) is injective on Z(k)r eg mod R. Thesurjectivity is also clear. �3.2 Invariant contact structures on a contact manifold M = G=L.Now we describe all invariant contact structures on a given homogeneous man-ifold M = G=L. We will show that generically there is no more then one suchstructure.De�nition 3.4. A homogeneous manifold G=L is called homogeneous contactmanifold of generic type (respectively, of special type or, shortly, special) if itadmits a unique (respectively, more then one ) invariant contact structure.3.2.1 Main examples of special homogeneous contact manifolds.Let g be a compact semisimple Lie algebra, h a Cartan subalgebra of g and Rthe root system of the pair (gC ; hC ) .Recall that a root � 2 R de�nes a 3-dimensional regular subalgebra gC (�) =spanC < E�; E��;H� > and its intersection with g is a 3-dimensional compactsubalgebra g(�). We will call g(�) the subalgebra associated with the root � anddenote by G(�) the 3-dimensional subgroup of the adjoint group G = Int(g) =Aut(g)0 generated by g(�).Note that any two such subalgebras are conjugated by an inner automorphismof g if and only if the corresponding roots have the same length.Fix a system R+ of positive roots of R and put R� = �R+. The highest root �of R+ de�nes the following gradation of the complex Lie algebra gC :gC = g�2 + g�1 + g0 + g1 + g2 (3.1)whereg�2 = CE�� g2 = CE� g0 = CH� + g00 g00 = CgC(g(�)) (3.2)g�1 = X�2R�n(f��g[R0) CE� g1 = X�2R+n(f�g[R0) CE�and R0 = f� 2 R; � ? �g is the root system of the subalgebra g0 = Cg(H�) .(3.1) is called the gradation associated with the highest root .The explicit decomposition (3.1) for any simple complex Lie algebra is given inTable 1 of the Appendix.Denote by l = Cg(g(�)) = g00 \ g the centralizer of g(�) in g and by L thecorresponding connected subgroup of G. It is easy to check that L = CG(g(�)).



14 D. V. ALEKSEEVSKY AND A. F. SPIROLemma 3.5. Let G be a compact simple Lie group without center and let L =CG(g(�)) be as de�ned above. Then any non zero vector Z 2 g(�) is a contactelement of the manifold G=L. In particular, G=L is a homogeneous contact manifoldof special type.Proof. Observe that Z 2 g(�) is a contact element if and only if Cg(Z) = l +RZ.Moreover Z is a contact element if and only if g � Z is contact, for any g 2 G(�).Since G(�) acts transitively on the unit sphere of g(�), the Lemma follows fromthe fact that Cg(iH�) = g0 \ g = l+R(iH�)and hence that iH� is a contact element. �Remark that the manifoldsM = G=L = G=CG(g(�)) with G simple carry invari-ant 3-Sasakian structure and they exhaust all homogeneous 3-Sasakian manifolds(see [BGM]).3.2.2 Classi�cation of special homogeneous contact manifolds.The previous examples almost exhaust the class of special homogeneous contactmanifold. In fact, we have the following classi�cation theorem.Theorem 3.6. Let M = G=L be a special homogeneous contact manifold of acompact Lie group G. Then the group G is simple and either L is the centralizerof the subalgebra g(�) associated with the highest root and M is a homogeneous3-Sasakian manifold or G = G2 and L is the centralizer of the subalgebra g(�)associated with a short root �.Proof. We prove now that if G is not semisimple and, hence, dimZ(g) = 1, then acontact element Z is unique up to a scaling and M is generic. Indeed, we have thedecomposition k = Cg(Z) = l�RZ = l+ Z(g)since Z(g) \ l = 0, by e�ectivity. The line RZ is determined uniquely as theorthogonal complement to l in k = l+Z(g).Now we may assume that g is semisimple. We need the followingLemma 3.7. Let g be compact semisimple and let l � g be a closed subalgebra,which contains no ideal of g. If there exists two non proportional vectors Z, Z 0 2 l?such that Cg(Z) = l+RZ; l+RZ0 � Cg(Z 0) ;then g is simple and there exists a root � 2 R such that:(1) l = Cg(g(�));(2) Z;Z 0 2 g(�) and Cg(Z 0) = Cg(g(�)) +RZ 0;(3) Cg(l) = Z(l) + g(�);(4) for any root � which is orthogonal to �, �� � is not a root.Proof. We put k = Cg(Z) and consider the orthogonal decompositiong = k+m = (l+RZ)+m:



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 15Denote by R the root system of the complex Lie algebra gC with respect to a Cartansubalgebra hC which is the complexi�cation of a Cartan subalgebra h of k. Thenthe element Z 0 can be written asZ 0 = cZ + kXi=1 ciE�ifor some root vectors E�i and constants c; ci. The condition [l; Z 0] = 0 implies�i(h \ l) = 0 if ci 6= 0. Since h \ l is of codimension one in h, there exist exactlytwo (proportional) roots with this properties, say � and ��. This shows thatl � Cg(g(�)). Moreover, since Z 2 h \ l?, we obtain also that Z is proportionalto H� = [E�; E��] and (1) follows. In particular, g must be simple and now (2) isclear. (3) follows from (2).To prove (4), assume that there is a root � which is orthogonal to � and suchthat � + � is a root. Then the vector E� + E�� 2 gC does not belong to lC =CgC(g(�)), but it is orthogonal to Z (since Z is proportional to H�) and belongs tothe centralizer of Z: contradiction. �Now we conclude the proof of Theorem 3.6. Let G be a compact semisimple Liegroup and Z, Z 0 two non proportional contact elements for G=L. By Lemma 3.7,G is simple and L = CG(g(�)). By direct inspection of the root systems of simpleLie groups, a root � veri�es the condition (4) of Lemma 3.6 if and only if it is along root or it is a short root in the G2 type system. This concludes the proof. �3.3 Isotropy representation of a homogeneous contact manifold.Let M = G=L be a homogeneous contact manifold with invariant contact struc-ture D associated to a contact element Z. Let g = l+RZ +m be the correspond-ing orthogonal decomposition. Fix a Cartan subalgebra h of g which belongs tok = l+RZ = Z(k) + k0. Thenh = Z(k) + h0 = Z(l) +RZ+ h0where we denote by h0 a Cartan subalgebra of k0 (=semisimple part of k). Remarkthat h(l) = Z(l) + h0 is a Cartan subalgebra of l.Denote by R (resp. Ro) the root system of gC (resp. kC ) w.r.t. the Cartansubalgebra hC and let Rm = RnRo. We will denote by h(R) the standard real formof h, spanned by R, that is h(R) = h \ B�1(< R >)We put t = z(k) \ h(R). Then Z 2 it and we may identify � def= iB(Z; �) with thecorresponding element in t� � h(R)� = spanRR.Consider the decomposition of the kC -module mC into sum of irreducible kC -modules mC =Xm() (3.1)



16 D. V. ALEKSEEVSKY AND A. F. SPIROHere, m() stands for the irreducible kC -module with highest weight  2 Rm.The following Lemma states a well known property of ag manifolds (see e.g.[AP]).Lemma 3.8. The kC -modules m() are pairwise not equivalent and, in particular,the decomposition (3.1) is unique. The moduli m() are irreducible also as lC -modules.Proof. We only need to check that a module m() is irreducible also as an lC -module. But it is su�cient to observe that the semisimple parts of lC and of kCcoincide. In fact, whenever dimC m() > 1, the semisimple part of kC acts nottrivially and irreducibly on m(). �From Lemma 3.8 we derive the following technical proposition, which will beuseful in the following sections.Proposition 3.9. Let M = G=L be a homogeneous contact manifold and let Z bea contact element for M . Assume that G 6= G2 or that G = G2 and � = iB � Z isnot proportional to a short root of R.Then for any irreducible kC -module m() there exists at most one distinct kC -module m(0) which is isomorphic to m() as lC -module.This is the case if and only if the highest weights  and 0 are �-congruent, i.e.0 =  + �� for some real number �.Corollary 3.10. Let M and Z as in the Proposition 3.9. Then:a) if the modules m(), m(0) are equivalent as lC -modules, then for any weight� 2 Rm of m(), there exists exactly one weight �0 2 Rm of m(0) which is�-congruent to �;b) for any root � 2 Rm there exists at most one other root �0 2 Rm which is�-congruent to �, i.e. such that �0 = �+ �� for some real number �.Proof of Proposition 3.9. Observe that two irreducible lC -modules m() and m(0)are isomorphic if and only if their highest weights jh(l) and 0jh(l) coincide. Thisis if and only if 0 =  + �� for some � 2 R.Assume now that there exist three distinct isomorphic lC -modules m(), m(0)and m(00). Then ~R = spanR (; 0; 00)\R is a 2-dimensional root system and , 0and 00 belong to the straight line +R�. Checking all 2-dimensional root systems,2A1, A2, B2, G2, we conclude that this is possible only if ~R is of type B2 or G2and � is proportional to a short root.To conclude the proof, it is su�cient to observe that in case ~R = B2, one of theroots , 0, 00 should be orthogonal to � and this is impossible because�? \ R = Ro = R nRmwhile , 0, 00 2 Rm. �



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 174. General Properties of Compact Homogeneous CR manifolds.4.1 Basic properties and de�nitions.Let (M = G=L;DZ ) be a homogeneous contact manifold of a connected compactLie group G with connected stabilizer L and let g = l+RZ +m be the associateddecomposition with the contact element Z orthogonal decomposition such thatm ' Djo; o = eL and k = Cg(Z) = l+RZ.De�nition 4.1. An adl-invariant complex structure J on m is called integrable iflC +m01is a complex subalgebra of gC ;where mC = m10 +m01 ; m01 = m10 (4.1)is the eigenspace decomposition of J .Note that any adlC-invariant decomposition (4.1) de�nes an adlC-invariant com-plex structure J on m which has this decomposition as the eigenspace decomposi-tion.The following Proposition can be checked directly.Proposition 4.2. Let (M = G=L;DZ ) be a homogeneous contact manifold andlet g = l + RZ + m be the corresponding decomposition of the Lie algebra g of G.Then there exists a natural one to one correspondence between the invariant CRstructures (D; J) on M , with underlying contact distribution D, and the integrablecomplex structures J on m.Consider the decomposition mC = Pm() into irreducible k-submodules as inx3.3. Since any adl-invariant complex structure J on m preserves the lC -isotopiccomponents (i.e. the sum of all mutually equivalent irreducible lC -modules) andsince the multiplicity of any irreducible l-module m() is less or equal to 2 in thehypothesis of Proposition 3.10, we have the following corollary.Corollary 4.3. Let J be an l-invariant complex structure on m and suppose thatG 6= G2 or that G = G2 and that � is not proportional to a short root.Then a minimal J-invariant kC -submodule of mC is either kC -irreducible or is thesum m()+m(0) of two such kC -modules, with 0 �-congruent to  (i.e. 0 = +��,for some �).4.2 Standard CR structures.Many invariant CR structures (D; J) on a contact manifold M = G=L may beconstructed as follows. Let (M = G=L;DZ ) be a homogeneous contact manifoldand let � :M = G=L �! F = G=K = AdG(Z)be the associated �bration over the ag manifold F = G=K.



18 D. V. ALEKSEEVSKY AND A. F. SPIROThen the contact distribution DZ is the horizontal distribution of � with respectto the invariant Riemannian metric on M de�ned by the invariant bilinear formB on g. Any invariant complex structure JF on the ag manifold F de�nes aninvariant CR structure (D; J) onM . The integrability of this CR structure followsfrom the integrability of JF which is equivalent to the statement that p = kC +m01is a (in fact parabolic) subalgebra of gC . (Here m01 is the (�i)-eigenspace of thecomplex structure JF on mC = T Co F; o = eK).De�nition 4.4. An invariant CR structure (D; J) on a homogeneous contact man-ifold (M = G=L;D), which is induced by an invariant complex structure JF of theassociated ag manifold F = G=K, is called a standard CR structure.Remark 4.5. Since any ag manifold admits at least one invariant complex struc-ture, we may conclude that any homogeneous contact manifold (G=L;D), with Gcompact, admits an invariant CR structure (D; J).The following Lemma gives an algebraic characterization of the standard CRstructures.Lemma 4.6. An invariant CR structure (D; J) on a homogeneous contact manifold(M = G=L;D) is standard if and only if the corresponding complex structure J onm is Ad(K)-invariant.Proof. The necessity is immediate from the de�nitions. In case G is semisimple,the su�ciency is also clear. Suppose now that dimZ(G) = 1 and let (4.1) be thedecomposition associated to an Ad(K)-invariant complex structure J on m. Thenlet �o : g! g0 be the standard orthogonal projection onto the semisimple part andlet m010 = �o(m10), m001 = �o(m01). Since m10 and m01 are Ad(K)-invariant andK = (K \ G0) � Z(G), it is clear that m010 and m001 correspond to an invariantcomplex structure JF on G=K = G0=(K \G0). �Since the description of all invariant complex structures on ag manifolds is wellknown (see [Na], [AP], [BFR], [Al1]), the problem of classi�cation of the invariantCR structures on compact homogeneous spaces reduces to the description of non-standard invariant CR structure.The following proposition reduces the problem to the case of G semisimple.Proposition 4.7. Let (M = G=L;D) be a contact manifold of a compact Liegroup G with dimZ(G) = 1. Then any invariant CR structure with underlyingdistribution D is standard.Proof. It follows immediately from the fact that any Ad(L)-invariant decomposition(4.1) is clearly also Ad(K)-invariant, since K = L � Z(G). �4.3 Holomorphic �bering of homogeneous CR manifolds.Let (M = G=L;D; J) be a homogeneous standard CR structure associated to acomplex structure JF on the associated ag manifold F = G=K. Then the naturalprojection � : G=L! F = G=K



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 19is a G-equivariant S1-�bration and it is a holomorphic map between the CR man-ifolds (M = G=L;D; J) and (F; TF; JF ).More generally:De�nition 4.8. Let M = G=L be a homogeneous manifold with invariant CRstructure (D; J).(1) Any G-equivariant holomorphic �bering� : M = G=L! F = G=Qof (M;D; J) over a ag manifold F = G=Q equipped with an invariantcomplex structure JF is called CRF �bration;(2) We say that a homogeneous CR manifold (M = G=L;D; J) is primitive ifit doesn't admit a non trivial CRF �bration;(3) a non primitive homogeneous CR manifold (M = G=L;D; J), which admitsa CRF �bration with typical �ber S1 is called circular .Remark that any standard CR structure is circular .The following Lemma give a characterization of primitive CR structures.Lemma 4.9. A homogeneous CR manifold (G=L;D; J) admits a non trivial CRF�bration if and only if there exists a proper parabolic subalgebra p = r + n ( gC(here r is the reductive part and n the nilpotent part) such thata) r = (p \ g)C ; b) lC +m01 � p ; c) lC ( r :In this case, G=L admits a CRF �bration with basis G=Q, where Q is the connectedsubgroup generated by q = r \ g.Proof. Suppose that (M = G=L;D; J) is not primitive and let � : G=L! G=Q bea CRF �bration over a ag manifold F = G=Q with invariant complex structureJF . Consider the decompositions associated to J and JFg = l+RZ+m mC = m10 +m01g = q+m0 m0C = m010 +m001Since � is holomorphic and not trivial, the subalgebra lC +m01 is contained in theparabolic subalgebra p = qC +m001, with reductive part qC = (g\p)C . Furthermore,since the �ber is at least 1 dimensional, l ( q.Conversely, if p = r+n � gC is a parabolic subalgebra with reductive subalgebrar = qC , where q = p \ g, then we may consider the orthogonal decompositionsg = q +m0 gC = r +m0C = r+ n + n0where n0 = n? \m0C . It is well known that there exists a unique invariant complexstructure JF on GC =P = G=Q, such that n = m001 and n0 = m010. Therefore iflC +m01 � p, l ( q and Q is the reductive subgroup generated by q, it is clear that� : G=L! G=Q is a non trivial CRF �bration. �



20 D. V. ALEKSEEVSKY AND A. F. SPIRO4.4 The anticanonical map of a homogeneous CR manifold.Let (M = G=L;DZ ; J) be a homogeneous CR manifolds of a compact Lie groupG and g = l+RZ+m ; mC = m10 +m01the associated decompositions of g and of mC .To characterize the circular invariant CR structures we recall the de�nition ofanticanonical map of a homogeneous CR manifold introduced for the �rst time in[AHR]. It is a G-equivariant holomorphic map� :M = G=L �! Grk(gC )into the Grassmanian of complex k-planes, k = dimC (lC +m01), of gC given by� : gL 7! Adg(lC +m10) :Due to the existence of standard holomorphic G-equivariant embedding{ : Grk(gC ) �! CPN ; N = � dim gCk �� 1V = span(e1; : : : ; ek) {7! [V ] = C (e1 ^ � � � ^ ek) ;we may consider � as a G-equivariant map into CPN . To prove that the map � isholomorphic it is su�cient to check that the linear map�� : D0 = ker �jT0M = m �! T[lC+m01]Grk(gC )commutes with the complex structure.Let v = X + �X 2 m, where X 2 m10. Then��(v) = ad(X+ �X)([lC +m01]) = adX([lC +m01]):Therefore��(Jv) = ��(iX � i �X) = adiX([lC +m01]) = iadX([lC +m01]) = i��(v)This shows that the map � is holomorphic.Remark that the stabilizer Q of the point [lC + m01] in �(M) = G=Q is thenormalizer Q = NG(lC +m01).Now, the following theorem gives some crucial properties of the anticanonicalmap.



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 21Theorem 4.10. Let � :M = G=L �! Grk(gC )be the anticanonical map of a homogeneous CR manifold (M = G=L;DZ ; J).(1) If the CR structure is circular, then the image �(M) = G=Q is a agmanifold and � is a CRF �bration with �ber S1.In this case the normalizer in g of lC +m01 isq = Ng(lC +m01) = l+RZ 0where Z 0 6= 0 is an element from the centralizer of l in g. Moreover, q isthe Lie algebra of the stabilizer of the point [lC +m01] 2 �(M) in G.(2) If the CR structure is not circular then the image �(M) = G=Q is a homo-geneous CR manifold with CR structure induced by the complex structureof Grk(gC ) and � : M ! �(M) is a �nite covering.Proof. We �rst need the following Lemma, which in fact was proved in [AHR].Lemma 4.11. Let G=Q = �(G=L) be the image of the anticanonical map. ThendimQ=L � 1.Proof. We need to prove that dim q=l � 1, where q = Ng(lC +m01) is the stabilitysubalgebra of the ag manifold G=Q. Since g = l+RZ+m, it is su�cient to checkthat q \ m = 0. Let v 2 q \m. ThenB(Z; [v; lC +m01]) � B(Z; lC +m01) = f0gand in particular f0g = B(Z; [v; l+m]) = �B([v; Z]; l+m)This means that v 2 Ng(Z) = k = l+RZ and hence that v 2 k \ m = 0. �Let us prove (1). In the case dimZ(G) = 1, the invariant CR structure isstandard and the normalizer NG(lC + m01) coincides with L � Z(G). Thereforethe image �(G=L) of the anticanonical map coincides with the ag manifold F =G=K = G=CG(Z) associated to the contact structure. This proves (1) in this case.Assume now that G is semisimple and consider a CRF a �bration with S1 �ber,i.e. a G-equivariant holomorphic map � : M = G=L ! F = G=Q onto a agmanifold with invariant complex structure JF . As usual, consider the associateddecompositions g = l+RZ+m mC = m10 +m01g = q+m0 mC = m010 +m001corresponding to the CR structure of M and to the complex structure JF on F =G=Q. Clearly, the subalgebra lC +m01 is a subalgebra of the parabolic subalgebrap = qC +m001.



22 D. V. ALEKSEEVSKY AND A. F. SPIROSince the �ber is one dimensional, we may express q as q = l + RZ for someelement Z 2 z(q) and, from the previous observations,[Z; lC +m01] � [Z;m01] � [qC ; qC ] +m001 � [qC ; qC ] +m01where we used the fact that m01 � qC +m001 and that m001 � (lC + Z)?.On the other hand, the semisimple parts of lC and qC coincide and therefore[Z; lC +m01] � lC +m01In particular Z 2 Ng(lC +m01). Lemma 4.11 implies that l+RZ = Ng(lC +m01) andthat the anticanonical map is a CRF �bration onto the image �(M) = G=NG([lC +m01]) with �ber S1. The other part of the claim is clear.To prove (2) it is su�cient to observe that if the CR structure is not circular, the�ber of the anticanonical map cannot be 1-dimensional, because otherwise it wouldgive a CRF �bration with S1 �ber. Lemma 4.11 shows that in this case ' : G=L!�(G=L) is a �nite covering. The other part of the claim follows immediately by theholomorphicity and the G-equivariance of �. �4.5 Any circular CR structure is standard.Now we will prove that any circular CR structure is standard. Let (D; J) be acircular CR structure on G=L and let ZD be a contact element associated to D. ByZJ = Z 0 we denote the element given in Theorem 4.10 (1) such that the normalizerq = Ng(lC +m01) is of the formq = Ng(lC +m01) = l+RZJ>From Theorem 4.10 and Lemma 4.6, the circular CR structure is standard if andonly if RZD = RZJ. Since ZD; ZJ 2 Cg(l) \ (l)?, if G=L is a contact manifoldof generic type, then dimCg(l) \ (l)? = 1 and hence any circular CR structure isstandard. But we will prove now that the same holds also for the special contactmanifolds. In factTheorem 4.12. Let G=L be a homogeneous contact manifold of a compact Liegroup G. An invariant CR structure (D; J) on G=L is circular if and only if it isstandard.Proof. By Proposition 4.7, we may clearly assume that G is semisimple. Fur-thermore, by the previous remarks, we may assume that G=L is a special contactmanifold and we only need to prove that RZD = RZJ.Since Cg(ZJ ) � l + RZJ and Cg(ZD) = l + RZD, by Lemma 3.7, we have thatCg(ZJ ) = l+RZJ and hence that ZJ is a contact element too.It follows immediately from Theorem 3.6 that g admits the following orthogonaldecomposition g = l+ a+ n = l+RZD+m



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 23where a = g(�), for some root � of gC , and l = Cg(a). Moreover, ZD; ZJ 2 a.Since by Lemma 3.7 (3) nC contains no trivial lC -module, we may decompose mCas follows mC = m10 +m01 ; m10 = a10 + n10 ; m01 = a01 + n01 ;where a10 = aC \m10, n10 = nC \m10 and a01 = a10, n01 = n10. On the other hand,since ZJ 2 Ng(lC +m10) \ a, then[ZJ ; a10] � a10 [ZJ ; a01] � a01and hence ZJ is orthogonal to a10 + a01 = mC \ aC , because aC ' sl2. From thisfollows that ZJ and ZD are proportional, because they are two elements of a, whichare both orthogonal to the 2-plane a \m. �5. Classi�cation of CR structures on special contact manifolds.We describe here all the invariant CR structures (D; J) on a special contactmanifold G=L. Recall that, by Theorem 3.6, G is simple and L = CG(g(�)), whereeither � = � is the highest root or G = G2 and � = � is a short root. In all cases,g admits the orthogonal decompositiong = l+ a+ n (5.1)where a = g(�) and l = Cg(a).Let (D; J) be an invariant CR structure on G=L and letg = l+RZ+m mC = m10 +m01be the associated decompositions. As in the proof of Theorem 4.12, we may de-compose m10 and m01 asm10 = a10 + n10 m01 = a01 + n01 (5.2)with a10 = aC \m10 and a01 = aC \m01.Since a ' sl2(C ) and a10 + a01 is the orthogonal complement to CZ in aC , wehave that dimC (a10) = 1 and we can write a10 = CZ 0 , for some Z 0 2 mC \ aC .Consider now a regular element X of a. There always exists a Cartan subalgebrah of g with root system R associated to the pair (gC ; hC ) so that a = g(�) andCX = CH� .In the case in which � = �, � highest root of R+, we may consider the associatedgradation gC = g�2 + g�1 + g0 + g1 + g2 (5.3)where gi are de�ned in (3.2). Recall that g0 = CH�+g00, where g00 = CgC(g(�)) = lC .The explicit decompositions of the moduli g�1 into irreducible g0-moduli can be



24 D. V. ALEKSEEVSKY AND A. F. SPIROfound in Table 1, for any simple Lie group. From Table 1 it appears that forgC 6= A`, then g�1 is irreducible, dimC g�1 = 1=2 dimC nC and[g�1; g�1] = g�2 (5.4)In case gC = A`, then each g0-module g�1 decomposes into two not equivalentirreducible g0-moduli: g�1 = g(1)�1 + g(2)�1. Moreover the following properties hold:[g(i)1 ; g(i)1 ] = f0g = [g(i)�1; g(i)�1] [g(i)1 ; g(j)1 ] = g2 [g(i)�1; g(j)�1] = g�2 (i 6= j)(5.5)[g(i)1 ; g�2] = g(j)�1 [g(i)�1; g2] = g(j)1 i 6= j (5.6)The moduli g(i)1 and g(i)�1 (i 6= j) are isomorphic as g00-moduli and for both valuesof i, dimC gi�1 = 1=4 dimC nC .In the case gC = G2 and � = �, � short root, the vector H� determines on gC agraded decomposition analogous to (5.3). In fact,gC = g�3 + g�2 + g�1 + g0 + g1 + g2 + g3 (5.7)with (here � = "1 � "2)g0 = g00 + CH� =< E�(2"3�"1�"2);H2"3�"1�"2 > +CH"1�"2 ; g00 = CgC(g(�))g2 = CE"1�"2 ; g�2 = CE�"1+"2 ; gC (�) = g2 + g�2 + CH�g1 =< E�"2+"3; E"1�"3 > ; g3 =< E�2"2+"1+"3; E2"1�"2�"3 >g�i = gi for i = 1; 3 (5.8)Note that all subspaces gi are irreducible g00 moduli and that the moduli gj ,j = �1;�3, are all equivalent g00-moduli. Furthermore, [g�1; g�1] = g�2 and[g�3; g�3] = f0g.For any regular element X 2 aC , we will call (5.3) and (5.7) the graded decom-positions determined X.In this notation, any invariant CR structure on a special contact manifold isdescribed by the following Theorem.Theorem 5.1. Let (M = G=L;DZ) be a special contact manifold associated to asimple Lie group G. Then:a) if G 6= SU`+1, then there exists (up to sign) a unique invariant CR structure(DZ ; JW ) and it is the unique standard CR structure of G=L. It corresponds tothe unique invariant complex structure JF on the ag manifold FZ = G=L � T(associated to the contact element Z), which is the twistor space of the Wolf spaceG=L �G(�).b) if G = SU`+1 and hence M = SU`+1=U`�1, then there exist (up to sign) threedistinct standard CR structures (DZ ; JW ), (DZ ; Jsto ), (DZ ; Jsto 0) and two families of



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 25non standard invariant structures (DZ ; Jo) and (DZ ; J 0o), which correspond to thefollowing holomorphic subspaces a10 and m10 of mC :(1) a10JW = CZ 0 , where Z 0 is a non regular element in aC and considering thegraded decomposition determined by the (regular) contact element Z,a10JW = g2 ; m10JW = g1 + g2 ; m01JW = g�1 + g�2 ;(2) a10Jsto = CZ 0 , where Z 0 is a non regular element in aC ; in the graded decom-position determined by the contact element Z,a10Jsto = g2 ; m10Jsto = g(1)1 + g(2)�1 + g2 ; m01Jsto = g(1)�1 + g(2)1 + g�2 ;(3) a10Jsto 0 = CZ 0 , where Z 0 is a non regular element in aC ; in the graded decom-position determined by the contact element Z,a10Jsto 0 = g2 ; m10Jsto = g(2)1 + g(1)�1 + g2 ; m01Jsto = g(2)�1 + g(1)1 + g�2 ;(4) a10Jo = CZ 0 , where Z 0 is a regular element in aC ; in the graded decompositiondetermined by Z 0,a10Jo = CH� ; m10Jo = CH� + g(1)1 + g(2)�1 ; m01Jo = CZ 00 + g(1)�1 + g(2)1 ;where Z 00 is some element in g2 + g�2 which is conjugate to H� w.r.t. thecompact form g of gC ;(5) a10J0o = CZ 0 , where Z 0 is a regular element in aC ; in the graded decompositiondetermined by Z 0a10J0o = CH� ; m10Jo = CH� + g(2)1 + g(1)�1 ; m01Jo = CZ 00 + g(2)�1 + g(1)1 ;where Z 00 is some element in g2 + g�2 which is conjugate to H� w.r.t. thecompact form g of gC .The CR structures Jo and J 0o admit a CRF �bration with SU2 �ber from M =SU`=U`�1 onto the Wolf space G2(C `+1) = SU`+1=S(U2 � U`�1), endowed with thecomplex structure ~Jo or � ~Jo, respectively; here ~Jo is the unique complex structurecommuting with the quaternionic structure of G2(C `+1).The CR structures JW , Jsto and Jsto 0 are induced by three distinct invariant com-plex structures JF , J 0F and J 00F on the ag manifold FZ = SU`+1=SU`�1 � T 2 whichis associated to the contact element Z (note: J 0F and J 00F are biholomorphic; JF andJ 0F are not biholomorphic).The complex structure JF is the canonical complex structure of FZ , consideredas twistor space of the Wolf space G2(C `+1). The complex structures J 0F and J 00Fadmit a holomorphic �bration on (G2(C `+1); ~Jo) and (G2(C `+1);� ~Jo), respectively,with typical �ber SU2=U1 = S2.Note. In case G = SU2 and hence M = SU2, the cases (1), (2) and (3) of theprevious theorem coincide and they correspond to the unique (up to sign) standard



26 D. V. ALEKSEEVSKY AND A. F. SPIROCR structure on (M;DZ ); cases (4) and (5) coincide up to sign and they correspondto a family on non standard CR structure on (M;DZ ).The proof of Theorem 5.1 is done considering two cases. If a10 = CZ 0 , there areonly two possibilities: Case 1 : Z 0 is a regular element of aC ; Case 2 : Z 0 is a notregular (hence nilpotent) element of aC ' sl2(C ).In the following two subsections, we are going to determine all invariant CRstructures in Case 1 and in Case 2.5.1 Proof of Theorem 5.1: case in which there exists a regular holomorphic ele-ment Z 0 2 a10.Assume �rst that the special manifold is associated to a long root � of gC , i.e.that a = g(�). We may assume that Z 0 = H� and that it de�nes a gradation of theform (5.3) for gC . Recall that lC = Cg(g(�)) = g00.Hence, using the decomposition (5.2), we have thatlC +m10 = g0 + n10 � g0 + g1 + g�1since nC is orthogonal to aC = CH�+g2+g�2. Recall that by integrability condition,lC +m10 is a subalgebra.In case gC 6= A`, g1 and g�1 are irreducible g0-modules (see Table 1) and henceeither g1 or g�1 is included in n10. Since [g1; g1] = g2 and [g�1; g�1] = g�2, thereis no subalgebra included in g0 + g1 + g�1 and this contradiction shows that if themanifold is associated to a long root � and gC 6= A`, this case cannot occur .Consider now the case gC = A` and take the decomposition (5.3) determinedby Z 0 = H�. Recall that each g�1 decomposes into two inequivalent irreducibleg0-moduli g(i)�1, i = 1; 2, which verify (5.4) - (5.6). Since all g0-moduli g(i)�1 havedimension equal to 1=4 dimC nC , the subalgebra lC +m10 is of the form lC +m10 =g0 + n10 where n10 can be written asn10 = g(i)1 + g(j)�1for some choice of i and j.If i = j = 1, then n01 = g(2)1 + g(2)�1, because n10 \ n01 = f0g. Then CH� 2[n01; n01] � lC + m01 and this is a contradiction because H� 2 a10. A similarcontradiction arises when i = j = 2.Hence only two cases are admissible:n10 = g(1)1 + g(2)�1 ; n10 = g(2)1 + g(1)�1It is immediate to check that they both de�ne two invariant CR structures (DZ ; Jo)and (DZ ; J 0o) on G=L = SU`+1=U`�1 associated to the following decompositionsg = l+RZ+m lC = g00 Z 2 g \ (g2 + g�2) (5.9)m10Jo = CH� + g(1)1 + g(2)�1 m10J0o = CH� + g(2)1 + g(1)�1 (5.10)



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 27The subalgebras lC +m10Jo and lC +m10J0o are not circular (and hence not standard),because in both casesNg(lC +m10Jo) = g \NgC(g0 + g(1)1 + g(2)�1) = g \ (g0 + g(1)1 + g(2)�1) = lNg(lC +m10J0o) = g \NgC(g0 + g(2)1 + g(1)�1) = g \ (g0 + g(2)1 + g(1)�1) = land the claim follows from Theorem 4.10.On the other hand, the subalgebras lC +m10Jo and lC +m10J0o are contained in theparabolic subalgebraslC +m10Jo � pJo = g0 + g(1)1 + g(2)�1 + g2 + g�2 (5.11)lC +m10Jo � pJ0o = g0 + g(2)1 + g(1)�1 + g2 + g�2 (5.11')respectively. For both such parabolic subalgebras the reductive parts are equal torJo = rJ0o = qC where q = l + a. Therefore, by Lemma 4.9, the CR structures(D; Jo) and (D; J 0o) are not primitive and they admit a CRF �bration on the Wolfspace SU`+1=S(U2 � U`�1) with typical �ber S(U2 � U`�1)=U`�1 = SU2.It remains to consider the case in which G = G2 and the special manifold isassociated to a short root � of gC . We may assume that Z 0 = H� and that it de�nesa gradation of the form (5.7) for gC = G2.Since lC = g00 = CgC(g(�)), we have thatlC +m10 = g0 + n10 � g0 + g1 + g�1 + g�3 + g3because nC is orthogonal to aC = CH� + g2 + g�2. Since lC +m10 = g0 + n10 is asubalgebra and 2 = dimC g�1 = dimC g�3 = 14 dimC n10n10 contains at least two of the four irreducible g0-moduli g�1 and g�3. The onlysubalgebra g0+ n10 with n10 of this kind is g0+ g�3+ g3 and hence n10 = g�3+ g3.The same argument would imply that n01 = g�3 + g3 = n10 and this contradictsthe hypothesis that m10 \m10 = f0g.5.2 Proof of Theorem 5.1: case in which there exists a non regular holomorphicelement Z 0 2 a10.Since Z 0 is non regular, it is a nilpotent element of a = sl2(C ). Then we mayalways choose a Cartan subalgebra CH� of a so that Z 0 2 CE� .Consider �rst the case in which the special manifold is associated to a long root �of gC and take the gradation (5.3) of gC determined with H�. Then g2 = CZ 0 = a10and hence we have thatlC +m10 = g00 + g2 + n10 � g00 + g2 + g1 + g�1



28 D. V. ALEKSEEVSKY AND A. F. SPIROAssume that gC 6= A`. Then the g00-moduli g�1 are irreducible and [g�1; g�1] = g�2.This implies that the only subalgebra of g00+g2+g1+g�1 which properly containsg00 + g2 is g00 + g1 + g2. Hence m10 = g1 + g2and it de�nes the unique CR structure on G=L.Since mC = m10 + m01 = g1 + g2 + g�1 + g�2, we have that lC + CZ = g0 andthat CZ = CH� . ThereforeNg(lC +m01) = NgC(g00 + g�1 + g�2)) \ g = g0 \ g = l+RZand the CR structure is standard because the contact element Z is in the normalizerof lC +m01.Assume now that gC = A` and again consider the decomposition (5.3) deter-mined by H�. Note that, when gC = A`, the g0-moduli g(i)�1 and g(j)�1 are equivalentas g00-moduli. In fact, g(1)1 ' g(2)�1 and g(2)1 ' g(1)�1. Since dimC g(i)�1 = 1=4 dimC n10,the g00-module n10 must have one of the following �ve structures:1) n10 = (g(1)1 )' + (g(1)�1) 2) n10 = g(1)1 + g(2)�1 3) n10 = g(2)1 + g(1)�14) n10 = g1 5) n10 = g�1where ' : g(1)1 ! g(2)�1 and  : g(1)�1 ! g(2)1 are two g00-equivariant homomorphismsand by (g(1)1 )' and (g(1)�1) we denote the subspaces of the form(g(1)1 )' = fX + '(X) : X 2 g(1)1 g (g(1)�1) = fX +  (X) : X 2 g(1)�1g5) cannot occur because in that case [n10; n10] = g�2 and this contradicts the factthat g00 + n10 + g2 is a subalgebra.We claim that also case 1) may not occur. In fact, ' is either trivial or anisomorphism. In case ' is an isomorphism, the subspace [n10; n10] mod g0+g1+g2contains non trivial elements of the form[X + '(X); Y +  (Y )] mod g0 + g1 + g2 = ['(X); Y ] 2 g�2and this is a contradiction with the fact that lC + m10 is a subalgebra included ing00 + g1 + g2. Therefore, if case 1) occurred, n10 = g(1)1 + (g(1)�1) . Now, for anyX 2 g(1)1 we may consider an element Y 2 (g(1)�1) so that[X;Y ] = �H� mod g00 + g2for some � 6= 0. This gives a contradiction with the fact that g00 + n10 + g2 is asubalgebra and the claim is proved.It is immediate to check that, for the cases 2), 3) and 4), we obtain three subal-gebras g00 + g(1)1 + g(2)�1 + g2 (5.12)



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 29g00 + g(2)1 + g(1)�1 + g2 (5.12')g0 + g1 + g2 (5.13)They determine three distinct CR structures (D; Jsto ), (D; Jsto 0) and (D; JW ), re-spectively. For any of the three subalgebras (5.12), (5.12') and (5.13), the normal-izer Ng(lC + m10) contains g0 \ g = l + RZ and hence it is strictly larger then l.By Theorem 4.10, this implies that all those CR structures are circular and hencestandard.Observe also that if lC +m10 equals either (5.12) or (5.12'), then p = lC +m10 +gC (�) is a parabolic subalgebra of gC . The parabolic subgroup P � GC , which isgenerated by p is the parabolic subgroup associated either to a complex structure~Jo or to its opposite � ~Jo on G2(C `+1), which commutes with the quaternionicstructure. Therefore, (D; Jsto ), (D; Jsto 0) admit a CRF �bration on (G2(C `+1); ~Jo)and (G2(C `+1);� ~Jo), respectively.It remains to consider the case in which G = G2 and the special manifold isassociated to a short root � of gC . Consider the decomposition (5.7) determined byH� so that CZ 0 = CE� = g2.In analogy with the previous discussions, we have thatlC +m10 = g00 + a10 + n10 � g00 + g1 + g�1 + g�3 + g3 + g2because nC is orthogonal to aC = CH� + g2 + g�2. >From the fact that lC +m10 isa subalgebra, we claim that g3 � n1. In fact, for any element X 2 n10 consider thedecomposition: X = X�3 +X�1 +X1 +X3 Xi 2 giThen, one of the four vectors X, X 0 = [E�;X], X 00 = [E�; [E�;X]], X 000 =[E�; [E�; [E�;X]]] is a non trivial element of g3 and it belongs to n10. Since g3is g00-irreducible, the claim follows.Similarly, we claim that g1 � n10. In fact, take any element X 2 n10 which hasa decomposition of the formX = X�3 +X�1 +X1 Xi 2 giThen, either X or X 0 = [E�;X] or X 00 = [E�; [E�;X]] is a non trivial element ofg1 + g3, with non vanishing projection on g1. This implies that g1 \ n10 6= f0gand hence that g1 � n10. Since dimC (g1 + g3) = dimC n10, we conclude thatn1 = g1 + g3 and hence that m10 = g1 + g2 + g3. This de�nes an integrable CRstructure and it is simple to check that Ng([lC +m01]) = g0 \ g = l+RiH�. Sincethis normalizer contains properly l, by Theorem 4.10, this CR structure is circularand hence standard.6. Classi�cation of non circular CR structures.6.1 Case of non simple Lie group.>From x4, the classi�cation of the invariant CR structures can be now reducedto the analysis of non circular CR structures.



30 D. V. ALEKSEEVSKY AND A. F. SPIROLemma 6.1. Let (G=L;D; J) be a homogeneous CR manifold with non circularCR structure. Then G is either simple or of the form G = G1 �G2, with each Gisimple.Moreover, if G = G1 � G2 and g = l+ RZ + m is the decomposition associatedto the contact structure D, then mC decomposes into mC = m1 +m2, with mi 2 gCiand each mi contains at least a 1-dimensional irreducible lC -modules.Proof. Consider a Cartan subalgebra h � k � g and let R be the corresponding rootsystem of G. If �jh def= B(Z; �)jh is parallel to some root �, then this root belongsto some summand g1 of g. Hence, k = Cg(Z) contains all other simple summandsof g and the same holds for l. By e�ectivity, this implies that g = g1.If �jh def= B(Z; �)jh is not parallel to any root �, it can be assumed to be di�erenceof two (but no more) roots � and . If they both belong to the same summand g1,then g = g1 as before. Assume that they belong to two di�erent summands g1 andg2. The same arguments of before show that this time g = g1 � g2.Moreover it is clear that �(�; �) are the only pairs of roots which are congruentmodulo �jh. This also implies that the only pair of k-modules m01 and m02 whichare l-equivalent consists in those spanned by E�; E�� and E�; E��, respectively.Therefore m01 � m1 and m02 � m2 are 1-dimensional and l-irreducible. �Proposition 6.2. Let G=L a contact manifold with G = G1 �G2, where each Giis simple. Let also G=K = G1=K1 �G2=K2 be the ag manifold associated to thecontact structure. Then:(1) G=L admits a non-standard CR structure if and only if there exists a paintedDynkin diagram of a complex structure on each Gi=Ki, which contains oneblack node not connected to any white node and such that, if deleted, allother black nodes are isolated;(2) if G 6= SU2�SU2 and (G=L;DZ ) admits a non-standard CR structure, thenG=L admits a CRF �bration with �ber SU2 � SU2=T 1;(3) let (DZ ; J) be an invariant CR structure on G=L = SU2 � SU2=T 1 and letus denote by � and �0 the roots of the �rst and the second copy of su2 in g;then there exists a Cartan subalgebra h = CH� + CH�0 so thatZ = iH� � iH�0 lC = C (H� +H�0)m10 = C (aE� + bE�0) + C (aE�� + bE��0)for some [a : b] 2 CP 1 so that jaj2 � jbj2 6= 0. J is standard if and only ifa � b = 0.Proof. Consider the usual decomposition of the Lie algebrag = g1 + g2 = l+RZ+mNote that if we denote by l0 = [l; l], k0i = [ki; ki], i = 1; 2, theng = l0 + z(l) +RZ +m = k01 + k02 + z(l) +RZ+m1 +m2



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 31>From the proof of Lemma 6.1, we have that if G=L admits a non standard CRstructure, then there exists exactly two l-equivalent irreducible moduli in mC andthey are of the formn1 =< E�1 ; E��1 >� mC1 n2 =< E�2 ; E��2 >� mC2for two suitable roots � and � of G1 and G2, respectively. This means that for anyintegrable complex structure J on m the associated eigenspaces m10 and m01 are ofthe form m01 = C (�E�1 + �E�2) +m0011 +m0012where a; b 2 C are such that aE�1 + bE�2 is linearly independent on aE�1 + bE�2and each m001i is in mi.Consider now the parabolic subalgebras pi = kC + ni +m0i01, for i = 1; 2 and let~kCi = kC + ni the corresponding reductive parts. From Lemma 4.9, they determinetwo ag manifolds G= ~Ki = GC =Pi, with invariant complex structures so that theprojection � : G=L! G1= ~K1 �G2= ~K2is a CRF �bration.The typical �ber of this �bration is, up to covering,~K1 � ~K2=L ' SU(2)� SU(2)=T 1as it can be checked by looking at the Lie algebras. >From this, (2) follows imme-diately.To conclude the proof of (1), observe that CE�i +m001, i = 1; 2, is an eigenspacefor an integrable complex structure on Gi=Ki. The corresponding painted Dynkindiagram of this complex structure must contain a black node (associated with theroot �i) which is not connected to any white root, because any complex line CE�imust be a 1-dimensional irreducible ki-module in mi. Moreover all nodes whichare not connected to the node associated to the root �i correspond to roots whichbelong to the centralizer Cg((Z), where Z = iH�1 � iH�2 = B � � and hence theymust belong to the subdiagram of the white nodes.Vice versa, if the ag manifolds Gi=Ki admit painted Dynkin diagrams whichveri�es the conditions given in (1) exists, the associated complex structure can beused to construct a non standard CR structure as described above.It remains to prove (3). Since Z is a contact element for SU2 � SU2=T 1, it isa regular element a Cartan subalgebra of sl2 + sl2 and hence we may assume thatZ = iH�� iH�0 ; in this case, lC = CgC(Z)\Z? = C (H� +H�0 ) and any lC -modulein mC is of the form C (aE�+bE�0) or C (cE��+dE��0). Since m10 is 2-dimensionaland it is so that [m10;m10] � m10 + lC , we obtain that it must be of the formm10 = C (aE� + bE�0) + C (aE�� + bE��0)>From m10 = m01, we have that m01 = C (�aE� + �bE�0) + C (�aE�� + �cE��0). Sincem10 \ m01 = f0g we conclude thatdet� a b�b �a� = jaj2 � jbj2 6= 0



32 D. V. ALEKSEEVSKY AND A. F. SPIROFor each such pair (a; b) (de�ned up to multiple) the subalgebra lC +m10 de�nes anintegrable CR structure on G=L. Ng(lC +m01) ) l if and only if a � b = 0 and hencethese are the only cases corresponding to a standard CR structure. In all othercases, it can be checked that there exists no proper parabolic subalgebra p � lCwhich veri�es conditions a), b) and c) of Lemma 4.9. This concludes the proof. �Lemma 6.1 and Proposition 6.2 reduces the classi�cation of non-standard CRstructures to the analysis of homogeneous spaces of simple compact Lie groups.For this purpose, we are going to consider two mutually exclusive cases.Case 1: G=L is of generic type and the contact form � = B � Z, is proportionalto a root, when restricted to the Cartan subalgebra h � k;Case 2: G=L is of generic type and the contact form � = B � Z is proportionalto no root, when restricted to the Cartan subalgebra.6.2 Case when the contact form is proportional to a root.This �rst case is quite easily solved, by considering the list of all compact simpleLie groups and checking for each of them the contact elements with the desiredproperty. Note that if � = B � Z is proportional to a long root of the compactsimple group G or if G = G2 and � is proportional to a short root, then G=L isa special contact manifold. Therefore it is su�cient to consider only those groupswhich have roots of di�erent length and which are not G2. Therefore we get that:Proposition 6.3. Let (G=L;D), G simple, be a contact manifold with associatedcontact element Z such that � = B�Zjh is parallel to a root. If G=L is not a specialcontact manifold, then:(1) G=L is SO(2n+1)=SO(2n�1), Sp(n)=Sp(1)�Sp(n�2) or F4=SO(7) and� is proportional to a short root of G;(2) for any invariant CR structure (DZ ; J), the associated decomposition mC =m10 +m01 is one of the following table:G=L � m01 Space of parametersSO(2n+1)SO(2n�1) "1 am("1 + "2) + bm(�"1 + "2) [a : b] 2 CP 1jaj2 � jbj2 6= 0Sp(n)Sp(1)�Sp(n�2) "1 + "2 [a2m(2"1) + b2m(�2"2)]�[am("1 + "3) + bm(�("2 + "3))] [a : b] 2 CP 1jaj2 � jbj2 6= 0F4SO(7) "1 a2m("1 + "2) + b2m(�"1 + "2)�[am(1=2("1 + "2 + "3 + "4))+bm(�1=2("1 � "2 � "3 � "4)] [a : b] 2 CP 1jaj2 � jbj2 6= 0where m(�) denotes the kC -irreducible module with h-weight � 2 Rm and[am(�)+bm(�0)] denotes the lC -module generated by the highest weight vectoraE� + bE�0 ;(3) the standard CR structures in (2) are exactly those corresponding to pairsof parameters with a � b = 0;(4) if a � b 6= 0, any CR structure of point (2) is primitive.



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 33Proof. For any choice of the group G, there is only one possibility for the contactform �. Once � is given, the decomposition g = l+RZ+m is deducible from Table2 in the Appendix. It remains to �nd all the decompositions mC = m10 +m01 intotwo lC -modules such that: a) m01 = m10; b) m10 \ m01; c) [m01;m01] � m01 + lC .>From Table 2 in the Appendix, one may �nd all irreducible lC -moduli in mC andhence to determine that the only lC -moduli which have half the dimension of mCand which verify conditions a) and c) are just those given in the third colomun ofthe table in (2). Condition b) implies that the admissible cases are exactly thosesuch that det h a b�b �a i 6= 0 and this justi�es the fourth column of the table.(3) follows from the fact that, in all cases listed in the table of (2), Ng(lC +m01) (l only if a � b = 0.(4) is proved by checking that in no case, when a � b 6= 0, there exists a properparabolic subalgebra p � lC which veri�es the conditions of Lemma 4.9. �6.3 Case when the contact form is not proportional to a root.In all this section we will suppose G simple, that (G=L;D) has an associatedcontact element Z such that � def= B �Zjh is not parallel to any root and that (D; J)is a non standard CR structure on G=L.We also need to introduce the following notation. Let R be the root system of(gC ; kC = lC + CZ), with respect to a Cartan subalgebra h of gC contained in kC .Then let us denote by Ro the roots corresponding to the root vectors in kC and letR0 = R nRo: it is known that the root vectors E� with � 2 R0 generate mC = k?.Then let us de�ne RJ = f� 2 R0 : J(E�) = �iE�gNote that J is standard if and only if RJ = R0. Then letRe def= R0 nRJ~Re def= R \ spanR < Re >e def= X�2Re CE�Lemma 6.4.(1) RJ = �RJ and Re = �Re;(2) for any � 2 Re there exists exactly one root � 2 Re which is �-congruent to�;(3) for � 2 Re there exist exactly one � 6= 0 and � 6= 0 such that, for the � 2 Rewhich is �-congruent to � (see Cor. 3.10),e�;� def= E� + �E� 2 m10 f�;� def= E� + �E� 2 m01 : (6.2)(4) (R�J +Ro) \ R � R�J and (Re +Ro) \R � Re;(5) (R�J +Re) \R � R�J [Re [Ro.



34 D. V. ALEKSEEVSKY AND A. F. SPIROProof. (1) is clear. To see (2), (3) and (4), observe that � 2 RJ if and only if E�belongs to an irreducible kC -module which is also J-invariant; hence (2), (3) and(4) follow from Corollary 4.3 and Corollary 3.11.The proof of (5) is the following. Let  2 R+J and �; � 2 Re a pair of two�-congruent roots. If  + � 2 R�J , consider the element f��;�� 2 m01 as de�ned in(6.2). Then [E+�; f��;��] = CE +X 2 m01for some C 6= 0 and X =2 CE . This implies that  2 R�J : contradiction. �For any � 2 Re we will call e-dual of � the unique root � 2 Re which is �-congruent to �.Lemma 6.5. Let � and �0 be an e-dual pair. Then:(1) ~R = R \ spanR (�;�0) is A1 [ A1(2) � ? �0 and �� �0 =2 R.Proof. For (1) we have to show that if ~R 6= A1 [A1. (2) is an immediate corollaryof (1).Suppose that ~R = A2; B2 or G2. Since ���0 is proportional to no root, the onlypossibilities for � and �0 are as in the picture (i.e. � short, �0 long and forming anobtuse angle; or vice versa).It follows that in all these cases �+ �0 = � 2 R.Let us �rst discuss the case ~R = A2. In this case � is orthogonal to � = � � �0and hence � 2 Ro. Using the convention for representing the roots of a system oftype A2 as described in the Appendix, there is no lost of generality if we denote �and �0 as � = "0 � "2 and �0 = "2 � "1. Therefore we may assume that� = ("0 � "2)� ("2 � "1) = "0 + "1 � 2"2Then l = Cg(Z), Z = B�1 � � contains the subalgebral0 = CH"0�"1 + CE"0�"1 + CE"1�"0At the same time, by Lemma 6.4 (3), m01 contains the elementf"0�"2;"2�"1 = E"0�"2 + �E"2�"1for some � 6= 0. Since m01 is lC -invariant, m01 has to contain the subspaceC (E"0�"2 + �E"2�"1) + C (E"1�"2 � �E"2�"0)This implies that[E"0�"2 + �E"2�"1 ; E"1�"2 � �E"2�"0 ] = �(�H"0�"2 +H"2�"1) 2 [m01;m01]



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 35By integrability, [m01;m01] � lC +m01 and hence we should have�H"0�"2 +H"2�"1 2 lCBut this cannot be because �H"0�"2 +H"2�"1 is not orthogonal to Z: this contra-diction shows that the case ~R = A2 may not occur.Let us now suppose that ~R = B2 or ~R = C2. In this case, � = � + �0 is notorthogonal to � = �� �0 and, moreover,(� +R�) \R = ; :>From this we conclude that � 2 RJ = R n Re. Changing the sign of �;�0 ifnecessary, we may assume that E� 2 m10, that is JE� = iE�.Let us consider the vector f�;�0 = E� + �E0� 2 m01 (see Lemma 6.4 (3)). ThenE� + �E0� = E�� + ��E��0 2 m10 and by integrability of J its commutator withE� is also in m10. Therefore[E�� + ��E��0; E�+�0 ] = N��;�+�0E�0 + ��N��0;�+�0E� 2 m10By Lemma 6.4 (3), we get that the coe�cient � in e�;�0 is� = N��;�+�0��N��0;�+�0 (6.3)We recall that for any two roots �, �, the integer N��;� equalsN��;� = �(p+ 1)where p � 0 is the maximal integer such that � + p� 2 ~R. In our case, we obtainfrom (6.3) that if ~R = G2, ��� = �3, while if ~R = B2, ��� = �2.On the other hand, by integrability, we also have that[e�;�0; f�;�0 ] = [E� + �E0�; E�� + ��E��0 ] = H� + ���H�0 2 lCThis means that (H� + ���H�0 ; �) = 0, i.e. that2 (�; �)(�;�) + 2��� (�; �0)(�0; �0) = 0Using � = �� �0, we obtain2� < �0j� > +���[�2+ < �j�0 >] = 0In case ~R = B2, < �0j� >= �2 and < �j�0 >= �1 so that ��� = 3=4; in case~R = G2, < �0j� >= �3 and < �j�0 >= �1 so that ��� = �3=5. In both cases weget a contradiction with the previously determined values for ���. �Consider now the root subsystem ~Re def= R \ spanR < Re >.



36 D. V. ALEKSEEVSKY AND A. F. SPIROLemma 6.6. If ~Re is not of the form A1 [A1, then ~Re is an indecomposable rootsubsystem.Proof. Note that if rank ~Re = 2, by Lemma 6.5, ~Re = A1 [ A1. Therefore we maysuppose that rank ~Re > 2.Suppose that ~Re = R1 [ R2 with R1 orthogonal to R2. Let � 2 R1 \ Re,�0 2 R2 \ Re and let �, �0 the corresponding e-dual roots; we may also supposethat they are not contained in a rank two subsystem. Since � cannot be containedin the span of R1, it is clear that � 2 R2 and that �0 2 R1; in this case we havethat R(�� �) = R(�0� �0)only if � + ��0 = ��0 + � = 0 for some � 6= 0. From this follows that �0 = �� and� = ��0: contradiction. �Lemma 6.7.a) if rank ~Re = 2 then ~Re is of type A1 +A1;b) if rank ~Re = 3, then ~Re is of type A3(' D3) and � is a multiple of "0� "1 �"2 + "3;c) if rank ~Re = ` � 4, ~Re is of type D` and � is a multiple of "1.Proof of a). See Lemma 6.5.Proof of b). Assume that rank ~Re = 3. By Lemma 6.6 all e-pairs are made oforthogonal roots and no other root in R is linear combination of any two of them.Let �;�0 be an e-pair of orthogonal roots and let us assume � = � � �0. Since� is not proportional to any root, if we consider the list of all simple root systemsof rank 3, up to renaming and change of orientation of the unit vectors "i, we haveonly the following possibilities for �, �0 and �:~Re = A3 : � = "0 � "1 ; �0 = "1 � "3 ; � = "0 � "1 � "2 + "3 (6.4')~Re = B3 : � = "1 + "2 ; �0 = �"3 ; � = "1 + "2 + "3 (6.4")~Re = C3 : � = "1 + "2 ; �0 = �2"3 ; � = "1 + "2 + 2"3 (6.4"')We claim that the case ~Re = C3 cannot occur. In fact, "2 + "3 cannot be in Re,because in that case its e-dual root is �"1 � "3 and it is not orthogonal to "2 + "3,contradicting our hypothesis. Therefore we may assume that "2 + "3 2 R+J andhence, by Lemma 6.4(5),"2 � "3 = "2 + "3 � 2"3 2 R+J [Re [ RoIndeed "2 � "3 2 R+J because it is not orthogonal to � nor admits an e-dual root.Since the roots �("1 � "2) are orthogonal to � and hence are in Ro, we also obtainthat "1 � "3 2 R+J and "1 + "3 2 R+J . This implies that the only admissible e-pairis the one given by � and �0 and this contradicts the fact that ~Re is of rank 3.



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 37We claim that also the case ~Re = B3 is not admissible. Suppose not. ThenRo contains "i � "j , i; j = 1; 2; 3 and Re contains the pairs of �-congruent rootsf"1 + "3;�"2g, f"1 + "2;�"3g and f"2 + "3;�"1g. Since rank ~Re = 3, we mayassume that � = "1 + "3, � = �"2, �0 = "1 + "2 and �0 = �"3 are all roots in Re.Consider the corresponding two vectors e�;� and e�0;�0 as de�ned in (6.2). Notethat e�;� and e�0;�0 are in the same lC -module; therefore we may assume that theyare of the forme�;� = E"1+"3 + �E�"2 e�0;�0 = E"1+"2 + �E�"3Then [e�;�; e�0;�0 ] = �([E"1+"3; E�"3 ] + [E�"2; E"1+"2]) + �2CE�("2+"3)for some C 6= 0.Note that [E"1+"3; E�"3 ] = N"1+"3;�"3E"1 = [E"1+"2; E�"2 ]so that [e�;�; e�0;�0] = �2CE�("2+"3) 2 m+But this implies that "2 + "3 2 RJ . Since "i � "j 2 Ro for i; j = 1; 2; 3, by Lemma6.4(4) we get that also � and �0 are in RJ : contradiction.So we remain only with the case ~Re = A3. Note that A3 = D3 and that if wewrite the roots of A3 using the same notation used for the root systems of type D`,(6.4') can be rewritten as� = "1 + "2 �0 = �"1 + "2 � = 2"1 (6.5)Proof of c). Suppose that rank ~Re = 4. It is then easy to see that there is only onepossibility for �, in order to be the di�erence of two orthogonal roots and such thatall admissible e-pairs are not contained in a 3-dimensional root subsystem, that is� = "1 + "2 + "3 + "4 (6.7)This case may not occir if ~Re = A4 and, furthermore, Ro \ ~Re = A3. However, weclaim that this situation is not possible if ~Re is of type B4 or F4, because all rootsof the form �"i must be in RJ (in fact, they do not admit any e-dual root) andhence also all root vectors E"i+"j = C[E"i; E"j ] are in mJ . This would imply that~Re \Re = ;, which is impossible.� cannot be as in (6.7) also if ~Re is of type C3: in fact any root vector E"i+"j ,1 � i; j � 4 should be in the lC -module of E2"i and this root vector should be inmJ .So the only possible case is ~Re = D4. In this case, we may consider a di�erentrepresentation of the root vectors so that any pair of e-dual roots is of the formf"1 � "i;�"1 � "jg and � is proportional to "1.Suppose now that rank ~Re � 4 and that some e-pair consist of not orthogonalroot. It is simple to verify that there is only possibility, i.e. that � 2 R"1 and that~Re = D`, with ` � 4. �



38 D. V. ALEKSEEVSKY AND A. F. SPIROLemma 6.8.a) If ~Re 6= A1 [A1, then ~Re \ RJ = ; and ~Re = Re [ (Ro \ ~Re);b) Re [ R�J [Ro is a closed subsystem of roots.Proof. a) In all cases of Lemma 6.7, the contact form � is explicitly given, so thatalso Ro \ ~Re = �? \ Re can be explicitly determined. In all cases, but when~Re = A1 [A1, it turns out that if � 2 RJ \ ~Re, then ~Re = Ro [RJ (we use the factmCJ is lC -invariant and invariant by conjugation): contradiction. This proves thatRJ \ ~Re = ;.b) First observe that Re+Re � Re+Ro: it follows immediately from the fact that(Re+Re)\R � ~Re and from a). Then recall that, by Lemma 6.4, (Re+Ro)\R � Re,(R�J +Ro) \R � R�J and that (R�J +Re) \R � Ro +Re +R�J . �Lemma 6.9. If ~Re 6= R then:a) The subspace p = e+ CZ + lC +P�2R�J CE� is a parabolic subalgebra of g,with reductive part r = qC , where q = p \ g and l ( q;b) if Q � G is the subgroup of maximal rank generated by q, and G=Q isnot trivial, the �bering � : G=L ! F = G=Q is a CRF �bration, where onG=Q is considered the complex structure JF of the ag manifold F = G=Qassociated to the parabolic subalgebra p;c) Q=L is SO2n=SO2n�2 for some n � 3;d) if (DZ ; J) is an invariant CR structure on SO2n=SO2n�2 with � = B � Znot parallel to any root, then � is a multiple to "1 and in the decompositionmC = m10 +m01 the subspace m01 is of the formam("1 � "2) + bm(�"1 � "2)for some [a : b] 2 CP 1 , jaj2 � jbj2 6= 0 (we use the same notation as theone of table of Prop. 6.3). The CR structures which are not standard areexactly those such that a � b 6= 0 and they are all primitive;e) if (G=L;DZ ; J), with G=L 6= SO2n=SO2n�2, is an invariant non standardCR structure with � = B�Z not parallel to any root, then the associated agmanifold FZ = G=K admits a complex structure, whose associated painteddiagram contains a subdiagram of type Dn, with the �rst node black andall other white, it is connected only to black nodes and such that, if it isdeleted, the black nodes of the remaining diagram are isolated; using thesame convention used in Appendix for the roots of Dn, � is parallel to thevector 2"1 = ("1 � "2) + ("1 + "2), where "1 � "2 and "1 + "2 are two rootsof the subgroup associated to the subdiagram Dn.Proof of a). It follows immediately from Lemma 6.8 b) and the fact that q = g\p =RZ + g( ~Re [ Ro) \ g ) l.Proof of b) It follows immediately from Lemma 4.9 and claim a).Proof of c) Consider the largest ideal iC � qC such that iC � lC . We claim thatiC = g(Ro n spanR < Re >)



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 39so that qC =iC ' g( ~Re).For this it is enough to show that if  2 Ro n spanR < Re >, then E and H arein iC . But this is clear because if  2 Ro n spanR < Re > and � 2 spanR < Re >,then �+ 2 R only if it belongs to RonspanR < Re >. From this the claim follows.Now, set q0 = q mod i, Z 0 = Z mod i and l0 mod i. >From the previousobservations, we have that q0 is a compact form of g( ~Re) and hence, by Lemma 6.7,q0 is A1 [ A1, A3(' D3) or D`, ` � 4. These cases correspond to CRF �brationsde�ned at the point b) with �ber Q=L equal to SU2�SU2=T1 or to SO2n=SO2n�2,n � 3.However we claim that the case Q=L = SU2 � SU2=T1 cannot occur. To seethis, observe that, in case Q=L = SU2 � SU2=T1, any painted diagram associatedto the complex structure JF on G=Q has to contain a subdiagram of white nodes(corresponding to the roots of the isotropy q) which contain two isolated whitenodes (corresponding to the roots � and �0 of SU2 � SU2). The contact form �would be proportional to � � �0. But in this case, it can be checked that if G issimple and �, �0 are two roots associated to two isolated white nodes in a black-white diagram for G, then the centralizer Cg(Z), Z = B�1��, with � = ���0 has asemisimple part which is strictly larger then subalgebra associated to the white rootsubdiagram obtained by deleting the nodes � and �0. This gives a contradictionwith our hypothesis, because the semisimple part of Cg(Z) must coincide with thesemisimple part of l, which is associated to the white nodes (minus the nodes �and �0) of the black-white diagram of the complex structure JF on G=Q.Proof of d) It is proved with the same line of arguments used for Proposition 6.3(2) and it is consequence of c).Proof of e) It follows directly from b), c) and d). �Theorem 6.10. Let (G=L;D) with G simple, L connected and with contact form� = B � Z not parallel to any root. Then:(1) if (G=L;D) admits a primitive CR structure (D; J) then G=L is of theform SO2n=SO2n�2 with n � 3; in this case � is proportional to "1 andall invariant primitive CR structures are the non standard CR structuresdescribed in Lemma 6.9 d);(2) if (G=L;D), with G 6= E6; E7; E8, admits a non primitive, non standardCR structure (D; J), then it admits a CRF �bration � : G=L! F = G=Q,where F = G=Q is a ag manifold with invariant complex structure JF andthe �ber Q=L is equal to SO6=SO4;(3) if (G=L;D), with G = E6, E7 or E8, admits a non primitive, non standardCR structure (D; J), then it admits a CRF �bration � : G=L! F = G=Q,where F = G=Q is a ag manifold with invariant complex structure JFand the �ber Q=L is a manifold SO2n=SO2n�2, with 5 � n � 7; the �bra-tions which may occur are exactly those described by the admissible painteddigrams (1.5) - (1.9) of the Introduction.Proof. (1) follows from Lemma 6.9.(2) is proved with the following argument. By Lemma 6.9 e), if G=L admits anon standard, non primitive CR structure, then the Dynkin diagram of the root



40 D. V. ALEKSEEVSKY AND A. F. SPIROsystem of G contains a subdiagram of type Dn. If we suppose that it admits asubdiagram of type Dn, with n > 3, since gC 6= Ei, we conclude that and the gCis of type Dm, with m > n. However, this case is not possible, because in thiscase, using Lemma 6.9 e), we may compute � and �nd out that the centralizer ofZ = B�1 � � has a semisimple part which is strictly larger then the semisimple partof l, as de�ned by the black-white diagram: contradiction.(3) can be obtained by a direct application of Lemma 6.9 e) and checking that thepainted Dynkin graphs (1.5) - (1.9) do correspond to non primitive non standardCR structures. �



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 41APPENDIXThe notation used in the following Tables for the roots of the simple Lie groupsA`, B`, C`, D`, F4 and G2 are as in [Hu]. For the roots of E6, E7 and E8 thefollowing conventions of [OV] has been used: the weights of the groups E`, ` = 7; 8are expressed using vectors "1; : : : ; "`+1 such thatX "i = 0 ("i; "j ) = � ``+1 i = j� 1`+1 i 6= j (T.1)It is useful to rember that, in this last case, if Pai = 0, then (P ai"i;P bj"j) =P aibi. For E6, the weights are expressed by vectors "1; : : : ; "6, which verify (1),and by an auxiliary vector " which is orthogonal to all "i and veri�es ("; ") = 1=2.In Table 1, for any simple complex Lie group gC , we give the corresponing rootsystem R, the longest root � (unique up to inner automorphisms), the subalgebrag00 = CgC(g(�)), the subsystem of roots R0 corresponding to g00, the decomposioninto irreducible submodules of the g0-module g1 which appear in the decomposition(3.1) and and the set of roots R1 = R+ n (� [R0).For a set of simple roots of g00, we denote by f�1; : : : ; �`g the correspondingsystem of fundamental weights and, for any weight � =P ai�i, we denote by V (�)the irreducible g00-module with highest weight �.



42 D. V. ALEKSEEVSKY AND A. F. SPIROTable 1g R � g00 R0 g1 R1A` "i�"j0�i;j�` "0�"` A`�2+R "a�"b1�a;b�`�1 V (�1)+V (�`�2) "0�"a; "a�"`1�a�`�1B` �"i�"j ; �"i1�i;j�` "1+"2 A1+B`�2 �("1�"2); �"a�"b�"a3�a;b�` V (�1)
V (�01) "1; "2"1�"a; "2�"a3�a�`C` �"i�"j ; �2"i1�i;j�` 2"1 C`�1 �"a�"b; �2"a2�a;b�` V (�1) "1�"a2�a�`D` �"i�"j1�i;j�` "1+"2 A1+D`�2 �("1�"2); �"a�"b3�a;b�` V (�1)
V (�01) "1�"a; "2�"a3�a�`E6 "i�"j; �2""i+"j+"k�"1�i;j;k�6 2" A5 "i�"j V (�1) "i+"j+"k�"E7 "i�"j"i+"j+"k+"`1�i;j;k;`�8 �"7+"8 D6 "a�"b"7+"8+"a+"b"a+"b+"c+"d1�a;b;c;d�6 V (�1) �"7+"a; "8�"a"8+"a+"b+"c1�a;b;c�6E8 "i�"j�("i+"j+"k)1�i;j;k�9 "1�"9 E7 "a�"b�("1+"9+"a)�("a+"b+"c)2�a;b;c�8 V (�1) "1�"a; �"9+"a"1+"a+"b2�a;b�8F4 �"1�"2�"3�"42�"i�"j ; �"i1�i;j�4 "1+"2 C3 �("1�"2)� "1�"2�"3�"42�"a; �"a�"b3�a;b�4 V (�1) "1; "2"1+"2�"3�"42G2 �("i�"j)�("i�"j�"k)1�i;j;k�3 2"1�"2�"3 A1 �("2�"3) V (�1) 2"2�"1�"3"2�"1In the next Table 2, we give all information needed to determine the admissibledecompositions gC = lC + CZ +mC and mC = m10+m01 associated to an invariantCR structure, when � = B � Z is parallel to a root and gC is simple. Recall thatwhen � = �, the associated contact manifold G=L is special and hence all neededinformations can be recovered from Table 1.In Table 2 we consider only the case of � = B � Z = � is equal to a short root.For each simple Lie algebra with roots of di�erent length, we give the root systemR, the short root � (unique up to inner automorphisms), the cetralizer CgC(H�),the root subsystem R0 of CgC(H� ), the list of the highest weights for the irreduciblekC -moduli in mC , kC = CgC(H� ) + CH� , and the sets of the kC -moduli which areequivalent as CgC(H� )-moduli.



INVARIANT CR STRUCTURES ON COMPACT HOMOGENEOUS MANIFOLDS 43Table 2g R � CCg (H� ) R0 highest weightsfor mC sets ofequivalentCCg(H�)�moduli(denoted by theirhighest weights)B` �"i�"j ; �"i1�i;j�` "1 B`�1 �"a�"b; �"a2�a;b�` "1+"2; �"1+"2 f"1+"2;�"1+"2gC` �"i�"j ; �2"i1�i;j�` "1+"2 A1+C`�2 �("1�"2); �2"a�"a�"b3�a;b�` 2"1; "1+"3�2"2; �"2�"3 f2"1;�2"2gf"1+"3; �"2�"3gF4 �"1�"2�"3�"42�"i�"j ; �"i1�i;j�4 "1 B3 �"a�"b; �"a2�a;b�4 "1+"2; �"1+"2"1+"2+"3+"42 ;� "1�"2�"3�"42 f"1+"2;�"1+"2gf "1+"2+"3+"42 ;� "1�"2�"3�"42 gG2 �("i�"j)�("i�"j�"k)1�i;j;k�3 "1�"2 A1 �(2"3�"1�"2) "1�"2; "2�"1"2�"3; "1�"32"2�"1�"32"1�"2�"3 f"1�"2;"2�"1gf2"2�"1�"3;"1�"3;"2�"3;2"1�"2�"3gIn Table 3, we give the same list of Table 2, when � = B � Z is parallel to noroot and gC = A2 or gC = D`. Table 3g R � = B � Z CCg (Z) R0 highest weightsfor mC sets ofequivalentCCg(Z)�moduli(denoted by theirhighest weights)A2 "i�"j0�i;j�2 "0+"1�2"2 A1 �("0�"1) "0�"2; "1�"2 f"0�"1;"1�"2gD` �"i�"j1�i;j�` 2"1 D`�1 �"i�"j2�i;j�` "1+"2; �"1+"2 f"1�"2;�"1�"2gIn Table 4, we give the same list of of Onishchik ([On]) of the only three cases,where the Lie algebra g of a compact simple Lie groupG, which acts transitively on aag manifold F = G=K with an invariant complex structure JF , is not the compactreal form of the Lie algebra ~gC of the Lie group of all holomorphic transformationsof (F; JF ). Table 4Case gC kC ~gC1 C` (` > 1) C`�1 + C A2`�12 G2 A1 + C B33 B` (` > 2) A`�1 + C D`+1
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