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ABsTRACT. The technique of dimensional reduction of an integrable system usually requires sym-
metry arising from a group action. In this paper we study a situation in which a dimensional
reduction can be achieved despite the absence of any such global symmetry. We consider certain
holmorphic vector bundles over a Kahler manifold which is itself the total space of a fiber bundle
over a Kahler manifold. We establish an equivalence between invariant solutions to the Hermitian—
Einstein equations on such bundles, and general solutions to a coupled system of equations defined
on holomorphic bundles over the base Kahler manifold. The latter equations are the Coupled Vortex
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apply when the fiber bundle is a product and the fiber is the complex projective line.
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1. INTRODUCTION

Techniques involving dimensional reduction are important in many areas of mathematical
physics when one is looking at solutions to partial differential equations which are invariant
under a group of symmetries. The term ‘dimensional reduction’ then refers to the fact that the
invariant solutions to the original equation can be interpreted as ordinary solutions to a related
set of equations on the (lower dimensional) orbit space of the group action. The latter in their
own right can be the equations of an equally important physical system and correspondences
between these two systems involve exploiting a whole range of mathematical ideas (examples
relating to monopole and soliton type equations can be found e.g. in [37]).

The vortex equations were first studied (over R?) by Ginsburg and Landau [19] in the study
of superconductivity and their mathematical framework was later developed in the book of Jaffe
and Taubes [28]. Taubes in [44] showed that a reduction of the anti-self-dual equations on
R? x S? led to the vortex equations on R? and by analogous means, Witten [51], on taking
H? x S?, obtained the vortex equations on the hyperbolic plane H?. The holomorphic geometry
of these equations over a compact Kahler manifold X along with their corresponding moduli
spaces was studied by the first author in [6] [7] [8] [10]. Garcia—Prada in [17] [18] showed
that the coupled vortex equations over X could in fact be obtained as a dimensional reduction
of the Hermitian—FEinstein equations over X x CP!, and in effect generalized the cases studied
in [44] and [51]. When dimc X = 2, the abelian vortex equations are known to be equivalent
to the Seiberg-Witten equations [43] [50] [10].

In [11] we generalized the Garcia—Prada technique of dimensional reduction from the case
X x CP!' to a projectively flat CP'-bundle over X . In this paper, we consider a generalization
from the fiber CP! to the case of a fiber F' which is a compact symmetric Kihler manifold. Thus
we consider holomorphic Kihlerian fiber bundles F© — M — X, where M is taken to have a
flat structure. The holomorphic vector bundles on M that we study are the analogues of the
SU(2)-equivariant bundles considered in [17] [18] . We show that such bundles correspond
to holomorphic objects on X. These objects are holomorphic triples consisting of a pair of
holomorphic bundles together with a holomorphic bundle map between them. Our main result
(Theorem 8.9) establishes an equivalence between special solutions to the Hermitian—Einstein
equations on the bundles over M and general solutions to the Coupled Vortex Equations on
the corresponding triples on X . It is in this sense that our main result can be viewed as a
dimensional reduction result.

An outline of the paper is as follows. As apparent in [11] , an essential difference from [18] is
that the SU(2)-orbits appearing there are generalized to the leaves of a foliation by the fibers
F as above. So in § 2 , we establish some concepts from the theory of Riemannian folia-
tions, in particular a general structure theorem for vector bundles over generalized flat bundles



and the notion of extendability to M of bundles and forms defined over F ; here the flat
structure on M plays a crucial role. Although foliation methods are motivationally important
(cf. [20]), the eventual reduction procedure is achieved by making substantial modifications to
the holomorphic—geometric approach of [18].

In § 3 we present a short discussion of equivariant and homogeneous bundles. In § 4 we
establish a generalization of the Borel-Leray spectral sequence (as given in [27]) for non-trivial
coeflicient bundles on the fiber, that in § 5 leads to a Kunneth formula in Hodge cohomology
(with non-trivial coefficients). In § 6 we turn to an important class of examples namely, holo-
morphic projective bundles CP! < M — X . Quite naturally it is the most geometrically
realizable case. It is necessary to look at the essential topological aspects and make note of the
differences between the GL({ + 1) and PGL(l 4+ 1) cases. Then we adapt the main results of
§ 5 to establish necessary vanishing theorems which are needed later.

Having recalled the notion of the Ext functor, we proceed in § 7 to apply the main results
of § 5 and § 6 to obtain an essential parametrization of certain holomorphic extensions over
M by basic sections. In § 8 we start by formulating some results which yield base and fiber
degree invariants of the various bundles defined on X and F respectively. In the latter case,
the extension of objects to M involves subtle technical work which is incumbent upon the flat
structure and justifies certain calibration conditions on the fiber. In § 8 we establish the main
result of the paper which proves that the classes of holomorphic vector bundles on M described in
§ 7, when endowed with a Hermitian—Einstein metric connection, reduce to the Coupled Vortex
equations on X, and conversely. We also establish a number of formulas relating the parameters
of the vortex equations to the slopes of the various bundles featuring in the construction.

The important example of the CPfibration reappears in § 9 where the necessary hypotheses
needed in the main result of § 8 are automatically satisfied. Following this we state explicit
formulas for computing the fiberwise invariants. In § 10 we introduce the notion of holomorphic
triples and the relationship with solutions of the Coupled Vortex equations. With regards to
these, we establish a priori estimates for solutions and stability. We conclude with an appendix
which accounts for the topological details needed in completing our description of the geometric
structure of projectively flat bundles over X .

Part of this work was done while the last named author was a visitor at several institutions.
It is a pleasure to gratefully acknowledge the hospitality and financial support of the Institute of
Mathematics at Aarhus University, Denmark; the Erwin Schrédinger International Intitute for
Mathematical Physics in Vienna, Austria; the Institute of Mathematics at Toéhoku University
and the Kawai Foundation in Sendai, the Institutes of Mathematics at Hokkaido University in
Sapporo, Ryukoku and Ritsumeikan University in Kyoto, and the Department of Mathematics
and Computer Science at the University of Kagoshima, Japan. We also thank the referee for
helpful comments.

2. (GENERALIZED FLAT FIBER BUNDLES AND RIEMANNIAN FOLIATIONS

Let M be a compact oriented Riemannian manifold and let F be an oriented foliation on M .
Denoting by T'F the tangent bundle along the leaves of F and by ) the normal bundle, we have
the exact sequence

0>TF —TM —Q—0.

The metric gps on M gives the identification TF+ 22 @ and gar = gr7+9¢ . The foliation (M, F)
is sald to be Riemannian if gg is F-holonomy invariant ; specifically, for all Z € C*(TF),
the Lie invariance condition Lzgg = 0 is satisfied. Henceforth we assume that (M, F) is a
Riemannian foliation (for further details see e.g. [39]). The type of Riemannian fibrations
which we will consider are seen as particular cases. An important class of examples is provided
by the following general construction which will be implemented in the following sections.



Example 2.1. Let X be a compact Riemannian manifold with fundamental group I' = 71 (X)
and universal covering X, F' a compact Riemannian manifold and « a representation

a : I'— Diffy (F) ,

into the orientation—preserving diffeomorphisms of F'. We consider the action of v € I' on XxF
given by
v(@ )= @yt a()f) .

Let M be the quotient of XxF by this action. There are two foliations which can be considered
on the generalized flat bundle [29]

FesM=Xxp F-"5 X . (2.1)

(1) the foliation (M, F;) by the fibers of 7 ;
(2) the foliation (M, F,) by the holonomy covers X .

For a bundle-like metric gpy on M of the form 7*gx +g7(n) , the fibration 7 is a Riemannian
submersion and hence (M, F) is a Riemannian foliation such that the transverse metric go(r,) =
w*gx . It is well-known (e.g. [30]) that this is equivalent to (M, F,) being totally geodesic. If
a :I' — Iso(F) is a representation into the isometries of I, then a bundle-like metric gas
on M is induced by the product metric #*gx + p*gr on X x F via the natural projection
p X x F — F . In this case, the foliation (M, F,) is also Riemannian and consequently
(M, F) is totally geodesic.

Let G be a connected Lie group and ¢: P — M a principal G-bundle. We say that P is
foliated if P has a foliation F obtained by a choice of horizontal lifting of F (cf. [29] [16]).
Specifically, for tangent vector fields Z € C*(T'F), there is a lift Z € C*°(T'F) such that:

(1) Z is G-invariant and hence Y-projectable, that is, ¥.Z = Z and Rg*Z = 7 for all

geG;

(2) [Z,Y]” =[Z,Y]forall Z,Y € C*(TF) .

Thus for each p € P, the differential ¢.: T,P — Ty, M maps the tangent space Tp]f-:
isomorphically onto the tangent space Ty ,)F and the action of G on P permutes the leaves of

F . The definition carries over in the usual way to any vector bundle & — M associated with

P.

Associated to F is its holonomy groupoid Gr [49], whereby a vector bundle ' — M is said
to be Gr—equivariant if there is an action of Gr on the fibers of E via holonomy transport.
Conversely, a foliated bundle ¥ — M is naturally a G,—equivariant bundle with respect to the
SJundamental groupoid G, — Gr of homotopy classes of paths along the leaves of F. For further
details see [13] [49] .

Recall that p : X x F — F is the natural projection. Then if V is a ['-equivariant vector
bundle over F', we obtain an extension V of V to M by

V=pV/a=XxpV—M=Xxp F, (2.2)

with the restriction property

Vip=V. (2.3)

Next, we state a structure theorem for Gr—equivariant bundles on a generalized flat bundle

M.



Theorem 2.2. For M = X xr F as in Example 2.1 , the equivariant vector bundles are
described as follows.
(1) There is a one to one correspondence between vector bundles W over X and Gr,
equivariant vector bundles on M, given by W — =W .
(2) There is a one to one correspondence between I'—equivariant vector bundles V' over F

and Gr —equivariant vector bundles on M, given by V — V= p*V/a, where V is the
extension of V to M in (2.2) .

Proof. The foliation (M, F;) is a fibration and the holonomy groupoid Gz_ is given by the
fiber product
Mxx M s M

pT’Ql lw (2.4)

M X,
which records the fact that 7 has trivial holonomy. The statement in (1) then follows imme-
diately from the definition of Gr—equivariance.
Essentially the same argument applies in the case of the foliation F, . Here, the global
holonomy is given by the image of I' under « in Diffo(F) and one requires equivariance with
respect to « . [l

Remark 2.3. This result plays the role of the structure theorem in [18] (Proposition 3.1).
One of our main observations is that the dimensional reduction procedure of [17] [18] can be
generalized to the case where the (smooth) bundles over M are direct sums with summands of
the form 7#*W @c V . For instance, in going from bundles over X x CP! to bundles over a flat
CP'~bundle over X, one replaces the SU(2)-action on X x CP! by the ‘double foliation’ of the
CP'~bundle with respect to the foliations 7, and F, . The analogues of the SU(2)—equivariant
bundles on X x CP! are then the ‘doubly Gr—equivariant’ bundles on M. By Theorem 2.2 ,
these are of the indicated form.

We define the extension of a I'-equivariant V—valued form ¢ on F to a V—valued form @ by
the formula

e=pp/a, (2.5)
noting that p*p is ['-equivariant under the diagonal action of I' on X xr V. Let
q:)~(><F—>M:)~(><pF
be the quotient map under I' . Then ¢ and ¢ are related by
Ce=pTe. (2.6)

For a Riemannian foliation (M, F) , the basic forms with coefficients in a foliated vector

bundle E are defined by
QGM,F;E)={ac Q"(M,FE) | iza=0, Lya=0; ZcC*(MTF)}. (2.7)

In degree 0, only the latter condition applies and the basic sections are also called invariant.
We remark that for a Riemannian fiber bundle

Fs M-S X,

the basic forms relative to F, are given by pull-backs from the base space X. In fact, there is
a canonical isomorphism

T QX W) = (M, Fry 7 W) (2.8)

where T'F, is given by the tangent bundle 7'(7) along the fibers of © . This fact explains of
course the origin of the terminology (cf. [29] [39]).
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We also note that in the flat case (2.1) , the basic forms relative to the transverse foliation
F., are exactly given by the extensions ¢ of I'-equivariant V—valued forms ¢ on F as described
in (2.5) .

3. EQUIVARIANT AND HOMOGENEOUS BUNDLES

In this and the following sections we consider a holomorphic fibration
Fe M- X, (3.1)

of compact complex analytic manifolds. We refer to [27] (Appendix Two by A. Borel) for the
details of some of the following constructions. The structure group of this fibration is a complex
Lie group ¢ acting on [’ via a holomorphic map ¢ : G X F' — F. Let g;; : U;; =U;NU; = G
be the transition functions defining the fibration where & = {U;} is a suitable covering of X.
If F is Kéhler, the induced representation ¢ : G — GL{HP?%(F)} is constant on the connected

components of G, that is, 1@ factors through 7o (G) . The composition 1o g;; defines then locally
constant transition functions for the associated vector bundles

H(Fy= | HP(F,)
rz€X

and

Hs(F) =P HU(F) ,

p,q

both of which are therefore flat holomorphic vector bundles on X .

If P — X is the holomorphic G—principal bundle determined by the cocycle {g;;}, the fiber
bundle (3.1) is associated to P by the formula

M2PxgF -5 X. (3.2)

To a G—equivariant holomorphic vector bundle V % F, we may associate a holomorphic vector
bundle V — M, called the canonical extension of ¥V to M , by

V=PxaVZM=PxgF. (3.3)

The assignment V — Vis evidently an additive exact functor, compatible with tensor prod-
ucts, and V satisfies the restriction property (2.3) .

Remark 3.1. On the topological level, the above construction determines a natural homo-
morphism of rings
ap Iﬁrg(F) HI((P Xa F) ,

which for F' = pt specializes to the well-known homomorphism

ap @ R(G) — K(X) .
The Hodge cohomology with coefficients in V', defined by

Hé(Fv V) = @H%(J(Fv V) s
P,q

HPY(F,V) = HY(F,QP(F,V)) ,
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is computed by the Dolbeault d—complex (cf. [27])
AP E V) =Y @c AR (T*(F) @r C) .

Here Q(F,V) = V @c AL’ (T*(F) @ C) is the holomorphic bundle of (p,0)~forms with coeffi-
cients V.
Even if F' is K&hler, the induced representations

G, — GLHPY(F,V)) (3.4)

are no longer trivial in general. We will always assume that they are holomorphic and hence
define a holomorphic associated bundle of fiber cohomology groups

Ho(F,V) = P xg Hy(F,V) — X . (3.5)

Suppose in particular that the above holomorphic fibration has the structure of a generalized

flat bundle _
FosM=Xxr I X, (3.6)

where o : I' = G C Hol(F) is taken to be a representation into the holomorphic diffeomorphisms
of I'. This is equivalent to saying that the transition functions {g;;} are locally constant. Thus

the principal bundle P is flat as well, namely given by P = X xp G . In this case, the bundle
V is given by formula (2.2) . The bundle of fiber cohomology groups (3.5) is a flat holomorphic
vector bundle over X with respect to the representation & : I' = G — GL{Hj3(F,V)}. The
bundle H#5(F,V) may then be regarded as a system of local coefficients, whose associated sheaf
of locally constant sections will be denoted by Hz(F,V) .

For a holomorphic vector bundle W — X, we denote by #” the locally free holomorphic sheaf
of Ox—modules associated to W and mutatis mutandis for the other spaces involved.

Example 3.2. Homogeneous bundles :

Let F'=G/H 2 U/K be a compact symmetric Hermitian manifold, where
G =Hol(F). , U=Hol(F)e, K=UNH .
Much is known about these symmetric spaces and we refer to [26] Ch. VIII, [34] for details. In
particular, I is simply connected, G and H are connected complex Lie groups with G semisimple
and H parabolic. U and K are connected compact Lie groups; U is semisimple and K is the
centralizer of a torus. Further, any K—invariant Hermitian metric on F is Kihler.

The equivariant holomorphic vector bundles on G/ H are now homogeneous [4] [47] , that is,
they are given by representations (p, V,) of H :

p—=V,=GxgV,,

inducing an isomorphism

R(H) = Ks(G/H) .

The canonical extension 1~/p is then of the form
V,2PxyV,—M=P/H .
For (p',V,) € R(G), the associated bundle
Vy=PxgVy =X,

7



is a holomorphic vector bundle over X and %*pl and 9p/ are related by

Vi 2%V, (3.7)

under the restriction map i* : R(G) — R(H). In the flat case, V,, — X is flat and so is therefore

Vi- o — M by (3.7) .

We further have the Frobenius formula
Hé(Fv Vi*p’@p) = Vp’ Q¢ Hé(Fv Vp) ) (3-8)

as G—modules and hence

7{5(F7 Vi*p’@p) = l7/)’ Ac 7{5(F7 Vp) y (3-9)

for (p,V,) € R(H) . The same is true if the pair of complex groups (G, H) is replaced by the
corresponding compact pair (U, K) .

Relative to the Cartan sequence
0—-Hh—g—m=g/h—0,
respectively the Cartan decomposition
u=tgm, (3.10)

and the complex adjoint representation pg : H — GL(m, C), the Dolbeault complex AP*(F,V,)
is associated to the representation

V, @c AR (mE), mg=m@g C . (3.11)

Since U is compact, semisimple and the differential 0 is U-invariant, the decomposition of the
Dolbeault complex according to irreducible representations of U must preserve cohomology. The
U-invariant forms are given by

APHE V)Y 22 (V, @ AL (mE)) " (3.12)
and we have therefore in particular
HPO(F,V,)Y 2 HY (AP (F,V,)7) = HO(V, 0 AR (m3)5) . (3.13)

For p = 1, the Hodge cohomology H5(F) is invariant under U and the total differential d on
Aé’q(mé)k vanishes since [m, m] C £ . Hence we have (cf. [22] IV)

HPU(F) =2 AP9(F)U = A2 (m)™

(3.14)
These formulas are very useful for explicit computations.

According to Bott’s generalization of the Borel-Weil theorem [4] , H%*(F,V,) is an irreducible
U-module, if the induced highest weight of an irreducible representation (p,V,) € R(K) is non—
singular. The degree of the non-vanishing cohomology group is given by the index of the induced
highest weight of p . If the induced highest weight of p is singular, then H**(F,V,) =0 .



4. THE BOREL-LERAY SPECTRAL SEQUENCE

Using the concept of extension of equivariant bundles, we give here a generalization of Borel’s
Theorem 2.1, p. 204 in [27] , to non-trivial coefficient bundles on the fiber.

Theorem 4.1. Let ' M — X be a holomorphic fiber bundle of compact complex analytic
manifolds. Let W be a holomorphic vector bundle on X andV be a holomorphic G—equivariant
vector bundle on F. Then there exists a spectral sequence (E,,d.), (r > 0), with the following
properties:
(1) E,. is 4-graded by the base degree, the fiber degree and the complex type. Let PU1ES? be
the subspace of elements of E, of type (p, q), base degree s and fiber degree t . We have
PARST =0 if p+q# s+t, or if one of p,q,s,t is < 0. The differential d,. maps P4 ES"
into p,q+1ET§+r,tLr+1 .

(2) The spectral sequence converges to H5(M,7*W @ 17) . For all p,q > 0, we have
PIEst o Grt HPY(M, 7*W @c V)

for a suitable filtration of H?4 (M, m*W &¢ 17) .
(3) Forp4+q=s+t, we have

p,qE;ﬂf o~ Z Hi,sJ_i ()(7 W Qc ’}_lpJ_i,qJ_S+i(F7 V)) .
>0

(4) If the fibration is a generalized flat bundle (3.6), the bundle H5(F,V) is a flat holomorphic
vector bundle and we have for p+q=s+1,

p,qE;ﬂf o Z Hi,SJ_i ()(7 W ®(C HpJ_i,qJ_s-I—’i(ljv7 V)) .
120

The conclusion also holds if H5(F,V) is a trivial G.-module, the flat structure being
induced by the connecting homomorphism 0, : I' = m1(X) — 7o(G) .

(5) If W =1x and V = 1p are trivial of rank 1, then (F,,d,) is multiplicative and the
isomorphisms of (2) and (3) are compatible with products.

(6) If the fiber F is Kdihler, H5(F) is a trivial G .—module.

Proof. For our applications in § 5 to § 8 , it will be crucial to recognize the Borel spectral
sequence as a special type of Leray spectral sequence. We therefore outline here an alternative
proof to the one in [27] (Appendix 2) which allows non-trivial coefficients on the fiber. We will
refer to this spectral sequence as the Borel-Leray spectral sequence.

First, we recall the Leray spectral sequence (cf. e.g. [23] [24]): For any (coherent) sheaf .#
of Ojr—modules, there exists a convergent spectral sequence

Byt = H3 (X, Z'n(F)) = H (M, F) . (4.1)

We claim that for a suitable choice of .Z, (4.1) coincides with the Borel spectral sequence of
Theorem 4.1 .
Next, we need the projection formula for pull-backs [25] :

R (TN D6y F)=W Qoy Z'm(F), t>0. (4.2)

Third, the tangent bundle of the fiber F is obviously a G—bundle and so is the holomorphic
bundle of forms Aé’O(T*(F) @r C) of type (p,0) . ;From (3.3) it follows that we may extend the

bundle V @¢ ALY(T*(F) @g C) to M and we will denote by Q?VI/X(V) =7 @p,, Q8 the locally

9



free O pr—module of its holomorphic sections (this corresponds of course to relative forms on the

tangent bundle along the fiber). Thus the graded sheaf of modules .#* = Q3,(7*W ®¢ 9) can
be written as a bigraded sheaf
T = Qy(mW @ V)
= (W) @y Dy x (V) - (4.3)

The derived direct image Z'7.(V) of V may be computed as the sheaf #(F, V) of holomorphic
sections in the bundle H%’t(ﬂ V) of fiber cohomologies [4]. Applied to the relative cotangent

complex €73, x (V) this yields

R Qg x (V) 2 Q5 (V) = AT (R V). (44)
Thus we have, using (4.2) and (4.3)
R (F*) QW) Qo A, Q0(V) 2 (W ac HH(FV)) . (4.5)

We observe that the total cohomology in the Borel-Leray spectral sequence in Theorem 4.1 (2)
is given by the cohomology of M with coefficients .#* above, that is

HP(M, 7*W @0 V) = HP (M, Q% (W @0 V)) | (4.6)

while the Fy—term in (4.1) , using (4.5) , is seen to coincide with the Fy—term of the Borel-Leray
spectral sequence in Theorem 4.1 (3). In fact, we have

H* (X, Z'n.(77)) 2 H (X, Qx(WV) @oy A (F,Qp(V)))
> {H9°(X, W ac Y (FV)) . (4.7)

The equivalence of the two spectral sequences follows from a well-known argument in sheaf
theory, using fine resolutions to compute derived functors [21] . The Leray spectral sequence is
associated to the composition of left exact functors [24]

[(M, 7)=T(X,5.7)

while Borel’s proof makes use of a Dolbeault—type resolution of the bigraded sheaf .Z* of &y
modules in (4.3) , namely the 4-graded sheaf complex

MW, V) = A (1W) Qe o (V) Dy " Dy s
> W Qg V Doy T D @y, m/]\j/’i(
~ * a,b C,d 3
=" (W) @y JA/M/X(V) . (4.8)
Here m/]\;/’% = ;uv/Fa’b denotes the sheaf of smooth germs on M of fiberwise (a,b)-forms, that is
(a,b)-forms along the tangent bundle of the fibers. Hence, applying 7. to (4.8) , we have

ﬂ_*'%a,b,c,d()/v7 V) — JA/XGJJ(W) Qe 77*'51/]\/[0/’%( (]7) . (49)

It is then apparent that the d-differentials defined in loc. cit. extend by linearity to the case
with coeflicients V and produce the required resolution.
The Ey—term (4.7) is now computed by

HY (X, #'7.(F)) = HS T(X, a3 (W oc HYy (modlyih (D))

while the total cohomology (4.6) is computed by
HP (M, "W @c V) = HL (M, . 47) .
Part (4) of the theorem follows by a standard argument about local systems of coefficients,

since H5(F,V) is holomorphically flat. O
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5. KUNNETH FORMULAS IN HODGE COHOMOLOGY

Let F' be a compact complex manifold. The Hodge to DeRham spectral sequence
HPI(F) = Hy(H(F,Q%(F))) = Hpl (F.C)

associated to the Dolbeault double complex A**(F), has Ej-term given by the Hodge groups
H?(F,QP(F)) and the differential dy is given by the differential 0 on the sheaf complex Q% of
holomorphic forms. If (F,wp) is a Kihler manifold, this spectral sequence degenerates at the
F{—term.

Theorem 5.1. [48] For a Kdhler manifold F, there is a multiplicative isomorphism
H3(F) 2 Hpa(F,0) . (5.1

Thus the homotopy invariance of DeRham cohomology implies that G, acts trivially on
H5(F) . We also recall Deligne’s theorem on the degenerescence of the Borel-Leray spectral
sequence.

Theorem 5.2. [14] If the total space M and the base space X in the fiber bundle (3.1) are
compact Kdhler manifolds (hence the fiber I’ is Kdhler), W = 1x and V = 1p , then the
Borel-Leray spectral sequence degenerates at the Fs—term and we have

E2 = EOO 3
that is, there is a multiplicative isomorphism

Gr* HZ*(M) 2 H*(X, H(F)) . (5.2)

For connected G there are therefore module isomorphisms over X, that is, additive Kunneth
formulas:

H3™ (M) = Hy™(X) ®@c Hy™(F)

and
Hpr(M,C) = Hpp(X,C) @c Hpr(F,C) .
Via the Chern character, this gives a Kunneth formula for rational K—theory as well
K" (M) =2 K*(X)g @ K™*(F)g .

We state now the main result of this section, using Theorem 4.1 to obtain a Kunneth type
formula for Hodge cohomology with non—trivial coefficients. This formula is crucial in our
discussion of holomorphic extensions in § 7 .

Theorem 5.3. Fiz 0 < pg <! and assume there exists an integer m , po < m < 2[ so that
HY"(F,V)=H"(F,Q“F,V)=0, for0<u4+v<m, 0<u<pg . (5.3)
For 0 < p < py , the Borel-Leray spectral sequence has the following properties:
(1) PIES =0, forp+qg<s+m .

(2) The total cohomology HP4(M, 7*W @¢ 17) vanishes for p+q¢<m .
(3) For p+4 q = m, there is a canonical isomorphism

HPY (M, "W @¢ V) & PAES™ = HO(X W @e HP(F,V)) .
(4) For (p',Vy) € R(G) , we have in the homogeneous case
HP (M, "W Q¢ Vie ) = HPUM, 75 (W Qe Vi)
=~ HO(X, (W @c V) @c HPI(F)) .

(5) If HP2(F,V) is a trivial G-module, or if ' — M — X s flat and the I'-action trivial,
the holomorphic vector bundle HP1(F,V) is trivial :

HPY(M,m*W @c V) = HY (X, W) @c HP(F, V) .
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Proof. First, we observe that the condition p + ¢ < s+ m is equivalent to ¢t < m, since
non-zero terms occur only for p+ ¢ = s+t . Part (1) follows from the assumption (5.3) and
Theorem 4.1 (3). In fact, the total fiber degrees in the formula for the Fy—terms satisfy u+v =
p—t)+(g—s+t)=p+qg—s=t<mandu=p—i<p<pp. ThusWeh:aLvep’qE;’t:O7
forp+qg<m, s>0o0rp+qg=m, s>0. Part (2) follows immediately from this and
the expression for the total cohomology in Theorem 4.1 (2). For p + ¢ = m, we have further
PAED™ = HO(X, W @c HP(F,V)) . Since the spectral sequence has no non-zero terms for
t < m,p < po, the assertion in part (3) follows from a standard argument, e.g. the 5-term exact
sequence for p+ ¢ = m,

0 — p,ququ — HPY(M, W Q¢ ﬁ) — p,quvm 1 p,q+1E2m+170 N Hp’q"'l(M,ﬂ*W R g) ]
Observing that the base terms are zero by part (1), we conclude that the edge homomorphism
HPY (M, m*W @c V) — PIES™

is an isomorphism. Part (4) follows from (3.7) , the Frobenius formula (3.9) and Theorem 5.1 .
Part (5) follows from Theorem 4.1 (4). In fact, under our assumption, the coefficient bundle
HP2(F,V) is holomorphically trivial. O

Corollary 5.4. Suppose G is connected, semisimple and
HY(F,V) =0, dimc H*Y(F,V)=1.

Then HO(M, m*W @¢ 17) =0, the bundle of fiber cohomologies H*'(F,V) is a holomorphically

trivial line bundle and we have
HOY (M, mW @c V) = HY(X, W @c HOL(F, V) =2 HO(X, W) ©c HOY(F, V) = HY (X, W) |

for any holomorphic vector bundle W on X .

Proof. We only need to observe that (G, being connected and semisimple, has no non—trivial
1-dimensional representation. O

6. PROJECTIVE FIBER BUNDLES

We now consider the case where M is the total space of a (holomorphic) projective bundle
over the compact K&hler manifold X with structure group G = PGL(l+ 1,C) :

CPl%M:PXPGLCPli}X. (6.1)

The linear and projective groups are related by the commutative diagram
1 1 1

| — Zyyy —> SLUI+1) —2— PSLU+1) — 1

io lg (6.2)

1 —— © —2 5 GLUI+1) —— PGL(I+1) —— 1

('t det

(CX —_ s (CX
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Let £ — X be a holomorphic vector bundle of rank [ 4+ 1 . The projectivisation P(F) gives
rise to a holomorphic projective bundle

CP' - P(F) = X . (6.3)
If Pr = F(F) denotes the holomorphic frame bundle of F, then the PGL(l + 1, C)-principal
bundle is given by P = j.(Pg) and
P(E) 2 Pp xg, CP'2 P xpgr, CP'.
The topology of projective bundles is essentially derived from the commutative diagram of
groups (6.2) at the level of classifying spaces. There are obstructions for the linearization

(respectively the unimodular linearization) of a projective fiber bundle. For convenience, we
discuss these topics in an Appendix (§ 11 ).

Here we mention only the following facts. If F is projectively flat, that is
CP's M = X x; CP' =5 X | (6.4)

with holonomy é& : I' = PGL({ 4 1,C) , it follows from Chern—Weil theory (cf. [34]) that the
Chern classes of F are determined by the first Chern class ¢;(F£), namely

e = () 11

[+1
1 (E) 141
Ey={1+t —= . .
By = 1+ 12 (6.5)
For k = 2, we obtain therefore the strong Bogomolov relation
[

E)=—— c(E)*. :
o (E) = g @) (6.6)
At this point, we recall the Hitchin—Kobayashi correspondence [34] for a holomorphic vector
bundle £ — X over a compact K&hler manifold (X,wx) . We define the normalized degree of
FE — X relative to wx by the formula

1 nli
degx (B) = -y Vol () /Xcl(E)A“X
1 n
Y Vol (X) /XAX al®) ek
= ﬁ(X) /XAX c1(F) dvolx (6.7)

where Ax is contraction against the Kihler form wx and the volume element dvol x is taken to

be

dvolx = w_)'( .
n!
The slope of E is defined to be
_ degx (E)
HE = .
rank(F)

(E,h) — X is a Hermitian—FEinstein bundle if
LAthZQﬂ'AIE, (68)

where F}, is the curvature of type (1, 1) of the unitary, integrable connection (Chern connection)
determined by the Hermitian metric h .

The above definition of the degree has the advantage that the Hermitian—Einstein constant A
is given by the slope pg. In fact, we have the Chern—Weil formula ¢; (&) = 3 [Tr F,] and hence

/ Axci(F) - -wy = QL/ Ax TrFj, - w% = A rank(F) n! Vol(X)
X TJx

which implies A = pp .
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The Hitchin—-Kobayashi correspondence (cf. [34] ) may then be stated as follows.

Let F — X be a holomorphic vector bundle over the compact Kahler manifold (X,wx) .
Then the following conditions are equivalent:

E=E;,
j

where the E; are stable (relative to wx) holomorphic bundles of equal slope g, = ug ;

(1) E is polystable, that is

(2) E admits a solution of the Hermitian-Einstein equation
t AxFy =27 pp g .
Together with the Bogomolov relation below (for n = dimc(X) > 2), (2) is further
equivalent to :
(3) E is projectively flat, that is P(£) is flat with holonomy & : I' - PU({ 4 1) .

The existence theorem (1) = (2) is due to Donaldson [15] and Uhlenbeck—Yau [45] . If
FE is projectively flat, F is obviously Hermitian-Einstein and the equation (6.6) implies the
Bogomolov relation

/ (e (EY =2+ 1) ex(E) Awi2 =0 . (6.9)
X

This latter relation is sufficient to prove (2) = (3). In fact, if (2) holds, then (3) is equivalent
o (6.9) (cf. [36] ).

Example 6.1. The case of rank(F)=2:

P(£) has a flat PU(2)-structure exactly in one of the following two cases.

(1) E is stable and [y (e1(E)? — dey(E)) Awi? =0 ;

(2) E = Ly & Ly, with ¢;(L1) = ¢1(Ly) and hence [ (¢1(L1) — ¢1(L2))? AW = 0. For a
proof of (2), see [11] .

On the projectivized bundle P(F), we have the tautological line bundle #}, — M which is
defined by
Hp={(l,v)eMxx E | vel} Cn'E . (6.10)

We follow the common notation and denote the powers 2 by Oas(k), for k € Z . Similarly,
we denote H* = H F|g on CP! by O(k) .

JFrom the definition (6.10) and the multiplicativity of the extension (3.3) , we obtain directly
the following Lemma.

Lemma 6.2. The tautological bundle "y on M = P(F) is the canonical extension of the
GL(l + 1, C)—equivariant tautological bundle H* on CP' and we have for any k € Z :

Onm(k) = 0O(k) . (6.11)

The exact Euler sequence
0= Qyx — (FE)(-1) — On = 0, (6.12)
derived from (6.10) , is the canonical extension of the GL(Il + 1, C)~equivariant exact sequence
0— QYCPY) — Vi(-1) — 0 =0, (6.13)

where Vo = CP! x C'*! is the GL(I + 1,C)-equivariant bundle with the standard action of
GL(I+1,C) .
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The relative canonical bundle K/ x of P(F) is computed from the determinant bundle
of (6.12) . Setting £ = det F' = A"*1E| we have (cf. [25])

Karyx = Qyx 27 (AT E") @c Oy (=1 - 1) 2 7L @c Oy (—1 - 1) . (6.14)

Equivalently, K/ x may be computed as the extension of the PGL(l+ 1, C)—equivariant canon-
ical bundle

Kept = QYCPY) = (det Vy)* @c O(—1 — 1) , (6.15)

obtained from the Euler sequence (6.13) on CP".
It follows from the projection formula and (6.14) that

L£=mKyyx (1= 1)) . (6.16)

The multiplicative structure of the cohomology ring of M is determined by the Leray—Hirsch
theorem (cf. [5] [23] [31]) :

+1
H*(P(E),Z)= H*(X,Z) [t] / {i c;(EYtHILIy (6.17)

where ¢ corresponds to the first Chern class ¢;(Hg) of the tautological bundle Hg. In other
words, H*(P(FE),Z) is generated as an H*(X,Z)-algebra by ¢;1(Hg) subject to the defining

equation
I+1

Z 7 cij(E) er(Hp) ™ =0.

J=0
This shows that the Chern classes ¢;(£) measure how the ring structure of H*(P(F)) deviates
from that of the product H*(X x CP') .

If X is a compact K&hler manifold and E holomorphic, there is an analogous result for Hodge
cohomology. The Chern class ¢t = ¢;(Hg) is of type (1,1) and the classes ¢;(E) of type (j,7).
We obtain then from (5.1) and (6.5) corresponding multiplicative Kunneth formulas for Hodge
cohomology.

Theorem 6.3. Let ¥ — X be a holomorphic vector bundle over a compact Kdihler manifold
X.

(1) There is a multiplicative isomorphism

+1
H3™(P(E) = Hy™(X) [1] / {Z cj (E) 1} (6.18)

(2) If E is projectively flat, there is a multiplicative isomorphism

H3 () 2 By (X) 1)/ {0+ 2oy (6.19)

(3) If E is topologically flat, there is a multiplicative isomorphism

H>™(P(E))= H™(X) @c H™(CP) .

Thus for M = P(F), we have a more precise form of Deligne’s Theorem 5.2 on the degenerescence
of the Borel-Leray spectral sequence. If F is flat, we have indeed a multiplicative Kunneth
formula for the Hodge cohomology of such a twisted product.
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We now apply the degeneracy results of the previous section to the case of a projective fiber
bunde (6.1) . The PGL-equivariant holomorphic line bundles on CP' are the powers of the
canonical bundle K¢p and the relative canonical bundle K/ x is given by the PSL-extension

Kyvx = Kt . The line bundle O(—! — 1) and its powers carry a canonical PSL-structure
isomorphic to that on K¢p and we have

Karjx 2 O0(=1=1)5s; - (6.20)

Proposition 6.4. The vanishing conditions (5.3) are satisfied and H*™(CP', V) is a trivial
PGL(l + 1,C)-module of rank 1, for V =Q™(CPY) |, po=0< m <1 :

H07m(M7 W @¢ Q%/X) = HO(X7 Wec HOJn((CPlv Qm((CPl))) = HO(X7 W) :
Proof. This follows from Corollary 5.4 , since H??(CP!) = H4(CP!, QP(CP')) = C for p = ¢

and zero otherwise. O

In the linear case (6.3) , Theorem 5.3 and the Bott formulas for H?9(CP!, O(k)) (cf. [41],
[25]111, §8) yield the following result.

Proposition 6.5. The vanishing conditions (5.3) are satisfied for V= 0O(k) , 0 <po <1, m=
po+landpy —1—1<k<0. Hence we have for 0 <p <po, p+qg<po+1 :

HP9(M, W @c Ogg (k) 2 HO(X, W @c HP (TP, O(k))) -
In addition, we have:
(1) H#5HCPL 0(k)) = Z'r(On(k)) 2L Dy 7u(Onp(—k —1— 1)), and hence
HO (M, 7*W @c Opr(k)) =2 HY(X, (W @c L) @c 7 (Onr(=k — 1= 1))%) .
)

(2) In particular, for V = O(=1 — 1) , HOHCP', O(~1 — 1)) = L is the determinant bundle
L =det I and

HY (M, 7"W @c Oy (=1 — 1)) 2 HY (X, W@c L) .
(3) If E is unimodular, we have

HO (M, 7*W @c Opr(—1 = 1)) 2 HY(X, W) @c C= HY (X, W) .

Proof. We need to check the vanishing conditions (5.3) , that is
H“(CP,Ok)=0,for0<ut+v<m=po+1,0<u<p.

It follows from the Bott formulas that H**(O(k)) =0 forv < land k < 0. For v =1, we have
u < po—1 < [ and the Bott formulas imply that H*!'(O(k)) = 0for k > po—1—1> u—1. O

We also note that we have the formula
%’lm(%M/X) = %O’Z(CPZ7%@1) = %Z’Z(CPZ) >0y, (6.21)

with the last isomorphism being induced by the volume form 7 = w', where w is the Kihler
form of CP'. Using (6.14) and (6.21) we may reformulate Proposition 6.5 (2) as follows:

HO (M, 7*W @c Oar(=1 = 1)) =2 HOH M, 75(W @¢ L) @c (7*L* @c Op (=1 = 1))
=~ HON M, 7*(W @c £) @c Karyx)
> [{O(X, (W ac £) @c HO (CP', Kepr )
> [°(X, (W @c £) ©c K" (CPY))
~ [ X, W@ L), (6.22)

with the last isomorphism again being induced by the fiber volume 7 .
The above observation allows us to construct an explicit inverse to the edge isomorphism in
Proposition 6.5 (2) .
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Proposition 6.6.
(1) The fiber volume form n is PSL(I+1)~invariant and extends to a closed form 17 of (fiber)
type (1,1) on M.
(2) The inverse of the edge isomorphism in Corollary 6.5 (2) is induced by the assigment
¢ +— By, where
Bo=m"¢ @17, (6.23)
foro e HY( X, Wac L) .
Proof. The Kéhler form w is harmonic and hence PU (/4 1)-invariant. Its canonical extension
w is of fiber type (1, 1) and further extends to a closed form on M, which we also denote by @ . In
fact, we may take for @ the first Chern form of the holomorphic line bundle Hg = Ops(1), using
a suitable connection (compare (6.17) ). The form 7} = &', evidently restricts to a generator of
HY(CP') = C on each fiber and one checks easily that (6.23) defines an inverse to the above
edge isomorphism, provided the volume form 5 is normalized, that is f@, n=1. O

7. HOLOMORPHIC EXTENSIONS AND THEIR PARAMETRIZATION
We begin with a flat holomorphic bundle (3.6)
FoM=Xxr F-1 X,

and consider a type of holomorphic bundle over M on which a dimensional reduction of the
Hermitian-Einstein equations will be possible. Recall that in the case where M = X x CP!,
the appropriate class of bundles consists of those with specially chosen SU(2)-equivariance
properties (cf. [18]). In the present, more general setting, we generalize the SU(2)-equivariance
by the requirement of compatibility with the two foliations of M. In particular, we consider
holomorphic bundles & — M, having the following properties :

(1) & is a holomorphic extension of & by & ;

(2) their smooth structure is that of a direct sum & & &, where &; is a tensor product of two
bundles with one factor being foliated with respect to F,, and the other being foliated
with respect to F, .

Let W; — X and V; — F, ¢ = 1,2, be holomorphic vector bundles, where the V; are G-

equivariant and thus extend to the bundles V; on M. Then we set & = 7*W, ®cV; , and observe
that by Theorem 2.2, the holomorphic bundles &; satisfy the second of the above requirements.

For the remainder of this section we will be concerned with the first requirement, namely the
nature of the holomorphic extension. Except for one Lemma, the flatness condition is not needed
in this section and it will be sufficient to have a complex fiber bundle as in (3.1) , respectively
a projective bundle as in (6.1) .

Recall from [25] I11, §6, that in terms of the corresponding locally free sheaves of &y;—modules
on M, an extension of & by & is a short exact sequence

0—& —& —8& —0, (7.1)

over M. In view of the properties of the functor ‘Ext’ [25] III, §6, such holomorphic extensions
are parametrized by classes in

Exty, (&,6) 2 Exty, (Oum, & @y 67)
> Exty, (O, Home,, (6, 61))
~ HOY (M, Home (&, &) (7.2)
For the bundles & = #*W,; ®@¢ 92 as above, we have then
Exth (&, &) 2 HOY (M, m*W @c V) | (7.3)
where W = Homg(Ws, Wy) and V = Home (Va, V1) .
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Proposition 7.1. Suppose that G is connected, semisimple and
HY(F,V) =0, dimc H*Y(F,V)=1.
Then HOY(F,V) is holomorphically trivial and
Exth (&,&) = HOY (M, m*W ©c V) = HO(X, W) oc HOH(F, V) 2 HO(X, W), (T.4)

for any holomorphic vector bundle W on X.
This follows directly from Corollary 5.4 .
In § 8 it will be important to have an explicit realization of the isomorphism in Proposition 7.1 .

Lemma 7.2. Suppose that the fiber bundle (3.1) is flat with holonomy o : I' = U , with U C
Holiso (F')e connected, compact semisimple, and that the U—equivariant holomorphic vector bun-
dle V satisfies the conditions in Proposition 7.1 .

Then the following hold:

(1) HYY(F,V) 2 C is generated by an invariant, d—closed (0,1)—form n € A% (F, V)V .

(2) n extends to a d-closed (0,1)form 7j € A (M, V) .

(3) [7] is a generator of HOY(M, V), that is HOY(M,V) = C .

(4) There is a one—one—correspondence between holomorphic sections ¢ € H°(X, W) and
classes [34] € HOY (M, W Q¢ 17), given by

By =m"0Q7 .

Proof. Since HY'(F,V) is a trivial U-module, we have from (3.13)
HYH(F, V) = Hy (A (F,V)Y))

This implies (1). If p : X x F — F denotes the projection, the form p*n is 5iclosed and
['-invariant by construction. Thus it defines 77 = (p*n)/a on M, satisfying 07 = d(p™n)/a =
(Op*n)/a = 0 . ;From Proposition 7.1 it follows that 7 has the remaining required properties
(2) to (4). O

We remark that Proposition 7.1 and Lemma 7.2 apply in particular to the situation in Propo-
sition 6.4 for m=1=1.

In the linear case
CP'— P(F) = X,

we consider line bundles V; = O(k;) with ky — ks = — [ — 1, satisfying V = Homc(Va, V1) =
O(—1 — 1) . By Corollary 6.5 (2), the coefficient bundle H%!(CP!, O(~I — 1)) is given by

HOHCP, O(=1 - 1)) = Rlmu(Op (=1 = 1)) Zdet E= L . (7.5)
The induced representation
GL(I+1,C) — GL{H>'(CP,,O(-1-1))}, (7.6)

is therefore the determinant representation. Thus for [ = 1, we have the following characterisa-
tion of extensions by basic sections.
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Proposition 7.3. Forl=1 and & = 7*W; @c On(ki), k1 — ke = =2, we have

Exty, (&, 6) 2 HON (M, 7*W @c Op(-2))
~ HO(X,WacH" (CP, O(-2))
~ HO(X, W& L) . (7.7)

Proof. This follows from Proposition 6.5 (2), compare also [35] §2 . O

Recalling (6.14) , we may rephrase Proposition 6.6 in the case [ = 1, in order to obtain an
explicit parametrization of the extension classes in (7.7) .

Lemma 7.4. Letn € A% (CPY Kepr) =2 AV (CPY) be @ PSL—invariant, closed form generating
HOYCPY, Kpr ) =2 HVHCPY) = C

e.g. we may take n corresponding to the Kdhler form w of CP1.
There is a one—one—correspondence between holomorphic sections ¢ € HY(X, W @¢ L) and
classes [3] € HOY (M, m*W @¢ Or(=2)) , given by

Bp=7"¢R17 .

If F is holomorphically flat and I' acts via SL(2,C), or more generally, if £ = det F is
holomorphically trivial, the formulas in Proposition 7.3 and Lemma 7.4 simplify accordingly. In
particular, the generator 7 defines then a class in H%!(CP!, O(-2)) .

&. REDUCTION TO THE COUPLED VORTEX EQUATIONS

In this section we will establish the main result on the reduction of the Hermitian—FEinstein
equation on the total space M to the Coupled Vortex equations on the base manifold X.

First we construct a family of Kahler metrics on the total space M of the flat fiber bun-
dle (3.6) . We wish to combine Ké&hler metrics on X and F' to define a 1-parameterfamily of
Kéhler metrics on M. To this end, we now assume that the base manifold (X,wx) and the fiber
(F,wp) come equipped with K&hler structures.

Proposition 8.1. Let X and F be Kdhler manifolds and let
FesM=Xxp F-1 X

be a generalized flat bundle with holonomy o : 1" — U C Holys, (F), where U is a connected
compact subgroup of the group of holomorphic isometries of F. Let wx and wp denote the
respective Kdhler (1,1)-forms on X and on F. Then for a (constant) parameter o > 0, there
exists a family of Kdhler metrics defined on M with corresponding weighted Kdhler forms

W, =7 wx +0 OF , (8.1)

where wp = (p*wp)/a is the extension of the invariant Kdhler form wp to M.

Proof. Let gx and gp denote the Kahler metrics on X and the fiber F. The product metric
™ gx + pTgr on X x F via the natural projection p : X xF — F, defines a Kdhler metric
on X x F. The same applies on introducing the constant parameter o fiberwise. Since «
is a representation into the holomorphic isometries of F, the metric gp is I'-invariant. Hence

7*gx +op*gr descends to M = X xr F, thus defining a K&hler metric on M having the required
Kéhler form. O
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Remark 8.2. In the last result, the flat structure of M was crucial. For more general fiber
bundles, such a combination of gx and gr may not define a Kahler structure on M (see e.g. [12]).

With respect to (8.1) , the definition of the normalized degree in (6.7) for a holomorphic
vector bundle £ on M | takes the form

1 mll
(m — 1)1 Vol, (M) /M calé) hws
1
- [ A, m
m! Vol, (M) /M (&) wg
1

— T /M Ay 1 (&) dvol, | (8.2)

where dimg X =n , dim¢cF =1, m = n+ [ and A, denotes contraction against the K&hler
form w,. The binomial expansion of w, in (8.1) gives

deg, (&) = deg,(det &) =

n+l L (I)l
— a _ X Pl
dvol, = R A ST (8.3)
and 111 111 L1 !
wyt _ Wy A YF oy WY A YR (8.4)
(n+1-1)! n! (1 —1)! (n—1)! I ' '

Using formula (8.3) , the proof of the following Lemma is essentially the same as in [11] ,
Lemma 4.9.

Lemma 8.3. For a complex smooth function f on X, we have

/ 7 (f) dvol, :/ fdvolx - Vol(F) o' .
M X

In particular, for f =1 :
Vol, (M) = Vol(X) Vol(F) o' .

The following formulas for pull-backs and extensions will be needed in the proof of the main
theorem. We will make use of the defining equation for the ‘Lambda’-operator on any Ké&hler
manifold (X,wx) (compare (8.2) )

Axp@wlk =n p Awit!t . (8.5)

Lemma 8.4. Let W — X be a complex vector bundle and ¢ a (1,1)-form with values in W.
Then

A;m™(p) = 7" (Axep) -

Proof. Note that the flatness of the fiber bundle is not required here. The Lemma is proved
by direct calculation, using (8.4) and (8.5) :

wn—l—lJ_l
A, p @ dvol, = T*p A — T
T @ dvo TLP/\(n—I—l—l)!

1 ~111

1
= o e n R A G ot

mﬂ'*(@/\wxv )/\(.:)é;‘O'l
1, Ve

:mﬂ'(Ach@wX)/\w%al
1 * * n ~

:mﬂAch@(ﬂwX/\w%)a

=71"Axe @ dvol, .

l
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Proposition 8.5. Let W — X be a holomorphic vector bundle. Then
degcr (T*W) = degX (W) 3

and so deg, (7*W) is a base invariant.

Proof. This follows from (8.2) , Lemma 8.3 and Lemma 8.4 for ¢ = ¢, (W) :

1
deg, (7*W) = T()/M Ao e (W) dvol,

A dvol,
Wﬂ(M)[?T xer (W) dvo

A ) dvol
VO] )/X X01 VOl x
=degx (W) .

g

Lemma 8.6. Let the flat fiber bundle (3.6) be given as in Proposition 8.1 and letV — F
be an U—-equivariant complex vector bundle. For an equivariant (1,1)-form ¢ with values in V
with extension ¢ = (p*¢)/a, we have

AO’S‘Q (AF 99)

QI»—k

Proof. The flatness of the the fiber bundle is essential here, as we make use of the extension
@ of ¢ described in (2.5) . The Lemma is proved by direct calculation, using (8.4) and (8.5) :

wn—l—lJ_l
Asp@dvol, =p N —F——
vodvole =9 LT
1 * ~ 1 * m
= PN T A (@A) ot 4 S T A (@ AGE) o
1 % 1 * T
:mﬂwx A nwpt)” ul"‘m”“XMA(@AWF) of
1 * Ly~
:mﬂ'wXA(AFcp@wF) o
1 ~ * N ~
= Ar )T @ (n Wk N@p) of
o

g

Proposition 8.7. Suppose that U C Holio (F) acts transitively on I and let V — F be an
U —-equivariant holomorphic vector bundle. Then

=~ 1
degcr (V) = ; degF(V) 3

and so degg(f/) s a fiber invariant for the flat structure on M — X .

Proof. We represent ¢y (V) by a closed U—-invariant (1,1)-form o on F' . Then using the flat
structure on M, we have ¢, (V) = [a], where & is the extension of @ and @ADL = (aAwp!)~ =0.
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By U-invariance, Apa is constant. The result follows from (8.2) and Lemma 8.6 by setting
p=o:

~ 1 ~
degg (V) = W /M Agcl (V) dVOlg

1
= ——— [ A,a dvol,
Vol, (M) /M .
1

= Apa)™ dvol,
o Vol, (M) /M( ra)” dvo
AFOé

g

Finally, we observe that

_ 1 {11
degr (V) = T Vol (7) /FO‘M’F
1

— | Ara dvol
Vol(F)/F paavolr
:AFOé.

8.8 Calibration conditions on the fiber.

We assume now that F' = U/K is a compact irreducible symmetric Hermitian space, equipped
with its unique (up to homothety) invariant Kahler structure. Further, we are given homoge-
neous holomorphic bundles V,, = U xg V,, — F = U/K associated to complex representations
(pi,V,,) € R(K) as in Example 3.2 . In order to establish the main result below, we need to
impose a number of conditions for the data on the fiber.

(1) The representations (p;, V,,) € R(K) are irreducible.
By [34] VI, Prop. 6.2, the V,, — F are irreducible U-equivariant Hermitian—Einstein
bundles and therefore stable (cf. [33] [42] [46]).

(2) o = poy = pp, <0 . ;
It follows that and VX = Homg (V,,,V,,) = 0 and
HO(F,V,) = H(F,Homc(V,,,V,,)) =0 .

(3) dim¢ HOY(F,V,) =1.
Since U is simple, H*'(F,V,) is a trivial U-module and we have by (3.13)

HOY(E,V,) 2 Hy(A™(F,V,)") = C.
Hence Proposition 7.1 and Lemma 7.2 apply.

Observe that deg(V,,) and hence i, = py, are computable in terms of the weights of the
representations (p;, V,,) € R(K) by the methods of [3].

:

The following theorem is the main result of this paper.

Theorem 8.9. Let < M = X xr F' 5 X be a flat holomorphic fiber bundle of compact
Kdhler manifolds where the fiber F = U/K is a compact irreducible symmetric Kdhler manifold
as above.
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Suppose that the homogeneous holomorphic bundles V, on F satisfy the conditions in 8.8
and let k; be the U—equivariant solution of the Hermitian—Einstein equation on'V,, .

Consider the proper holomorphic extension
Ey : 0 =& —E&8—86 —0,
as in (7.4) , where & = w*W; @ V,, , and By corresponds to ¢ € HO(X, W) = Home (Wy, W)
for holomorphic vector bundles W; on X .
Let h = hy @ hy, where the Hermitian metric

on & is defined by an invariant (basic) Hermitian metric b}, on ©*W; and the extension k; of
the U—equivariant Hermitian—FEinstein metric k; on'V,, . Let I, be the curvature of the Chern
connection determined by h and A, the contraction against the Kdhler form w, = n*wx +0 @p .
Foro >0, let
deg, (£)

/\Zﬂs(g):m7

and define the vortex parameters 7; by

Fo,
mi = Ti(0) = pe(o) = =

Then the following statements are equivalent :

(1) There exist Hermitian metrics of the form h on the extension bundle & which satisfy the
Hermitian—Finstein equation

LAgP’h:QTK’/\Ig7

relative to (M,w,) .

(2) There exist Hermitian metrics h; on W; which satisfy the coupled o—Vortex equations :

1

LAXFhl —I—; pod* =2r 7y Ly, ,
1

tAxFy, — — ¢*odp =271 Iy, , (8.6)
o

where the adjoint in ¢* is taken with respect to the metrics hy and hs .

There is a one-to-one correspondence between solutions in (1) and (2), given by the assign-
ment h; — hl, = 7*h; .

Proof. First, we observe that the assignment h; — h, = 7*h; realizes the isomorphism
between Hermitian metrics h; on W; and invariant Hermitian metrics A} on 7*W; . This follows
from (2.8) . Without loss of generality, we may therefore assume that £} is of the form 2} = 7*h; .

We continue by analyzing the Hermitian—Einstein condition on the holomorphic vector bundle
E on M asin [18] §3; compare also [11] . The main part of the proof relies substantially on the
technical results established in this section and the previous section.

Relative to a smooth decomposition & = & @ &, the unitary integrable connection A on

(€,h) can be expressed in the form
~ A Jé;
A:(—ﬂl* A2) s (87)
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where Ay, Ay are the metric connections of (£1,h;) and (&2, hy) respectively, and
ﬁ S AO’I(M, 7‘[077”&@(52, 51))

is the representative of the extension class in Exty, (&, &) asin (7.2) . A routine calculation
(cf. e.g. [34]) shows that the curvature of A has the form

F — * D'
Fh:Fg:( hl_Dﬁﬂ/lﬂ th_ﬂﬂ*/\ﬂ) s (88)

where D : AY(M, Home (€1, E)) — A2 (M, Home (€1, E,)) is constructed from Ay and A, in the
standard way.

Now if we take

(1) A; to be the integrable unitary connection on (W;, h;) , and

(2) A; to be the Hermitian—Einstein metric connection on (V,,, k;) ,
then )

The corresponding curvature form of type (1,1) can be expressed as
Fo, =m"F, 0L, + Lo F, (8.10)

where I; = 7*Iy, and Tpi =I; .

Under the assumptions 8.8 (Ql) and (3), Proposition 7.1 gives the required parametrization of
Exth (&,&) 2 HOY (M, mW @c V,) = HO(X, W) @c HOY(F,V,) = HO(X, W) .

The one-to-one correspondence in Lemma 7.2 states that 3 is of the form 8 = 34 =7 "0 @ 7,
where 77 € A% (M, V,) is the extension of the invariant, d-closed (0,1)-form 5 € A% (F,V,)V
generating HO'(F,V,) = C.

The following Lemma implements the results which are necessary to carry out the reduction
process to the coupled vortex equations.

Lemma 8.10. With /) and 3 as above, we have
(1) A;D'B=0;
(2) A;D"p*=0;
(3) Ang*hi = T*AXF}” N
(4) AoFy, = 5 (ApFy)™ 5
(5) Ao(GAG7) =L Ap(n A )™ = 5 L, and A (0" A7) = 5 Ap(n* An)~ = = £ 1, . for
a suitable calibration of n, independent of o.

5

Proof. (1) and (2) follow essentially by the arguments in [18] and [11]. We observe that
ApD'n € AY(F,V,)V = V,X must vanish as a consequence of assumption 8.8 (2). (3) follows from
Lemma 8.4 by taking ¢ = Fj, and noting that Frp, = 7*F),, . (4) follows from Lemma 8.6 by
taking ¢ = Fy, and noting that Fj = ﬁki .

To prove (5), we first apply Lemma 8.6 to the (1,1)-form ¢ = n A 5*, to obtain

N o~
Ac(GATG7) = — Ap(nAn)™
In terms of the Cartan decomposition (3.10) and formula (3.12) , we have
AP (FV,)Y = Homg (mg, V)
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where mr = m @g C. Thus we see that, as an U—equivariant form, Tr Ap(n A 7*) is realized by
the commutative diagram

Hom g (m#, V,) @c Homg (m¥, V) —2— (AL (m3) @c Ende(V,, )X —2— Endg(V,,)

|2 [ = |

Hom g (m;'c'*7 Vp) ®c Hompg (m;'c', Vp*) Tron Agc’l (m<*c)K L} C

(8.11)
As (p1,V,,) € R(K) is irreducible by assumption 8.8 (1), it is simple by Schur’s lemma. Thus
we have Endg (V,,) = C and the (normalized) trace Tr is an isomorphism. Consequently, the

invariant endomorphism
AF(77 A 77*) S EndU(Vpl) >~ Endg (Vm) ,

must be a constant multiple of the identity.
In terms of the K&hler structure, the pointwise norm of 7 is given by % Tr Ap(n A n*). Hence

we have
cL~

Ly 1 YN ~
Ae(@AT7) = — (Ar(n A7)~ = — 1, ¢>0.
Since the generator 7 is determined up to a complex constant & € C* and

ApEnn(En) ) =& Ar(nanT) ,

we may calibrate 1 by ¢ and ¢ by ¢!, with | £ |* = ¢*! to have the desired property. The
second equation is proved likewise.

O

By 8.8 (1), the bundles V,, — F' = U/K have U—equivariant Hermitian-Einstein metrics k;,

unique up to a positive constant. For the extension k; of &; to V,, — M, we obtain the following
result from Proposition 8.7 and Lemma 8.10 (4).

Proposition 8.11. The holomorphic bundles 9% — M have Hermitian—Finstein structures

LAY =21 1, (8.12)
with constant given by
- Hop;
flpi = By, = (8.13)

We may now complete the proof of the main theorem as follows.

We use Lemma 8.10 to compute A, of the following forms :
BAF =100 ¢*) @ (N A7) € AV (M, Ende(mWh) @c Endc(Vy,))

and

FEAB=7"(¢"0d) @ (" AR) € AV (M, Ende(m™Wy) @c Endc(V,,)) -
Thus we get

—t A (BAB )= =17 (pod") QA (NAT) = % (o™ @1, .

Similarly, using Tr(n* A ') = — Tr(n' A n*) and the irreducibility of (ps,V,,), we get

LA (BN B) = % (¥ o) @1, .
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Substituting the previous formulas into (8.8) , and using (8.10) , (8.12) and Lemma 8.10 , we
see that the Hermitian—Einstein condition on h on (M,w,) is now equivalent to

(T*(L AXFhl—I_%(b(b*—l_QﬂﬂmIWl)@Tm 0 _ )
0 (0 AxFn, — 2 0" o+ 2m,,Iw,) @1,

_ Ig, 0

=27 ( 0 152)

:277/\(11@9101 0 )
0 Lol,

and hence equivalent to the system of equations on X :
1 N -
t AxFp, + p pod" +2m(fi,, — A) Iy, =0,

1 _
LAXFhQ—; T o+ 2m(fip, — A) I, = 0.

O
The vortex parameters 7;(0) are not independent. Recall that they are given by
r= (o) = pe(o) — — py,
The following Lemma is immediate from the definition.
Lemma 8.12. ) "
m1(0) = 72(0) = = — (o, = pp) = = = (8.14)
In the following, we use the additivity of the degree under holomorphic extensions
deg, (£) = deg, (&1) + deg, (&)
and the additivity of the slope under tensor products
HegeF = e + HF -
Lemma 8.13. Set s; = rank(V,,) and r; = rank(W;) . Then
risi71(0) + resama(0) = sy degy (W) + sy deg x (W)
=T151 Bw, T 7282 Bw,
= (ris1 4 r282) fhs; Wi@Bsa W, - (8.15)
Proof. Observe that
e, (£:) = s deg, (7 Wy) + rydeg, (V,)
Since rank(&) = s1r1 + s2r2, it follows that
r18171 + rosamy = deg, (£) — (r1deg, (V,,) + radeg, (V,,))
= (deg, (&1) — rideg, (V,,)) + (deg, (€2) — r2deg, (V,))
= sy deg, (7" W) + sy deg, (7" Wy)
= sy degx (W1) + sy degx (W2) .
O

As an immediate consequence of (8.14) and (8.15) , we obtain explicit formulas for 7;(o) and
pe(o) -

282 Hp
e — e 8.16
T1(0) = Hs, W, @ W T (8.16)
r181 Hp
s _ s e 8.17
T2(0) Hoawiganw, + o (8.17)
1
pe(0) = s Widsa We T — Hr1V,, 812V, - (8.18)
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9. REDUCTION TO THE COUPLED VORTEX EQUATIONS: THE PROJECTIVE CASE

In this section we take F' = CP! and recall from (6.4) the flat projective bundle
CP' & M 2~ X x5 CP' =5 X,

with structure group U = Holy,, (CPY) =2 PU(I+ 1) =2 U(I+ 1)/ U(1) and K = U(l) .
Theorem 9.1. Theorem 8.9 holds for py =1 and V, = Q}(CP!) .

Remark 9.2. Thecase[=1, p;y =1 and V, = K1 was established in [11], Theorem 5.1. In
this case, we could normalize 7 so that n An* =t wp and Ap(nAN*) =1 .

Theorem 9.1 is actually a special case of a more general result.

Theorem 9.3. Let F < M = X xr F 5 X be a flat holomorphic fiber bundle of compact
Kdhler manifolds where the fiber F = U/K is a compact, irreducible symmetric Kédhler manifold.
Then Theorem 8.9 holds for py =1, V,, = TV(F) and V, =V = Q'(F) .

Proof. We have to verify the conditions 8.8 (1) to (3). Referring to (8.11) , we note that
T1O(F) is associated to the irreducible K-representation pg : K — U(md) and therefore
(1) is satisfied. By a result of Matsushima [38], the invariant Hermitian metric &k on T'(F) is
Ké&hler-Einstein, that is (cf. [2] Ch. XI)

_ _ 5 1,0 _ _ 5
p=1t TrF,= 5] WF » Or a(T (1) = 5 [Tr Fy] = o [wr],

where s > 0 is the (constant) scalar curvature of F. Therefore deg(T'°(F)) = = >

deg(Q}) < 0 and (2) is satisfied. (3) follows from (3.14) and H%'(F, Q' (F)) = HY(F)
ARN(mz)K = C . In this case, we may use diagram (8.11) and the fact that V, = m&*, to choose
the generator 7 as the canonical isomorphism 7 : mé = m;'c'

Hermitian metric £ on m . The identities

3

R =

* determined by the invariant

~2wp(&f, &) = k&, &) = (& (&)
for & € m and €+ = % (€ F ¢ JE), may be reformulated as

N 2t
Tf(nAn)ZTwm

and therefore Tr A(n An*) = A Tr(nAn*) =2 . This gives an explicit verification of part (5)
of Lemma 8.10 . U

Corollary 9.4.

s
dega(Q}\/[/X) = dega(Qé\/[/X) = deg, (Knyx) = — 1
T o
Proof. This follows from the above formula for ¢; (71 (F)) and Proposition 8.7 . a

In the following Lemmas we compute the corresponding degree invariants for F' = CP* .
Proposition 9.5. On M = X x4 CP! we have the projective invariant on M

[+1

g

degU(Q}\/[/X) = degU(Qé\/[/X) = degcr(ICM/X) = -
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Proof. Recall from (6.20) that

Karyx 2 Kep 2 O(—1—1)5g; -

The result follows from Proposition 8.7 , noting that, relative to the Fubini-Study metric on

CP!, we have s = 47 ({ + 1) (cf. [2] loc. cit.) and therefore deg (Kgp) = —({ +1) . a
To consider linear invariants of M = P(FE) for E projectively flat, we set
e =deg, (7" E) =degx(F) =degx (L), L =det(F) .
Proposition 9.6. On M = P(F) we have linear invariants, for k € Z, given by

€

[+1

Q|+

deg, (O (k) =k ( ) -

Proof. Recall from (6.14) that
Om(—1-1)=7"L &c Kmyx

from which we obtain

« [+1 1 e
dega(oM(_l_l)):dega(ﬂ- ’C)—I_degcr(ICM/X):e_ T:_(l+1) (;_l_l_l ) .
Using deg, (Oar(k)) = k deg,(Oa(1)) , for k € Z, the result follows. O

Remark 9.7. Note that for e # 0, the GL({ 4 1, C)—equivariant tautological bundle Os(1) is
not associated to the projective flat structure of M = P(F) and Proposition 8.7 does not apply.

Finally we determine the condition under which the Kihler form w, on M satisfies the Hodge
condition, that is [w,] = ¢1 (L), for some holomorphic line bundle £ — M, provided the same is
true for (X,wx), that is [wx] =1 (Lx) .

The problem here is that the extension @p does not necessarily represent an integral coho-
mology class, even if wp does. Using (3.14) , we represent all cohomology classes on CP! by

PU(l + 1)-invariant forms. If wy is the Ké&hler form representing the canonical generator in

HY(CP!,Z) = Z, the Fubini-Study metric is determined by wp = [ wg (cf. [2] loc. cit.). Then
the integral class ¢; (K7 ) of type (1,1) is represented by av = (I4+ 1) wo = B wp . As Kpt s
PU-equivariant, we may use the argument in the proof of Proposition 8.7 to see that the Chern
class ¢; (IC]*VI/X) of the dual relative canonical bundle K5/, = K, is represented by the form
& = H'Tl wp . This shows in particular that ©Op represents a rational class. For any positive

integer k£ we have then

er(mLx @c (K x)") = [Frox]+k [a) = [Fox] + k — [er]

Comparison with (8.1) shows that we have proved the following result.

Theorem 9.8. On M = X X & CP', the Kdhler form We, = T wx + o) Wp satisfies the Hodge
condition [w,,| = c1(Ly) for Ly = 7*Lx Q¢ (IC]*V[/X)k and o, = k H'Tl, for any k € Z*. In
particular, the flat projective fiber space (M,w,,) is algebraic.

By the same argument it follows that for any rational o € QV, there exists a smallest positive

integer k, such that k, w, satisfies the Hodge condition. We also note that the above argument
holds in particular if M = P(F) — X, for E projectively flat.
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10. A PRIORI ESTIMATES FOR SOLUTIONS AND STABILITY

So far, the parameter ¢ appears as a fiberwise scaling parameter for the Kihler form w, on the
total space M and solutions of the Hermitian—Einstein equation are with respect to this Kahler
structure. On the other hand, ¢ appears in the coupled vortex equations via the parameters
7i(0) . We will see that the existence of solutions implies strong a priori restrictions on the range
of o, respectively 7; .

We return now to the general case where F' = U/K is a compact symmetric Kdhler manifold
and to the context of § 8 . There we considered holomorphic extensions of the type

Ey : 0 =& —E&—E& —0,
with & = 7*W; Q¢ 1~/pi , pi € R(K) . Define the deficiency of the extension E, by
Apile) = (@) = pe, (o) -
The vortex parameters are then given by
Ti(0) = pw, + A, (o) . (10.1)
In terms of the deficiencies, the coupled vortex equations (8.6) can now be written as

1 .
LAXFhl — 27 Hw, Iy\;1 =27 A,Ul(o') IW1 - ; (bO(b ’

1 %
¢t Ax Fr, — 27 pw, Iy, =27 Apz(o) Iy, + p P o . (10.2)

A straightforward calculation, using (8.14) and (8.15) , shows that

282 Hp
At (o) = — . Ko 10.
p (o) T (nw + 0)7 (10.3)
d
N Apa(o) = + — (i + £2) (10.4)
r181 + 1289 g

The data for the vortex equation are encoded in the fundamental notion from [9] :

Definition 10.1. A holomorphic triple T = (W1, Ws, ¢) is given by two holomorphic vector
bundles W; — X and a holomorphic homomorphism ¢ : Wy — Wi, that is ¢ € HO(X, W),
where W = Home (Ws, Wy) .

Now if the holomorphic triple T admits a solution of the vortex equations for a given value of
o, the corresponding Hermitian—FEinstein equation on & — M relative to w,, admits a solution
as described in Theorem 8.9 . The Hitchin—Kobayashi correspondence implies that & must
be (poly—) stable, that is Agy(o) > 0 and Aps(o) < 0 in the stable case. In the degenerate,
polystable case, where the extension E; is split and hence ¢ = 0, we have Ay (0) = Apg (o) =0.
Therefore we must have

MW+&<07
g

with a strict inequality in the stable case. We will see that gy > 0 in the presence of solutions
for a non—degenerate triple T" and therefore

0<opuw < —p, . (10.5)

Thus the bundle V, must have negative degree, which is consistent with our assumption (2)
in 8.8 .
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Theorem 10.2. If the Hermitian—FEinstein equation on £ — M relative to w, admits an in-
variant solution as in Theorem 8.9 | the corresponding solution of the coupled o—vortex equations
Jor the holomorphic triple T = (Wy, Wy, ¢) satisfies the L*—formulas for ¢ :

(1)

1
- | ¢ |1> =71(0) = pw, = Apy (o) ;

(2)

1 *
py— | ¢ |I> = pw, — ma(0) = =Aps (o) .

Proof. Taking fX Tr of the first vortex equation and dividing by 27ry Vol(X) gives

1
o || & ||2 =T1(0) — pw, -

Here the normalized L*-norm || ¢ ||* is defined by

1 *
oI = L Vol(X) /X Tr(¢o ¢™)dvolx ,

where ¢* is taken with respect to the metrics h; on W; . This establishes (1). The other equality
is proved in the same way, using the second vortex equation. O

In order to simplify formulas, we assume now that s; = sy , where s; = rank(V,,) .

Theorem 10.3. Stable case (Apqy > 0)

If the Hermitian—Finstein equation on & — M relative to w, admits an invariant solution as
in Theorem 8.9 , the corresponding solution of the coupled o—vortex equations for the holomor-
phic triple T'= Wy, Ws, ¢) satisfies the following a priori estimates.

(1)
Hw, < T1 (U) y T2 (U) < pwy, 3
(2) }
(1 =m)(0) == = > pw = pw, = w, 2 0.

In the case of unequal rank (r1 # r3)

(3)

T2
TI(U)SMW1‘|‘WHW7
™
-1 <
v, |r1—r2|“W—T2(U)’
and hence
pw = fiw, — fw, > 0
(4)
0<01§U<Uoz—:—p7
w
where
oy = — Ho r1it T L
w |T‘1—T‘2| 7
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In the case of equal rank (r =ry =rqy) :

(5) degx (W1) > degx (W2), hence
Hw = fbw, — Uw, 20 .

If ¢ is an isomorphism, then the W; are polystable bundles.

(6)

0<U<00:—&;00 oo, for pyw =0 ;
Hw

(7)
(rw + - =) >0,

N | —

Apy(0) = — Aps(o) =

Thus there is a gap of length uyy > 0 between 7 and 75 :
T2 (U) < pw, < Hw, < T1 (U) :

Proof. Statement (1) follows from Theorem 10.2 . (2) follows from (8.14) , (1) and (3), (5)
below. (3) follows from [9] , Proposition 3.18. (4) follows from (1) and (3). (5) follows from [9] ,
Corollary 3.20 and Lemma 4.6 . (6) and (7) follow from (10.3) and (10.4) . a

Theorem 10.4. For the degenerate, polystable case (Apy = 0), we have :

(1)
p=0,EE=EDE, pe = e, = e, -

(2) We have 1; = pyw, and the vortex equations degenerate to the uncoupled Hermitian—

FEinstein equations on each W; .
(3) If the bundles W; are polystable, the Hermitian—FEinstein equation on & — M relative to

w, admits an invariant solution as in Theorem 8.9 exactly for

Ho

pw >0, 0 =09 =— .
Hw

Proof. This follows immediately from Theorem 10.2 and formulas (10.2) , (10.3) .

11. APPENDIX : OBSTRUCTIONS FOR PROJECTIVELY FLAT HOLOMORPHIC BUNDLES

The topology of projective bundles is derived from the commutative diagram of groups (6.2) .
At the level of classifying spaces this gives rise to the following diagram.

H(BSU(I+1),Q) <2~ H*(BPSU(l+1),Q)

(
T I
T

IR

+1),Q) «ZX HY(BPU(+1),Q) (11.1)

1

Bj* _ _
Q[Cl,... 7Cl+1] # Q[CQ7... 7Cl+1]

H~>(BU

IR

Here we choose the rational generators ¢, & > 2 so that they correspond to the ordinary Chern
classes of SU(l+ 1), that is Bj5(cx) = ¢x and of course we have Big(cy) = ¢x, Big(c1) =0 .
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The image of Bj* consists of those rational characteristic classes of complex vector bundles
FE which are projective invariants. Computing on the maximal tori, we obtain the formulas

kl1

Bj*(c) = cx + (z; 1) (1= k) {=5y 4 ;::2 (z; 1_;0‘) co (SRl (11.9)

[+1 [+1

and

kl1
= () e e+ X (1) e R

If F is projectively flat, that is
CP' + P(E)~ X x4 CP' T X |

with holonomy & : I' - PGL(l 4 1,C), it follows from Chern-Weil theory (cf. [34]) that the
projective classes ¢;(FP) = 0 and therefore from (11.3)

e = (TF) 1

(4] (E)

Ct(E) = {1 +1 l—|——1}l+1 .

Consider a (holomorphic) projective bundle over the compact Kahler manifold X with struc-

ture group G = PGL(l +1,C) :

CP'—< M =P xpg, CP' 5 X .
In order to simplify the exposition, we assume now that H*(X,Z) is torsionfree, and that
X ~ Br; in which case H*(I'; A) = H*(X, A) for any coefficient group A .

The obstruction for the linearization of a projective fiber bundle is given by an element
ogL(P) € H*(X,0%) . For ogr(P) = 0, that is M = P(FE), the vector bundle F is determined
up to F ®@c M, where M is a holomorphic line bundle on X. The relative obstruction for
M = P(F) with £ unimodular, that is £ = det(£) holomorphically trivial, is given by 057, (P) =
r e (L) € H*(X,Z41) - In fact, 05, (P) = 0 means that the determinant bundle is of the form

L = M"*! and thus P(E) = P(F @c M*), with E ©c M* unimodular.
A similar discussion applies if (6.1) is flat, that is

CP' & M 2~ X x5 CP' =5 X,

with holonomy & : ' = PGL(I+1,C) . In this case the relative obstruction for M = P(F) with
FE holomorphically flat is given by

061 (&) € ker(H*(I',C*) — H*(X, 0%)) ,
and the relative obstruction for unimodular flatness of F is given by
0s1,(&) € ker(H*(T', Zyy1) — H* (X, Z11)) -
The obstruction oz, (P) = 0, that is M = P(L), if and only if
os.(P)=rci (L), L=det(F),
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where E'is determined up to F @¢ M, for holomorphic line bundles M on X . If ogz(P) =0,
then
osr.(P) =0 if and only if ¢;(£) is divisible by [ 41 .

The obstruction oGz (&) = 0, that is M = P (L) with £ flat, if and only if £®¢ M is unimodular
(flat), for some M € Pico(X) .

These four obstructions are related by the commutative diagram
H*(I',C*) —— H*(X,0%)
T T (11.4)
HX(D, Zyy) ——— HA2(X, Zyyy)
Thus we have the following relations :

ogL(P) = 1. 050(P)
OGL(P)Z-H =0 )

oGL(d) =i 05(&) , ix injective
OGL(d)l+1 =0 s
OGL(d) = OSL(d) = OSL(P) .

The above obstructions are defined by the ‘exact’ sequences associated to diagram (6.2), using
the classification of (flat) holomorphic principal bundles

HY(X,0%) —2 HY(X,0x(GL)) —— H'Y(X,0x(PGL)) -2 H2(X,0%)

1 1 1 Lo

HY(I',C*) —2  HYI',GL) —¥— HYI,PGL) %Ly H*(I,CX)

HY (X, Zip1) —22 HY(X,0x(SL)) —2s HY(X,0x(PSL)) —2£ H2(X,Z41)
Tg T T Tg (11.6)

HY(T,Ziyy) —25  HY,SL) —2—  HYI,PSL) —%5 HX(T,Z41)

as well as the classification of holomorphic line bundles
0 — Pico(X) = HY(X, 0x) /. H (X,Z) — H'(X,0%) =% HY (X,Z) = 0 . (11.7)
Combining the exact diagrams

VAR

exp

0 —— Z s C s C° —— 0
T1+1 T1+1 T(.)’+1
0 —— 7Z L 2 0 — 0
Zijq

33



Zijq

T

0 —— Z —— Ox —F5 05 —— 0

T1+1 T1+1 T(.)’+1
0 —— Z —— Ox —25 05 —— 0

Zijq

via their corresponding exact cohomology sequences, one obtains the following commutative
diagram with exact columns :

H*(I',CX) —— H*(X,0}) —— H3X,Z)
()4 ()4 41
HY(I,C*) —— HX(X,0%) —— H3X,Z)

v iy g

llll
T
e

H* (T, Zi11) yLigr) —— H? (X, Zyy)

=0 8 r (11.8)
HY(,C*) —— H'(X,0%) —— H*X,Z)

()t ()L*? 141

HYT,C*) —— HYX,0%) —2— H¥X,Z)

. . 8=0

HYI, Ziyy) —— HYX,Zip) —— HY(X, Ziy)

The listed properties of the obstructions are obtained by diagram chasing in (11.5) to (11.8) .

Example 11.1. Ruled surfaces :
Consider a ruled surface, that is a flat projective fiber bundle

CP'< M =X x4 CP' =5 X,

with holonomy & : I' - PGL(2,C), where X is a Riemann surface of genus ¢ > 1 . Observe
that X ~ Br and ['/[I",I] = Z*9 . In this case, diagram (11.8) has the form
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Zyyw, —— Ziyq —— Zi
0 16} r
(C)? —— HY(X,0%) —— Z (11.9)
() ()LFt I+1

c1

(C)* —— HY(X,0%) —— 7

i i B#=0

(Zi41)? ——  (Z141)*? —— (Zip)*?

The obstruction ogr(P) for linearity vanishes, since H*(X,0%) = H*(X,Z) = 0 . Thus
M =P(F)is given by a projectively flat holomorphic vector bundle F of rank2 . The remaining
obstructions are all identical. They are given by

osp(P) = os0(&) =7 ¢y(det B) € H*(X,Z) 2 Z, ,

and can be identified with the Stiefel-Whitney class wy(P) . Thus we know that the ruled
surface M = X x4 CP! is always linear, that is M = P(F) , for a (not necessarily unique)
projectively flat holomorphic vector bundle F of rank 2 .

The following properties are then equivalent:

(1) Eis of degree 0, that is ¢; (&) = 0 or det(£) € Pico(X) ;

(2) det(F) is trivial as a smooth complex line bundle ;

(3) E®cM is unimodular, that is det(E @c M) = det(E) @¢ M? is holomorphically trivial,
for some line bundle M € Picy(X) ;

(4) F ®c M is a flat holomorphic bundle with holonomy « : I' — SL(2,C), for some line
bundle M € Picy(X) ;

(5) Eis a flat holomorphic bundle with holonomy o : I' = GL(2,C) ;

(6) E admits a holomorphic connection.

In fact, the equivalence of (1) to (5) follows from § 9 and the diagrams above. The equivalence
of (5) and (6) follows from the vanishing condition for the Atiyah obstruction [1] :

a(E) = [Qg'] € HYY(X, Ende(E)) |

since the curvature of a connection V of type (1,0) is given by le, Q%O being automatically
zero.

We note that this remains valid for flat projective bundles over X with fiber CP!, [ > 1 .
Moreover, the flat holomorphic bundles with (irreducible) isometric holonomy « : I' = SU(2) ,
correspond by the theorem of Narasimhan—Seshadri [40] to the semi-stable (stable) holomorphic
bundles of degree 0 and rank 2 .
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