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Abstract

Using a special version of the PCT-theorem which was found by Bisognano

and Wichmann for finite-component Wightman fields, a proof of the spin-

statistics theorem is given within the algebraic framework for quantum

field theory. The proof covers massive bosons and fermions with ordinary

as well as with parastatistics and, in contrast to earlier proofs, also works

in 1+2 spacetime dimensions.

Two uniqueness theorems concerning the Bisognano-Wichmann sym-

metries whose P1CT-part is used in the discussion of the spin-statistics the-
orem are presented for the algebraic setting. A derivation of the Bisognano-

Wichmann result from standard assumptions of the algebraic setting is

still lacking. The uniqueness theorems show that the operators which were

found to implement the P1CT-symmetry and the Lorentz boosts in the
Bisognano-Wichmann setting cannot implement any other symmetry on

a local net of observables than precisely the one found by Bisognano and

Wichmann.

The analysis uses the notions of localization regions not only for alge-

bras of observables, but also for single local observables. It is shown how

these regions can be defined, and for the localization region of a single local

observable it is investigated under what assumptions observables localized

in spacelike separated region commute.
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Zusammenfassung

Es wird ein Beweis des Spin-Statistik-Theorems gegeben, der auf einer

speziellen Form der PCT-Symmetrie beruht. Diese Symmetrie wurde von

Bisognano und Wichmann für alle endlichkomponentigen Wightmanfelder

nachgewiesen. Der Beweis des Spin-Statistik-Theorems deckt alle mas-

siven Bosonen und Fermionen mit gewöhnlicher und mit Parastatistik ab

und gilt — im Gegensatz zu früheren Beweisen des Satzes — auch in 1+2

Raumzeitdimensionen.

Es werden zei Eindeutigkeitssätze über die von Bisognano und Wich-

mann gefundenen Symmetrien für den algebraischen Rahmen der Quan-

tenfeldtheorie bewiesen. Eine Herleitung des Bisognano-Wichmann-Resul-

tates aus Standardannahmen dieses Zugangs gibt es bisher noch nicht. Die

beiden Eindeutigkeitssätze besagen, daß die Operatoren, die im Bisognano-

Wichmann-Fall die Lorentz-Boosts bzw. die P1CT-Symmetrie darstellen,
keine andere als eben diese Symmetriesn auf einem lokalen Observablen-

netz implementieren können.

Diese Untersuchung benutzt den Begriff des Lokalisationsgebietes so-

wohl für Algebren von Observablen als auch für einzelne lokale Observ-

able. Es wird gezeigt, wie solche Lokalisationsgebiete definiert werden kön-

nen, und für das lokalisationsgebiet einer lokalen Observablen wird unter-

sucht, unter welchen Annahmen raumartig getrennt lokalisierte Observ-

able miteinander vertauschen.
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Chapter 1

Introduction

The spin-statistics theorem due to Fierz and Pauli [43, 66] is one of the

great successes of general quantum field theory. A proof for finite-com-

ponent Wightman fields can be found in the monograph by Streater and

Wightman [72]. The Wightman framework covers most of the known ex-

amples of quantum field theories. But one of the basic structures the spin-

statistics theorem deals with, the Bose-Fermi alternative, has to be as-

sumed as an axiom in the Wightman framework.

In the algebraic approach to quantum field theory, which is due to Haag

and Kastler [52, 51], the Bose-Fermi alternative is a result, not an axiom.

The input of the theory is a net A of C�-algebras A(O) of bounded linear op-
erators in a Hilbert space which are associated with every open, bounded

space-time region O � R1+s in such a way that operators belonging to
spacelike separated regions commute (locality). The basic structures of

special classes of charged fields — including the possible particle statistics

— can be recovered from the mere observable input [38, 39, 35].

A field system consisting of von Neumann algebras which generates,

in particular, all massive parabosonic and parafermionic sectors from the

vacuum and exhibits normal commutation relations has been constructed

by Doplicher and Roberts [41] for every local net of observables satisfying

the standard assumptions, and such a field system is unique up to unitary

equivalence.

For the algebraic framework, the spin-statistics theorem in (1+3)-di-

mensional spacetime has been proven in [39] for charges which are localiz-

able in bounded spacetime regions and in [33] for charges which are local-

izable in open convex cones in R1+s extended to spacelike infinity (space-
like cones, see the definition in chapter 2); such charges appear in purely

massive theories [35]. All these proofs use properties of the irreducible rep-
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2 1. Introduction

resentations of the Poincaré group which heavily depend on the spacetime

dimension. Therefore these arguments do not apply to lower dimensions.

In the most general case in lower dimensions, particles violating the

familiar Bose-Fermi alternative can occur. The spin of these particles no

longer needs to be integer or half-integer, it may be any real number. These

particles are expected to play a role in the theory of the fractional quantum

Hall effect [71]. In 1+2 dimensions, however, the rotation group is the circle,

and the universal covering of the circle is of infinite order. For this reason,

the familiar spinor structure does not describe the irreducible representa-

tions of the Poincaré group in 1+2 dimensions and of its universal covering.

This makes it interesting to prove the spin-statistics theoremwithoutmak-

ing use of this structure.

In Chapter 2, such a proof will be given for massive (para-) bosonic

and fermionic sectors. A first version of the proof already appeared in [57],

a more detailed version has been published in [58]. The result includes

parabosonic and parafermionic charges localizable in spacelike cones. The

proof works for theories of local observables in at least 1+2 dimensions

which — in addition to a couple of standard properties — exhibit a special

form of PCT-symmetry.

This symmetry is exhibited by every finite-component Wightman field�, as Bisognano andWichmann already showed in the seventies [8, 9]. They
considered the field operators �(f) associated with test functions f with
support in the wedge region W1 := fx 2 R1+s : x1 > jx0jg. These opera-
tors generate a complex involutive algebra R(W1). By the Reeh-Schlieder
theorem, applying the operators of this algebra to the vacuum generates

a dense subspace of the Hilbert space of the field system. On this space

one defines the antilinear operator R
 7! R�
, R 2 R(W1). This operator
is closable, and its closure, the Tomita operator SW1 , has a unique polar
decomposition SW1 = JW1�1=2W1 into an antiunitary operator JW1 called the
modular conjugation, and a positive operator �1=2W1 which is the square
root of themodular operator �W1 (actually, �1=2W1 is the modulus of SW1).
Bisognano andWichmann showed that JW1 implements a P1CT-transforma-
tion on the field, i.e., a reflection in the 0- and the 1-direction together

with a charge conjugation (modular P1CT-symmetry), whereas the uni-
tary group �itW1 , t 2 R, themodular group of the setting, implements the
Lorentz-boosts in the 1-direction (modular Lorentz symmetry).

In chapter 2, modular P1CT-symmetry is assumed, whereas the modu-
lar group is free to behave or not to behave like in the Bisognano-Wichmann

setting.



3

The modular objects considered bby Bisognano and Wichmann are also

well-defined in algebraic quantum field theory. At present, however, a re-

sult like the Bisognano-Wichmann theorem is not known for this frame-

work.

As an important step towards an appropriate generalization, Borchers

recently showed that for every local net of observables which is covariant

under a representation of the translation group satisfying the spectrum

condition, the operators JW1 and �itW1 , t 2 R, commute with the represen-
tation of the translation group like a P1CT-operator and Lorentz-boosts,
respectively [16]. He concluded that in 1+1 dimensions, a local extension of

the local net exists which exhibits the Bisognano-Wichmann symmetries.

For the higher-dimensional case, such a general result is not known.

But using the commutation relations found by Borchers, one can show that

as soon as JW1 or �itW1 , t 2 R, acts — in a most general sense — geomet-
rically on the net of observables, it implements Lorentz boost or the P1CT-
symmetry, respectively. Two versions of this statement have been found

so far; they are discussed in Chapter 4. In both cases it is assumed that

the modular conjugation or group under consideration acts geometrically

in a very general sense, and it is concluded that it implements, like in the

Bisognano-Wichmann setting, a boost or a P1CT-operator, respectively.
In the first uniqueness theorem it will be assumed that under the ad-

joint action of JW1 or �itW1 , all algebras associated with certain bounded
regions in Minkowski space are mapped onto algebras associated with ar-

bitrary open regions elsewhere in Minkowski space. It is due to the large

impact of Borchers’ commutation relations that it is, a priori, not even nec-

essary to assume that the latter region is associated with the former by

some point transformation from R1+s to R1+s. The first uniqueness theo-
rem for modular symmetries states that as soon as JW1 or �itW1 , t 2 R,
behaves this way, it behaves like in the Bisognano-Wichmann case. A pre-

liminary version of this result occurred in [59, 57], but applying the double

cone theorem due to Borchers and Vladimirov in a way proposed by Trebels

[78], a last ambiguity left in the earlier version could be removed.

In the second uniqueness theorem, only the modular group �itW1 , t 2 R,
is considered. For a given local observable A, it is assumed that for small t,
the operator�itW1A��itW1 =: At is a local observable and that the localization
region of this observable depends continuously on t. The second unique-
ness theorem then states that for these small t the localization region ofAt develops like under the action of a Lorentz boost, as in the Bisognano-
Wichmann setting.
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The two uniqueness theorems play different roles in the analysis of

modular symmetries: the first one investigates which net symmetries can

be implemented by the Bisognano-Wichmannmodular objects, whereas the

second one rather may demonstrate that in order not to implement a sym-

metry, the modular group must act in an ’extremely non-geometric or dis-

continuous’ way.

In both uniqueness theorems, the localization of algebras and observ-

ables plays a fundamental role not only for the proof, but even for the state-

ment of the theorems. These notions are introduced in Chapter 3. The

proof that the prescriptions considered there yield unique and nonempty

regions is based on a classical result due to Landau which states that al-

gebras associated with two double cones with disjoint closures are disjoint

up to the multiples of the identity. A generalization of this theorem will be

used; it will be proved as a main result of Chapter 3. It states that the alge-

bras associated with a finite family of wedge regions whose closures have

an empty common intersection do not have any local observables in com-

mon except for the multiples of the identity. This generalization implies

that the intersection of all closed wedge-shaped regions in whose algebras

a nontrivial local observable A is contained is a well-defined and nonempty
set.

This result, in turn, leads to the question which one of the localiza-

tion prescriptions considered may be considered the most favourable one,

and under which localzation prescriptions observables with spacelike sep-

arated localization regions commute. So far, no proof has been found that

this holds under the standard assumptions which were sufficient to asso-

ciate a nonempty localization region with every local observable.

It turns out that if the net of observables satisfies wedge duality (which,

by the Bisognano-Wichmann theorem, is a property of all finite-component

Wightman fields) those of the considered localization prescriptions which

yield the smallest localization regions do coincide. For this case, a necessary

and sufficient condition for locality of this localization prescription is that

for every finite family of wedges, the intersection of the algebras associated

with these wedges contains the same local observables as the algebra that

is associated with the intersection of the wedge regions by the dual net,

which is the maximal extension of the net A which satisfies locality.
A sufficient condition for locality of the localization prescription is strong

additivity for wedge regions, a technical assumption which is typically ful-

filled by nets arising from Wightman fields.



Chapter 2

A new approach to

Spin & Statistics

In this chapter the spin-statistics theorem for massive particles will be

proved within the setting of algebraic quantum field theory. The line of

argument is as follows: from modular P1CT-symmetry and a compactness
assumption discussed below, it will be derived that any rotation is repre-

sented by a product of two P1CT-operators (i.e. the P1CT-operators associ-
ated with respect to two (in general) distinct Lorentz frames). This result

and modular P1CT-symmetry will then be extended from the net of observ-
ables to the

gP"+-covariant Bose-Fermi field constructed by Doplicher and
Roberts. The straightforward computation of any rotation by 2� in the cor-
responding representation, finally, yields the Bose-Fermi operator of the

field; this implies the familiar spin-statistics connection.

The chapter is structured as follows: in Section 2.1 basic assumptions,

the notation and preliminaries are introduced, these include the founda-

tions of Tomita-Takesaki theory, the Buchholz-Fredenhagen sector analysis

and the Doplicher-Roberts field system based on this analysis. In Section

2.2 the results, which are the steps leading to the spin-statistics theorem,

are stated and proved. In Section 2.3 a couple of related results and open

problems are discussed.

5



6 2. A new approach to Spin & Statistics

2.1 Notation, preliminaries, and assumptions

For some integer s � 2, denote by R1+s the (1+s)-dimensional Minkowski
space, and let V+ be the (open) forward light cone. The class K of all double
cones, i.e., all open sets O of the formO := (a+ V+) \ (b� V+); a; b 2 R1+s;
is a convenient topological base ofR1+s. Each nonempty double cone is fixed
by two points, its upper and its lower apex, and the class K is invariant
under the action of the Poincaré group.

In the sequel, A will denote a local net of observables in an infinite-
dimensional Hilbert space H: it associates with every double cone O 2 K a
C�-algebra A(O)which consists of bounded operators inH and contains the
identity operator; this mapping is assumed to be isotonous, i.e. if O � P ,O; P 2 K, then A(O) � A(P ), and to satisfy locality, i.e., if O and P are
spacelike separated double cones and if A 2 A(O), B 2 A(P ), then AB =BA.
For an arbitrary region1 M � R1+s, define A(M) to be the C�-algebra

generated by the C�-algebras A(O), O 2 K, O � M . eA := A(R1+s) will be
the C�-algebra of quasilocal observables. Note that every state of the
normed, involutive algebra Aloc = SO2KA(O) of all local observables has
a unique continuous extension to a state of the C�-algebra eA.
For every regionM inR1+s,M 0 will denote the spacelike complement

of M , i.e., the set of all points in R1+s which are spacelike with respect to
all points of M , and for every algebra M of bounded operators in some

Hilbert space H,M0 will denote the algebra of all bounded operators which
commute with all elements of M. Using this notation, the above locality
assumption reads A(O) � A(O0)0 for all O 2 K.
Another kind of regions in Minkowski space that will be used are the

spacelike cones: for every open, salient, convex circular cone ~C inRs, i.e.,
every cone in Rs which is generated by some open "-ball around a vector~x 2 Rs with euclidean length k~xk2 > ", the causal completion ~C00 =: C of ~C
and its Poincaré transforms will be called spacelike cones; their set will be

denoted by S. Note that this definition, which is based on remarks in [33],
singles out the causally complete spacelike cones in the sense of [35], i.e.,

cones with C 00 = C.
1Any subset of a topological space may happen to be called a region in the sequel. Typ-

ically, the topological space will be some spacetime or a finite-dimensional complex vector

space. In the mathematical literature, the word ’region’ is sometimes used in a more re-

strictve way, but the use of the word is far from uniform.
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The last class of regions in Minkowski space which will be important in

this chapter is the class W of wedges, which contains all Poincaré trans-
forms of the region W1 := fx 2 R1+s : x1 > jx0jg
and the causal complements of these regions (which are closed wedges).

Assumptions, I:

The above local net A of local observables in the Hilbert spaceH will be assumed to be covariant under a strongly continuous
representation U in H of the universal covering gP"+ of the re-
stricted Poincaré group P"+, i.e., U(g)A(O)U(g)� = A(�(g)O) for
all g 2gP"+; where � : gP"+ ! P"+ denotes the covering map. U will
be assumed to have the following properties:

Spectrum condition: The joint spectrum of the four-momentum

operator generating the translations in U is contained in the clo-
sure of the forward light cone.

Existence and uniqueness of a cyclic vacuum vector: There

is an up to a phase unique unit vector 
 in H which is invariant
under U and cyclic with respect to (H; eA), i.e. eA
 = H; 
 will
be called the vacuum vector.

The Hilbert space H is separable.
That U is not only a representation ofgP"+, but even of P"+, will be obtained
as a result in Proposition 2.2.1.

The second and the third assumption imply that the identical represen-

tation (H; ideA) of eA is irreducible, i.e., eA00 = B(H), which means that the
vacuum state is pure (cf., e.g., Prop. 7.3.30 in [7]).

To see that the assumption of a unique vacuum vector does not mean a

loss of generality for the discussion of the spin-statistics theorem, some re-

marks about the analysis of massive particle representations are at hand.

The Gelfand-Naimark-Segal construction (GNS-construction) associates

with every state ! of eA in a unique way a Hilbert space H!, a vector 
!
and a representation �! of eA in H! which is cyclic with respect to the
vector 
!, i.e., �!(eA)
! is dense in H!. Since conversely, the linear func-
tional eA 3 A 7! h
!; �!(A)
!i is a state of the algebra eA, this establishes a
one-to-one correspondence between the states and the (unitary-equivalence

classes of) cyclic representations of eA.
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The spin-statistics theorem concerns states/representations associated

with massive particles. Following Buchholz and Fredenhagen [35], a repre-

sentation of eA will be called a massive single-particle representation
if it may be associated with a single massive particle species. In mathemat-

ical terms, such a representation is assumed to be a factor representation

in order to fix all charges, it is assumed to be translation covariant in order

to define energy and momentum, and the energy-momentum spectrum is

assumed to consist of the whole positive energy branch of a mass shell with

some massm > 0 and a subset of the region ’above’ (in the energy direction)
the positive energy mass shell of some higher massM > m.
Given such a representation (H� ; �), there is a state !0 on eA with the

property that �(U(x)AU(�x)) tends to !0(A)idH� in the weak operator topol-
ogy as x tends to spacelike infinity ([35], Theorem 3.4). By construction,
this state is unique and invariant under translations. The GNS-representa-

tion of this state is covariant under a representation U� of the translation
group which satisfies the spectrum condition, and its cyclic vector is invari-

ant under translations. Such a representation is called a vacuum repre-

sentation, the translation invariant state associated with it is called a

vacuum state.

If the massive single-particle representation (H�; �) is irreducible, it is
unitarily equivalent to its associated vacuum representation (Hvac� ; �vac)
when restricted to A(C 0) for any spacelike cone C ([35], Theorem 3.5), so
any irreducible massive single-particle representation may be regarded as

an excitation of a vacuum. In the sequel, only excitations of one given vac-

uum will be considered; therefore, it means no loss of generality to assume

that (Hvac� ; �vac) = (H; ideA). The set of all parabosonic and parafermionic
spacelike-cone excitations (in the above sense) of the vacuum will be called�S . This justifies the assumption of a unique vacuum vector2. Now consider
the algebra associated with the wedge W1 defined above. As a weakened
form of the Reeh-Schlieder theorem it can be shown that 
 is cyclic with
respect to the von Neumann algebra (H;A(W1)00) ([27], p. 279), and using a
standard argument (see, e.g., Prop. 2.5.3 in [22]), one obtains from locality

that 
 is also separating with respect to (H;A(W1)00), i.e. if A 2 A(W1)00
and A
 = 0, then A = 0.

2In a theory where spontaneous symmetry breaking occurs, the vacuum state may be

degenerate. But since the spin-statistics theorem deals with a single particle rather than a

full gauge theory it occurs in, the discussion of the spin-statistics theorem can, without any

loss of generality, be confined to a minimal setting which contains precisely the massive

particle under investigation.
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A triple (H;M; �) consisting of a von Neumann algebra (H;M) and a
cyclic and separating vector � is called a standard von Neumann alge-
bra; such a triple is the setting of Tomita-Takesaki theory ([74], see also

[22, 51]): the antilinear operatorS0 : M� 3 A� 7! A�� 2M�
is closable, and its closure S, which is called the Tomita operator admits
a (unique) polar decomposition into an antiunitary operator J (its ’phase’)
and a positive operator�1=2 (its ’modulus’) defined on the domain of S such
that S = J�1=2:J satisfies J2 = idH and is called themodular conjugation, whereas � =(�1=2)2 is called the modular operator of the standard von Neumann
algebra (H;M; �). The unitary group (�it)t2Ris called themodular group
of (H;M; �).�,�it, t 2 R, and J , which we refer to as themodular objects
of the standard von Neumann algebra (H;M; �), leave � invariant.
The first main result of modular theory is the following theorem due to

Tomita and Takesaki [74]:

2.1.1 Theorem (Tomita, Takesaki)

Let (H;M; �) be a standard von Neumann algebra, let � be its
modular operator, and let J be its modular conjugation. Then�itM��it =M;JMJ =M0:

Two further basic facts from Tomita-Takesaki theory will be used below;

they are recalled here for the reader’s convenience:

2.1.2 Lemma

Let (H1;M1; �1) and (H2;M2; �2) be two standard von Neumann
algebras with modular objects �1, J1 and �2, J2, respectively,
and let V : H1 ! H2 be a unitary operator with VM1V � = M2
and V �1 = �2. Then we have V�1=21 V � = �1=22 and V J1V � = J2.

Proof. If S1 and S2 are the respective Tomita operators of (H1;M1;
1) and(H2;M2;
2), one has S2 = V S1V � = V J1V �V� 121 V �;
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and since the polar composition of a closed operator is unique, the state-

ment follows. �
2.1.3 Theorem (Takesaki, Winnink)

For every standard von Neumann algebra (H;M; �), the modular
automorphism group

�Ad(�it)�t2R is the unique one-parameter
group (�t)t2R of automorphisms of the von Neumann algebra(H;M)which satisfies the following conditions:
(i) for every A 2 M, the function R 3 t 7! �t(A) 2 M is a con-
tinuous function from R into the von Neumann algebra (H;M)
endowed with the strong operator topology;

(ii) (�t)t2R satisfies the KMS-condition (at the inverse tem-
perature � = 1) with respect to (H;M; �): for any A;B 2 M,
the function R 3 t 7! h�; A�t(B)�i may be extended to a contin-
uous function f on the complex strip �1 � Im z � 0 which is
analytic in the interior of this strip and satisfiesf(t � i) = h�; �t(B)A�i for all t 2 R:

Proof. See [74], Theorems 13.1 and 13.2. �
For every wedge W 2 W , the modular conjugation JA(W )00 and the modular
operator �A(W )00 of the standard von Neumann algebra (H;A(W )00;
) will
be shorthanded by JW and �W .
As mentioned above, Bisognano and Wichmann have shown that if A

arises from a finite-component Wightman field, JW1 and �itW1 , t 2 R, imple-
ment the P1CT-symmetry and the Lorentz boosts in the 1-direction, respec-
tively. That JW1 implements a P1CT-symmetry, will be assumed throughout
this chapter.

Assumption II:

The netAwill be assumed to satisfymodular P1CT-symmetry:JW1A(O)JW1 = A(jO) for all O 2 K;
where j denotes the P1T-reflection given byj(x0; x1; x2; : : :xs) := (�x0;�x1; x2; : : : ; xs):
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Note that due to
gP"+-covariance, this condition automatically holds in all

Lorentz frames as soon as it holds in one. What is assumed appears to

be P1T-symmetry rather than P1CT-symmetry. But it has been shown by
Guido and Longo that under this assumption, JW1 indeed implements the
correct charge conjugation [48]. The same authors have derived modular

P1CT-symmetry from modular Lorentz covariance [50]. This assumption,
which, evidently, is stronger than modular P1CT-symmetry, is not made
here. In 1+3 dimensions, a full PCT-operator may be constructed as a prod-

uct of such modular conjugations; in 1+2 dimensions, the corresponding

product yields a rotation and leaves charge and time direction invariant

(cf. also [65] for a discussion in the Wightman framework).

It follows from the Tomita-Takesaki theorem,
gP"+-covariance, and Lemma

2.1.2 that modular P1CT-symmetry implies wedge duality:A(W )00 = A(W 0)0 for all W 2 W :
This duality property is sufficient for the Doplicher-Roberts field construc-

tion discussed below.

Assumption III:

The group of internal symmetries of (H;A;
), i.e., the group
of all unitaries  in H such that 
 = 
 and A(O)� = A(O) for
all O 2 K, will be assumed to be compact in the strong operator
topology.

This property has been derived in [37] from assumptions concerning the

scattering theory of the system. Another sufficient condition is the distal

split property [40]. The distal split property, in turn, has been derived by

Buchholz and Wichmann from their so-called nuclearity condition, for

which they have given a thermodynamical justification [36].

On the other hand, the compactness of the internal symmetries implies

that all internal symmetries commute with all U(g), g 2gP"+, and that U is
the unique strongly continuous unitary representation of

gP"+ in H with re-
spect to which A is covariant and 
 is invariant [40, 24]. Streater has given
an example of a relativistic field theory [73] which violates the familiar

spin-statistics connection. The model is an infinite-component Wightman

field which is covariant under several unitary representations of
gP"+, and

for which, a fortiori, the above compactness assumption is violated.

Finally, the definitions and results of the Doplicher-Roberts field con-

struction performed in [41], which are used in the sequel, will be recalled
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for the reader’s convenience. We recall the general version of their result

which is based on the Buchholz-Fredenhagen analysis of massive single-

particle representations and gives an algebraic field-theoretic structure to

the analysis of the massive particle sectors.

2.1.4 Definition

Let H, A, U and 
 be as above, let H be a (not necessarily sep-
arable) Hilbert space, and let (F(C))C2S be an isotonous family
of von Neumann algebras. Let � be a faithful representation ofeA in H, and let G be a strongly compact group of unitaries in H.
The quadruple (H;F; �; G) is called an extended field system
with gauge symmetry— we shall simply say: a field— over(H;A; U;
) if the following conditions are satisfied:

(i) (H; �) contains (H; ideA) as a subrepresentation;
(ii) H is the subspace of all G-invariant vectors in H;
(iii) for every C 2 S, the maps Ad(),  2 G, act as
automorphisms on F(C), and �(A(C))00 is the algebra
of those elements of F(C) which are invariant under
all Ad(),  2 G, i.e.:�(A(C))00 = F(C)\G0 for all C 2 S;
(iv) F is irreducible andweakly additive:0@ [a2R1+sF(C + a)1A00 = B(H) for all C 2 S;
(v) F has the Reeh-Schlieder property for space-
like cones: F(C)
 = H for all C 2 S;
(vi) F is local with respect to the net (�(A(O)))O2K:F(C) � �(A(C 0))0 for all C 2 S:

In this case, F is called the field system, and G is called the
(global) gauge group3. A field system (H;F; �; G) is called nor-
mal if it satisfies the normal commutation relations, i.e., if

3Under standard assumptions, this gauge group can only include gauge transformations

of the first kind, since its elements commute with the unitaries representing the transla-

tions (see the discussion at the end of [31]). This does not mean any loss of generality, as

far as the discussion of the spin-statistics theorem is concerned, since, as remarked before,

it is sufficient to consider a framework which precisely contains a given massive particle.
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the gauge group contains an involution k such that with the no-
tations F� := 12(F � kFk�); F 2 F(C); C 2 S;
we have for any two spacelike separated cones C1 and C2:F+1 F+2 = F+2 F+1 ; F+1 F�2 = F�2 F+1 ; F�1 F�1 = �F�2 F�1
for all F1;2 2 F(C1;2): k is called a Bose-Fermi operator.

Using the separability of H, Doplicher and Roberts have shown that, given
any field (H;F; �; G) over (H;A; U;
), every irreducible subrepresentation
of (H; �) is contained in the class �S of spacelike-cone excitations of the
vacuum, as introduced above (Theorem 5.4 in [41], cf. also the remarks on

p. 19 in [35]), i.e., for some index set I , there is a family (��)�2I of irreducible
representations in �S such that � = L�2I ��. If the field is normal and k is
a Bose-Fermi operator of the field, then for every � 2 I , the restriction of
the Bose-Fermi operator k to H� coincides with the identity operator idH�
for every (para-)bosonic ��, while it coincides with �idH� for every (para-)
fermionic �� (Theorem 5.4 in [41]).
If (H;F; �;G) is a normal field over (H;A; U;
), the unitary operator

defined by V := 11 + i(idH + ik)
implements a twist of the field: the field system (H;F; �;G) over (H;A; U;
)
given by Ft(C) := V F(C)V �; C 2 S;
is local with respect to F, i.e. F(C) � Ft(C 0)0 for all C 2 S. Doplicher and
Roberts even established twisted duality, i.e.,Ft(C) = F(C 0)0 for all C 2 S;
see Theorem 5.4. in [41]. The same arguments show that wedge duality of

the net of observables implies twisted wedge duality of the field:Ft(W ) = F(W 0)0 for all W 2 W ;
where F(W ) := 0B@ [C2SC�W F(C)1CA00 :
Note that the phase 11+i of V has been chosen such that V leaves 
 invari-
ant; with this choice, V 2 = k.
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Given, conversely, (H;A; U;
) as assumed above, Doplicher and Roberts
have shown that there is an up to unitary equivalence unique normal field(H;F; �;G) over (H;A; U;
) such that each irreducible representation in�S is unitarily equivalent to a subrepresentation of (H; �) (Theorem 5.3
in [41]4). There also is, up to unitary equivalence, a unique normal field(H;F; �;G) over (H;A; U;
) such that (H; �) contains all irreducible gP"+-
covariant representations contained in the set �S and is, conversely, a
direct sum of such representations ([41], top of p. 98). There is a unique

strongly continuous unitary representation U� ofgP"+ in H withU�(g)�(A)U�(g)� = �(U(g)AU(g)�) for all g 2gP"+; A 2 eA
([41], pp. 98-101, cf. also Lemma 2.2. in [39]). The vacuum vector is invari-

ant under U� , and the field net F is covariant with respect to U� . Such a
field will be called a

gP"+-covariant (normal) field over (H;A; U;
).
It follows from property (v) in Definition 2.1.4 that 
 is cyclic and sep-

arating with respect to the von Neumann algebras (H;F(W )), W 2 W ,
4Note that the full fP"+-covariance is not needed at this stage; it would suffice to assume

translation covariance.

Furthermore, Doplicher and Roberts make an additional assumption they call property

B’. However, the following is sufficient:

Borchers property for spacelike cones:(H;A) is said to have the Borchers property for spacelike cones if, given
any two spacelike cones C1 and C2 with C1 � C2 which are chosen in such
a way that there is a third spacelike cone C� with C� � C 01 \ C2, we can
find for each nonzero projection E 2 A(C1)00 an isometry W 2 A(C2)00 such
thatWW � = E (and, trivially,W �W = idH, i.e., E and idH are equivalent inA(C2)00).

Noting that for any spacelike cone C, we have additivity: [a2R1+s A(C + a)!00 = eA00 = B(H);
and using the spectrum condition and irreducibility, the Borchers property for spacelike

cones can be proven applying the arguments from [14]. It is emphasized that Borchers

proves in [14] the corresponding result for double cones and therefore has to assume for

double cones the above additivity property.

Doplicher’s and Roberts’ property B’ is stronger: the same assumption as in the Borchers

property for spacelike cones is made for any two spacelike cones C1 and C2 with C1 � C2
even if there is no spacelike cone C� � C 01 \ C2 (this is, e.g., the case if C1 is a translate
of C2). However, in order to prove this stronger form of the Borchers property for spacelike
cones by means of the arguments taken from [14], one has to assume weak additivity for

double cones.
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whence the existence of a corresponding modular conjugation JF(W1) and
a modular group �F(W1) follows.
2.2 Results

The proof of the spin-statistics theorem (Corollary 2.2.5) will be based on a

couple of results which are interesting on their own. Proposition 2.2.1 and

Corollary 2.2.2 prove that rotations are represented by products of modular

conjugations associated with the algebras of two wedges, which is in the

spirit of the ancient result that every rotation in a two-dimensional plane

is a product of two reflections.

The adjoint action Ad(j) of j on P"+ has a unique lift to a group homo-
morphism of

gP"+ (cf. Section III.4 in [23]) which will be denoted by fAd(j).
A group homomorphism r : R!gP"+ which plays a role in the sequel is

constructed as follows: denote by exp(i�) the covering map � 7! exp(i�) fromR onto S1, and let � : S1 ! P"+ be the group homomorphism embedding S1
into P"+ as the group of rotations in the 1-2-plane. exp(i�) and � are con-
tinuous, so � � exp(i�) is a continuous curve in P"+. There is a unique lift of
this curve to a continuous curve r ingP"+ with r(0) = 1fP"+ (see, e.g., Theorem
III.3.3. in [23]); r is a group homomorphism of R intogP"+.
2.2.1 PropositionJW1U(g)JW1 = U(fAd(j)g) for all g 2gP"+.
Proof: The representation U and the strongly continuous unitary repre-
sentation UJ ofgP"+ defined byUJ(g) := JW1U(fAd(j)g)JW1; g 2gP"+;
implement the same spacetime transformations on the net A and leave
 invariant. As stated in the previous section, it follows from the strong
compactness of the group of internal symmetries that there can be at most

one such representation; this implies U = UJ . �
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2.2.2 Corollary (modular rotation symmetry)

For every � 2 [0; 2�], denote by W�1 the image of the wedge W1
under the rotation of angle � in the 1-2-plane. With r as above,
define R(�) := U(r(�)), � 2 R. ThenR(�) = JW�=21 JW1 for all � 2 R:
In particular, the representation U does not only realizegP"+-covariance,
but even P"+-covariance of the net:R(2�) = idH:

Proof: From Proposition 2.2.1, we getJW�=21 JW1 = R(�2 )JW1R(��2 )JW1 = R(�2 )R(�2)J2W1 = R(�):
In particular, R(2�) = JW�1 JW1 = J2W1 = idH;
in the second step we use that the modular conjugations of a standard von

Neumann algebra and its commutant coincide. �
The following lemma proves that �F(W1) and JF(W1) are extensions of JW1
and �W1 , respectively.
2.2.3 Lemma

For every field (H;F; �;G) over (H;A; U;
), we have
(i) �itF(W1)���H A ��itF(W1)���H = �itW1A��itW1 for all A 2 A(W1)00;
(ii) �itF(W1)���H = �itW1 ;
(iii) �1=2F(W1)���H\D(�1=2F(W1)) = �1=2W1 ;
(iv) JF(W1)���H = JW1 ;
(v) JF(W1) �(A) JF(W1) = �(JW1AJW1) for all A 2 eA:

Proof. It follows from Lemma 2.1.2 that �itF(W1) commutes with the ele-
ments of the gauge group G for all t 2 R. This implies that every such�itF(W1) maps the G-invariant vectors in H into G-invariant vectors, i.e.,�itF(W1)H = H because of property (ii) in Definition 2.1.4, and that its adjoint
action acts as an automorphism on the commutant of G. This – together
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with the Tomita-Takesaki theorem and the identity F(W1)\G0 = �(A(W1))00
following from property (iii) in Definition 2.1.4 – gives that Ad(�itF(W1)) acts
as an automorphism on �(A(W1))00.
Consider now the direct sum decomposition � = L�2I �� of � into irre-

ducible representations �� in �S . Since the wedge W1 is contained in the
spacelike complement of a spacelike cone (take any spacelike cone in W 01),
one knows from the definition of �S that for every ��, its restriction to the
algebra A(W1) is implemented by a unitary operator U� : H ! H�, so it has
a faithful extension �W1� to the algebra A(W1)00 which is weakly continuous
and which has the property that �W1� (A(W1)00) = �W1� (A(W1))00, so the direct
sum � =L� �� has a unique weakly continuous faithful extensionA(W1)00 3 A 7!M� �W1� (A) =: �W1(A):
By property (i) in Definition 2.1.4, the inverse of this faithful representa-

tion is given by�W1(A(W1)00) 3 B 7! ��1W1(B) = BjH 2 A(W1)00;
and since this map is weakly continuous, one obtains�W1(A(W )00) = �W1(A(W1))00:
One may now define a one-parameter group (�t)t2R of automorphisms of(H;A(W1)00) by�t(A) := ��1W1 ��itF(W1) �W1(A)��itF(W1)� ; A 2 A(W1)00;
and since it has been shown above that the �itF(W1), t 2 R, leave the sub-
space H invariant, one concludes�t(A) = �itF(W1)jHA��itW1 jH for all A 2 A(W1)00; t 2 R:
Since�itF(W1) is the modular group of (H;F(W1);
), it follows from Theorem
2.1.3 that � satisfies the conditions (i) and (ii) made there. Now Theorem
2.1.3 is applied once more: since � has been shown to be a one-parameter
group of automorphisms of the vonNeumann algebra (H;A(W1)00) and since
it is satisfies the assumptions (i) and (ii) of Theorem 2.1.3, it follows that �
coincides with the modular automorphism group of the standard von Neu-

mann algebra (H;A(W1)00;
); this proves (i).
(ii) follows from (i): for any A 2 A(W1)00 and any t 2 R, one has�itF(W1)jHA
 = �itF(W1)jHA��itW1 jH
 = �itW1A��itW1
 = �itW1A
;
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so �itF(W1)jH and �itW1 coincide on a dense subspace of H and hence – being
bounded – on all of H.
(iii) follows from (ii) since the KMS-condition implies, in the sense of

quadratic forms:hA
;�F(W1)jD(�F(W1))\HB
i = hB�
; A�
i = hA
;�W1B
i
for all A;B 2 A(W1)00:

Since every positive operator is uniquely determined by its quadratic form,

one concludes �F(W1)jD(�F(W1))\H = �W1 , and using the spectral theorem,
(iii) follows.

(iv) follows from (iii) since the range of �1=2W1 is dense in H andJF(W1) �1=2F(W1)���D(�1=2F(W1))\H = JW1�1=2W1 :
(v) follows from (iv): because of modular P1CT-symmetry, JW1 eAJW1 = eA,

hence, twice using property (i) in Definition 2.1.4, one obtains for every

local observable A 2 Aloc:JF(W1)�(A)JF(W1)
 = JF(W1)�(A)
 = JF(W1)���H �(A)jH 
= JW1A
 = JW1AJW1
 = �(JW1AJW1)jH 
= �(JW1AJW1)
:
Since 
 is separating with respect to (H;A(W1)00), one easily makes use of
translation covariance to prove that it is also separating with respect to(H;A(W1+ a)00). But since A is a local observable, there is an a 2 R1+s such
that A 2 A(W1 + a)00. This proves the statement for every A 2 Aloc. SinceAdJF(W1) : B(H)! B(H) and AdJW1 : B(H) ! B(H) and � : eA � B(H) !B(H) are continuous with respect to the corresponding norm topologies inB(H) and B(H), the statement extends to eA. �
Remark: In the above argument, the modular groups considered possibly

do not implement any symmetry on the net A. We mention that under the
additional assumption that �itW1 eA��itW1 = eA, t 2 R, one can derive�itF(W1)�(A)��itW1 = �(�itW1A��itW1 ) for all A 2 eA; t 2 R
from (ii) in the same way as we have obtained (v) from (iv) in the preceding

proof.

The next step towards the proof of the spin-statistics theorem is the

proof that modular P1CT-symmetry of A implies modular P1CT-symmetry
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of the extended field system over A. This P1CT-theorem holds for all s �2 including the even dimensions where a full PCT-theorem is lacking (cf.
[65]).

2.2.4 Theorem (P1CT-symmetry of the field)
Let (H;F; �;G) be agP"+-covariant, normal field over (H;A; U;
).
(i) JF(W1)F(C)JF(W1) = Ft(jC) for every C 2 S;
(ii) JF(W1)U�(g)JF(W1) = U�(fAd(j)(g)) for every g 2gP"+:
The antiunitary involution �W1 := V JF(W1) = JF(W1)V � (withV = 1+ik1+i as above) is the P1CT-operator, i.e.�W1F(C)�W1 = F(jC) for all C 2 S:

Proof: Note first that V JF(W1) = JF(W1)V � follows from the definition of V
by a straightforward computation. From the modular P1CT-symmetry of A,
the preceding lemma, and the fact that the modular objects commute with

internal symmetries, it follows that byHJ := JF(W1)H = H;FJ(C) := JF(W1) F(jC) JF(W1); C 2 S;�J(A) := JF(W1) �(JW1AJW1) JF(W1) = �(A); A 2 eA;GJ := JF(W1)GJF(W1) = G
a second

gP"+-covariant normal field (HJ=H;FJ ; �J=�;GJ=G) over (H;A; U;
)
is defined; note that it follows from �J = � that FJ has the same Bose-
Fermi operator as F and that FJ is covariant under U� = U�J . To show thatFJ = Ft, let Ca and Cb be two spacelike cones with Ca � W1 and Cb � W 01.
Using the Tomita-Takesaki theorem, one obtainsFJ (Ca) = JF(W1)F(jCa)JF(W1) � JF(W1)F(W 01)JF(W1)= JF(W1)V �V F(W 01)V �V JF(W1) = V JF(W1)Ft(W 01)JF(W1)V �= V JF(W1)F(W1)0JF(W1)V � = V F(W1)V � = Ft(W1) = F(W 01)0� F(Cb)0:
Since for any spacelike separated spacelike cones Ca and Cb, there is a
wedge W (which is a Poincaré transform of W1) such that Ca � W andCb � W 0, the net FJ is easily shown to be local with respect to the net F.
Twisted duality implies FJ � Ft, hence �W1F(C)�W1 � F(jC) for every



20 2. A new approach to Spin & StatisticsC 2 S. Since �W is an involution, we conclude �W1F(C)�W1 = F(jC) andFJ = Ft. From this, the Theorem follows immediately. �
These results given, the proof of the spin-statistics theorem boils down to

a simple algebraic computation:

2.2.5 Corollary (spin-statistics theorem)

Let (H;F; �;G) be a covariant, normal field over (H;A; U;
).
For every � 2 [0; 2�], denote byW�1 the image ofW1 under the ro-
tation of angle � in the 1-2-plane, and let JF(W�1 ) be the modular
conjugation of (H;F(W�1 );
). With r as defined in the previous
section, define R�(�) := U�(r(�)), � 2 R.
Then one obtains: R�(�) = JF(W�=21 )JF(W1):
In particular, R�(2�) = k, i.e. the spin-statistics connection fa-
miliar from 1+3 dimensions holds.

Proof: The first statement immediately follows from the preceding theo-

rem in the same way as Corollary 2.2.2 follows from Proposition 2.2.1.

To obtain the spin-statistics connection, note that JF(W�1 ) = V JF(W1)V �
follows from wedge duality by Lemma 2.1.2. Since V JF(W1) = JF(W1)V �, one
obtainsR�(2�) = JF(W�1 )JF(W1) = V JF(W1)V �JF(W1) = V 2J2F(W1) = V 2 = k: �
2.3 Other approaches and open problems

For 1+3 dimensions, the first proof of a spin-statistics theorem for massive

particle representations is due to Buchholz and Epstein [33]. It is possible

that their proof, at the price of beingmore involved, yields themore general

result, since it does not need the assumption of modular P1CT-symmetry.
On the other hand, it has already been mentioned above that Streater

has given an example of a relativistic quantum field which does not exhibit

the familiar spin-statistics connection [73], and every proof of the four-

dimensional spin-statistics theorem must rely on some assumption which
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exclude this example. For the above proof, this role is played by Assump-

tion III. Also Buchholz and Epstein make an assumption which rules out

Streater’s example. Loosely speaking, they assume that the representation

of
gP"+ under which the massive particle representation of the algebra eA is

covariant is a finite multiple of an irreducible representation of
gP"+ when

restricted to the one-particle space (which is the image of the representa-

tion space under the four momentum’s spectral projection associated with

the forward mass shell of the particle). It has not been investigated so far

how this assumption is related to the above Assumptions II and III.

A proof of the spin-statistics theorem in the same ’algebraic’ spirit as

the one given above has been found independently by Guido and Longo

[49]. In the same paper it has been shown that modular P1CT-symmetry
follows from the assumption that the modular group of the wedge W1 im-
plements the Lorentz boosts, as in the Bisognano-Wichmann setting. As

the covariant action of the modular group is used not only to derive mod-

ular P1CT-symmetry, but also for the proof of the spin-statistics theorem
itself, the spin-statistics argument given there is less general than the one

given above.

In 1+2 (and less) dimensions, there are massive particle representations

which violate the Bose-Fermi alternative. Their statistics is described not

by the permutation group, but by the braid group. Such representations

were named anyons by Wilczek [84] (since their statistics parameter may

be any complex number of modulus 1), for anyons with parastatistics the

term plektons (derived from the greek expression for ’braid’) has been

suggested in [45]. These representations are not covered by the Doplicher-

Roberts field system with its compact gauge group. For theories with a

finite number of sectors, Schomerus has constructed a field system with a

non-associative algebra of quantum symmetries [70]; this system includes

the anyon representations. It is an open question whether a proof of the

spin-statistics theorem in the spirit of the above one can be given in this

setting.

In the past years, Guido and Longo have been working on a spin-statistics

theorem for anyons. The first step in their strategy was a proof of the spin-

statistics theorem for anyonic representations occuring in conformal theo-

ries on the circle [50].

Longo has suggested a way how to boil the case of 1+2-dimensional

topological charges down to the chiral case [63]: he considers the spacelike

cones which are intersections of two images ofW1 under rotations. Call this
class of spacelike cones SW1 . Every C 2 SW1 has a nonempty intersection I
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with the unit circle in the time-zero plane, and every connected subset of

some half of this unit circle generates a unique spacelike cone in SW1 . This
is a one-to-one correspondence I 7! CI between sufficiently small intervals
(call their class I) in S1 and SW1 . Longo now considers the family (B(I) :=A(CI)00)I2I , which inherits locality and rotational covariance from A. If A
satisfies modular reflection covariance and strong additivity, i.e., if given a

double coneO and any finite covering (O�)�2N ofO by double cones, one hasA(O) � (S�2NA(O�))00, Longo concludes that the spin-statistics theorem
follows by mimicking the argument for conformal theories on the circle.

The first proof of a spin-statistics theorem which uses the structures es-

tablished by the Bisognano-Wichmann theorem has been given by Fröhlich

and Marchetti [46]. Their argument includes the anyonic representations

mentioned, but it relies on the assumption of the full Bisognano-Wichmann

structure not only for the net of local observables, but for the whole reduced

field bundle. The reduced field bundle is a generalization of the extended

field system discussed above. In contrast to the latter, it does not consist of

algebras, so the Tomita-Takesaki analysis does not apply in its traditional

form (although the corresponding operators are well-defined).



Chapter 3

Generalizing Landau’s

theorem; localization

regions for algebras and

observables

In the preceding chapter the assumption of modular P1CT-symmetry was
crucial. The search for sufficient conditions for this symmetry property and

for the corresponding behaviour of the modular group will be the scope of

Chapter 4, where two uniqueness theorems for modular symmetries will

be proved.

As known from Chapter 2, a local net of observables associates a C�-
algebra A(O) with every double cone O in Minkowski space. If P � O is
another double cone, it is assumed that A(O) � A(P ), and for an arbitrary
open region R � R1+s, the algebra A(R) is defined to be the C�-algebra gen-
erated by all algebras A(O) with O 2 K and O � R. A local net associates
algebras with regions.

In the sequel it will be discussed how to associate a localization region

with a given algebra and even with a single local observable. These two lo-

calization prescriptions will be used in the discussion of the two uniqueness

theorems in Chapter 4.

The analysis is based on a theorem due to Landau [60]. In order to

localize single observables, a new generalization of Landau’s theorem will

be used. It will be stated and proved below.

This chapter is structured as follows: in Section 3.1, the standard as-

sumptions for this chapter and some additional notation will be introduced,

23
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Section 3.2 deals with the different notions of duality in algebraic quantum

field theory and their physical relevance, and Section 3.3 gives a couple

of mathematical preliminaries. In section 3.4, the theorem of Landau and

its consequences for the localization of algebras will be discussed, and the

mentioned generalization will be proved. This generalization will be the

basis for the analysis of localization regions for single local observables,

which is presented in Section 3.5.

3.1 Notation and assumptions

As in the preceding chapter, A will denote a local net of observables in a
Hilbert space H. The following assumptions will be made:

Translation covariance and spectrum condition: A is co-
variant under a strongly continuous, unitary representation U
of the translation group; and the spectrum of the four-momentum

generating U is contained in the closed forward light cone;
Existence and uniqueness of a cyclic vacuum vector: There

is an up to a complex phase unique unit vector 
 in H which is
invariant under U and cyclic with respect to the algebra eA, i.e.,eA
 = H; 
 will be called the vacuum vector.
Weak additivity: For every double cone O 2 K, one has0@ [a2R1+sA(O + a)1A00 = eA00:

Recall that the first two of these assumptions imply that the identical rep-

resentation (H; ideA) of eA is irreducible, which means that the vacuum state
is pure. They have also been made in the preceding chapter. In contrast to

the Assumptions I in Chapter 2, Poincaré covariance is not assumed unless

stated otherwise, and H does not need to be separable. Assumptions II and
III are also obsolete for the sequel. The only assumption which is not fa-

miliar from Chapter 2 is weak additivity; it is a sufficient condition for the

Reeh-Schlieder property that the vacuum is cyclic with respect to every

local algebra A(O), O 2 K [68, 13]. It is typically satisfied by nets arising
from Wightman fields, and it is not expected to mean a serious restriction1.

1Actually, Lemma 2.6 in [77] indicates that the Reeh-Schlieder property may be suffi-

cient as an assumption for the subsequent analysis. This will not be worked out here.
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In the sequel, C will denote the class of convex regions which are causally
complete proper subsets of R1+s. All the classes of regions specified in the
preceding chapter are subclasses of C. The wedges in W are maximal ele-
ments of C in the sense that for every wedge W 2 W , every element R 2 C
with R � W is a wedge. Every element R of C is an intersection of wedges
([76], Thm. 3.2). The class of all wedges which contain a region R 2 C will
be denoted byWR.
In general, the causal complement of a convex region is not convex. C 0

will denote the class of regions which are causal complements of regions inC. Every region R in C 0 is a union of wedges ([76], Thm. 3.2);WR will denote
the class of all wedges that are subsets of R, and WR \ WO =: WRO . Note
thatW = C \ C 0. If two regions O and P in C are spacelike with respect to
each other, there is a wedge W 2 WP 0O , i.e., a wedge such thatW 2 WO andW 0 2 WP ([76], Prop. 3.1).B will denote the bounded elements of the class C. Clearly, the double
cones are in B. Every element of B is contained in some double cone, and it
is precisely the intersection of all such double cones ([76], Prop. 3.8). The

class of all double cones which contain a region O 2 B will be denoted byKO, while the class of all double cones which are contained in an arbitrary
region R will be called KR.
3.2 Duality, PCT-symmetry, and Borchers classes

Given the net of observables A, the dual net Ad is (Ad(O) := A(O0)0)O2K.
By locality, Ad is an extension of A. But this extension does not need to
satisfy locality.

If it does satisfy locality, it coincides with its own dual net. It then fol-

lows that every other local net (B(O))O2K of observables which is local with
respect to Ad is a subnet of Ad. Given locality of Ad, any two subnets of Ad
are local with respect to one another.

For the Wightman framework it has been shown by Borchers that mu-

tually local fields have the same PCT-operator and the same scattering

matrix [11]. Borchers also showed for PCT-covariant Wightman fields that

mutual locality between irreducible local Wightman fields is not only a re-

flexive and symmetric, but even a transitive relation, so that mutually local

irreducible fields form equivalence classes, calledBorchers classes. In the

algebraic setting the property corresponding to this behaviour is locality of

the dual net; for a local net with this property, the dual net contains all

nets which are local with respect to A, i.e., all nets in the ’Borchers class’ of
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A local net of observables is said to satisfy essential duality if its dual

net satisfies locality; it is said to satisfy Haag duality if A = Ad or ifA(O)00 = A(O0)0. Clearly, if a net satisfies essential duality, its dual net sat-
isfies Haag duality. Theories with broken symmetries violate Haag duality,

while essential duality can still hold [69]. For more examples which violate

Haag duality, while satisfying essential duality, see [61]. A brief discussion

of these examples will be given at the end of this chapter.A is said to satisfy wedge duality if the isotonous family (A(W 0)0)W2W
satisfies locality, which is equivalent to A(W )00 = A(W 0)0. It follows from
the Bisognano-Wichmann results quoted before [8, 9] that all nets arising

from finite-component Wightman fields satisfy wedge duality.

Finally, the net A is said to satisfy essential spacelike cone dual-
ity if the isotonous family (A(S 0)0)S2S satisfies locality. This assumption
is needed for the Buchholz-Fredenhagen analysis of massive one-particle

representations.

One checks (cf. Lemma 3.5.2 below) that wedge duality implies essen-

tial spacelike cone duality and that essential spacelike cone duality im-

plies essential (Haag) duality, since for any two spacelike separated space-

like cones, one can find a wedge which contains one of the two, whereas

its spacelike complement contains the other one, and since for any two

spacelike separated double cones one can find spacelike separated space-

like cones each containing one of the two double cones. Using this, one

easily concludes the stated implications (cf. also Lemma 3.5.2 below).

3.3 Commutator functions andwave equation tech-

niques

It is a classical result of the Wightman approach to quantum field theory

that one can reconstruct a Wightman field from its vacuum expectation

values [72, 54]. For the algebraic approach to quantum field theory, such a

result is not known. The following lemma, however, shows how one can re-

construct commutation relations of a net of observables from the behaviour

of its vacuum expectation values. Since these have some convenient prop-

erties, this will faciliate the subsequent investigations.
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3.3.1 Lemma

For an arbitrary double cone O 2 K, let A be an element ofA(O0)0.
(i) Assume there is a region R � R1+s which contains
some spacelike cone and which has the property thath
; AB
i = h
; BA
i for all B 2 A(R): Then it follows
that A 2 A(R)0.
(ii) Assume there is a double cone P 2 K with the prop-
erty that h
; AB
i = h
; BA
i for all B 2 A(P ), and
assume there is a double cone Q � P with the property
that A 2 A(Q)0. Then it follows that A 2 A(P )0.
(iii) Assume that there is a double cone P 2 K with
the property that h
; AB;
i = h
; BA
i for all B 2A(P + a), a 2 R1+s. Then A 2 C idH .

Proof. (i): If S is a spacelike cone contained in R, there is a translationa 2 R1+s such that S + a � R \ O0. Choose C and D in A(S + a) and B inA(R). Since A 2 A(O0)0, the operators A and C� commute:hC
; ABD
i = h
; C�ABD
i = h
; AC�BD
i:
Since C�BD is in A(R), the assumption impliesh
; AC�BD
i = h
; C�BDA
i;
and since D and A, in turn, commute because of A 2 A(O0)0, one concludeshC
; ABD
i = h
; C�BDA
i = hC
; BAD
i:
But since C and D are arbitrary elements of A(S + a), which is a cyclic
algebra with respect to 
 2, it follows that AB = BA; since B 2 A(R) was
arbitrary, one obtains A 2 A(R)0, which is (i).
(ii) Choose C and D in A(Q) and B in A(P ). Since A has been assumed

to be in A(Q)0, it commutes with C�, sohC
; ABD
i = h
; C�ABD
i = h
; AC�BD
i:
Since C�BD is in A(P ), the assumption impliesh
; AC�BD
i = h
; C�BDA
i;

2In contrast to the Reeh-Schlieder property for double cones, this can be shown even

without any additivity assumption ([27], p. 279). Statement (i) can, therefore, be shown

without assuming weak additivity or the Reeh-Schlieder property for double cones.
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and since D and A commute by the assumption that A 2 A(Q)0, one con-
cludes hC
; ABD
i = h
; C�BDA
i = hC
; BAD
i:
But since C and D are arbitrary elements of A(Q), which, because of the
Reeh-Schlieder property, is a cyclic algebra with respect to 
 3 it follows

that AB = BA; since B 2 A(P ) was arbitrary, one obtains A 2 A(P )0, which
is (ii).

(iii) There is a translation a 2 R1+s such that P + a � O0, so that A 2A(O0)0 � A(P + a)0. Now choose a b 2 R1+s such that P + b intersects P + a,
and letQ be a double cone contained in (P+b)\(P+a). Isotony implies thatA 2 A(Q)0. Since by assumption, h
; AB
i = h
; BA
i for all B 2 A(P + b),
(ii) implies that A 2 A(P + b)0. Now one can iterate this procedure: choose
an arbitrary c 2 R1+s such that (P + c)\ (P + b) is nonempty, choose a new
double coneQ in this intersection, and conclude from (ii) that A 2 A(P+c)0.
Note that only the double cone P + a chosen in the first step needs to be
spacelike separated fromO, since each step uses the result of the preceding
one, so one finds that for every a 2 R1+s, one proves that A 2 A(P +a)0 with
a finite number of steps. The statement now follows from weak additivity.�
Given any two local observables A;B 2 Aloc, the commutator function fA;B
will henceforth be defined byR1+s 3 x 7! h
; [A;U(x)BU(�x)]
i=: fA;B(x):
Due to Lemma 3.3.1, the analysis of the support of this function yields

information on the structure of the net. Crucial for this analysis is the fact

that fA;B is a boundary value of a solution of the wave equation, and a well-
known lemma due to Asgeirsson concerning such solutions immediately

implies the following lemma, which, for this reason, will be referred to as

Asgeirsson’s Lemma. Another important consequence of the ’wave nature’

of the function fA;B is a theorem due to Jost, Lehmann and Dyson [55, 42],
which will also be recalled for the reader’s convenience.

3Note that at this stage, it would be sufficient to assume the Reeh-Schlieder property for

local algebras; weak additivity is a sufficient condition [13], whereas the attempt to prove

the converse implication [15] has turned out to be erronous.
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The double cone 00
The path 

Figure 3.1: Asgeirsson’s double cone lemma

3.3.2 Lemma (Asgeirsson)

(i) If the commutator function fA;B and all its partial derivatives
are zero along a timelike line segment , fA;B vanishes in the
entire double cone  00.
(ii) If fA;B vanishes in an open neighbourhood of a timelike curve
segment , it also vanishes in the double cone  00.

Proof. The Fourier transform of the operator valued function R1+s 3 x 7!U(x) is the spectral measure of the four-momentum operator. It follows that
the Fourier transform f̂A;B of the function fA;B is a finite (signed) measure,
and by the spectrum condition, one has supp f̂A;B � V. It follows that the
function F (x; �) := 1(2�)2 Z cos(�pk2) eikx df̂A;B(k)
is a continuous function with F (x; 0) = fA;B(x) for all x 2 R1+s. This F is
a solution of the 1+(s+1)-dimensional wave equation. (i) is a well known

property of solutions of the wave equation (see, e.g., [10], sect. 4.4.D (p. 183

f)). (ii), which is also well known, is an easy consequence of (i). �
Both above formulations are used in the applications. Formulation (i) is

appropriate for extensions of the vanishing locus of fA;B (the region where
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typically is the closure of its open kernel. In the proof of Theorem 3.3.4,

however, the Lemmawill be used in order to investigate the vanishing locus

of the wave F . Since locality, as it stands, only implies that F is zero in some
subset of R1+s, which is a null set in R1+(s+1), one makes use of the fact
that F has been constructed in such a way that all its partial derivatives,
including the one in the �-direction, are zero at all points where F = 0 due
to locality; one may then conclude that the region where F = 0 also extends
into the �-direction.
3.3.3 Definition

Let R be any region in Minkowski space.
(i) R will be called Asgeirsson complete if for every timelike
curve  � R, the double cone  00 is also a subset of in R. The
smallest Asgeirsson complete extension of R will be called the
Asgeirsson hull of R
(ii) R will be called double cone complete if it contains as
subsets all double cones with tips in R, i.e., if R = (R + V+) \(R� V+).
(iii) R will be called a Jost-Lehmann-Dyson region if it is
double cone complete and if every maximal timelike curve inR1+s intersects R [R0.

It is clear from the definition that every double cone complete region is As-

geirsson complete. Furthermore, every causally complete region is double

cone complete. The causal complement of a Jost-Lehmann-Dyson region is

a Jost-Lehmann-Dyson region, too. All causally complete and convex re-

gions are Jost-Lehmann-Dyson regions.

The union of two disjoint causally complete regions is still Asgeirsson

complete, but it does not need to be double cone complete, not even causally

complete. As an example, consider two disjoint double cones or wedges

which are not spacelike with respect to each other. In particular, the union

of two Jost-Lehmann-Dyson regions does not need to be a Jost-lehmann-

Dyson region.

An example of a double cone complete region which is neither causally

complete nor a Jost-Lehmann-Dyson region is the regionR := fx 2 R1+s : 1 < x2 < 2; x0 > 0g;
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(shaded region)
The region bR(fat line)

The region R
intersects R1+s ; and not(c + bV ) \ R1+s intersectsHere the lightcone c + bV

A point c in � \ bR0
x0 �

the region R.one branch of the hyperboloid

Figure 3.2: The proof of the Jost-Lehmann-Dyson theorem.

For simplicity it has been assumed that the Cauchy surface � mentioned in
the proof of Theorem 3.3.4 is the time zero plane, which does not need to be

a possible choice (but which is possible as soon as R is invariant under time
reflection). The scenario is symmetric under a �-reflection, since the functionF is even in �. Only the �>0-half plane has been sketched.
since there are timelike curves which do not intersect R, e.g., the curveR3 t 7! (t;pt2 + 1; 0; : : : ; 0).
Finally, the time slice region fx 2 R1+s : 0 < x0 < 1g is a Jost-Lehmann-

Dyson region, but not causally complete.

3.3.4 Theorem (Jost, Lehmann, Dyson)

Let A and B be local observables, and assume that the commu-
tator function fA;B vanishes in a Jost-Lehmann-Dyson region R.
Then the support of fA;B is contained not only in the complement
of R, but even in the (in general, smaller) union of all admissi-
ble mass hyperboloids, i.e., the mass hyperboloidsHa;� := fx 2 R1+s : (x� a)2 = �2g; a 2 R1+s; � 2 R;
which do not intersect R.

Sketch of proof. Define F as in the proof of Lemma 3.3.2. Since F is a
solution of the wave equation, it is well-known that for every Cauchy sur-
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face � in R1+(s+1), there exists a distribution F� with support in � such thatF = F� � D1+(s+1), where D1+(s+1) denotes a fundamental solution of the
1+(s+1)-dimensional wave equation (see, e.g., [10], pp. 175-184). The sup-

port ofD1+(s+1) is contained in the closed light cone bV ofR1+(s+1) 4. SinceR
is a Jost-Lehmann-Dyson region in R1+s, its 1+(s+1)-dimensional Asgeirs-
son hull bR is easily seen to be a Jost-Lehmann-Dyson region in R1+(s+1).
Provided this region is ’well-behaved’, there is a Cauchy surface � in bR[ bR0.
This Cauchy surface has the property that for every point c 2 �, either both
the forward and the backward part of bV +c or neither of them intersectsR.
The former case occurs if and only if c 2 � \ bR. The latter case occurs if and
only if c 2 � \ bR0, the Asgeirsson hull bR of R and the spacelike complement
being taken in the spacetime R1+(s+1). But since all partial derivatives of F
can be checked to vanish in all points in R, one obtains from Lemma 3.3.2
that F vanishes in bR, the support of F� contains only points of the second
kind, i.e., it is contained in bR0 \ �. This implies that the support of F is
contained in ( bR \ �) + bV .
Since fA;B is a boundary value of F and since the intersection of bV + c

with R1+s is the convex hull of a shifted mass hyperboloid, the support
of the boundary value fA;B of the function F is contained in the union of
admissible mass hyperboloids, as stated. �
In the theory of analytic functions in several complex variables, domains of

analyticity can be extended in the way found in the Jost-Lehmann-Dyson

theorem [26].

3.4 How to localize observables: a generalization

of Landau’s theorem

Using the above wave equation techniques, Landau [60] proved the follow-

ing:

3.4.1 Theorem (Landau)

If the closures of two double cones O and P are disjoint, thenA(O0)0 \ A(P 0)0 = C idH :
This immediately implies the following corollary (cf. [6]).

4This notation is consistent since bV is, indeed, the 1+(s+1)-dimensional Asgeirsson hull
of V . Note that bV 6= bV .
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3.4.2 Corollary

For every bounded, causally complete and convex region O and
every arbitrary open region M � R1+s, the algebra A(O0)0 con-
tains A(M) as a subalgebra if and only if O �M .

Proof. By isotony and locality, the condition is sufficient. To prove that it

is necessary, assume M not to be contained in O as a subset. Then, sinceK is a topological base and since the regionMnO has a nonempty interior,MnO contains a double cone P 2 K whose closure is disjoint from O. It
follows that a wedge W can be found whose closure is disjoint from P and
whose interior contains O. But by Proposition 3.8 (b) in [76], on can now
conclude that there is a double cone Q with Q � W and Q � O (note thatO itself does not need to be a double cone). Landau’s theorem now implies
that A(P )\A(Q0)0 = C idH . It follows from the Reeh-Schlieder property thatA(P ) 6� C idH , so A(P ) 6� A(Q0)0. Since A(P ) � A(M) follows from isotony,A(M) cannot be a subset of A(Q0)0, and since O � Q, it cannot be a subset
of A(O0)0. �
This already implies that for an O satisfying the assumptions of the corol-
lary, the region L(A(O0)0) :=[fP 2 K : A(P ) � A(O0)0g;
which will be called the localization region of the algebra A(O0)0, coin-
cides with O. The proof of Corollary 3.4.2 can be made shorter as soon as
one knows that Landau’s theorem still works if one of the two double cones

is replaced by a wedge. That this, indeed, is possible, has been shown in

the context of the proof of the P1CT-part of the first uniqueness theorem
for modular symmetries (Theorem. 2.1 in [59]).

3.4.3 Theorem

If the closures of a double cone O and a wedge W are disjoint,

then A(O0)0 \ A(W 0)0 = C idH :
Following precisely the same, even a simpler line of argument as above,

while using this generalized version of Landau’s theorem, one concludes

that in Lemma 3.4.2, the assumption that O is bounded may be omitted.
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3.4.4 Corollary

For every causally complete convex region R � R1+s and every ar-
bitrary open regionM � R1+s, the algebra A(R0)0 contains A(M)
as a subalgebra if and only if R �M .

Proof. By isotony and locality, the condition is sufficient. To prove that it is

necessary, assumeM not to be contained in R as a subset. Then, since K is
a topological base and since the regionMnR has a nonempty interior,MnR
contains a double cone O 2 K whose closure is disjoint from R. It follows
that a wedge W can be found whose closure is disjoint from O and whose
interior contains R. Landau’s theorem now implies that A(O) \ A(W 0)0 =C idH . It follows from the Reeh-Schlieder property that A(O) 6� C idH , soA(O) 6� A(W 0)0. Since A(O) � A(M) follows from isotony, A(M) cannot be a
subset of A(W 0)0, and since R � W , it cannot be a subset of A(R0)0. �
For every causally complete convex region R it follows that L(A(R0)0) =L(A(R)) = R.
In order to investigate the localization behaviour of a single local ob-

servable, a further generalization of Landau’s theorem will be used. It is

the main result of this section. It also includes the statement of Theorem

2.1 in [59]. Adloc will denote the algebra of local observables of the dual netAd.
3.4.5 Theorem (empty-intersection theorem)

Let (W�)1���n be a family of n wedges inW . If T�W � = ;, thenAdloc \\� A(W 0�)0 = C idH :
Proof. Choose an A 2 Adloc \ T� A(W 0�)0, and let O be a double cone withA 2 A(O0)0.
Since n is finite and since the closures of the wedges have an empty

common intersection, there is a double cone P which contains the origin
and which is so small that the wedges ~W� := (W� � P )00, � � n, still have an
empty common intersection. Choose B 2 A(P ), and define ~O := (O � P )00;
then the commutator function fA;B vanishes in the region R := ~O0 [S� ~W 0� .
There is no admissible mass hyperboloid for this region, not even for the

smaller region
S� ~W 0� . To see this, note that if a (shifted) mass hyperboloid

is disjoint from a set-theoretic union of open wedges, so is the unique shift
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of the closed light cone V which contains the hyperboloid. Now choose x 2R1+s such that x + V is disjoint from all ~W 0� , � � n. This is equivalent tofxg0 � S� ~W 0� , i.e., x 2\� ~W 00� =\� ~W� = ;:
Hence, there is no admissible mass hyperboloid for

S� ~W 0� , so there is, a
fortiori, no admissible mass hyperboloid for the larger region R.
If R is a Jost-Lehmann-Dyson region, it follows from Theorem 3.3.4 thatfA;B(x) vanishes for all x 2 R1+s and all B 2 A(P ), so using part (iii) of

Lemma 3.3.1, one concludes that A 2 C idH , and the proof is complete.
But since R does not need to be a Jost-Lehmann-Dyson region, As-

geirsson’s lemma will be used to show that the function fA;B even vanishes
in the 1+s-dimensional Asgeirsson hull R̂ of R. Since there is no admissi-
ble hyperboloid for R, there is, a fortiori, no admissible hyperboloid for R̂,
so the proof will be complete as soon as R̂ has been shown to be a Jost-
Lehmann-Dyson region in R1+s.
To this end, choose coordinates such that ~O is a symmetric double cone

centered at the origin, and let �0 be its radius5. For every � > 0, let Z� =fx = (x0; ~x) 2 R1+s : k~xk = �g be the boundary of the cylinder of radius �
around the time axis in R1+s, and defineR�;0 := ~O0 \ Z�;R�;� := ~W 0� \ Z�; � � n:
Due to the above choice of coordinates, the region R�;0 is a strip:R�;0 = fx 2 Z� : jx0j � �� �0g
(which is empty if � < �0). Note that with respect to the spacetime structureZ� inherits from Minkowski space, this is a Jost-Lehmann-Dyson region inZ�.
The wedges ~W 0� are Jost-Lehmann-Dyson regions in R1+s. With respect

to the inherited spacetime structure of Z�, the region R�;� is also a Jost-
Lehmann-Dyson region in Z�.
Since R does not need to be a Jost-Lehmann-Dyson region in R1+s, the

region R� := R \ Z� = [0���nR�;�
5To construct this double cone, consider the �0-ball ~B�0(0) around the origin in the time-

zero plane; then ~O is the causal completion of this region: O = ~B�0(0)00. The radius of a
double cone has also a Poincaré invariant geometrical significance: it is half the geodesic

distance between the tips of the double cone.
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does not need to be a Jost-Lehmann-Dyson region in Z�.
But for every � � n, there is a �� > �0 such that R�;0 [ R�;� is a Jost-

Lehmann-Dyson region in Z� for every � > �� : the edge E� of the wedge~W 0� is a spacelike flat (s-1)-dimensional submanifold ofR1+s. Therefore it is
contained in the spacelike complement of ~O up to a bounded set (which may
be empty). If one chooses �� so large that this bounded set is surrounded
by the manifold Z�� , it follows for every � � �� that E� \ Z� � R�;0. Now
one can check by some elementary geometric considerations that the regionR�;0 [R�;� is a double cone complete extension of the Jost-Lehmann-Dyson
region R�;0. Such a region, in turn, is a Jost-Lehmann-Dyson region.
For every � > max��n �� =: �̂, this implies that the region R� is a fi-

nite union of Jost-Lehmann-Dyson regions each of which contains the Jost-

Lehmann-Dyson region R�;0. But such a union is, again, a Jost-Lehmann-
Dyson region.

It follows that for every � > �̂, the 1+s-dimensional Asgeirsson hullR̂� of R� is a Jost-Lehmann-Dyson region in R1+s. On the other hand, for
every � > �̂ and for 0 � � � n, the part of ~O0 or ~W 0� , respectively, which
is surrounded by Z� is a subset of the R1+s-Asgeirsson hull R̂�;� of R�;� . It
follows that R � [�>�̂ [��n R̂�;� = [�>�̂ R̂�;
and one checks that this region is the R1+s-Asgeirsson hull R̂ of R. Since
the Jost-Lehmann-Dyson region R̂� increases with �, one concludes that R̂
is a Jost-Lehmann-Dyson region. This is what remained to be shown, so

the proof is complete. �
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3.5 The localization region of a single local ob-

servable

Theorem 3.4.5 prepares the definition of a localization region for local ob-

servables. The existence of a nonempty localization region for every local

observable is established by the following proposition. In the sequel, the

notation introduced in Section 3.1 will be used: C will denote the class of all
causally complete and convex regions inR1+s, and B will denote the regions
belonging to C which are bounded. As before, K � B will denote the class of
all double cones, andW � C will denote the class of all wedges.
3.5.1 Proposition

Let X be any of the classes K, B, W and C. For every A 2 Aloc
which is not a multiple of the identity, the localization regionsLX (A) := \fO : O 2 X : A 2 A(O)00gLXd (A) := \fO : O 2 X : A 2 A(O0)0g
are nonempty regions in B. Between them, one has the following
equalities and inclusions:LB(A) = LK(A) � LKd (A) = LBd (A)[ [LC(A) = LW(A) � LWd (A) = LCd(A)

Proof.We start with the proof of the equalities and inclusions. The equal-

ities immediately follow from the definitions, since on the one hand, K � B
andW � C, while on the other hand, every region in B is an intersection of
double cones in K and every region in C is an intersection of wedges in W
(see Section 2.1). The inclusions in the upper and the lower row of the di-

agram immediately follow from locality. The inclusions in the two columns

follow from the fact that every double cone is an intersection of wedges and

that, by isotony, an observable contained in the algebra associated with a

given double cone is contained in all algebras associated with wedges con-

taining this double cone.

By these inclusions, it is sufficient to prove that LWd (A) is nonempty
if A =2 C id. It already follows from Theorem 3.4.5 that the intersection of
every finite family of wedges whose algebras contain A is nonempty. But
the family of all wedges whose algebras contain A is never finite.
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Since A is a local observable, there is a double cone O with A 2 A(O),
and it follows from isotony and locality that LWd (A) � O. But this implies
that LWd (A) =\fO \W : W 2 W ; A 2 A(W 0)0g;
which is an intersection of subsets of the compact set O. But if for a class of
closed subsets of a compact space, every finite subclass has a nonempty in-

tersection, it follows that the whole class has a nonempty intersection. This

is the finite intersection property, which is just the Heine-Borel property of

compact topological spaces formulated in terms of closed sets instead of

open sets ([67], p. 98). �
In the sequel the maps Aloc 3 A 7! LX (A) 2 B and Aloc 3 A 7! LXd (A) 2 B
will be referred to as localization prescriptions. Two problems arise if

one wants to interprete the above definitions:

Problem 1: There are several of them, and others may easily

be defined. One may ask whether there is one ’physical’ local-

ization prescription or whether several distinct localization pre-

scriptions play different roles.

Problem 2: Not one of the above localization prescriptions is

known to satisfy locality in the sense that two local observables

commute if their localization regions are spacelike with respect

to each other.

The localization prescription LWd is the one which — compared with the
other prescriptions under consideration — associates the smallest localiza-

tion region with a local observable. Evidently, this is a first partial answer

to Problem 1.

But from a physical viewpoint, it is not necessarily the strongest local-

ization prescription which can be regarded as the ’best’ one, but one may

prefer to look for the strongest localization prescription which satisfies lo-

cality (if such a prescription exists). It might happen that the localization

prescriptions LW and LKd both satisfy locality, while LWd does not6. Since
6On the other hand it cannot happen that LK violates locality if the weaker localization

prescription Aloc 3 A 7!\fO : O 2 K; A 2 A(O)g;
(where the local C�-algebras themselves are tested instead of their weak closures) does
satisfy locality. This is why this type of localization prescription is not discussed at this

stage.
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there is, in general, no inclusion relation between LW and LKd , it might
happen in this case that there are two distinct ’strongest’ localization pre-

scriptions satisfying locality.

Clearly, the localization prescriptions LK and LKd coincide if the net sat-
isfies Haag duality, and the prescriptions LW and LWd coincide if the net
satisfies wedge duality. Furthermore, wedge duality also makes LWd coin-
cide with LKd by the following lemma (cf. also [21], Lemma 4.1).
3.5.2 Lemma

Assume the net A to satisfy wedge duality. For every region R 2 C,
one has A(R0)0 = \W2WR A(W )00 =:M(R);
and the netM satisfies locality.

Proof.We first show that the net (A(R0)0)R2C satisfies locality. This imme-
diately follows from the fact remarked above that if R and S are spacelike
separated regions in C, there is a wedge W 2 W with R � W and S � W 0.
For such a constellation, one hasA(R0)0 � A(W 0)0 = A(W )00 � A(S 0)00;
which is the stated locality for the net (A(R0)0)R2C.
One proves in the same way that the netM satisfies locality with re-

spect to A, i.e.,M(R) � A(R0)0 for all R 2 C. On the other hand,A(R0)0 � \W2WRA(W 0)0 = \W2WR A(W )00 =M(R) for all R 2 C;
and this completes the proof. �
In the following lemma and in the discussion of the second uniqueness the-

orem for modular symmetries, wedge duality will be assumed. Henceforth,

the localization region LWd (A) = LW(A) = LKd (A) will simply be denoted
by L(A) for every A 2 Adloc, where Adloc is, as above, the algebra of local
observables of the dual net Ad. Given wedge duality, it easily follows from
Theorem 3.4.5 that L associates a nonempty localization region with everyA not only in Aloc, but even in Adloc.
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3.5.3 Theorem (nonempty-intersection theorem)

Assume A to satisfy wedge duality.
(i) The localization prescription L : Aloc ! B satisfies locality if
and only if for every finite family (W�)1���n of wedges, one hasAloc \\� A(W�)00 = Aloc \ Ad(\� W�):
(ii) The extension L : Adloc ! B satisfies locality if and only if for
every finite family (W�)1���n of wedges, one hasAdloc \\� A(W�)00 = Adloc \ Ad \� W�! :

Proof.We prove the first statement; the second is easily obtained from the

first by replacing the local net A by the local net Ad.
To see that the condition is sufficient, let A be a local observable in Aloc,

and define W 0A := fW 2 W : A 2 A(W )0; W openg:
Since

SW 0A = L(A)0, it is clear that for every local observable B 2 Aloc
with L(B) � L(A)0, the classW 0A is an open covering of L(B). Since L(B) is
compact, there is a finite subcovering �W 0A, and since A is a local observable,
this finite covering can be chosen such that the region~L(A) := \W2 �W 0AW 0
is compact. Now the condition implies thatA 2 Aloc \ \W2 �W 0A A(W 0)0 = Aloc \ Ad0B@ \W2 �W 0AW 01CA = Aloc \ Ad(~L(A)):
The closure of the region ~L(A) is still spacelike separated from L(B). Con-
versely, one proves in the same way that there is a region ~L(B) with B 2Ad(~L(B))00 and ~L(B) � ~L(A)0. But now it follows from the locality of Ad thatA and B commute. This proves that the condition is sufficient.
To prove that the condition is necessary, let (W�)1���n be a finite family

of wedges. Whenever A 2 Aloc \ T� A(W�)00 and B 2 Aloc \ A(X)00 for anyX 2 W(T� W� )0 =: W(\W )0, locality of L implies that AB = BA, and one
concludes thatA 2 \X2W(\W )0(Aloc \ A(X)00)0 = \X2W(\W )0 A(X)0 = \X2W(\W )0 A(X 0)00= \X2W\W A(X)00 = Ad \� W�! :
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The last step applies Lemma 3.5.2. This proves that Aloc \ T� A(W�)00 �Aloc \ Ad (T�W�) : Since the converse inclusion follows from isotony and
wedge duality, the proof is complete. �
3.5.4 Proposition

Assume A to satisfy wedge duality, and suppose that the dual
net of A satisfies strong additivity for wedges, i.e., for every
wedge W 2 W and every double cone O with W � W + O, one
has A(W )00 �  [a2W Ad(O + a)!00 :
Then the localization prescription L satisfies locality.

Proof. It is sufficient to derive the following from the assumptions: if A is
a local observable and if X is a wedge whose closure is spacelike separated
from L(A), then A 2 A(X)0.
So let A and X be chosen in this way. For any neighbourhood O of the

origin, chooseB 2 Ad(O), and letWA be the class of all wedgesW 2 W withA 2 A(W )00. Due to wedge duality, the commutator function fA;B defined
above vanishes in the region R := SW2WA(W �O)0 � (L(A)�O)0, which is
a set-theoretic union of wedges. As already stated in the proof of Theorem

3.4.5, it follows from this that a mass hyperboloid H is admissible with
respect to R if and only if the whole unique shift of the lightcone which
contains H is disjoint from R. Since R is easily seen to be a Jost-Lehmann-
Dyson region, one concludes from Theorem 3.3.4 that fA;B vanishes in R00 =(L(A)� O)0.
Since B 2 Ad(O) is arbitrary, it follows that A 2 Ad(O + x)0 for everyx 2 R00. But since the closures of X and L(A) have been assumed to be

spacelike separated,O can been chosen so small thatX � R00, hence, strong
additivity for wedges implies that A 2 A(X)0, as stated. �
The assumption of strong additivity for wedges has been used extensively

by Thomas and Wichmann in [76]. The authors have obtained results in the

spirit of Proposition 3.5.4 and Theorem 3.4.5, but the latter are not implied

by the former results.

To illustrate a situation where the condition of Theorem 3.5.3 is vio-

lated, consider some regular triangle in the time zero plane, and let O, P
and Q be the double cones in K which are generated by the r-balls centered
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x2
O P

QL(A) L(B)
x1
Figure 3.3: The ’Mickey Mouse Problem’

If A 2 A(O) \ A(Q), while B 2 A(P ) \ A(Q), the localization regions L(A)
and L(B) are spacelike separated; but it cannot yet be concluded that A andB commute.
at the corners of this triangle. Assume a local observable A to be contained
in A(O0)0 and in A(Q0)0, while another local observable B is contained inA(P 0)0 and A(Q0)0. If the radius of the three double cones is bigger than
half the side length and smaller than the distance between the triangle’s

centre of mass and its corners, then the three double cones have pairwise

nonempty intersections, while their common intersection is empty. In this

case, the localization regions L(A) and L(B) are spacelike with respect to
one another, but without strong additivity for wedges or something similar,

there is no reason why A and B should commute, since not any two of the
double cones O, P and Q are spacelike separated.
To avoid these problems, it is not necessary to assume that A(X) \A(Y ) = A(X\Y ) for all X; Y 2 C. Clearly, this would imply the condition in

Theorem 3.5.3. It is popular in algebraic quantum field theory to consider

the algebra A(O), O 2 K, as the algebra of all observables that can be mea-
sured in O. If an observable can be measured in O and in P , one could ask
whether it should be measurable in O \ P , too. But there is no reason why
this should be the case. Considering generalized free fields, Landau has

given examples of local nets which do not satisfy Haag duality, while they

do satisfy essential duality [61] (and they apparently satisfy wedge duality

as well as weak additivity). The examples yield local nets that satisfy the
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assumptions of Theorem 3.5.3, while, in general, A(O)\ A(P ) 6= A(O \ P ).
To illustrate the geometrical trick of Landau’s example, start from some

local net B of observables in 1+(s+1) dimensions, and with every double
cone O = (a+ V+) \ (b+ V�) in R1+s, associate the algebraB0(O) := B((a+ bV+) \ (b+ bV�)) =: B( bO);
where, as before, bV+ and bV� denote the 1+(s+1)-dimensional forward and
backward light cone, respectively.

One easily checks thatB0(O)\B0(P )might not coincide withB0(O\P ),
since the intersection of the 1+(s+1)-dimensional Asgeirsson hulls of O andP differs from the 1+(s+1)-dimensional Asgeirsson hull of the intersectionO\P , i.e., bO\ bP 6= \O \ P . Indeed, Landau has given examples for theories
where the corresponding algebras differ. In particular, they differ if the

’large’ net B has the intersection property, i.e., if B(O) \B(P ) = B(O \ P )
for all O; P 2 B. This proves that the intersection property cannot be a
general property of all local nets of observables.

On the other hand, Landau has shown that all his B0 satisfy essential
duality. This implies that for every O 2 K, one hasB0(O0)0 = B(O0)0, whereO denotes the region S�2RO + Res+1, i.e., the double cone O smeared out
in the s+1st spacelike direction. In Landau’s examples, this yields the net

associated with some generalized free field, and this net is known to satisfy

all the conditions of Theorem 3.5.3 and Proposition 3.5.4.

We conclude this chapter with the remark that the question what the

intersection of two algebras of local observables contains has arised earlier,

as, e.g., the remarks in Section III.4.2 of Haag’s monograph [51] show. It

appears that Haag’s ’Tentative Postulate’ that the map O 7! A(O) be a ho-
momorphism from the orthocomplemented lattice of all causally complete

regions (which, in general, are neither bounded nor convex) of Minkowski

space into the orthocomplemented lattice of von Neumann algebras on a

Hilbert space is far from being proved as it stands (cf. also Haag’s heuris-

tic remarks which illustrate the physical limits of the postulate). But if a

net satisfies wedge duality and strong additivity for wedges, the above re-

sults, indeed, lead to a partial proof of Haag’s ’Tentative Posulate’: for arbi-

trary finite families of wedges, one obtains relations in the spirit of (III.4.7)

through (III.4.11) in [51] for the dual net. One should, however, note that

the above results are far from establishing the lattice homomorphism dis-

cussed by Haag.



Chapter 4

The two uniqueness

theorems for modular

symmetries

The assumption of modular P1CT-symmetry made in chapter 2 makes sense
for the net of observables as well as for the extended field system con-

structed from the massive single particle representations. But as soon as

modular symmetry holds for the net of observables, it has been shown there

to hold for this field system, too.

The same argument also works for the modular group: if the modular

group of A(W1)00 implements boosts, so does the modular group of F(W1).
Furthermore, it has been shown by Guido and Longo that if �itW1 imple-
ments the 1-boosts in all Lorentz frames, one can conclude modular P1CT-
symmetry [49], and Brunetti, Guido, Longo and Borchers have shown that

the commutation relations between the modular groups of different wedges

are the same as the commutation relations of the corresponding subgroups

of the Poincaré group: they generate a representation of the restricted

Poincaré group [25, 17]. On the other hand, Buchholz, Florig, Dreyer and

Summers have found that also modular P1CT-symmetry implies Poincaré
symmetry [32].

Therefore this chapter will, on the one hand, be dealing both with mod-

ular P1CT-symmetry and modular Lorentz-symmetry, and on the other
hand, the analysis will be confined to the properties of the modular objects

of the net of observables only.

The spin-statistics theorem is not the only application of modular sym-

metries. For conformal theories of local observables, the Bisognano-Wich-

mann modular symmetries have been established by different groups in

44
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different ways [24, 47, 44]. Conversely, chiral theories in 1+1 dimensions

can even be constructed from two algebras whose modular objects satisfy

certain conditions [81]. This result may also be generalized to higher di-

mensions [82, 83].

As well as the subsequent analysis, these results mainly depend on a

theorem recently found by Borchers (Theorem II.9 in [16]). The main im-

plication of this theorem is that in (the vacuum sector of) a theory satis-

fying translation covariance and the spectrum condition, the Bisognano-

Wichmann modular objects commute with the translation operators in the

same way Lorentz boosts and P1CT-operators would commute with these
operators. The corresponding relations will be referred to as Borchers’

commutation relations. In 1+1 dimensions, Borchers concluded that each

local net of observables satisfying translation covariance and the spectrum

condition may be enlarged to a local net of observables satisfying Poincaré

covariance and the Bisognano-Wichmann modular symmetry principles.

The situation in higher dimensions, however, remained an open problem.

In this chapter, two uniqueness results will be derived from Borchers’

commutation relations, again for the case of at least 1+2 space-time dimen-

sions: the first one proves that the only symmetries which can be imple-

mented by JW1 and �itW1 , t 2 R, are the P1CT-symmetry and the 1-boosts,
respectively. As a symmetry, every unitary or antiunitary operator is ad-

mitted under whose adjoint action every algebra of local observables is

mapped onto some algebra associated with some open region in Minkowski

space. Using a trick proposed by Trebels [78], a last translational degree

of freedom which was left open in [59] will be eliminated. The result will

be stated and discussed in Section 4.1, while the proof will be given in the

Sections 4.3 and 4.4.

The second uniqueness theorem assumes that the localization region of

a local observable develops continuously under the action of the modular

group �itW1 . It is shown that in this case, the localization region develops
like under the action of a boost. The result is stated and discussed in Sec-

tion 4.2, the proof is given in Section 4.4.
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4.1 Statement and discussion of the first unique-

ness theorem for modular symmetries

As before, A will denote local net of observables in a Hilbert space H. The
standard assumptions will be the same as in Chapter 3: translation co-

variance, spectrum condition, existence and uniqueness of a pure vacuum

state, and weak additivity. The representation U of the translation group
and the vacuum vector 
 are denoted as before.
The wedge W1, the Tomita operator SW1 of the standard von Neumann

algebra (H;A(W1)00;
), its modular operator�W1 and its modular conjuga-
tion JW1 are defined as in Chapter 2.
Crucial for the sequel is the following theorem due to Borchers (Theo-

rem II.9 in [16]):

4.1.1 Theorem (Borchers)

Let M be a subalgebra of B(H) such that (H;M;
) is a stan-
dard von Neumann algebra, and let JM and �M be its modular
conjugation and its modular operator, respectively. Let (T (r))r2R
be a strongly continuous one-parameter group of unitaries which

has a positive generator and which for each r � 0 satisfies the
conditions (a) T (r)
 = 
;(b) T (r)MT (�r) � M:
Then for each r 2 R, the following relations, which will be re-
ferred to as Borchers’ commutation relations, hold:(i) JMT (r)JM = T (�r);(ii) �itMT (r)��itM = T (e�2�tr) for all t 2 R:

Now introduce light cone coordinates as follows:R1+s 3 a 7! (a+ := a0 + a1; a� := a0 � a1; a2; : : : ; as):
Applying Theorem 4.1.1 to the coordinates a+ and a� (inserted for r), and
applying Lemma 2.1.2 to the other coordinates, one obtains, in the present

setting, for each a 2 R1+s:(i) JW1U(a)JW1 = U(ja);(ii) �itW1U(a)��itW1 = U(V1(�2�t)a) for all t 2 R;
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where V1(2�t) denotes the Lorentz boost by (2�t) in the 1-direction. So JW1
and�itW1 , t 2 R, have the same commutation relations with the translations
as a P1CT-operator and the group of Lorentz boosts in the 0-1-direction
would have, respectively. For 1+1 dimensions, it easily follows that the net

of observables may be enlarged to a local net which generates the same

wedge algebras (and, hence, the same corresponding modular operator and

conjugation) as the original one and which has the property that JW1 is a
PCT-operator (modular PCT-symmetry), whereas �itW1 implements the
Lorentz boost by �2�t for each t 2 R (modular Lorentz symmetry).
The first uniqueness theorem for modular symmetries states that in

1+2 and more dimensions, JW1 or �itW1 , t 2 R, can be shown to be a P1CT-
operator or a 0-1-Lorentz boost, respectively, as soon as JW1 or �itW1 is any
symmetry in the following sense:

4.1.2 Definition

A unitary or an antiunitary operatorK in H is called a symme-
try of A if for each O 2 K, there are open sets MO; NO � R1+s
with KA(O)K� = A(MO); K�A(O)K = A(NO):

Before discussing this definition, we state the first main results of this

chapter.

4.1.3 Theorem

Let K be a symmetry of A, and let � be a causal automorphism1
of R1+s such thatKU(a)K� = U(�a) for all a 2 R1+s:
Then there is a unique � 2 R1+s such thatKA(O)K� = A(�O + �) for all O 2 K:

1Recall that a causal automorphism of R1+s is a bijection f : R1+s ! R1+s which
preserves the causal structure ofR1+s, i.e., f(x) and f(y) are timelike with respect to eacht
other if and only if x and y are timelike with respect to each other. Without assuming lin-
earity or continuity, one can show that the group of all causal automorphisms of R1+s is
generated by the elements of the Poincaré group and the dilatations [1, 3, 2, 86, 20]. Since

the transformations implemented on the translations by Borchers’ commutation relations

happen to be causal transformations in all applications to be discussed below, this assump-

tion means no loss of generality.
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From Theorems 4.1.1 and 4.1.3, the following will be concluded:

4.1.4 Proposition (first uniqueness theorem formodular sym-

metries)

(i) If JW1 is a symmetry, thenJW1A(O)JW1 = A(jO) for all O 2 K:
(ii) If the unitaries �itW1 , t 2 R, are symmetries, then�itW1A(O)��itW1 = A(V1(�2�t)O) for all O 2 K:

Another application of Theorem 4.1.3 is the following:

4.1.5 Proposition (uniqueness theorem ’1a’ formodular sym-

metries)

Assume A to be Poincaré covariant, and assume that the vacuum
vector 
 is not only cyclic, but also separating with respect to the
algebra A(V+)00.
(i) If the modular conjugation J+ of (H;A(V+)00;
) is a symmetry,
then J+A(O)J+ = A(�O) for all O 2 K:
(ii) If for some t 2 R, the modular unitary�it+ of (H;A(V+)00;
) is
a symmetry, then �it+A(O)��it+ = A(e�2�tO):

Since massive theories cannot be dilation invariant unless their mass spec-

trum is dilation invariant (cf., e.g., [64]), the interesting models satisfying

condition (ii) are massless theories. But it follows from the scattering the-

ory for massless fermions and bosons in 1+3 or 1+1 dimensions (see [27,

28, 29]) that each of the conditions (i) and (ii) of Proposition 4.1.5 implies a

massless theory to be free (i.e., its S-matrix is trivial) (see [28, 30, 34]).

Note that all modular symmetries considered in the Propositions 4.1.4

and 4.1.5 have been found in [16] for the 1+1-dimensional case.

The above notion of a symmetry has been designed (almost) as wide

as appeared possible for the preceding results. It will turn out that due
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to the strong impact of Borchers’ commutation relations, it is, a priori, not

necessary to assume that a symmetry is induced by a point transformation,

i.e., that there is a bijection f : R1+s ! R1+s such that MO = f(O) andNO = f�1(O) for every O 2 K. It is not even necessary to assume that
the symmetries form a group. What is essential in the definition is that the

image of any local algebra under the adjoint action ofK is generated by the
local algebras it contains as subsets. If one associates with every algebraM � B(H) its localization region L(M)with respect to the net A byL(M) :=[fO 2 K : A(O) �Mg;
then one knows from Chapter 3 that for every region O 2 B, one hasL(A(O)) = O. In general, L(A(M)) �M .
Definition 4.1.2 could also refer to other prescriptions to extend the net(A(O))O2K to the index set of all open sets in R1+s. Indeed, there are situa-

tions where this makes sense. If, for example, the local algebras (associated

with double cones) are von Neumann algebras, not all algebras of the formA(M), M � R1+s open, need to be von Neumann algebras. Since the ad-
joint action of any unitary operator maps von Neumann algebras onto von

Neumann algebras, the above definition may exclude a large class of open

regions.

In this case, one may prefer to consider the net(R(M) := A(M)00)M�R1+sopen:
The class of symmetries with respect to the net R may be larger than the
class of symmetries of the net (A(M))M�R1+sopen, and the above results
would still apply if one replaced the net A by the net R. For this reason,
a more general definition of symmetry was given in [59]. But since the

relevance of this generalization appears to be rather a technical one, this

definition will not be used in the sequel in order to faciliate reading. The

proof of the new result would be precisely the same if the more general

definition of a symmetry were used.

Definition 4.1.2 includes the spacetime symmetries and internal sym-

metries which are familiar from high energy physics. The internal sym-

metries — these include the quantum symmetries [70] already mentioned

in the introduction of chapter 2, and they include local gauge symmetries

since they do not need to be translation invariant — are trivially included,

since they leave the local algebras invariant. On the other hand, special

conformal transformations may map bounded onto unbounded regions, so
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they would be excluded a priori if the regionsMO and NO were assumed to
be bounded regions or even double cones.

Clearly, Definition 4.1.2 does not include those supersymmetries that

interpolate between bosonic and fermionic sectors. This does not imply any

loss of generality, since already the Tomita-Takesaki Theorem guarantees

that neither the modular group nor the modular conjugation can turn an

observable into a fermionic field operator. Furthermore, symmetries in the

sense of Definition 4.1.2 do not need to leave the vacuum vector invari-

ant; but since the modular objects which are considered have this property

by construction, this does not mean any gain of generality for the present

context.

The first uniqueness theorem for modular symmetries is similar to the

results of Keyl [56] and Araki [5]: in both papers, the notion of a symmetry

is more restrictive than the one used here, whereas both authors can avoid

the use of the spectrum condition. Araki assumes, in addition, that alge-

bras of local observables which are localized in timelike separated regions

are not contained in each other’s commutants; this property is violated by

the massless free field in any even space-time dimension [27, 28, 29, 30].

4.2 Statement and discussion of the second unique-

ness theorem for modular symmetries

In the first uniqueness theorem it is assumed that the adjoint actions ofJW1 and �itW1 , t 2 R, map every local algebra A(O), O 2 K, onto the al-
gebra A(MO) associated with some open region MO in Minkowski space.
This means that, in a slightly weakened sense, the net structure has to be

preserved. This is the restrictive aspect of the assumption. On the other

hand, the shape of the region MO is left completely arbitrary, the mapK 3 O 7!MO is not even assumed to be induced by a point transformation.
All symmetries familiar from high energy physics are admitted a priori,

and a lot of ’pathological’ maps are admitted as well. In this aspect, the

assumptions of the first uniqueness theorem are rather weak.

The second uniqueness theorem differs from the first one in several

aspects. The first difference is that wedge duality will be assumed in the

second uniqueness theorem, while it occurs as a result of the first one. In

addition, it will be assumed that the localization prescription L introduced
in Chapter 3 for single local observables satisfies locality. As shown there

in Lemma 3.5.3, this follows from standard assumptions which are slightly
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stronger than those sufficient to find a nonempty localization region, but

which are not expected to mean a serious restriction.

The next difference to the first uniqueness theorem is that the action of

a modular group on a single local observable A is considered rather than
its action on the whole net. It is assumed that for some given local ob-

servable A 2 Aloc, the operators At := �itW1A��itW1 , are also local observ-
ables for succiently small t 2 R and that the localization region of the
observable At depends continuously on t for small t, i.e., that for every
sequence (t�)�2N which converges to some sufficiently small t1, the local-
ization L(At1) consists precisely of all accumulation points of sequences(x�)�2Nwith x� 2 L(At�).
4.2.1 Proposition (second uniqueness theorem for modular

symmetries)

Assume the net A to satisfy wedge duality, and assume the local-
ization prescription L : Aloc ! B defined in Chapter 3 to satisfy
locality (cf. Lemma 3.5.3). Let A be a local observable, and as-
sume that there exists an " > 0 such that all At, t 2 [0; "], are
local observables and such that the function [0; "] 3 t 7! L(At) is
continuous in the above sense.

Then L(At) = V1(�2�t)L(A) for every t 2 [0; "]:
To illustrate the continuity assumption of this theorem, note that the curveR3 t 7! At is continuous in the strong operator topology. Since the algebrasA(O)00, O 2 K, are von Neumann algebras, hence strongly closed, it follows
that whenever one has a sequence (tn)n2N which converges to some t1 2R and which has the property that all Atn are contained in a given local
algebra A(O) associated with some fixed double coneO 2 K, the observableAt1 is also contained in A(O), which implies L(At1) � O. In this sense,
the map t 7! L(At) is upper continuous. Under the action of a strongly
continuous group, the localization region does not ’explode’ suddenly.

On the other hand, the localization region may ’collapse’, i.e., not every

limit of a convergent sequence xn with xn 2 L(Atn) for all n 2 N needs
to be contained in L(At1). In this sense, the map t 7! L(At) is not known
to be lower continuous. If it is lower continuous, it is, by upper continuity,

actually continuous, i.e., if (tn)n2N and (xn)n2N are convergent series with
the property that xn 2 L(Atn) for all n 2 N, then the limit of the sequence(xn)n2N is in the localization region of At1 .
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It would be worth while to find sufficient criteria or even a general proof

for this assumption. At present, this appears to be rather a hard task, and

an idea how to do it has not been found so far.

The net structure is, in contrast to the first uniqueness theorem, not as-

sumed to be preserved under the adjoint action of �itW1 , since only a single
local observable is considered. It is not assumed that the image of any local

algebra under the adjoint action of themodular group contains any local al-

gebra as a subset, let alone that it is, as in the first uniqueness theorem, an

algebra of the form A(MO) for some open regionMO � R1+s. Furthermore,
not all local observables need to fulfill the assumptions of the theorem, and

even if they do, it is not required that �itW1A(O)��itW1 contains any algebra
of the form A(P), P 2 K (unless t = 0, of course). The net structure of A
may be lost completely under the action of the modular group.

On the other hand, the assumption that every local observable A is
mapped onto some other local observable under the adjoint action of the

modular group prohibits A to be mapped onto an observable localized in an
unbounded region. But for every bounded open region O there are confor-
mal transformations which map O onto an unbounded region; these trans-
formations are excluded a priori. This is a restrictive assumption which

was not necessary in the first uniqueness theorem, but which is obtained

there as a result.

The second uniqueness theorem shows that if the modular group �itW1 ,t 2 R, does not boost a given observable, the localization region of the ob-
servable develops discontinuously. In so far, it plays a role complementary

to the role of the first uniqueness theorem.

4.3 Proof of Theorem 4.1.3

In the sequel, K and � are defined as in Theorem 4.1.3. For every space-
time regionM � R1+s, KM denotes (as before) the class of all double cones
contained inM (in contrast toKM , which denotes the double cones contain-
ing M ), and for every algebra M � B(H), KM will denote the class of all
double cones O 2 K with A(O) �M.
The proof will be subdivided into a couple of lemmas. The first one im-

plies that for every O 2 K, the regions MO and NO are bounded. It makes
use of the observation that a region M is bounded if and only if its differ-
ence region M �M is bounded and of the fact that difference sets can be
expressed in terms of translations. Since the behaviour of translations un-

der the action of the symmetry K is known by assumption, one can prove
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the following lemma.

4.3.1 Lemma

For every double cone O 2 K, one hasL(KA(O)K�)� L(KA(O)K�) = �(O � O):
Proof: Using the assumptions of Theorem 4.1.3, one obtainsL(KA(O)K�)� L(KA(O)K�) = L(A(MO))� L(A(MO))= fa 2 R1+s : 9P 2 KA(MO) : A(P + a) � A(MO)g= fa 2 R1+s : 9P 2 KA(MO) : KU(��1a)K�A(P )KU(���1a)K� � A(MO)g= �fa 2 R1+s : 9P 2 KA(MO) : U(a)K�A(P )K| {z }=A(Np) U(a) � K�A(MO)K| {z }=A(O) g� �fa 2 R1+s : 9P 2 KA(MO) : 9Q 2 KA(NP ) : A(Q+ a) � A(O)g:
Since the definitions and isotony implyKA(NP ) = KK�A(P )K � KK�A(MO)K = KA(O);
and since Corollary 3.4.2 implies KA(O) = KO, one obtainsL(KA(O)K�)� L(KA(O)K�) � �fa 2 R1+s : 9Q 2 KO : A(Q+ a) � A(O)g= �(O � O):
The last step makes use of Corollary 3.4.2. Conversely,�(O �O) = �fa 2 R1+s : 9P 2 KO : A(P + a) � A(O)g= fa 2 R1+s : 9P 2 KO : A(P + ��1a) � A(O)g= fa 2 R1+s : 9P 2 KO : K�U(a)KA(P )K�U(�a)K � A(O)g= fa 2 R1+s : 9P 2 KO : A(MP + a) � A(MO)g� fa 2 R1+s : 9P 2 KO : 9Q 2 KA(MP ) : A(Q+ a) � A(MO)g;
and since KA(MP ) = KKA(P )K� � KKA(O)K� = KA(MO);
one obtains�(O �O) � fa 2 R1+s : 9Q 2 KA(MO) : A(Q+ a) � A(MO)g= L(A(MO))� L(A(MO));
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where the last step makes use of Corollary 3.4.2. This completes the proof.�
The next lemma proves that strict inclusions of double cones are preserved

under the symmetry K. Again, this is boiled down to translating local alge-
bras up and down Minkowski space and using the commutation relations

between the symmetry K and the translation operators. One makes use of
the observation that O � P if and only if O can be translated within P into
all directions.

4.3.2 Lemma

For any two double cones O; P 2 K with O � P ,L(KA(O)K�) � L(KA(P )K�):
Proof: O � P if and only if the set fa 2 R1+s : O + a � Pg is a neighbour-
hood of the origin of R1+s. After using Corollary 3.4.2, a couple of elemen-
tary transformations yieldfa 2 R1+s : O + a �Pg = fa 2 R1+s : A(O + a) � A(P )g= fa 2 R1+s : K�U(�a)KA(O)K�U(��a)K � A(P )g= fa 2 R1+s : A(MO + �a) � A(MP )g= ��1fa 2 R1+s : A(MO + a) � A(MP )g� ��1fa 2 R1+s : L(A(MO)) + a � L(A(MP ))g;
and since � is a linear automorphism of R1+s, it follows that O can be a
subset of P only iffa 2 R1+s : L(A(MO)) + a � L(A(MP ))g
is a neighbourhood of the origin. This implies the statement. �
The next lemma proves that K and K� implement a homeomorphism ofR1+s onto itself.
4.3.3 Lemma

Let x 2 R1+s be arbitrary, and let (O�)�2N be a neighbourhood
base of x consisting of double cones O� 2 K.
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Then (L(KA(O�)K�))�2N is a neighbourhood base of a (natu-
rally, unique) point ~�(x) 2 R1+s, and (L(K�A(O�)K))�2N is a
neighbourhood base of a point �̂(x) 2 R1+s. The functions x 7!~�(x) and x 7! �̂(x) = ~��1(x) are continuous.

Proof:Without loss of generality, one may assume that O�+1 � O� for all� 2 N. It follows from L(A(O)) = O for all O 2 K and Lemma 4.3.1 that
all L(KA(O�)K�), � 2 N, are bounded sets, and it follows from Lemma 4.3.2
that L(KA(O�+1)K�) � L(KA(O�)K�):
Therefore, the intersection of this family is nonempty, and Lemma 4.3.1

implies that the diameter of L(KA(O�)K�) tends to zero as � tends to in-
finity. This implies that the intersection contains precisely one point ~�(x),
as stated. The corresponding statements for K� are proved analogously.
This proves that x 7! ~�(x) is a bijective point transformation. Let (x�)�2N

be a sequence in R1+s which converges to a point x1. Then there is a
neighbourhood base (O�)�2N of x1 with x� 2 O� for all � 2 N. But since~�(x�) 2 ~�(O�) for all � 2 N, and since ~�(O�) is a neighbourhood base of~�(x1), it follows that ~�(x�) tends to ~�(x1) as � ! 1. Since this line of ar-
gument applies to �̂ = ~��1 as well, it follows that ��1 and ~� are continuous,
as stated. �
The next lemma determines the function ~� up to a constant translation.
4.3.4 Lemma

For every x 2 R1+s, one has~�(x) = ~�(0) + �x:
Proof: Let (O�)�2N be a neighbourhood base of o. Then (O� + x)�2N is a
neighbourhood base of x, and\�2NL(KA(O� + x)K�) = \�2N~�(O� + x) = f~�(x)g:
On the other hand,\�2NL(KA(O� + x)K�) = \�2NL(U(�x)KA(O�)K�U(��x))= �x+ \�2N~�(O�)= �x+ f~�(0)g:
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Theorem 4.1.3 may now be proved as follows. By Lemma 4.3.4, ~�(O) is a
double cone for every O 2 K. Since K has been assumed to be a symmetry,
one concludes that for every O 2 K, one has KA(O)K� � A(~�(O)) andK�A(O)K � A(~��1(O)), henceA(~�(O) = KK�A(~�(O))KK� � KA(~��1(O))K� = KA(O)K�;
which completes the proof of Theorem 4.1.3. �
4.4 Proof of the two uniqueness theorems

4.4.1 Proof of Proposition 4.1.4 (i) (P1CT-part of the first unique-
ness theorem)

It follows from Theorem 4.1.3 that there is a function ~|R1+s ! R1+s such
that JA(O)J = A(~|(O)) for all O 2 K:
This ~| satisfies the relation~|(x) = ~|(0) + jx =: � + jx for all x 2 R1+s:
It remains to be shown that � = 0. Since J is an involution, so is ~|. This
implies x = ~|(~|(x)) = ~|(�+ jx) = �+ j�+ x for all x 2 R1+s;
which gives � = �j�, hence �2 = � � � = �s = 0. That �0 = �1 = 0, is equivalent
to ~|(W1) = W 01, but this is easy to see since W 01 � ~|(W1) follows from local-
ity and the Tomita-Takesaki theorem, while it is also the Tomita-Takesaki

theorem which implies A(~|(W1))00 � A(W1)0, whence one concludes that~|(W1) � W 01 by using Corollary 3.4.2. This completes the proof. �
In the sequel, a well-known generalization of Asgeirsson’s Lemma will be

used repeatedly. It is called the double cone theorem and has been found

by Borchers and Vladimirov [79, 12, 80, 18]. Below, it will be applied to-

gether with the edge of the wedge theorem due to Bogoliubov (cf., e.g.,

[72, 80, 18]). For the reader’s convenience, both theorems are recalled here.

For every " > 0, B" will denote the "-ball in R2, and n will denote some
natural number.
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4.4.2 Theorem (edge of the wedge theorem)

Let C be a nonempty, open and convex cone inRn. For some " > 0,
assume that g+ is a function analytic in the tube Rn+ i(C \B"),
whereas g� is a function analytic in the tube Rn � i(C \ B"). If
there is an open region  � Rn where g+ and g� have a common
boundary value in the sense of distributions, then g+ and g� are
branches of a function g whose domain of analyticity contains a
complex neighbourhood � of .

4.4.3 Theorem (double cone theorem)

Within the setting and notation of Theorem 4.4.2, let c be any
smooth curve in  which has all its tangent vectors in C. Then
the domain of analyticity of g contains a complex neighbourhood
of the double cone (c+ C)\ (c� C).

4.4.4 Proof of Proposition 4.1.4 (ii) (Lorentz part of the first

uniqueness theorem)

For every t 2 R, Theorem 4.1.3 implies the existence of a unique �(t) 2 R1+s
with �itA(O)��it = A(V1(�2�t)O + �(t)) for all O 2 K:
By Lemma 2.1.2 it is clear that �(t) + W1 = W1. Since O 2 K impliesV1(�2�t)O+�(t) 2 K, and since (�it)t2Ris a one-parameter group, it follows
that (�(t))t2R is a one-parameter group of translations with �(0) = 0. This
implies that there is a � 2 R1+s such that �(t) = t� for all t 2 R.
It remains to be shown that � = 0. To this end, choose any x 2 W1,

and consider the curve c(t) := V1(�2�t)x + t�, t 2 R, for some vector �
pointing in the 2-direction. c is a causal curve if and only if � = 0, if � 6= 0, it
becomes spacelike for large positive or negative t. This observation and the
proof that motions along spacelike curves cannot be implemented by the

modular group under consideration are due to Trebels [78]. The following

argument differs from his formulation, but the crucial idea to apply the

double cone theorem is due to him.

If � 6= 0, there is, for every " > 0, a double coneO � W1 with the property
that V1(�2�")O+ "� is spacelike with respect to O. It follows that there are
an a 2 R1+s and a � > 0 such that
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Figure 4.1: First uniqueness theorem: the double cone P
(i) V1(�2�t)O + t� � �te0 � a+ V+ for all t 2 [0; "];
(ii) O 6� a+ V+.

On the other hand, there is a b 2 R1+s such that
(iii) V1(�2�t)O + t� � b� V+ for all t 2 [0; "]:

See Figure 4.4.4. Now denote P := (a+V+)\ (b�V+), choose A 2 A(O) andB 2 A(P 0), denote by e0 the unit vector in the time direction, and consider
the function gA;B defined byR2 3 (t; s) 7! gA;B(t; s) := D
; [B;U(se0)�itA��itU(�se0)]
E= D
; BU(se0)�itA
E� D
; A��itU(�se0)B
E= D
; BU(se0)�itA
E� h
; B�U(se0)�itA�
i=: g+(t; s)� g�(t; s):
By conditions (i) and (iii), the function gA;B vanishes in the closure of the
open triangle  with corners (0; 0), ("; 0) and (";��"). Clearly,  contains
a smooth curve which joins (0; 0) to (";��") and which has tangent vec-
tors in the cone C := f(t; s) 2 R2 : t > 0; s < 0g. It will be shown that
by the double cone theorem, gA;B vanishes in the whole open rectangle]0; "[� ]� �"; 0[. Since gA;B is continuous, it follows that it even vanishes
in the closed rectangle [0; "] � [��"; 0]. Since B 2 A(P 0) and A 2 A(O) are
arbitrary, Lemma 3.3.1 implies that A(O��"e0) � A(P 0)0. But since by con-
dition (ii), the double cone O��"e0 cannot be contained in P no matter how
small �" is, this is in conflict with Corollary 3.4.2, so it follows that � = 0,
which implies the statement.
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Figure 4.2: First uniqueness theorem: the triangle 
It remains to be shown that the function gA;B fulfills the assumptions

of the double cone theorem. Using elementary arguments from spectral

theory it can be shown that given any � > 0, any vector � in the domain
of �� and any  2 H, the function R 3 t 7! h ;�it�i has an extension to
a function which is continuous on the strip ft 2 C : �� � Im t � 0g and
analytic on the interior of this strip (cf. [62], Lemma 8.1.10 (p. 351)).

Since the vectors A
 and A�
 are in the domain of � 12 , it follows that
for every  2 H, the functions R3 t 7! h ;�itA
i and R3 t 7! h ;�itA�
i
have extensions which are continuous in the strips ft 2 C : �12 � Im t � 0g
and ft 2 C : 0 � Im � 12g, respectively, and which are analytic in the
interior of these strips.

On the other hand, it follows from the spectrum condition that for any

two vectors �;  2 H, the functions R 3 s 7! h ; U(se0)�i and R 3 s 7!h ; U(se0)�i have extensions which are continuous in the (complex) closed
upper and lower half plane, respectively, and analytic in the interior of

these half planes.

This proves that the function g+ has a continuous extension to the tubeT+ := f(t; s) 2 C 2 : �1=2 � Im t � 0; Im s � 0g and that at each interior
point of this strip, this extension is analytic separately in t and in s. Us-
ing Hartogs’ fundamental theorem which states that a function of several

complex variables is holomorphic if and only if it is holomorphic separately

in each of these variables [53, 80], it follows that g+ is, as a function in
two complex variables, analytic in the interior of T+. It follows in the same
way that g� has the corresponding properties for the tube �T+ =: T�. The



60 4. The two uniqueness theorems for modular symmetries

tubes T+ and T� contain the smaller tubesR2� iC \B 12 andR2+ iC \ B 12 .
Since g+ and g� coincide as continuous functions in the closure of ,

they coincide as distributions in the open region , and it follows from the
edge of the wedge theorem that they are branches of a function g which is
analytic in a complex neighbourhood � of . But since  contains a smooth
curve joining the points (0; 0) and (";��") with tangent vectors in C, it
follows from the double cone theorem that the function g is analytic in the
region ((0; 0)+ C)\ ((";��")� C) =]0; "[� ]� �"; 0[:
This implies that gA;B vanishes in this region, which is all that remained
to be shown, so the proof is complete. �
4.4.5 Proof of Proposition 4.1.5 (’uniqueness theorem 1a’)

For every a 2 R1+s, Theorem 4.1.1 implies the commutation relationsJ+U(a)J+ = U(�a);�it+U(a)��it+ = U(e�2�ta) for all t 2 R:
If, respectively, J+ or �it+ is a symmetry, Theorem 4.1.3 implies that it
can differ from the stated symmetry at most by a translation. Since V+ is
Lorentz-invariant, J+ and �it+, t 2 R, commute with all U(g); g 2 L"+: How-
ever, there are no nontrivial translations which commute with all g 2 L"+;
this proves Proposition 4.1.5. �
4.4.6 Proof of Proposition 4.2.1 (second uniqueness theorem)

From the Tomita-Takesaki Theorem it follows that the modular group un-

der consideration leaves the algebras A(W1)00 and A(W1)0 invariant. By
wedge duality, it also leaves the algebra A(W 01)00 invariant. Borchers’ com-
mutation relations now imply that the algebras associated with the images

of W1 under arbitrary translations transform under the adjoint action of�itW1 as under the Lorentz boost V1(�2�t). It follows that for every A 2 Aloc,
one already has(L(At) +W1) \ �L(At) +W 01� � V1(�2�t) �(L(A) +W1) \ �L(A) +W 01�� ;
where At := �itW1A��itW1 , as above. Therefore it is sufficient to control the
extension of L(At) in the 2- and the 3-direction. Furthermore, Borchers’
commutation relations imply that it is sufficient to prove the theorem for
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the case that L(A) � W1, since every localization region may be shifted intoW1 by some translation.
For some local observable A localized in W1, we discuss the negative 2-

direction; the other directions behave the same way. To this end, define the

continuous functionR3 t 7! �(t) := minfx2 : x 2 L(At))g;
and choose coordinates such that �(0) = 0. It will be shown that for any" > 0, the assumption �(") > 0 leads to a contradiction; if �(") < 0, onemay
turn the spacetime upside down (along the time axis) in order to obtain an

analogous argument.

If �(") > 0, there is an x 2 W1 such that(V1(�2�")x� x)2 � �(")2 < 0;
and since L(At) has been assumed to depend continuously on t, it follows
that there are an a 2 R1+s, a �] � 0 and a � > 0 such that for Ax :=U(x)AU(�x), one has

(i) L(Axt ) + (�] � �t)e0 � a+ V+ for all t 2 [0; "].
(ii) L(Ax) 6� a+ V+.

On the other hand, there exists a b 2 R1+s such that
(iii) L(Axt ) + �]e0 � b� V + for all t 2 [0; "];

since L(Axt ) = L(At) + x depends continuously on t.
Now define P := (a + V+) \ (b� V+), and for any B 2 A(P 0), consider –

as in the proof of Proposition 4.1.4 – the function gAx;B defined byR2 3 (t; s) 7! gAx;B(t; s) := h
; BU(se0)�itW1Ax
i � h
; Ax��itW1U(�se0)B
i:
Since L(Axt ) = L(At) + x depends continuously on t, locality implies that
there is a region with continuous boundaries in which this function van-

ishes for all choices of B. By Conditions (i) and (iii), this region contains
the triangle  with the corners (0; �]), ("; �]) and ("; �] � �") (Figure 4.4.6).
As in the proof of Proposition 4.1.4, it can be shown that gAx;B also vanishes
in the closed rectangle [0; "]� [�] � �"; �]].
Since B 2 A(P 0) is arbitrary, this implies, by Lemma 3.3.1, thatL(Ax) + (�] � �")e0 � P . This is in conflict with Corollary 3.4.5 if �] < �".

But this does not need to be the case.
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a L(Ax" ) a + V+L(Ax) L(Axtmax) �[� b � V+

Figure 4.3: Second uniqueness theorem: construction of P
The three localization regions have been depicted as double cones (which

they do not need to be in general). tmax is the parameter which leads to the
double cone which is the ’lowest’ with respect to the lower boundary of the

light cone a + V+. Such a tmax does exist since L(Axt ) depends continuously
on t.

The curve depicted by the fat line joins the pointst� " t

the triangle s (0; �1) and ("; �2) and has tangent vectors in C. �"
(fat dashed line)

��]
continuously on t.��[
The function gAx;B vanishes in some
neighbourhood of this continuous curve. Such a
curve exists since L(Axt ) depends

Figure 4.4: Second uniqueness theorem: where gAx vanishes
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To conclude the proof for the case that �] � �", note that it follows
from property (iii) of the double cone P that there is a �[ > 0 such thatgAx;B(";��[) = 0, and since L(Axt ) = L(At) + x depends continuously on t,
one concludes that �[ can be chosen such that some point in the triangle 
can be joined to the point (";��[) by a smooth curve with tangent vectors inC (i.e., which is the graph of a monotonously decreasing function) around
which the function gAx;B vanishes (cf. Figure 4.4.6). This implies that a
smooth curve with tangent vectors in C can be found which joins the points(0; �]) and (";��[) and around which the function gAx;B vanishes. But now
the double cone theorem implies that gAx;B vanishes in the open rectangle]0; "[� ]��[; �][, continuity of gAx;B implies that this function also vanishes
in the closure of this rectangle, and this, as above, leads to a contradiction

with Corollary 3.4.2 and completes the proof. �



Chapter 5

Conclusion and outlook

As already mentioned in Chapter 2, the counterexample due to Streater

[73] makes that every proof of the spin-statistics theorem in 1+3 dimen-

sions must be based on assumptions which rule this example out. Such as-

sumptions have been made in Chapter 2 (compactness of the group of inter-

nal symmetries) as well as in an older proof of the spin-statistics theorem

due to Buchholz and Epstein [33] (at most finite degeneracy of particles),

and it is an open question how the different assumptions are related.

On the other hand, the Bisognano-Wichmann theorem is a theorem

about finite-componentWightman fields. This resctriction excludes Streater’s

example, and it clearly implies the Buchholz-Epstein assumption that ev-

ery particle is at most finite degenerate. An open question is whether the

Buchholz-Epstein assumption could be sufficient to prove the Bisognano-

Wichmann theorem in the algebraic setting.

The above uniqueness theorems on modular symmetries are not the

only attempt to find sufficient conditions for the modular symmetry prop-

erties investigated in this thesis. Recently, Borchers published a simple an-

alytic continuation trick which derives the Bisognano-Wichmann modular

symmetries from a so-called ’reality condition’, which is of a rather tech-

nical nature and, therefore, not recalled here [18]. By now, a derivation of

this condition from physical principles is not known.

The proof of the spin-statistics theorem in 1+2 dimensions due to Guido

and Longo appears not to rely on any assumptions which rule out Streater’s

example. This does not seem to be a problem, since Streater’s example does

not work in 1+2 dimensions (it relies on the fact that in 1+3 dimensions,

a spin-one-half representation of the Poincaré group can be turned into its

adjoint representation by means of a unitary intertwiner, which is impossi-

ble in 1+2 dimensions). It is, however, an indication that the spin-statistics
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theorem in 1+2 dimensions might be a more universal property of rela-

tivistic quantum fields than it is in 1+3 dimensions, and it may be that the

assumption of modular P1CT-symmetry can, in principle, be avoided.
Chapter 3 was intended to give the preliminaries for the analysis of

modular symmetries. Conversely, Thomas and Wichmann have also in-

vestigated the implications of modular Lorentz symmetry for the localiza-

tion behaviour of a local observable. Assuming modular Lorentz symme-

try, strong additivity for wedges and an intersection property1, they found

that the localization region of an observable A with respect to a minimal
Poincaré covariant local net generated by A is the smallest region OA in B
with the property that for any (a;�) 2 P"+, one has (a;�)OA � O0A if and
only if [A;U(a;�)AU(a; �)�] = 0, which is unique up to a translation [77].
This definition of a localization region does no longer refer to any other ob-

servables of the net, it shows that a localization region of a local observable

can be defined such that it is a property of the observable itself without

referring to any other observables. This is an interesting consequence of

modular Lorentz symmetry, which, in a way, looks ’dual’ with respect to

the above results.

1This assumption makes the construction of a nonempty localization region straightfor-

ward, but it is not a standard assumption and has been avoided above
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