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1. Introduction, De�nitions and Statement of ResultsThis paper concerns tilings of Euclidean spaces by polygons or polyhedra, morespeci�cally, tilings made by a \substitution process". Given a substitution rule,the set of resultant tilings is a topological space with an action of the Euclideangroup, hence a dynamical system. We develop here an algebraic invariant that helpsdetermine when two tiling systems are equivalent as dynamical systems. In thisintroduction we de�ne the notions of \substitution tiling system" and of equivalencebetween two such systems, and state what the invariant is. In subsequent sectionswe analyze the invariant, in particular we show its use in distinguishing betweensubstitution tilings.Our eventual goal is to associate certain groups to substitution tilings of Eu-clidean m-space. These groups, subgroups of SO(m), are generated by the relativeorientations of tiles in the tilings, depend on the speci�c tiling x and on some speci�cchoices (indexed by an integer j), and are denoted Oj(x). Although Oj(x) dependson j and x, the dependence is quite controlled. If x and x0 are di�erent tilings withthe same substitution rule we will show that, under some mild hypotheses, Oj(x)and Oj0(x0) are conjugate as subgroups of SO(m). Even without the mild hypothe-ses, they are conjugate (in SO(m)) to subgroups of one another, a condition we call\c-equivalence". So we can associate to a substitution tiling system the commonconjugacy class (or c-equivalence class) of the groups associated to the tilings in thesystem.What will remain, then, is to show that this conjugacy (or c-equivalence) classcan be considered an invariant in a natural sense. That is, we will show that twosubstitution tiling systems that are equivalent as dynamical systems have the sameclass of groups. We will do this by �nding a dynamical description of the class.For each � > 0 and each tiling x we will de�ne a group O�(x) using dynamicalinformation only. For � su�ciently small, and for almost every x, we show thatO�(x) is conjugate to (or c-equivalent to) Oj(x) for some, and hence all, choices j.The class ofO�(x) is thus the same as the class ofOj(x). SinceO�(x) is de�ned usingdata that is preserved by dynamical equivalence, the class of O�(x) is a dynamicalinvariant.Note that the group Oj(x) depends only on the geometry of the tiling x. Sincethe class of Oj(x) is the same for every tiling x with the given substitution rule, wecan obtain information about a substitution tiling system by looking at any singletiling in it. So if two substitution tilings x and x0 give rise to groups Oj(x) andOj0(x0) that are not conjugate (or c-equivalent), then x and x0 cannot belong toequivalent substitution tiling systems.Before de�ning substitution tiling systems in general, we present an example.Hopefully, the general de�nitions will be clearer with this example in mind. The\pinwheel" tiling of the plane [Ra1] is made as follows. Consider the triangles ofFig. 1. Divide one of them into �ve small triangles as in Fig. 2 and expand the1



�gure about the origin by a linear factor of p5, producing 5 triangles congruent tothe originals.
Figure 1. Two \pinwheel" tilesFigure 2. The substitution for pinwheel tilings

Figure 3. Part of a pinwheel tiling2



Repeat this two-step procedure � simultaneously for all the triangles of the�gure, then again, an in�nite number of times, producing a (pinwheel) tiling C ofthe plane, a portion of which appears in Fig. 3. Such tilings have a hierarchicalstructure which is of interest for various reasons; in particular it leads to interestingbehavior of the relative orientations of tiles within a tiling [Ra3]. For backgroundon related recent work see [AnP, CEP, DwS, G-S, Kel, Ken, LaW, Min, Moz, Ra3,Rob, Sad, Sch, Sen, Sol, Tha] and references therein.Substitution Tiling SystemsWith the pinwheel example in mind, we now address substitution tiling systemsin general. Let A be a nonempty �nite collection of polyhedra in m (typically 2 or3) dimensions. Let X(A) be the set of all tilings of Euclidean space by congruentcopies, which we will call tiles, of the elements of (the \alphabet") A. We label the\types" of tiles by the elements of A. We endow X(A) with the metricd(x; y) � supn 1nmH[Bn(@x); Bn(@x0)]; 1)where Bn(@x) denotes the intersection of two sets: the closed ball Bn of radius ncentered at the origin of the Euclidean space and the union @x of the boundaries @aof all tiles a in x. mH is the Hausdor� metric on compact sets de�ned as follows.Given two compact subsets A and B of Rm, mH [A;B] = maxf ~d(A;B); ~d(B;A)g,where ~d(A;B) = supa2A infb2B jja� bjj; 2)with jjwjj denoting the usual Euclidean norm of w. Although the metric d dependson the location of the origin, the topology induced by d is translation invariant.A sequence of tilings converges in the metric d if and only if its restriction toevery compact subset of Rm converges in mH. It is not hard to show [RaW] thatX(A) (which is automatically nonempty in our applications) is compact and thatthe natural action of the connected Euclidean group GE on X(A), (g; x) 2 GE �X(A) �! T gx 2 X(A), is continuous.A \substitution tiling system" is a closed subset X� � X(A) satisfying someadditional conditions. To understand these conditions we �rst need the notion of\patches". A patch is a (�nite or in�nite) subset of an element x 2 X(A); the setof all patches for a given alphabet will be denoted by W . Next we need, as for thepinwheels, an auxiliary \substitution function" �, a map from W to W , with thefollowing properties:i) There is some constant j�j > 1 such that, for any g 2 GE and x 2 X,�[T gx] = T�(g)x, where �(g) is the conjugate of g by the similarity ofEuclidean space consisting of stretching about the origin by j�j.ii) For each tile a 2 A and for each n � 1, the union of the tiles in �na iscongruent to j�jna, and these tiles meet full face to full face.3



iii) For each tile a 2 A, �a contains at least one tile of each type.Condition ii) is quite strong. It is satis�ed by the pinwheel tilings only if weadd additional vertices at midpoints of the legs of length 2, creating boundaries of4 edges. A similar (minor) adjustment is needed for other examples in this paper.Even with such adjustments however, condition ii) is not satis�ed by the kite &dart tilings [Gar], or those which mimic substitution tilings using so-called edgemarkings [G-S, Moz, Ra3]. It is to handle such examples that we introduce thegeneral development of x3.De�nition. For a given alphabet A of polyhedra and substitution function � the\substitution tiling system" is the pair fX�; Tg, where X� � X(A) is the compactsubset of those tilings x with the property that every �nite subpatch of x is congruentto a subpatch of �na for some n > 0 and some a 2 A, and T is the natural actionof GE on X�. (For simplicity we often refer to X� as a substitution tiling system.)One planar example of a substitution tiling system is based on the pinwheelsubstitution of Fig. 2. A slight variant of the pinwheel is de�ned by the 1-3-p10right triangle and its re
ection, and the substitution of Fig. 4.Figure 4. The substitution for pinwheel variant tilingsTwo further special conditions which we will occasionally impose are:iv) A tiling in X� can only be tiled in one way by supertiles of level n, for anyn � 1.v) For every a 2 A, there exists na > 0 such that �naa contains a tile a0, of thesame type as a, and parallel to a.We note here that with the convention that patches of the form �na are called\supertiles" of \level" n and \type" a, it is easy to show by a diagonal argumentthat, for each n � 0, each tiling x is tiled by supertiles of level n [Ra3]. A supertileof level 4 for the pinwheel is shown in Fig. 3.Finally, letS�(x) = fy 2 X� : d(�ny; �nx) < � for all n � 0; and d(�ny; �nx) �!n!1 0g:4



We call such a family of sets a \local contracting direction (at x)".Our goal is to de�ne a notion of equivalence for substitution tiling systems,and an invariant for that equivalence. For the equivalence we use:De�nition. The substitution tiling systems (X�1 ; T 1) and (X�2 ; T 2) are \equiva-lent" if there are subsets Yj � X�j , invariant under T j and of measure zero withrespect to all translation invariant Borel probability measures on X�j , and a one-to-one, onto, Borel bimeasureable map � : X�1�Y1 ! X�2�Y2, such that:a) � � T 1 = T 2 � � ;b) for each x 2 X1�Y1, � > 0 and �0 > 0, there exist ~� > 0 and ~�0 > 0 suchthat � [S~�(x)] � S�(�x), and ��1[S~�0(�x)] � S�0(x).We call such a map � an \isomorphism".This notion of equivalence is stronger than simply intertwining the actions ofGE . This is appropriate; it has been known at least since [CoK] that substitutionsubshifts show almost none of their richness if considered merely as subshifts. So inclassifying tilings that have a hierarchical structure we make some feature of thathierarchical structure part of our notion of equivalence.To de�ne an invariant we extract information from the local contracting di-rections. Since the local contracting directions are preserved by equivalence, suchinformation is manifestly invariant. We de�ne here the invariant. In later sectionswe relate it to directly computable quantities (the Oj(x)) and demonstrate its usein distinguishing between tiling dynamical systems.Consider GE as the semidirect product of SO(m) with Rm, with g = (r; t)denoting a rotation r about the origin followed by a translation t. Then consider,for any substitution tiling system X� and � > 0:R�(x) = fr 2 SO(m) : there exists t such that T (r;t)x 2 S�(x)gNow let O�(x) be the subgroup of SO(m) generated by R�(x). The corollary toTheorem 2 shows that the conjugacy class of O�(x) is independent of x and � (whensmall enough) for substitution tiling systems satisfying iv) and v). The conjugacyclass of O�(x) is therefore an invariant of the tiling dynamical system, not just afeature of the individual tiling x.2. The group of relative orientationsThe groupO�(x) generated by R�(x) is not directly computable. In this sectionwe remedy this by constructing, for a substitution tiling system, a more easilycomputable group Oj(x) related to the relative orientations of the tiles in the singletiling x. The group O�(x) is then shown to be conjugate to Oj(x).Given a tiling x and some tile a of type j in it, let Rj(a; x) � SO(m) be theset of relative orientations with respect to a of the tiles of type j in x; that is,5



Rj(a; x) is the set of rotations of x which bring a tile of type j parallel to (the �xed)a. The group generated by Rj(a; x) is easily seen to be generated by the relativeorientations between all pairs of tiles of type j in x; in particular it is independentof a, and we denote it by Oj(x). Furthermore,Lemma 1. If x0 has a tile a0 of type j parallel to the tile a in x, thenOj(x) = Oj(x0).For any ~x, Oj(~x) is conjugate to Oj(x).Proof. First note that Oj(x) is generated by the relative orientations between a andall other tiles of type j in x. So consider the generator g of Oj(x) which is therelative orientation of a tile c with respect to a in x. We will show that g 2 Oj(x0),from which it follows that Oj(x) � Oj(x0). By symmetry, we would then haveOj(x0) � Oj(x), and hence Oj(x) = Oj(x0).From the de�nition of substitution tilings, the tiles a and c can be thoughtof as belonging to some supertile A of level n (although not all of A need exist inx). Since x0 is tiled by supertiles of level n, there is a supertile A0 of level n in x0containing a pair of tiles, a00 and c00, which have the same positions relative to A0as do a and c relative to A. See Fig. 5.
A A0

a0a00 c00a
c

part of tiling x part of tiling x0Figure 56



Let g0 be the relative orientation of c00 with respect to a00. Then g = R�1g0Rwhere R is the relative orientation of A0 with respect to A. But R is then also therelative orientation of a00 with respect to a, which is the same as that of a00 withrespect to a0, and R is thus an element of Oj(x0). But then g is an element ofOj(x0), as claimed.If ~x is any tiling at all, Oj(x) andOj(~x) are conjugate by an element of SO(m),namely a rotation which makes a tile of type j in ~x parallel to one in x.Finally we consider the dependence of Oj(x) on j.De�nition. Two subgroups of SO(m) are \c-equivalent" if each is conjugate (inSO(m)) to a subgroup of the other. (Note that in SO(2) c-equivalence is the sameas identity.)Lemma 2. For any tilings x; ~x 2 X� and tile types j and k, Oj(x) is c-equivalentto Ok(~x).Proof. By Lemma 1 it is su�cient to show that Oj(x) and Ok(x) are c-equivalent.Consider any two tiles a and b of type j in x, and let g be the relative orientation ofb with respect to a. After one substitution a and b give rise to tiles a0 and b0 of typek in the tiling �x. The relative orientation of b0 with respect to a0 is again g, since gtakes each part of b onto the corresponding part of a. Applying this construction toall the generators of Oj(x), we see that Oj(x) is a subgroup of Ok(�x). Similarly,Ok(x) is a subgroup of Oj(�x). But Oj(x) and Ok(x) are conjugate to Oj(�x) andOk(�x), respectively, so Oj(x) and Ok(x) are conjugate to subgroups of each other.Lemma 3. Assume � satis�es v). Then Oj(x) = Ok(x).Proof. Let n = �ana. Since the tilings de�ned by �n are the same as thosede�ned by � we can, without loss of generality, assume n = 1, so that �x containstiles parallel to every tile of x. Then, by Lemma 1, Oj(x) = Oj(�x) and Ok(x) =Ok(�x). But we have shown thatOk(x) � Oj(�x) andOj(x) � Ok(�x), soOj(x) =Ok(x).To summarize: From lemmas 1 and 2 we can associate a subgroup of SO(m) toany substitution tiling system, uniquely de�ned up to c-equivalence. If the substi-tution tiling system satis�es v), lemma 3 shows that the group is uniquely de�nedup to conjugacy.Before we can use these groups as an invariant for equivalence of substitutiontiling systems we must refer to the relative orientations in a more fundamental way.Our next goal is to connect this group with the invariant introduced at the end ofx1. The essential observation is that, if tilings x 6= y agree in some neighborhood ofthe origin in Euclidean space, then �x and �y will agree in a larger neighborhood ofthe origin, so we typically expect d(�x; �y) < d(x; y). We are thus led to a quantity7



introduced earlier. For each x in the substitution tiling system X� and for each� > 0, consider:S�(x) = fy 2 X� : d(�ny; �nx) < � for all n � 0; and d(�ny; �nx) �!n!1 0g: 3)Theorem 1. Assume a substitution tiling system X�.a) Given any � > 0 there exists N > 0 such that BN(@y) = BN(@x) impliesy 2 S�(x).b) There exists � > 0 such that, for every x 2 X�, y 2 S�(x) and every tile a 2 xthat meets the origin, there is a tile a0 2 y that exactly coincides with a.Proof. a) is immediate from the form of the metric. The proof of b) requires thefollowing two lemmas.Lemma 4. For every N > 0 and every neighborhood U of the identity in GE thereexists � > 0 with the following property: Let x; x0 2 X(A) be any two tilings withd(x; x0) < �, and let a be a tile of x that is contained in BN . Then x0 contains atile a0 of the form T ga where g 2 U .Proof. Let z > 0 be such that for each b 2 A some ball of diameter z lies inthe interior of b. Fix some � 2 (0; z=3) and de�ne the heart h�(b) of b 2 A asfp 2 b : jjp � qjj > � for all q 2 @bg. By the corridor C�(x) of a tiling x we meanthe complement of [b2xh�(b). Let D be the largest of the diameters of all b 2 A.Without loss of generality, we can assume N > D.With this notation we note that if d(x; x0) < �=(N + D) we have BN(@x) �C�(x0) andBN (@x0) � C�(x). So if � � 0 each tile in x inBN is closely approximatedby some tile in x0 and vice versa. In particular it now follows that for small enough�, if d(x; x0) < � then the tiles a0 2 x0 must be of the same type as the tiles a 2 xthey approximate, and in fact satisfy a0 = T ga with g 2 U .Lemma 5. For each N > 0 there is a neighborhood UN of the identity in GE withthe following property: If a is a tile in BN and g1 and g2 are distinct elements ofUN , then T g1a and T g2a overlap but are distinct. In particular, it is impossible forT g1a and T g2a to both be tiles in the same tiling.Proof. This follows from the continuity of the action of GE on tiles, and the factthat polyhedra do not admit in�nitesimal symmetries.We now return to the proof of Theorem 1. Pick N > D and let UN be as inLemma 5. Pick a smaller bounded neighborhood U � UN of the identity of GEwith the property that (r; t) 2 U implies (r; j�jt) 2 UN . Then pick � small enoughthat Lemma 4 applies.Let a be a tile of x containing the origin. By Lemma 4 there is a tile a0 in y ofthe form T ga with g = (r; t) 2 U � GE . We will show that t 6= 0 implies that, forsome n, d(�nx; �ny) > �, while t = 0; r 6= 0 implies that limn!1 d(�nx; �ny) 6= 0.This will complete the proof. 8



Note that �na0 = T (r;j�jnt)�na. If t 6= 0, pick n such that (r; j�jnt) is outsidethe neighborhood U but in UN . Let ~a be a tile of �na containing the origin. Thenthere is a tile ~a0 = T (r;j�jnt)~a in �ny. But by Lemma 5 this means there cannot be atile of the form T g~a in y with g 2 U . By Lemma 4 this means that d(�nx; �ny) � �.If t = 0 then �na0 = T (r;0)�na. If r 6= 0, for every tile ~a 2 �na containing theorigin there is a tile ~a0 2 �na0 overlapping it and with relative orientation r, whichimplies that the distance between �nx and �ny will not go to zero.Recall the following quantity from x1:R�(x) = fr 2 SO(m) : there exists t such that T (r;t)x 2 S�(x)g: 4)Let O�(x) be the group generated by R�(x). Assuming � small enough for Theorem1b, we see that every r 2 R�(x) is the relative orientation of a tile of x with respectto a corresponding tile of x near the origin. By Theorem 1a, if C is a region of xcontaining BN , and if C 0 is any region of x congruent to C, then R�(x) includes therelative orientation of C 0 to C.Consider the following property.Property F. The subset of tilings x, for which every �xed �nite ball B of Euclideanspace is contained in some supertile of �nite level in x, is of full measure for everytranslation invariant measure on X�.We will prove that Property F holds for a large class of interesting systems, atleast those satisfying condition iv). This assumption, which implies that � is ahomeomorphism on X�, is satis�ed by all known nonperiodic examples. In fact it isautomatically true for a system that contains nonperiodic tilings and in which thetiles only appear in �nitely many orientations in any tiling [Sol].If a tiling contains two or more regions each tiled by supertiles of level n for alln � 0, we call these regions supertiles of in�nite level. Recall that any tiling is tiledby supertiles of any �nite level n. If a ball in a tiling x fails to lie in any supertileof any level n, then x is tiled by two or more supertiles of in�nite level, with theo�ending ball straddling a boundary. (One can construct a pinwheel tiling withtwo supertiles of in�nite level as follows. Consider the rectangle consisting of twosupertiles of level n�1 in the middle of a supertile of level n. For each n � 1 orientsuch a rectangle with its center at the origin and its diagonal on the x-axis, and �llout the rest of a (non-pinwheel) tiling xn by periodic extension. By compactnessthis sequence has a convergent subsequence, which will be a pinwheel tiling andwhich will consist of two supertiles of in�nite level.)We now use the above to prove:Lemma 6. For a substitution tiling system satisfying iv), let S be the set of tilingsin which some ball does not lie within a supertile of any level n. S has zero measurewith respect to any translation invariant measure on X�.9



Proof. We only give the proof for dimension m = 2. Note �rst that the boundaryof a supertile of in�nite level must be either a line, or have a single vertex, sinceit is tiled by supertiles of all levels and therefore cannot contain a �nite edge.Furthermore, for a given substitution system there is a constant K such that notiling in it contains more than K vertices of supertiles of in�nite level; speci�cally,one can take K = 2�=p where p is the smallest angle of any of the vertices of thetiles.Next we �x some orthogonal coordinate system in the plane and decompose Sinto disjoint subsets as follows. Let C = [0; 1)� [0; 1) be the \half open" unit edgesquare in R2. Let Ct be the translate of C by the vector t. Let S0 be the subset ofS consisting of tilings containing vertices of supertiles of in�nite level. For x 2 S0we choose a vertex V (x) by lexicographic order: we choose that vertex which in thegiven coordinate system has the largest �rst coordinate; if there is more than onewith that coordinate we choose the one with the largest second coordinate. Thenwe decompose S0 = [t2Z2S0(t), where x 2 S0 \ S0(t) if V (x) 2 Ct. It is easy to seethat each S0(t) is measurable, and that they are translates of one another so theymust have zero measure with respect to any translation invariant measure.The tilings x 2 S=S0 contain two supertiles of in�nite level, each occupying ahalf plane. Next we decompose S=S0 = [j;k2Z �j [ �0k where x 2 S=S0 \ �j if theboundary between the supertiles of in�nite level crosses the �rst axis in [j; j + 1),and x 2 S=S0 \ �0k if the boundary between the supertiles of in�nite level is parallelto the �rst axis and crosses the second axis in [k; k + 1). Note that all sets �j aretranslates of one another, and all sets �0k are translates of one another, so S=S0 haszero measure with respect to any translation invariant measure.Theorem 2. For any substitution tiling systemX� satisfying iv), there exists �0 > 0such that for all � 2 (0; �0), and for almost every tiling x 2 X�, O�(x) is c-equivalentto Oj(x) for some (and therefore any) j. Up to conjugacy, Oj(x) is independent ofx. Furthermore, if � satis�es v) then O�(x) = Oj(x) for some (and therefore any)j.Proof. From Theorem 1b it follows that, for small �, O�(x) is contained in Oj(x),where j is the type of any of the tiles of x which meet the origin. On the otherhand, let N correspond to � in Theorem 1a. By Lemma 6, for almost every x thereis some n such that the tiles which intersect BN are contained in some supertile bof level n in x. Let k be the type of b. It follows from Theorem 1a that Ok(x0)is a subgroup of O�(x), where x0 = ��nx. But Ok(x0) and Oj(x) are c-equivalent,so Oj(x) is conjugate to a subgroup of Ok(x0), and therefore is conjugate to asubgroup of O�(x). So Oj(x) and O�(x) are c-equivalent. By Lemma 1, Oj(x) is,up to conjugacy, independent of x. If � satis�es v), then Ok(x0) = Ok(x) = Oj(x).Since Oj(x) = Ok(x0) � O�(x) � Oj(x), O�(x) = Oj(x).Corollary 1. For each substitution tiling system satisfying iv) the group O�(x) is10



uniquely de�ned up to c-equivalence, for almost all tilings x, and all small enough�, thus the c-equivalence class of the group is an invariant for equivalence. Further-more, among substitution tiling systems also satisfying v), the conjugacy class ofthis subgroup of SO(m) is an invariant for equivalence.3. Abstract Substitution SystemsIn going from Lemma 2 to Theorem 2 we see that we can associate with eachsubstitution tiling system a c-equivalence class of subgroups of SO(m) in a reason-ably fundamental way. We are now ready to relax the hypotheses.De�nition. A \substitution (dynamical) system" is a quadruple (X;T; �; j�j)consisting of a compact metric space X on which there is a continuous actionT : (g; x) 2 GE � X �! T gx 2 X of GE and a homeomorphism � : X ! Xsuch that �[T gx] = T�(g)x for all x, where �(g) is the conjugate of g by the simi-larity of Euclidean space consisting of stretching about the origin by j�j > 1.Substitution tiling systems are special cases of substitution systems. The map� is not intrinsic to the substitution tiling system (X�; T ) since, for tiling systems,� and �k lead to the same set of tilings; so equivalence of such systems should notbe required to intertwine the actions of the maps �. The objects S�(x), R�(x) andO�(x) are well de�ned in our abstract setting. Motivated by the last section, weuse the following notion of equivalence.De�nition. The substitution systems (X1; T 1; �1; j�1j) and (X2; T 2; �2; j�2j) are\equivalent" if there are subsets Yj � Xj , invariant under T j and of measure zerowith respect to all translation invariant Borel probability measures on X�j , and aone-to-one, onto, Borel bimeasureable \isomorphism" � : X1�Y1 ! X2� Y2, suchthat � �T 1 = T 2 �� . Furthermore, � must respect the \local contracting directions"S�(x). Respecting the local contracting directions means that, for each x 2 X1�Y1,� > 0 and �0 > 0, there exist ~� > 0 and ~�0 > 0 such that � [S~�(x)] � S�(�x), and��1[S~�0(�x)] � S�0(x).It is easy to see that for the special case of substitution tiling systems thisnotion of equivalence reduces to that previously de�ned. We will now introducean invariant for equivalence which reduces to the class of subgroups of SO(m) wefound for substitution tiling systems. We note that this allows us to generalize ourdiscussion of substitution tiling systems to include tiling systems which do not quite�t the conditions of x2. In particular, our analysis apply to the various versions ofPenrose tilings of the plane, such as the kite & dart tilings, both the substitutionversion and the version with edge markings [Gar, Ra3], and to the various tilingsdiscussed in [G-S, Moz].We will need to introduce a few more de�nitions. Given two subgroups G1and G2 of SO(m) we write G1 � G2 if G1 is conjugate (by an element of SO(m))11



to a subgroup of G2. The binary relation � lifts in an obvious way to a partialordering on the set of c-equivalence classes. We denote by \lower bound" to a set ~Sof subgroups of SO(m) any c-equivalence class of groups G each of which satis�esG � S for all S 2 ~S. It is almost immediate that O�(x) � O�0(x) if � < �0. For eachx 2 X we de�ne Ô(x) as the set of all lower bounds of the family fO�(x) : � > 0g;it is nonempty since it contains feg. Note that the set Ô(x) is an invariant forsubstitution systems { if � is an isomorphism then Ô(�x) = Ô(x) for almost every x.For substitution tiling systems, the sets Ô(x) have unique greatest elements whichare constant for almost every x with respect to every translation invariant measure.In the latter case, where Ô(x) has an almost everywhere constant greatest element,we denote this greatest element by [O](X). Note that [O](X) is a c-equivalenceclass, unlike O�(x), which is a speci�c group. We have thus generalized the analysisof substitution tiling systems to the more general setting.As with substitution tiling systems, we can avoid the use of c-equivalence classesfor systems with a special property.Property P: For almost every x there exists an � > 0 such that, if 0 < �0 < �, thenO�0(x) = O�(x).Note that, by Theorem 2, any substitution tiling system that satis�es v) alsosatis�es Property P. If a substitution system satis�es Property P, we can de�neO(x) to be O�(x) for � su�ciently small. If the conjugacy class of O(x) is almosteverywhere constant, we de�ne [O]0(X) to be that conjugacy class. The previouslyde�ned [O](X) is, of course, the c-equivalence class of [O]0(X).Theorem 3. Suppose (X1; T 1; �1; j�1j) and (X2; T 2; �2; j�2j) are equivalent sub-stitution systems, with the notation of the de�nition. Then if (X1; T 1; �1; j�1j) sat-is�es Property P so does (X2; T 2; �2; j�2j). Furthermore, for almost every x 2 X1,O(�x) = O(x). In particular, if O(x) is almost everywhere constant up to conju-gacy then O(�x) is almost everywhere constant up to conjugacy and [O]0(X2) =[O]0(X1).Proof. Let x be a generic point of X1. Since (X1; T 1; �1; j�1j) has Property P wecan �nd �0 > 0 such that, for 0 < � < �0, O�(x) = O�0(x) = O(x). From theequivalence we can �nd ~� such that O~�(�x) � O�0(x). Now let �00 = ~�. We will showthat, for any 0 < �0 � �00, O�0(�x) = O�00(�x) = O(x). From this it will follow that(X 0; �0) has Property P and that O(�x) = O(x).Fix any 0 < �0 � �00. Since � is an isomorphism there exists ~�0 > 0 suchthat O~�0(x) � O�0(�x). But O�0(�x) � O�00(�x) � O�0(x). If O~�0(x) = O�0(x)then all the inclusions must be equalities, and we are done. So it su�ces to showO~�0(x) = O�0(x). If ~�0 � �0 this follows from the de�nition of �0. But if ~�0 > �0 thenO�0(x) � O~�0(x), so O~�0(x) = O�0(x). 12



4. Examples and Analysis of the InvariantFor the pinwheel [O]0(X�p ) is the group generated by rotations by �=2 and2 arctan(1=2); for the variant of the pinwheel [O]0(X�v ) is the group generated byrotations by �=2 and 2 arctan(1=3) [RaS]. It is clear that these are distinct, so thesubstitution tiling systems are not equivalent.Rotations appear in more interesting ways in 3 dimensional tilings, for examplethe quaquaversal and dite & kart substitution tiling systems, de�ned in [CoR] and[RaS] respectively. These systems both satisfy v) and therefore Property P. Let R�xbe a rotation about the x axis by an angle �, with similar notation for other axes.If we denote by G(p; q) the subgroup of SO(3) generated by R2�=px and R2�=qy , itcan be shown [CoR, RaS] that [O]0(X�q ) is the conjugacy class of G(6; 4) for thequaquaversal tilings and [O]0(X�d&k ) is the conjugacy class of G(10; 4) for the dite& kart tilings. We shall see that G(6; 4) and G(10; 4) are not conjugate (indeed noteven c-equivalent) by using the following obvious fact: if the groups G and G0 areconjugate (or c-equivalent) and one of them has an element of order m (�nite orin�nite) then the other must have an element of order m.Structure Theorem for G(p,q) [RaS]a) If p; q � 3 are odd, then G(p; q) is isomorphic to the free productZp �Zq = < �; � : �p; �q > : 5)b) If p � 4 is even and q � 3 is odd, then G(p; q) has the presentation< �; � : �p; �q; (�p=2�)2 > : 6)b) If p � 4 is even and q = 2s, s � 3 odd, then G(p; q) has the presentation< �; � : �p; �q; (�p=2�)2; (��s)2 > : 7)d) If 4 divides both p and q, then G(p; q) = G([p; q]; 4), where [p; q] denotes the leastcommon multiple of p and q.e) If 4 divides m, then G(m; 4) has the presentation< �; �; : �m; �4; (�m=2�)2; (��2)2; (�m=4b)3 > : 8)In cases a), b) and c), the isomorphism between the abstract presentation andG(p; q) is given by � 7! R2�=px , � 7! R2�=qy . In case e) the isomorphism is similar.Theorem 4. a) If 4 does not divide both p and q then the orders of elements of�nite order in G(p; q) are ffactors of pg [ ffactors of qg; b) If 4 divides both p andq then the orders of elements of �nite order in G(p; q) are ffactors of [p; q]g [ f3g.13



Corollary 2. If p and q are not both divisible by 4, and p0 is not a factor of p orq, then G(p; q) and G(p0; q0) are not c-equivalent.Corollary 3. The quaquaversal and dite & kart systems are not equivalent.Proof of the theorem.a) Assume g 2 G(p; q) has �nite order 6= 1. We know g can be expressed in one of theforms g = Aa1Bb1Aa2 � � �Aan+1, g = Bb1Aa1Bb2 � � �Bbn+1, g = Bb1Aa1Bb2 � � �Aanor g = Aa1Bb1Aa2 � � �Bbn, with all 0 < aj < p, 0 < bj < q and n � 1. Within theclass of g0 2 G(p; q) which are conjugate to g with respect to G(p; q), we assume thatn is minimal. Assume n � 2; we will obtain a contradiction. Since one could conju-gate with Aa1 , the formAa1Bb1Aa2 � � �Aan can be exchanged forBb1Aa2 � � �Aan andsince one could conjugate with Bb1 , the form Bb1Aa1Bb2 � � �Bbn can be exchangedfor Aa1Bb2 � � �Bbn , and the form Bb1Aa1Bb2 � � �Aan for Aa1Bb1Aa2 � � �Bbn. So weassume that the form is Aa1Bb1Aa2 � � �Bbn . If aj = p=2 (resp. bj = q=2) for anyj then we could use the relation Ap=2Bb = B�bAp=2 (resp. Bq=2Aa = A�aBq=2)to reduce the value of n; thus these values of aj (or bj ) cannot occur. But then,by the structure theorem, g has in�nite order, which is a contradiction. Thus nmust equal 1, and g can be assumed to be of the form Aa1 , Bb1 or Aa1Bb1 . Con-sidering Aa1Bb1Aa1Bb1 � � �Aa1Bb1 , the only way Aa1Bb1 could have �nite order isif a1 = p=2 or b1 = q=2, in which case g has order 2, and 2 is a factor of p or q.Finally, the elements Aa1 can have as orders any factor of p and the elements Bb1can have as orders any factor of q.b) If p and q are divisible by 4 then G(p; q) = G([p; q]; 4), so we consider G(m; 4)with m divisible by 4. Using the presentation 8), we can put any g 2 G(m; 4) in theform WST a1ST a2 � � �ST anE with S = R2�=4y , T = R2�=mx , n � 0, aj 6= km=4 andwith both W and E in the cube group G(4; 4). Assume g has �nite order 6= 1 andthat in its conjugacy class (which of course all have the same order), the smallestvalue of n in the above representation is � 2. (We will obtain a contradiction tothis.) By conjugation we eliminate W from g.Now G(4; 4) can be partitioned: G(4; 4) = H1[H1S[H1SU , where U = R2�=4xand H1 is the 8 element subgroup generated by S2 and U . In detail,H1 = f1; U; U2; U3; S2; S2U;S2U2; S2U3g: 9)Some power of g equals the identity element:(ST a1ST a2 � � �ST anE)(ST a1ST a2 � � �ST anE)(� � �) = e: 10)We consider the three cases: i) E 2 H1; ii) E 2 H1SU ; iii) E 2 H1S.i) The factor E in 10) is of the form (S2)aUb with a = 0; 1 and b = 0; 1; 2; 3: Wealter 10) to[ST a1ST a2 � � �ST anU (�1)ab(S2)a][ST a1ST a2 � � �ST anU (�1)ab(S2)a][� � �] = e; 11)14



or [ST a1ST a2 � � �ST [an+(�1)abm=4](S2a)][ST a1ST a2 � � �� � �ST [an+(�1)abm=4](S2a)] � � � = e; 12)and we know [RaS] this cannot be the case. So we cannot have E 2 H1.ii) E is now of the form (S2)aUbSU with a = 0; 1 and b = 0; 1; 2; 3: We now alter10) to ST a1ST a2 � � �ST [an+(�1)abm=4](S2)aSUST a1ST a2 � � �ST anE � � � = e: 13)Using SUS = USU , 13) becomesST a1ST a2 � � �ST [an+(�1)a(b+1)m=4]S2aST a1+m=4ST a2 � � �� � �ST [an+(�1)a(b+1)m=4]S2aSU � � � = e: 14)Again, we know [RaS] this cannot be the case. So we cannot have E 2 H1SU .iii) We cannot have E 2 H1S and n � 2. For if we represent conjugacy by �=,g �= ST a1ST a2 � � �ST anE = ST a1ST a2 � � �ST an(S2)aUbS�= T a1ST a2 � � �ST [an+(�1)abm=4](S2)a+1�= ST a2 � � �ST [an+(�1)abm=4+(�1)a+1a1](S2)a+1; 15)and g is conjugate to a word with smaller n.Thus n = 0 or n = 1. n = 0 means g 2 G(4; 4), and these have orders1; 2; 3; 4. n = 1 means g is of the form ST a1E where a1 6= km=4 and E 2 G(4; 4).We again consider the three cosets to which E may belong. As before we seethat cases i) and ii) lead to in�nite order for g. But in case iii) g is conjugate toT a1(S2)aUbS2 �= T c(S2)d, which can have as orders the factors of m.5. ConclusionWe have been concerned with substitution tilings of Euclidean spaces, andhave de�ned an invariant for them related to the group generated by the relativeorientations of the tiles in a tiling. This feature is captured in an intrinsic way bymeans of a contractive behavior of the substitution. It is unrelated to other featuresof tiling systems, such as their topology, and we introduce the notion of substitutiondynamical system to emphasize the features associated with the invariant.To distinguish examples, for instance to distinguish the quaquaversal tilingsfrom the dite & kart tilings, requires consideration of 2-generator subgroups ofSO(3), in particular the orders of elements of such subgroups, which we analyze.Acknowledgements. We are pleased to thank Ian Putnam for useful discussions.15
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